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LIE ALGEBROIDS
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Communicated by V. Valov

Abstract. In this note the Poisson structures on Banach manifolds are con-
sidered. Then a Lichnerowicz–Poisson cohomology is reformulated in the Ba-
nach setting and its relation with Banach Lie algebroids cohomology is given
in a classical way just as in the finite dimensional case.

1. Introduction and preliminaries

The Poisson structures on Banach manifolds were introduce by A. Odzijewicz
and T. Raţiu in [9, 10] just as in the finite dimensional case, and these structures
are modeled on the example of a strong symplectic manifold. Also, its elementary
properties are presented as well as some comments on the compatibility of the
Banach Poisson structure with almost complex, complex, and holomorphic struc-
tures, which are reviewed here in the last section. On the other hand in a paper
by M. Anastasiei [2], the Banach Lie algebroids are defined as Lie algebroid struc-
tures modeled on anchored Banach vector bundles. Taking into account that the
Banach Poisson structures defines on the cotangent bundle a structure of Banach
Lie algebroid, the our aim in this note is to extend the classical Lichnerowicz–
Poisson cohomology for Banach Poisson manifolds and its relation with Banach
Lie algebroids cohomology. Finally, the possibility to extend our study at holo-
morphic Banach Poisson manifolds is discussed.

Given a Banach space B, the notation B∗ will mean the Banach space dual to
B. For α ∈ B∗ and a ∈ B, we shall denote by 〈α, a〉 the value of α on a. Thus
〈·, ·〉 : B∗ × B → R (or C, depending on whether we work with real or complex
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Banach spaces and functions) will denote the natural bilinear continuous duality
pairing between B and its dual B∗, [1].

Definition 1.1. Suppose M is a Hausdorff topological space. A triple (U,ϕ,B)
is called a chart of M if U is an open subset of M , B is a Banach space over R
and ϕ : U → B is a homeomorphism onto an open subset of B. If x ∈ U is a point
satisfying ϕ(x) = 0, then (U,ϕ,B) is called a chart about x. The charts (U,ϕ,B)
and (V, ψ,B′) are said to be R-smooth compatible if the homeomorphism

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

between the open subsets of B and B′ , respectively, is smooth. In this case, B and
B′ are isomorphic provided U ∩ V 6= φ. An atlas of M is a collection of pairwise
compatible charts covering M . A maximal atlas (under inclusion) endows M
with a structure of a Banach manifold over R.

Definition 1.2. Let M be a Banach manifold and µ : TM → R+ a lower semi-
continuous function. Then µ is called a norm on TM if the restriction of µ to
every tangent spaces TxM , x ∈M , is a norm on TxM with the following property:
There is a neighborhood U of x ∈ M diffeomorphic equivalent to a domain in a
Banach space B such that

c||a|| ≤ µ(x, a) ≤ C||a|| for all (x, a) ∈ U × B ≈ TU

and suitable constants 0 < c ≤ C. A Banach manifold M together with a fixed
norm µ on the tangent bundle TM is called a normed Banach manifold.

For any x ∈ M one has canonical isomorphisms TxM ≈ B, T ∗xM ≈ B∗ and
T ∗∗x M ≈ B∗∗ of Banach spaces. Since in general case B ⊂ B∗∗ and B 6= B∗∗
the tangent bundle TM is not isomorphic with twice-dual bundle T ∗∗M . Hence
one has only the canonical inclusion TM ⊂ T ∗∗M isometric on fibers. The
isomorphism TM ≈ T ∗∗M has place only if B is reflexive. Particularly, when B
is finite dimensional.

According to [9, 10], in the following of this section we briefly present the notion
of Banach Poisson structures. Like in the finite dimensional case one defines the
Poisson bracket on the space C∞(M) as a bilinear smooth antisymmetric map

{·, ·} : C∞(M)× C∞(M)→ C∞(M)

satisfying Leibniz and Jacobi identities. Due to the Leibniz property there exists
antisymmetric 2-tensor field π ∈ Γ(Λ2T ∗∗M) satisfying

{f, g} = π(df, dg) (1.1)

for each f, g ∈ C∞(M). In addition from Jacobi property and from∑
cycl(f,g,h)

{{f, g}, h} = [π, π](df, dg, dh),

see [5, 11], one has that the 3-tensor field [π, π] ∈ Γ(Λ3T ∗∗M), called the Schouten-
Nijenhuis bracket of π, satisfies the condition

[π, π] = 0. (1.2)
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Hence the Poisson bracket can be equivalently described by the antisymmetric
2-tensor field satisfying the differential equation (1.2). One calls π the Poisson
tensor. Let us define by

#df := π(·, df)

the map # : T ∗M → T ∗∗M covering the identity map id : M → M , for any
locally defined smooth function f . One has #df ∈ Γ(T ∗∗M), so, opposite to the
finite dimensional case, it is not vector field in general. Thus according to [10]
we have the following definition:

Definition 1.3. ([10]). A Banach Poisson manifold is a pair (M, {·, ·}) consisting
of a Banach manifold and a bilinear operation {·, ·} : C∞(M) × C∞(M) →
C∞(M) satisfying the following conditions:

i) (C∞(M), {·, ·}) is a Lie algebra;
ii) {·, ·} satisfies the Leibniz property on each factor;
iii) the vector bundle map # : T ∗M → T ∗∗M covering the identity satisfies

#(T ∗M) ⊂ TM .

As we see, the condition iii) allows one to introduce for any function f ∈
C∞(M) the Hamiltonian vector field Xf by

Xf := #df.

In consequence, after fixing Hamiltonian h ∈ C∞(M) at the above one can con-
sider Banach Hamiltonian system (M, {·, ·}, h) with equation of motion

df

dt
= −Zh(f) = {h, f}.

Definition 1.4. Let (M1, {·, ·}1, π1) and (M2, {·, ·}2, π2) be two Banach Poisson
manifolds. A smooth mapping φ : M1 →M2 is a Banach Poisson morphism if:

i) φ is Banach morphism;
ii) φ is a Poisson type morphism with respect to π1 and π2, that is, φ satisfies

one of the following equivalent properties,
1. π1 and π2 are φ-related:

π1(x)(φ∗α, φ∗β) = π2(φ(x))(α, β), ∀x ∈M1, ∀α, β ∈ Ω1
φ(x)(M2);

2. the Hamiltonian vector fields Xf◦φ and Xf are φ-related:

φ∗Zf◦φ = Zf , ∀ f ∈ C∞(M2).

The Banach Poisson manifolds form a category with morphisms defined above.

2. Lichnerowicz–Poisson cohomology and Banach Lie algebroids

In this section the classical Lichnerowicz–Poisson cohomology, see [7, 11, 12],
is reformulated in the Banach setting and its relation with Banach Lie algebroids
cohomology is given just as in the finite dimensional case.

Let (M,π) be a Banach Poisson manifold. We put Vp(M) the space of all
C∞ p-vector fields of M , (V1(M) = X (M)) and Ωp(M) the space of all C∞

p-differential forms on M , (Ω1(M) = X ∗(M)). There is a morphism

#π : Ω1(M)→ V1(M), #π(α)(β) = π(α, β), for α, β ∈ Ω1(M).
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It can be extended to Ωp(M) as follows: let I∗ be the adjoint of I = #π (it is
easy to see that I∗ = −I), then

I : Ωp(M)→ Vp(M), I(α)(α1, . . . , αp) = α(I∗α1, . . . , I
∗αp), (2.1)

for α ∈ Ωp(M) and α1 . . . , αp ∈ Ω1(M). Like in the finite dimensional case
the Banach Poisson bracket from (1.1) induces a bracket of 1-forms which is the
unique natural extension of the formula {df, dg} = d{f, g}, and is given by

{α, β} = L#π(α)β − L#π(β)(α)− dπ(α, β), (2.2)

where LX denotes the Lie derivative.
Now, we consider the differential operator

σ : Vp(M)→ Vp+1(M), σ(X) = −[X, π].

Using the standard properties of the Schouten-Nijenhuis bracket, see [11], it is
easy to prove:

i) σ2 = 0;
ii) σ(X1 ∧X2) = σ(X1) ∧X2 + (−1)degX1X1 ∧ σ(X2);

iii) σ([X1, X2]) = −[σ(X1), X2]− (−1)degX1 [X1, σ(X2)],

for X1, X2 ∈ V•(M) and where degX denotes the degree of the multivector X.
So, we obtain a differential complex

. . . −→ Vp(M)
σ−→ Vp+1(M)

σ−→ . . .

whose cohomology groups, denoted by Hp
LP (M,π), will be called Lichnerowicz–

Poisson cohomology groups of Banach Poisson manifold (M,π).
We also notice that for X ∈ Vp(M), one has

(σX)(α0, . . . , αp) =

p∑
i=0

(−1)i#π(αi)(X(α0, . . . , α̂i, . . . , αp)) (2.3)

+

p∑
i<j=1

(−1)i+jX({αi, αj}, α0, . . . , α̂i, . . . , α̂j, . . . , αp),

where αi ∈ Ω1(M), and ̂ denotes the absence of an argument.
Now, the definitions given above have some easy consequences such as:

i) H0
LP (M,π) = {f ∈ C∞(M) : ∀ g ∈ C∞(M), Xgf = 0}, since σf = Xf .

ii) H1
LP (M,π) = V1

π(M)/V1
H(M), where

V1
π = {X ∈ V1(M) : LXπ = 0} and V1

H(M) = {Xf : f ∈ C∞(M)},
since σX = −LXπ.

iii) σπ = 0, and π defines a fundamental class [π] ∈ H2
LP (M,π).

iv) We have a natural homomorphism ψ : Hp(M,R)→ Hp
LP (M,π), which is

defined by the extension #π to p-forms from (2.1), since (2.3) shows that

σ(I(α)) = (−1)pI(dα).

Next, we consider the notion of Banach Lie algebroid, see [2], and its cohomol-
ogy ring. Let M be a smooth Banach manifold modeled on Banach space BM
and let p : E →M be a Banach vector bundle whose type fiber is a Banach space
BE. We denote by τ : TM →M the tangent bundle of M .
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Definition 2.1. We say that p : E → M is a anchored vector bundle if there
exists a vector bundle morphism ρ : E → TM . The morphism ρ will be called
the anchor map.

The anchored vector bundles over the same base M form a category. The ob-
jects are the pairs (E, ρE) with ρE the anchor of E and a morphism φ : (E, ρE)→
(F, ρF ) is a vector bundle morphism φ : E → F which verifies the condition
ρF ◦ φ = ρE.

Let p : E →M be an anchored Banach vector bundle with the anchor ρ : E →
TM and the induced morphism ρE : Γ(E)→ X (M). Assume there exists defined
a bracket [·, ·]E on the space Γ(E) that provides a structure of real Lie algebra
on Γ(E).

Definition 2.2. ([2]). The triplet (E, ρE, [·, ·]E) is called a Banach Lie algebroid
if

i) ρE : (Γ(E, [·, ·]E)→ (X (M), [·, ·]) is a Lie algebra homomorphism, i.e.

[s1, s2]E = [ρE(s1), ρE(s2)];

ii) [s1, fs2]E = f [s1, s2]E + ρE(s1)(f)s2,

for every s1, s2 ∈ Γ(E) and f ∈ C∞(M).

Example 2.3. i) The tangent bundle τ : TM → M is a Banach Lie alge-
broid with the anchor the identity map and the usual Lie bracket of vector
fields on M .

ii) For any submersion p : E → M , the vertical bundle V E = ker p∗ over E
is an anchored Banach vector bundle. As the Lie bracket of two vertical
vector fields is again a vertical vector field it follows that (V E, i, [·, ·]V E),
where i : V E → TE is the inclusion map, is a Banach Lie algebroid. This
applies, in particular, to any Banach vector bundle p : E →M .

iii) If (G, [·, ·]) is a Banach Lie algebra then (G, [·, ·]G = [·, ·], ρ = 0) is a Banach
Lie algebroid over a point.

iv) Let (M,π) be a Banach Poisson manifold. Then it is possible to define
a Lie algebra structure {·, ·} on the space of 1-forms on M , see the for-
mula (2.2), in such a way that the triple (T ∗M, {·, ·},#π) is a Banach Lie
algebroid over M . For f, g ∈ C∞(M) and 1-forms α, β ∈ Ω1(M) we have

1. d{f, g} = {df, dfg};
2. #π({α, β}) = [#π(α),#π(β)];
3. {fα, β} = f{α, β} −#π(β)fα,

so, the triple (T ∗M, {·, ·},#π) is a Banach Lie algebroid over M .

There exists a canonical cohomology theory associated to a Banach Lie alge-
broid. Let (E, ρE, [·, ·]E) be a Banach Lie algebroid over a Banach manifold M .
The space C∞(M) is a Γ(E)-module relative to the representation

Γ(E)× C∞(M)→ C∞(M), (s, f) 7→ ρE(s)f.

Following the well-known Chevalley-Eilenberg cohomology theory [3], we can in-
troduce a cohomology complex associated to the Banach Lie algebroid as follows.
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A p-linear mapping

ωp : Γ(E)× . . .× Γ(E)→ C∞(M)

is called a C∞(M)-valued p-cochain. Let Cp(Γ(E);C∞(M)) denote the vector
space of these cochains.

The operator dE : Cp(Γ(E);C∞(M))→ Cp+1(Γ(E);C∞(M)) given by

(dEω
p)(s0, . . . , sp) =

p∑
i=0

(−1)iρE(si)(ω
p(s0, . . . , ŝi, . . . , sp))

+

p∑
i<j=1

(−1)i+jωp([si, sj]E, s0, . . . , ŝi, . . . , ŝj, . . . , sp),

for ωp ∈ Cp(Γ(E);C∞(M)) and s0, . . . , sp ∈ Γ(E), defines a coboundary since dE◦
dE = 0. Hence, (Cp(Γ(E);C∞(M)), dE), p ≥ 1 is a differential complex and the
corresponding cohomology spaces Hp(Γ(E), C∞(M)) are called the cohomology
groups of Γ(E) with coefficients in C∞(M).

Lemma 2.4. If ωp ∈ Cp(Γ(E);C∞(M)) is skew-symmetric and C∞(M)-linear,
then dEω

p also is skew-symmetric.

From now on, the subspace of skew-symmetric and C∞(M)-linear cochains of
the space Cp(Γ(E);C∞(M)) will be denoted by Ωp(Γ(E);C∞(M)).

The Banach Lie algebroid cohomology of E is the cohomology of the subcom-
plex (Ωp(Γ(E);C∞(M)), dE), p ≥ 1.

Using (2.3) it follows an analogue result of the finite dimensional case:

Proposition 2.5. Let (M,π) be a Banach Poisson manifold. Then the Banach
Lie algebroid cohomology of (T ∗M, {·, ·},#π) is the Lichnerowicz–Poisson coho-
mology of (M,π).

3. The holomorphic case

Let us suppose that the Banach Poisson manifold (M, {·, ·}, π) has an almost
complex structure, that is, there is a smooth vector bundle map J : TM → TM
covering the identity, which satisfies J2 = −id. The complex Poisson structure
π is said to be compatible with the complex structure J if the following diagram
commutes:

T ∗M
#−−−→ TM

J∗

y yJ
T ∗M

#−−−→ TM

,

that is,

J ◦# = # ◦ J∗. (3.1)

The decomposition

π = π(2,0) + π(1,1) + π(0,2)
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induced by the complex structure J and the reality of π, implies that the com-
patibility condition (3.1) is equivalent to

π(1,1) = 0 and π(2,0) = π(0,2), (3.2)

where the overline denotes the complex conjugate.
In view of (3.2), [π, π] = 0 is equivalent to

[π(2,0), π(2,0)] = 0 and [π(2,0), π(2,0)] = 0. (3.3)

If (3.1) holds, the triple (M, {·, ·}, π(2,0), J) is called an almost complex Banach
Poisson manifold. If J is given by a complex analytic structure MC on M it will
be called a complex Banach Poisson manifold. For finite dimensional complex
manifolds these structures were introduced and studied by A. Lichnerowicz [8].

Let Ωp,q(MC) and Vp,q(MC) be the space of (p, q)-forms and (p, q)-vector fields,
respectively, on the complex Banach Poisson manifold (M,π). We also denote by
Ωp
O(MC) and VpO(MC) the space of holomorphic p-forms and p-vector fields, that

are holomorphic (p, 0)-forms and holomorphic (p, 0)-vector fields, respectively. If

#(Ω1
O(MC)) ⊂ V1

O(MC), (3.4)

that is, complex Hamiltonian vector field Zf is holomorphic if f is holomorphic
function, then, in addition to (3.2) and (3.3), one has π(2,0) ∈ V2

O(MC). As
expected, the compatibility condition (3.4) is stronger than (3.1). Note that
(3.4) implies the second condition in (3.3). Thus the compatibility condition (3.4)
induces on the underlying complex Banach manifold MC a holomorphic Poisson
tensor πO := π(2,0). A pair (MC, πO) consisting of an analytic complex Banach
manifold MC and a holomorphic skew symmetric contravariant two-tensor field
πO such that [πO, πO] = 0 and (3.4) holds will be called a holomorphic Banach
Poisson manifold.

Consider now a holomorphic Banach Poisson manifold (MC, πO). Denote by
MR the underlying real Banach manifold and define the real two-vector field
πR := ReπO. It is easy to see that (MR, πR) is a real Banach Poisson manifold
compatible with the complex Banach manifold structure of M . Summarizing, we
have that there are two procedures that are inverses of each other: a holomorphic
Banach Poisson manifold corresponds in a bijective manner to a real Banach
Poisson manifold whose Poisson tensor is compatible with the underlying complex
manifold structure. One can call these constructions the complexification and
realification of Banach Poisson structures on complex manifolds. In the finite
dimensional case such strucures were studied by [6].

Now, in similar manner as in the previous section, we can construct a holomor-
phic Lichnerowicz–Poisson cohomology for holomorphic Banach Poisson mani-
folds and its relation with holomorphic Banach Lie algebroids cohomology. A
such study for the finite dimensional case may be found in [4].
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4. L. A. Cordero, M. Fernández, R. Ibánez and L. Ugarte, Almost Complex Poisson Manifolds,
Ann. Global Anal. Geom. 18, (2000), no. 3-4, 265–290.

5. I. M. Gelfand and I. Ya. Dorfman, The Schouten bracket and Hamiltonian operators, Funkt.
Anal. Prilozhen. 14 (3) (1980), 71–74.
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