Ann. Funct. Anal. 2 (2011), no. 2, 51-58
\mathscr{A} nnals of \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

SOME EXISTENCE RESULTS ON A CLASS OF INCLUSIONS

ZORAN D. MITROVIĆ

Communicated by G. L. Acedo

Abstract

In this paper, we introduce the generalized system nonlinear variational inclusions and prove the existence of its solution in normed spaces. We provide examples of applications related to a system nonlinear variational inclusions in the sense of Verma, a coupled fixed point problem, considered by Bhaskar and Lakshmikantham, a coupled coincidence point considered by Lakshmikantham and Ćirić. Also, we generalized coupled best approximations theorem.

1. Introduction and preliminaries

In the sequel, if not otherwise stated, let I be any finite index set. For each $i \in I$, let K_{i} be a nonempty subset of a real topological vector space $X_{i}, s_{i}: K \rightarrow$ X_{i} be a mapping and $M_{i}: K_{i} \multimap X_{i}$ be a multivalued mapping with nonempty values, where $K=\prod_{i \in I} K_{i}$ and $X=\prod_{i \in I} X_{i}$. For each $x \in X$ denoted by $x=\left(x_{i}\right)_{i \in I}$ where x_{i} the ith coordinate.

In this paper, we study the following system of general nonlinear variational inclusion problem:
(SGNVI) Find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in K$ such that for each $i \in I$,

$$
\begin{equation*}
0 \in s_{i}(\bar{x})+M_{i}\left(\bar{x}_{i}\right) . \tag{1.1}
\end{equation*}
$$

Below are some special cases of problem (1.1).
(1) If $X_{i}=\mathbb{R}$ and $M_{i}\left(x_{i}\right)=\left(-\infty,-m_{i}\left(x_{i}\right)\right]$, where $m_{i}(\cdot)$ is a mapping m_{i} : $K_{i} \rightarrow \mathbb{R}$ then problem SGNVI reduces to finding $\bar{x} \in K$ such that for each

[^0]$i \in I$,
$$
s_{i}(\bar{x}) \geq m_{i}\left(x_{i}\right) .
$$
(2) If $X_{i}=\mathbb{R}$ and $M_{i}\left(x_{i}\right)=\left\{-m_{i}\left(x_{i}\right)\right\}$, then problem SGNVI reduces to finding $\bar{x} \in K$ such that for each $i \in I$,
$$
s_{i}(\bar{x})=m_{i}\left(x_{i}\right)
$$
(3) If
\[

$$
\begin{gathered}
I=\{1,2\}, X=X_{1}=X_{2}, K=K_{1}=K_{2} \\
s_{1}\left(x_{1}, x_{2}\right)=-F\left(x_{1}, x_{2}\right), s_{2}\left(x_{1}, x_{2}\right)=-F\left(x_{2}, x_{1}\right)
\end{gathered}
$$
\]

$M_{1}\left(x_{1}\right)=G\left(x_{1}\right), M_{2}\left(x_{2}\right)=G\left(x_{2}\right)$ for all $x_{1}, x_{2} \in K$ then (1.1) reduces to finding $\left(x_{1}, x_{2}\right) \in K \times K$, such that

$$
\begin{equation*}
F\left(x_{1}, x_{2}\right) \in G\left(x_{1}\right), F\left(x_{2}, x_{1}\right) \in G\left(x_{2}\right) \tag{1.2}
\end{equation*}
$$

which is a multivalued coupled coincidence point problem.
(4) If G is a single-valued mapping and $G(x)=\{g(x)\}$ then (1.2) reduces to finding $\left(x_{1}, x_{2}\right) \in K \times K$, such that

$$
F(x, y)=g(x), F(y, x)=g(y) .
$$

which is a coupled coincidence point problem considered by Lakshmikantham and Ćirić [9].
(5) If $G(x)=\{x\}$ is an identity mapping, then (1.2) is equivalent to finding $\left(x_{1}, x_{1}\right) \in X \times X$, such that

$$
F\left(x_{1}, x_{2}\right)=x_{1}, F\left(x_{2}, x_{1}\right)=x_{1},
$$

which is known as a coupled fixed point problem, considered by Bhaskar and Lakshmikantham [3].
(6) In the paper [15] Verma introduced the system of nonlinear variational inclusion (SNVI) problem: finding $\left(x_{0}, y_{0}\right) \in H_{1} \times H_{2}$ such that

$$
\begin{equation*}
0 \in S\left(x_{0}, y_{0}\right)+M\left(x_{0}\right), 0 \in T\left(x_{0}, y_{0}\right)+N\left(y_{0}\right) \tag{1.3}
\end{equation*}
$$

where H_{1} and H_{2} are real Hilbert spaces,

$$
S: H_{1} \times H_{2} \rightarrow H_{1}, T: H_{1} \times H_{2} \rightarrow H_{2}
$$

any mappings and $M: H_{1} \multimap H_{1}, N: H_{2} \multimap H_{2}$ any multivalued mappings. If $I=\{1,2\}$ then (1.1) reduces to (1.3).
(i) If $M(\cdot)=\partial f(\cdot)$ and $N(\cdot)=\partial g(\cdot)$ where $\partial f(\cdot)$ is the subdifferential of a proper, convex and lower semicontinuous functions,

$$
f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}
$$

then problem SNVI reduces to finding $\left(x_{0}, y_{0}\right) \in K_{1} \times K_{2}$ such that

$$
\begin{aligned}
& \left\langle S\left(x_{0}, y_{0}\right), x-x_{0}\right\rangle+f(x)-f\left(x_{0}\right) \geq 0 \text { for all } x \in K_{1}, \\
& \left\langle T\left(x_{0}, y_{0}\right), y-y_{0}\right\rangle+g(x)-g\left(x_{0}\right) \geq 0 \text { for all } y \in K_{2},
\end{aligned}
$$

where K_{1} and K_{2}, respectively, are nonempty closed convex subsets of H_{1} and H_{2}.
(ii) When $M(x)=\partial_{K_{1}}(x)$ and $\partial_{K_{2}}$ denote indicator functions of K_{1} and
K_{2}, respectively, the SNVI problem (1.3) reduces to system of nonlinear variational inequalities problem: finding $\left(x_{0}, y_{0}\right) \in K_{1} \times K_{2}$ such that

$$
\begin{aligned}
& \left\langle S\left(x_{0}, y_{0}\right), x-x_{0}\right\rangle \geq 0 \text { for all } x \in K_{1}, \\
& \left\langle T\left(x_{0}, y_{0}\right), y-y_{0}\right\rangle \geq 0 \text { for all } y \in K_{2} .
\end{aligned}
$$

The aim of this paper is to obtain the results of existence a solution of SGNVI problem (1.1) using the KKM technique.

We need the following definitions and results.
Let X and Y be real vector spaces, $F: X \multimap Y$ is a multivalued mapping from a set X into the power set of a set Y. For $A \subseteq X$, let

$$
F(A)=\cup\{F(x): x \in A\} .
$$

For any $B \subseteq Y$, the lower inverse and upper inverse of B under F are defined by

$$
F^{-}(B)=\{x \in X: F(x) \cap B \neq \emptyset\} \text { and } F^{+}(B)=\{x \in X: F(x) \subseteq B\}
$$

respectively.
A mapping F is upper (lower) semicontinuous on X if and only if for every open $V \subseteq Y$, the set $F^{+}(V)\left(F^{-}(V)\right)$ is open. A mapping F is continuous if and only if it is upper and lower semicontinuous. A mapping F with compact values is continuous if and only if F is a continuous mapping in the Hausdorff distance, see for example [4].

Let X be a normed space. If A and B are nonempty subsets of X, we define

$$
A+B=\{a+b: a \in A, b \in B\} \text { and }\|A\|=\inf \{\|a\|: a \in A\}
$$

We using the notion a C-convex map for multivalued maps.
Definition 1.1. (Borwein, [5]) Let X and Y be real vector spaces, K a nonempty convex subset of X and C is a cone in Y. A multivalued mapping $F: K \multimap Y$ is said to be C-convex if,

$$
\begin{equation*}
\lambda F\left(x_{1}\right)+(1-\lambda) F\left(x_{2}\right) \subset F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)+C \tag{1.4}
\end{equation*}
$$

for all $x_{1}, x_{2} \in K$ and all $\lambda \in[0,1]$.
A mapping F is convex if it satisfies condition (1.4) with $C=\{0\}$ (see for example, Nikodem [11], Nikodem and Popa [12]). If F is a single-valued mapping, $Y=\mathbb{R}$ and $C=[0,+\infty)$, we obtain the standard definition of convex functions. The convex multivalued mappings play an important role in convex analysis, economic theory and convex optimization problems see for example $[1,2,5,14]$.

Lemma 1.2. (Nikodem, [11]) If a multivalued mapping $F: K \multimap Y$ is C-convex, then

$$
\lambda_{1} F\left(x_{1}\right)+\ldots+\lambda_{n} F\left(x_{n}\right) \subset F\left(\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right)+C
$$

for all $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in K$ and $\lambda_{1}, \ldots, \lambda_{n} \in[0,1]$ such that $\lambda_{1}+\ldots+\lambda_{n}=1$.

Lemma 1.3. Let K be a convex subset of normed space X and a multivalued mapping $F: K \multimap X$ is convex, then

$$
\begin{equation*}
\left\|F\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)+u\right\| \leq \sum_{i=1}^{n} \lambda_{i}\left\|F\left(x_{i}\right)+u\right\| \tag{1.5}
\end{equation*}
$$

for all $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in K, u \in X$ and $\lambda_{1}, \ldots, \lambda_{n} \in[0,1]$ such that $\lambda_{1}+\ldots+$ $\lambda_{n}=1$.

Remark 1.4. If $F: K \rightarrow K$ is single valued and almost-affine mapping (see for example Prolla [13]) then the condition (1.5) is hold.

Definition 1.5. (Dugundji and Granas [6, Definition 1.1]) Let K be a nonempty subset of topological vector space a X. A multivalued mapping $H: K \multimap X$ is called a KKM mapping if, for every finite subset $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of K,

$$
\operatorname{co}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \bigcup_{i=1}^{n} H\left(x_{i}\right)
$$

where co denotes the convex hull.
Lemma 1.6. (Ky Fan [7], Lemma 1.) Let X be a topological vector space, K be a nonempty subset of X and $H: K \multimap X$ a mapping with closed values and KKM mapping. If $H(x)$ is compact for at least one $x \in K$ then $\bigcap_{x \in K} H(x) \neq \emptyset$.

2. Main Results

Theorem 2.1. For each $i \in I$, suppose that
(1) K_{i} is a nonempty convex compact subset of a normed space X_{i},
(2) $s_{i}: K \rightarrow X_{i}$ continuous mapping,
(3) $M_{i}: K_{i} \multimap X_{i}$ continuous convex multivalued mapping with compact values.
Then there exists $\bar{x} \in K$ such that

$$
\sum_{i \in I}\left\|M_{i}\left(\bar{x}_{i}\right)+s_{i}(\bar{x})\right\|=\inf _{x \in K} \sum_{i \in I}\left\|M_{i}\left(x_{i}\right)+s_{i}(\bar{x})\right\| .
$$

Proof. Define a multivalued mapping $H: K \multimap K$ by

$$
H(y)=\left\{x \in K: \sum_{i \in I}\left\|M_{i}\left(x_{i}\right)+s_{i}(x)\right\| \leq \sum_{i \in I}\left\|M_{i}\left(y_{i}\right)+s_{i}(x)\right\|\right\}
$$

for each $y=\left(y_{i}\right)_{i \in I} \in K$.
We have that $y \in H(y)$, hence $H(y)$ is nonempty for all $y \in K$.
The mappings s_{i} and M_{i} are continuous and we have that $H(y)$ is closed for each $y \in K$.

Since K is a compact set we have that $H(y)$ is compact for each $y \in K$.
Mapping H is a KKM map. Namely, suppose for any $y^{j} \in K, j \in J$, where J finite subset of \mathbb{N}, there exists

$$
\begin{equation*}
y^{0} \in \operatorname{co}\left\{y^{j}: j \in J\right\} \tag{2.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
y^{0} \notin \bigcup_{j \in J} H\left(y^{j}\right) \tag{2.2}
\end{equation*}
$$

From (2.1) we obtain that there exist $\lambda_{j} \geq 0, j \in J$, such that

$$
y^{0}=\sum_{j \in J} \lambda_{j} y^{j} \text { and } \sum_{j \in J} \lambda_{j}=1
$$

From condition (2.2) we obtain that

$$
\begin{equation*}
\sum_{i \in I}\left\|M_{i}\left(y_{i}^{0}\right)+s_{i}\left(y^{0}\right)\right\|>\sum_{i \in I}\left\|M_{i}\left(y_{i}^{j}\right)+s_{i}\left(y^{0}\right)\right\| \text { for each } j \in J \tag{2.3}
\end{equation*}
$$

From (2.3) we obtain,

$$
\sum_{j \in J} \lambda_{j} \sum_{i \in I}\left\|M_{i}\left(y_{i}^{0}\right)+s_{i}\left(y^{0}\right)\right\|>\sum_{j \in J} \lambda_{j} \sum_{i \in I}\left\|M_{i}\left(y_{i}^{j}\right)+s_{i}\left(y^{0}\right)\right\|,
$$

so, we have

$$
\sum_{i \in I}\left\|M_{i}\left(y_{i}^{0}\right)+s_{i}\left(y^{0}\right)\right\|>\sum_{i \in I} \sum_{j \in J} \lambda_{j}\left\|M_{i}\left(y_{i}^{j}\right)+s_{i}\left(y^{0}\right)\right\| .
$$

Since M_{i} is convex mapping for each $i \in I$ from Lemma 1.3, we obtain

$$
\left\|M_{i}\left(\sum_{j \in J} \lambda_{j} y_{i}^{j}\right)+s_{i}\left(y^{0}\right)\right\| \leq \sum_{j \in J} \lambda_{j}\left\|M_{i}\left(y_{i}^{j}\right)+s_{i}\left(y^{0}\right)\right\| \text { for each } i \in I
$$

and

$$
\sum_{i \in I}\left\|M_{i}\left(\sum_{j \in J} \lambda_{j} y_{i}^{j}\right)+s_{i}\left(y^{0}\right)\right\| \leq \sum_{i \in I} \sum_{j \in J} \lambda_{j}\left\|M_{i}\left(y_{i}^{j}\right)+s_{i}\left(y^{0}\right)\right\|
$$

This is a contradiction with (2.3) and H is KKM mapping. From Lemma 1.6 it follows that there exists $\bar{x} \in K$ such that

$$
\bar{x} \in H(x) \text { for all } x \in K
$$

So,

$$
\sum_{i \in I}\left\|M_{i}\left(\bar{x}_{i}\right)+s_{i}(\bar{x})\right\| \leq \sum_{i \in I}\left\|M_{i}\left(x_{i}\right)+s_{i}(\bar{x})\right\| \text { for all } x \in K .
$$

3. Some Applications

3.1. Existence solutions the SNVI problem. Applying Theorem 2.1, we have the following theorem on existence solutions the SNVI problem (1.3).

Theorem 3.1. Let X be a normed space, K a nonempty convex compact subset of $X, S, T: K \times K \rightarrow X$ continuous mappings and $M, N: K \multimap X$ continuous convex mappings with compact values such that for every $(x, y) \in K \times K$

$$
\begin{equation*}
0 \in M(K)+S(x, y) \text { and } 0 \in N(K)+T(x, y) \tag{3.1}
\end{equation*}
$$

Then there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
0 \in S\left(x_{0}, y_{0}\right)+M\left(x_{0}\right) \text { and } 0 \in T\left(x_{0}, y_{0}\right)+N\left(y_{0}\right)
$$

Proof. From Theorem 2.1, we have that there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
\begin{gathered}
\left\|M\left(x_{0}\right)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N\left(y_{0}\right)+T\left(x_{0}, y_{0}\right)\right\|= \\
\inf _{(x, y) \in K \times K}\left\{\left\|M(x)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N(y)+T\left(x_{0}, y_{0}\right)\right\|\right\} .
\end{gathered}
$$

From condition (3.1) we obtain that

$$
\inf _{(x, y) \in K \times K}\left\{\left\|M(x)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N(y)+T\left(x_{0}, y_{0}\right)\right\|\right\}=0,
$$

so, we have

$$
\left\|M\left(x_{0}\right)+S\left(x_{0}, y_{0}\right)\right\|+\left\|N\left(y_{0}\right)+T\left(x_{0}, y_{0}\right)\right\|=0
$$

hence,

$$
0 \in M\left(x_{0}\right)+S\left(x_{0}, y_{0}\right) \text { and } 0 \in N\left(y_{0}\right)+T\left(x_{0}, y_{0}\right) .
$$

3.2. A Coupled Coincidence Point.

Theorem 3.2. Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \rightarrow X$ continuous mapping and $G: K \multimap X$ continuous convex mapping with compact values such that $F(K \times K) \subseteq G(K)$. Then F and G have a multivalued coupled coincidence point.

Proof. Put

$$
\begin{gathered}
S(x, y)=-F(x, y), T(x, y)=-F(y, x) \text { for } x, y \in K \\
M(x)=G(x), N(y)=G(y) \text { for } x, y \in K
\end{gathered}
$$

Then S, T, M and N satisfies all of the requirements of Theorem 3.1. Therefore, there exists $\left(x_{0}, y_{0}\right) \in K$ such that

$$
0 \in-F\left(x_{0}, y_{0}\right)+G\left(x_{0}\right) \text { and } 0 \in-F\left(y_{0}, x_{0}\right)+G\left(y_{0}\right)
$$

i. e.

$$
F\left(x_{0}, y_{0}\right) \in G\left(x_{0}\right) \text { and } F\left(y_{0}, x_{0}\right) \in G\left(y_{0}\right)
$$

Corollary 3.3. Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \rightarrow X$ continuous mapping and $g: K \rightarrow X$ continuous convex mapping such that $F(K \times K) \subseteq g(K)$. Then F and g have a coupled coincidence point.

Proof. Let $G(x)=\{g(x)\}$ and apply Theorem 3.2.
Corollary 3.4. ([10, Theorem 3.2]) Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \rightarrow K$ continuous mapping. Then F has a coupled fixed point.

Proof. Let $G(x)=\{x\}$ and apply Theorem 3.2.

3.3. A Coupled Best Approximations.

Theorem 3.5. Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \rightarrow X$ continuous mapping and $G: K \multimap X$ continuous convex mapping with compact values. Then there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
\begin{gather*}
\left\|G\left(x_{0}\right)-F\left(x_{0}, y_{0}\right)\right\|+\left\|G\left(y_{0}\right)-F\left(y_{0}, x_{0}\right)\right\|= \tag{3.2}\\
\inf _{(x, y) \in K \times K}\left\{\left\|G(x)-F\left(x_{0}, y_{0}\right)\right\|+\left\|G(y)-F\left(y_{0}, x_{0}\right)\right\|\right\} .
\end{gather*}
$$

Proof. Put

$$
\begin{gathered}
S(x, y)=-F(x, y), T(x, y)=-F(y, x) \text { for } x, y \in K, \\
M(x)=G(x), N(y)=G(y) \text { for } x, y \in K .
\end{gathered}
$$

Then S, T, M and N satisfies all of the requirements of Theorem 2.1. Therefore, there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that (3.2) holds.

Corollary 3.6. Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \rightarrow X$ continuous mapping and $g: K \rightarrow X$ continuous almostaffine mapping. Then there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that

$$
\begin{gathered}
\left\|g\left(x_{0}\right)-F\left(x_{0}, y_{0}\right)\right\|+\left\|g\left(y_{0}\right)-F\left(y_{0}, x_{0}\right)\right\|= \\
\inf _{(x, y) \in K \times K}\left\{\left\|g(x)-F\left(x_{0}, y_{0}\right)\right\|+\left\|g(y)-F\left(y_{0}, x_{0}\right)\right\|\right\} .
\end{gathered}
$$

Corollary 3.7. Let X be a normed space, K a nonempty convex compact subset of $X, F: K \times K \rightarrow X$ continuous mapping. Then there exists $\left(x_{0}, y_{0}\right) \in K \times K$ such that
$\left\|x_{0}-F\left(x_{0}, y_{0}\right)\right\|+\left\|y_{0}-F\left(y_{0}, x_{0}\right)\right\|=\inf _{(x, y) \in K \times K}\left\{\left\|x-F\left(x_{0}, y_{0}\right)\right\|+\left\|y-F\left(y_{0}, x_{0}\right)\right\|\right\}$.

3.4. Applications on best approximations.

(1) (Ky Fan [8], Best approximation theorem.) Let K be a nonempty compact, convex subset of a normed linear space X and $f: K \rightarrow X$ a continuous function. Then there is an $x_{0} \in K$ such that

$$
\left\|x_{0}-f\left(x_{0}\right)\right\|=\inf _{x \in K}\left\|x-f\left(x_{0}\right)\right\| .
$$

(2) (Prolla [13], Best approximation theorem.) Let K be a nonempty compact, convex subset of a normed linear space X and $f: K \rightarrow X$ a continuous function and $g: K \rightarrow X$ a continuous, almost-affine, onto map. Then there is an $x_{0} \in K$ such that

$$
\left\|g\left(x_{0}\right)-f\left(x_{0}\right)\right\|=\inf _{x \in K}\left\|x-f\left(x_{0}\right)\right\|
$$

References

1. J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Boston-Basel-Berlin, 1990.
2. C. Berge, Espaces Topologiques. Fonctions multivoques, Dunod, Paris, 1959.
3. T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393.
4. Ju.G. Borisović, B.D. Gel'man, A.D. Myškis and V.V. Obuhovskii, Topological methods in the theory of fixed points of multivalued mappings, (Russian) Uspekhi Mat. Nauk 35 (1980), no. 1, 59-126, 255.
5. J.M. Borwein, Multivalued convexity and optimization: A unified approach to inequality and equality constraints, Math. Programming 13 (1977), no. 2, 183-199.
6. J. Dugundji and A. Granas, KKM maps and variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 4, 679-682.
7. K. Fan, A generalization of Tychonoff's fixed point Theorem, Math. Ann. 142 (1961), 305310.
8. K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math Z. 112 (1969), 234-240.
9. V. Lakshmikantham and LJ. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349.
10. Z.D. Mitrović, A coupled best approximations theorem in normed spaces, Nonlinear Anal. 72 (2010), no. 11, 4049-4052.
11. K. Nikodem, K-Convex and K-Concave Set-Valued Functions, Zeszyty Nauk. Politech. Lódz. Mat. 559, Rozprawy Nauk. 114, Lódz, 1989.
12. K. Nikodem and D. Popa, On single-valuedness of set-valued maps satisfying linear inclusions, Banach J. Math. Anal. 3 (2009), no. 1, 44-51.
13. J.B. Prolla, Fixed point theorems for set-valued mappings and existence of best approximants, Numer. Funct. Anal. Optimiz. 5 (1982-83), no. 4, 449-455.
14. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
15. R.U. Verma, A-monotinicity and applications to nonlinear variational inclusions problems, J. Appl. Math. Stoch. Anal. 2004 no. 2, 193-195.

Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja
Luka, Patre 5, Bosnia and Herzegovina.
E-mail address: zmitrovic@etfbl.net

[^0]: Date: Received: 30 May 2011; Accepted: 26 July 2011.
 2010 Mathematics Subject Classification. Primary 47H10; Secondary 47H04.
 Key words and phrases. Variational inclusions, Coupled fixed point, Coupled coincidence point, KKM mapping.

