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Abstract. Let E be a real q-uniformly smooth Banach space whose duality
map is weakly sequentially continuous. Let T : E → E be a nonexpansive
mapping with F (T ) 6= ∅. Let A : E → E be an η-strongly accretive map
which is also κ-Lipschitzian. Let f : E → E be a contraction map with
coefficient 0 < α < 1. Let a sequence {yn} be defined iteratively by y0 ∈
E, yn+1 = αnγf(yn) + (I − αnµA)Tyn, n ≥ 0, where {αn}, γ and µ satisfy
some appropriate conditions. Then, we prove that {yn} converges strongly to
the unique solution x∗ ∈ F (T ) of the variational inequality 〈(γf−µA)x∗, j(y−
x∗)〉 ≤ 0, ∀ y ∈ F (T ). Convergence of the correspondent implicit scheme is
also proved without the assumption that E has weakly sequentially continuous
duality map. Our results are applicable in lp spaces, 1 < p <∞.

1. Introduction

Let E be a real Banach space and E∗ be the dual space of E. A mapping
ϕ : [0,∞)→ [0,∞) is called a gauge function if it is strictly increasing, continuous
and ϕ(0) = 0. Let ϕ be a gauge function, a generalized duality mapping with
respect to ϕ, Jϕ : E → 2E

∗
is defined by, x ∈ E,

Jϕx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ(‖x‖)},
where 〈., .〉 denotes the duality pairing between element of E and that of E∗. If
ϕ(t) = t, then Jϕ is simply called the normalized duality mapping and is denoted
by J. For any x ∈ E, an element of Jϕx is denoted by jϕ(x).
If however ϕ(t) = tq−1, for some q > 1, then Jϕ is still called the generalized
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duality mapping and is denoted by Jq (see, for example [9, 10]).

The space E is said to have weakly (sequentially) continuous duality map if
there exists a gauge function ϕ such that Jϕ is singled valued and (sequentially)
continous from E with weak topology to E∗ with weak∗ topology. It is well known
that all lp spaces, (1 < p < ∞) have weakly sequentially continuous duality
mappings. It is well known (see, for example, [16]) that Jq(x) = ||x||q−2J(x) if
x 6= 0, and that if E∗ is strictly convex then Jq is single valued.

A mapping A : D(A) ⊂ E → E is said to be accretive if ∀x, y ∈ D(A), there
exists jq(x− y) ∈ Jq(x− y) such that

〈Ax− Ay, jq(x− y)〉 ≥ 0, (1.1)

where D(A) denotes the domain of A. A is called η−strongly accretive if ∀x, y ∈
D(A), there exists jq(x− y) ∈ Jq(x− y) and η ∈ (0, 1) such that

〈Ax− Ay, jq(x− y)〉 ≥ η‖x− y‖q. (1.2)

A is κ−Lipschitzian if for some κ > 0, ‖A(x)−A(y)‖ ≤ κ‖x− y‖ ∀ x, y ∈ D(A).
A mapping T : E → E is called nonexpansive if

||Tx− Ty|| ≤ ||x− y||, ∀x, y ∈ E.
A point x ∈ E is called a fixed point of T if Tx = x. The set of fixed points of T
is denoted by F (T ) := {x ∈ E : Tx = x}. In Hilbert spaces, accretive operators
are called monotone where inequalities (1.1) and (1.2) hold with jq replaced by
the identity map on H.

Moudafi [5] introduced the viscosity approximation method for nonexpansive
mappings. Let f be a contraction on H, starting with an arbitrary x0 ∈ H,
define a sequence {xn} recursively by

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0, (1.3)

where {αn} is a sequence in (0,1). Xu [12] proved that under certain appropriate
conditions on {αn}, the sequence {xn} generated by (1.3) strongly converges to
the unique solution x∗ in F (T ) of the variational inequality

〈(I − f)x∗, x− x∗〉 ≥ 0, for x ∈ F (T ).

In [13], it is proved, under some conditions on the real sequence {αn}, that the
sequence {xn} defined by x0 ∈ H chosen arbitrary,

xn+1 = αnb+ (I − αnA)Txn, n ≥ 0, (1.4)

converges strongly to x∗ ∈ F (T ) which is the unique solution of the minimization
problem

min
x∈F (T )

1

2
〈Ax, x〉 − 〈x, b〉,

where A is a strongly positive bounded linear operator. That is, there is a constant
γ̄ > 0 with the property

〈Ax, x〉 ≥ γ̄||x||2, ∀x ∈ H.
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Combining the iterative method (1.3) and (1.4), Marino and Xu [7] consider the
following general iterative method:

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0. (1.5)

They proved that if the sequence {αn} of parameters satisfies appropriate condi-
tions, then the sequence {xn} generated by (1.5) converges strongly to x∗ ∈ F (T )
which solves the variational inequality

〈(γf − A)x∗, x− x∗〉 ≤ 0, x ∈ F (T ),

which is the optimality condition for the minimization problem

min
x∈F (T )

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e. h′(x) = γf(x) for x ∈ H).

Let K be a nonempty, closed and convex subset of a real Hilbert space H. The
variational inequality problem: Find a point x∗ ∈ K such that

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ K

is equivalent to the following fixed point equation

x∗ = PK(x∗ − δAx∗), (1.6)

where δ > 0 is an arbitrary fixed constant, A is a nonlinear operator on K and
PK is the nearest point projection map from H onto K, i.e., PKx = y where
‖x− y‖ = inf

u∈K
‖x− u‖ for x ∈ H. Consequently, under appropriate conditions on

A and δ, fixed point methods can be used to find or approximate a solution of
the variational inequality. Considerable efforts have been devoted to this problem
(see, for example, [14, 17] and the references contained therein). For instance, if
A is strongly monotone and Lipschitz then, a mapping B : H → H defined by
Bx = PK(x − δAx), x ∈ H with δ > 0 sufficiently small is a strict contraction.
Hence, the Picard iteration, x0 ∈ H, xn+1 = Bxn, n ≥ 0 of the classical Banach
contraction mapping principle converges to the unique solution of the variational
inequality. It has been observed that the projection operator PK in the fixed
point formulation (1.6) may make the computation of the iterates difficult due to
possible complexity of the convex set K. In order to reduce the possible difficulty
with the use of PK , Yamada [17] introduced the following hybrid descent method
for solving the variational inequality:

xn+1 = Txn − λnµA(Txn), n ≥ 0, (1.7)

where T is a nonexpansive mapping, A is an η−strongly monotone and κ−Lipschitz
operator with η > 0, κ > 0, 0 < µ < 2η

κ2
. He proved that if {λn} satisfies appro-

priate conditions then, {xn} converges strongly to the unique solution x∗ of the
variational inequality

〈Ax∗, x− x∗〉 ≥ 0, x ∈ F (T ).



ITERATIVE ALGORITHM FOR NONEXPANSIVE MAPPINGS 13

Very recently, Tian [6] combined the Yamada’s method (1.7) with the iterative
method (1.5) and introduced the following general iterative method in Hilbert
spaces:

xn+1 = αnγf(xn) + (I − αnµA)Txn, n ≥ 0. (1.8)

Then, he proved that the sequence {xn} generated by (1.8) converges strongly to
the unique solution x∗ ∈ F (T ) of the variational inequality

〈(γf − µA)x∗, x− x∗〉 ≤ 0, x ∈ F (T ).

We remark immediately here that the results of Tian [6] improved the results of
Yamada [17], Moudafi [5], Xu [12] and Marino and Xu [13] in Hilbert spaces.

In this paper, motivated and inspired by the above research results, our purpose is
to extend the result of Tian [6] to q-uniformly smooth Banach space whose duality
mapping is weakly sequentially continuous. Thus, our results are applicable in
lp spaces, 1 < p < ∞. Furthermore, our results extend the results of Moudafi
[5], Xu [12] and Marino and Xu [13] to Banach spaces much more general than
Hilbert.

2. Preliminaries

Let E be a real Banach space. Let K be a nonempty closed convex and bounded
subset of a Banach space E and let the diameter of K be defined by d(K) :=
sup{‖x − y‖ : x, y ∈ K}. For each x ∈ K, let r(x,K) := sup{‖x − y‖ : y ∈ K}
and let r(K) := inf{r(x,K) : x ∈ K} denote the Chebyshev radius of K relative
to itself. The normal structure coefficient N(E) of E (see, for example, [1]) is

defined by N(E) := inf
{
d(K)
r(K)

: K is a closed convex and bounded subset of E

with d(K) > 0
}
. A space E such that N(E) > 1 is said to have uniform normal

structure. It is known that all uniformly convex and uniformly smooth Banach
spaces have uniform normal structure (see, for example, [2, 4]).

Let µ be a linear continuous functional on `∞ and let a = (a1, a2, . . .) ∈ `∞.
We will sometimes write µn(an) in place of the value µ(a). A linear continuous
functional µ such that ||µ|| = 1 = µ(1) and µn(an) = µn(an+1) for every a =
(a1, a2, . . .) ∈ `∞ is called a Banach limit. It is known that if µ is a Banach limit,
then

lim inf
n→∞

an ≤ µn(an) ≤ lim sup
n→∞

an

for every a = (a1, a2, . . .) ∈ `∞ (see, for example, [2, 3]).

Let E be a normed space with dimE ≥ 2. The modulus of smoothness of E is
the function ρE : [0,∞)→ [0,∞) defined by

ρE(τ) := sup

{
‖x+ y‖ + ‖x− y‖

2
− 1 : ‖x‖ = 1; ‖y‖ = τ

}
.
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The space E is called uniformly smooth if and only if lim
t→0+

ρE(t)
t

= 0. For some

positive constant q, E is called q−uniformly smooth if there exists a constant
c > 0 such that ρE(t) ≤ ctq, t > 0. It is known that

Lp(or lp) spaces are

{
2− uniformly smooth, if, 2 ≤ p <∞

p− uniformly smooth, if, 1 < p ≤ 2.

It is well known that if E is smooth then the duality mapping is singled-valued,
and if E is uniformly smooth then the duality mapping is norm-to-norm uniformly
continuous on bounded subset of E.

We shall make use of the following well known results.

Lemma 2.1. Let E be a real normed space. Then

||x+ y||2 ≤ ||x||2 + 2〈y, j(x+ y)〉,
for all x, y ∈ E and for all j(x+ y) ∈ J(x+ y).

Lemma 2.2. (Xu, [15]) Let E be a real q-uniformly smooth Banach space for
some q > 1, then there exists some positive constant dq such that

‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ dq‖y‖q ∀ x, y ∈ E and jq(x) ∈ Jq(x).

Lemma 2.3. (Xu, [11]) Let {an} be a sequence of nonnegative real numbers
satisfying the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where, (i) {αn} ⊂ [0, 1],
∑
αn =∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),∑

γn <∞. Then, an → 0 as n→∞.
Lemma 2.4. (Lim and Xu, [4]) Suppose E is a Banach space with uniform
normal structure, K is a nonempty bounded subset of E, and T : K → K is
uniformly k−Lipschitzian mapping with k < N(E)

1
2 . Suppose also there exists a

nonempty bounded closed convex subset C of K with the following property (P ) :

(P ) x ∈ C implies ωw(x) ⊂ C,

where ωw(x) is the ω−limit set of T at x, i.e., the set

{y ∈ E : y = weak− lim
j
T njx for some nj →∞}.

Then, T has a fixed point in C.

Lemma 2.5. (Jung, [8]) Let C be a nonempty, closed and convex subset of a
reflexive Banach space E which satisfies Opial’s condition and suppose T : C → E
is nonexpansive. Then I − T is demiclosed at zero, i.e., xn ⇀ x, xn − Txn → 0
implies that x = Tx.

Lemma 2.6. Let E be a real Banach space, f : E → E a contraction with
coefficient 0 < α < 1, and A : E → E a κ-Lipschitzian and η-strongly accretive
operator with κ > 0, η ∈ (0, 1). Then for γ ∈ (0, µη

α
),

〈(µA− γf)x− (µA− γf)y, j(x− y)〉 ≥ (µη − γα)||x− y||2, ∀x, y ∈ E.
That is, µA− γf is strongly accretive with coefficient µη − γα.
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3. Main Results

We begin with the following lemma.

Lemma 3.1. Let E be a q-uniformly smooth real Banach space with constant
dq, q > 1. Let f : E → E be a contraction mapping with constant of contraction
α ∈ (0, 1). Let T : E → E be a nonexpansive mapping such that F (T ) 6= ∅ and
A : E → E be an η-strongly accretive mapping which is also κ-Lipschitzian. Let

µ ∈
(

0,min
{

1, ( qη
dqκq

)
1

q−1

})
and τ := µ

(
η − µq−1dqκq

q

)
. For each t ∈ (0, 1) and

γ ∈ (0, τ
α

) define a map Tt : E → E by

Ttx = tγf(x) + (I − tµA)Tx, x ∈ E.

Then, Tt is a strict contraction. Furthermore

||Ttx− Tty|| ≤ [1− t(τ − γα)]||x− y||.

Proof. Without loss of generality, assume η < 1
q
. Then, as µ < ( qη

dqκq
)

1
(q−1) , we

have 0 < qη − µq−1dqκ
q. Furthermore, from η < 1

q
we have qη − µq−1dqκ

q < 1

so that 0 < qη − µq−1dqκq < 1. Also as µ < 1 and t ∈ (0, 1) we obtained that
0 < tµ(qη − µq−1dqκq) < 1.

For each t ∈ (0, 1), define Stx = (I − tµA)Tx, x ∈ E, then for x, y ∈ K

||Stx− Sty||q = ||(I − tµA)Tx− (I − µA)Ty||q

= ||(Tx− Ty)− tµ(A(Tx)− A(Ty))||q

≤ ||Tx− Ty||q − qtµ〈A(Tx)− A(Ty), jq(Tx− Ty)〉
+tqµqdq||A(Tx)− A(Ty)||q

≤ ||Tx− Ty||q − qtµη||Tx− Ty||q

+tqµqκqdq||Tx− Ty||q

≤ [1− tµ(qη − tq−1µq−1κqdq)]||x− y||q

≤
[
1− qtµ

(
η − µq−1κqdq

q

)]
||x− y||q

≤
[
1− tµ

(
η − µq−1κqdq

q

)]q
||x− y||q

= (1− tτ)q||x− y||q. (3.1)

It then follows from (3.1) that,

||Stx− Sty|| ≤ (1− tτ)||x− y||.

Using the fact that Ttx = tγf(x) + Stx, x ∈ E, we obtain for all x, y ∈ E that

||Ttx− Tty|| = ||tγ(f(x)− f(y)) + (Stx− Sty)||
≤ tγ||f(x)− f(y)||+ ||Stx− Sty||
≤ tγα||x− y||+ (1− tτ)||x− y||
= [1− t(τ − γα)]||x− y||.
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Therefore

||Ttx− Tty|| ≤ [1− t(τ − γα)]||x− y||,
which implies that Tt is a strict contraction. Therefore, by Banach contraction
mapping principle, there exists a unique fixed point xt of Tt in E. That is,

xt = tγf(xt) + (I − tµA)Txt. (3.2)

�

Proposition 3.2. Let {xt} be defined by (3.2), then

(i) {xt} is bounded for t ∈ (0, 1
τ
).

(ii) lim
t→0
||xt − Txt|| = 0.

Proof. (i) For any p ∈ F (T ), we have

||xt − p|| = ||(I − tµA)Txt − (I − tµA)p+ t(γf(xt)− µA(p))||
≤ (1− tτ)||xt − p||+ tγα||xt − p||+ t||γf(p)− µA(p)||
= [1− t(τ − γα)]||xt − p||+ t||γf(p)− µA(p)||.

Therefore,

||xt − p|| ≤
1

τ − γα
||γf(p)− µA(p)||.

Hence, {xt} is bounded. Furthermore {f(xt)} and {A(Txt)} are also bounded.
(ii) From (3.2), we have

||xt − Txt|| = t||γf(xt)− µA(Txt)|| → 0 as t→ 0. (3.3)

�

Next, we show that {xt} is relatively norm compact as t → 0. Let {tn} be a
sequence in (0,1) such that tn → 0 as n → ∞. Put xn := xtn . From (3.3), we
obtain that

||xn − Txn|| → 0 as n→∞.
Theorem 3.3. Assume that {xt} is defined by (3.2), then {xt} converges strongly
as t→ 0 to a fixed point x̃ of T which solves the variational inequality problem:

〈(µA− γf)x̃, j(x̃− z)〉 ≤ 0, z ∈ F (T ). (3.4)

Proof. By Lemma 2.6, (µA−γf) is strongly accretive, so the variational inequal-
ity (3.4) has a unique solution in F (T ). Below we use x∗ ∈ F (T ) to denote the
unique solution of (3.4).

We next prove that xt → x∗ (t→ 0). Now, define a map φ : E → R by

φ(x) := µn||xn − x||2, ∀x ∈ E,
where µn is a Banach limit for each n. Then, φ(x) → ∞ as ||x|| → ∞, φ is
continuous and convex, so as E is reflexive, it follows that there exits y∗ ∈ E
such that φ(y∗) = min

u∈E
φ(u). Hence, the set

K∗ := {x ∈ E : φ(x) = min
u∈E

φ(u)} 6= ∅.
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We now show that T has a fixed point in K∗. We shall make use of Lemma 2.4.
If x is in K∗ and y := ω − limj T

mjx, then from the weak lower semi-continuity
of φ (since φ is lower semi-continuous and convex) and lim

n→∞
||xn − Txn|| = 0, we

have (since lim
n→∞
||xn − Txn|| = 0 implies lim

n→∞
||xn − Tmxn|| = 0, m ≥ 1, this is

easily proved by induction),

φ(y) ≤ lim inf
j→∞

φ
(
Tmjx

)
≤ lim sup

m→∞
φ
(
Tmx

)
= lim sup

m→∞

(
µn||xn − Tmx||2

)
= lim sup

m→∞

(
µn||xn − Tmxn + Tmxn − Tmx||2

)
≤ lim sup

m→∞

(
µn||Tmxn − Tmx||2

)
≤ lim sup

m→∞

(
µn||xn − x||2

)
= φ(x)

= min
u∈E

φ(u).

So, y ∈ K∗. By Lemma 2.4, T has a fixed point in K∗ and so K∗ ∩ F (T ) 6= ∅.
Now let y ∈ K∗ ∩ F (T ). Then, it follows that φ(y) ≤ φ(y + t(γf − µA)y) and
using Lemma 2.1, we obtain that

||xn− y− t(γf −µA)y||2 ≤ ||xn− y||2− 2t〈(γf −µA)y, j(xn− y− t(γf −µA)y)〉.
This implies that µn〈(γf − µA)y, j(xn − y − t(γf − µA)y)〉 ≤ 0. Moreover,
µn〈(γf −µA)y, j(xn− y)〉 = µn〈(γf −µA)y, j(xn− y)− j(xn− y+ t(µA−γf)y)〉
+ µn〈(γf − µA)y, j(xn− y+ t(µA− γf)y)〉 ≤ µn〈(γf − µA)y, j(xn− y)− j(xn−
y + t(µA− γf)y)〉.
Since j is norm-to-norm uniformly continuous on bounded subsets of E, we obtain
as t→ 0 that

µn〈(γf − µA)y, j(xn − y)〉 ≤ 0.

Now, using (3.2), we have

||xn − y||2 = tn〈γf(xn)− µAy, j(xn − y)〉+ 〈(I − tnµA)(Txn − y), j(xn − y)〉
= tn〈γf(xn)− µAy, j(xn − y)〉+ 〈(I − µA)Txn − (I − µA)y, j(xn − y)〉
≤ [1− tn(τ − γα)]||xn − y||2 + tn〈(γf − µA)y, j(xn − y)〉.

So,

||xn − y||2 ≤
1

τ − γα
〈(γf − µA)y, j(xn − y)〉.

Again, taking Banach limit, we obtain

µn||xn − y||2 ≤
1

τ − γα
µn〈(γf − µA)y, j(xn − y)〉 ≤ 0,

which implies that µn||xn−y||2 = 0. Hence, there exists a subsequence of {xn}∞n=1

which we still denoted by {xn}∞n=1 such that lim
n→∞

xn = y. We now show that y

solves the variational inequality (3.4). Since

xt = tγf(xt) + (I − tµA)Txt,
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we can derive that

(µA− γf)(xt) = −1

t
(I − T )xt + µ(Axt − ATxt).

It follows that for z ∈ F (T ),

〈(µA− γf)(xt), j(xt − z)〉 = −1

t
〈(I − T )xt − (I − T )z, j(xt − z)〉

+µ〈(Axt − ATxt), j(xt − z)〉
≤ µ〈(Axt − ATxt), j(xt − z)〉. (3.5)

Since T is nonexpansive, then, I−T is accretive, which implies, 〈(I−T )xt− (I−
T )z, j(xt− z)〉 ≥ 0. Now replacing t in (3.5) with tn and letting n→∞, noticing
that (Axtn − ATxtn)→ (Ay − Ay) we obtain

〈(µA− γf)y, j(y − z)〉 ≤ 0,

since z ∈ F (T ) is arbitrary, we get y = x∗.
Assume now that there exists another subsequence {xm}∞m=1 of {xn}∞n=1 such
that lim

m→∞
xm = u∗. Then, since lim

n→∞
||xn − Txn|| = 0, we have that u∗ ∈ F (T ).

Repeating the argument above with y replaced by u∗ we will get that u∗ solves
the variational inequality (3.4), and so by uniqueness, we obtain x∗ = y = u∗.
This complete the proof. �

Theorem 3.4. Let E be a real q-uniformly smooth Banach space with whose
duality map is weakly sequentially continuous. Let T : E → E be a nonexpansive
mapping with F (T ) 6= ∅. Let A : E → E be an η-strongly accretive map which
is also κ-Lipschitzian. Let f : E → E be a contraction map with coefficient
0 < α < 1. Let {αn}∞n=1 be a real sequence in [0,1] satisfying:
(C1) limαn = 0,
(C2)

∑
αn =∞ and

(C3)
∑
|αn+1 − αn| <∞.

Let µ, γ and τ be as in Lemma 3.1. Define a sequence {yn}∞n=1 iteratively in E
by y0 ∈ E,

yn+1 = αnγf(yn) + (I − αnµA)Tyn. (3.6)

Then, {yn}∞n=1 converges strongly to x∗ ∈ F (T ) which is also a solution to the
following variational inequality

〈(γf − µA)x∗, j(y − x∗)〉 ≤ 0, ∀ y ∈ F (T ). (3.7)

Proof. Since the mapping T : E → E is nonexpansive, then from Theorem 3.3,
the variational inequality (3.7) has a unique solution x∗ in F (T ). Furthermore,
the sequence {yn} satisfies

||yn − x∗|| ≤ max
{
||y0 − x∗||,

||γf(x∗)− µAx∗||
τ − γα

}
, ∀n ≥ 0.
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It is obvious that this is true for n = 0. Assume it is true for n = k for some
k ∈ N, from the recursion formula (3.6), we have

||yk+1 − x∗|| = ||αkγf(yk) + (I − αkµA)Tyk − x∗||
= ||αk(γf(yk)− µAx∗) + (I − αkµA)Tyk − (I − αkµA)x∗||

≤ [1− αk(τ − γα)]||yk − x∗||+ αk(τ − γα)
||γf(x∗)− µAx∗||

τ − γα

≤ max
{
||yk − x∗||,

||γf(x∗)− µAx∗||
τ − γα

}
and the claim follows by induction. Thus, the sequence {yn}∞n=1 is bounded and
so are {f(yn)}∞n=1 and {Tyn}∞n=1. Also from (3.6), we have

||yn+1 − yn|| = ||αnγ(f(yn)− f(yn−1)) + γ(αn − αn−1)f(yn−1)

+(I − µαnA)Tyn − (I − µαnA)Tyn−1 + µ(αn − αn−1)ATyn−1||
≤ (1− αn(τ − γα))||yn − yn−1||+M |αn − αn−1|,

for some M > 0. By Lemma 2.3, we have lim
n→∞
||yn+1− yn|| = 0. Furthermore, we

obtain

||yn − Tyn|| ≤ ||yn − yn+1||+ ||yn+1 − Tyn|| (3.8)

= ||yn − yn+1||+ αn||γf(yn)− µATyn|| → 0 as n→∞.
Let {ynj

} be a subsequence of {yn} such that

limsup
n→∞

〈(γf − µA)x∗, j(yn − x∗)〉 = lim
j→∞
〈(γf − µA)x∗, j(ynj

− x∗)〉.

Assume also ynj
⇀ z as j →∞, for some z ∈ E. Then, using this, (3.8) and the

demiclosedness of (I−T ) at zero, we have z ∈ F (T ). Since j is weakly sequentially
continuous, we have

limsup
n→∞

〈(γf − µA)x∗, j(yn − x∗)〉 = lim
j→∞
〈(γf − µA)x∗, j(ynj

− x∗)〉

= 〈(γf − µA)x∗, j(z − x∗)〉 ≤ 0.

Finally, we show that yn → x∗. From the recursion formula (3.6), let

Tnyn := αnγf(yn) + (I − αnµA)Tyn,

and from Lemma 3.1, we have

||yn+1 − x∗||2 = ||Tnyn − Tnx∗ + Tnx
∗ − x∗||2

= ||Tnyn − Tnx∗ + αn(γf − µA)x∗||2

≤ ||Tnyn − Tnx∗||2 + 2αn〈(γf − µA)x∗, j(yn+1 − x∗)〉
≤ [1− αn(τ − γα)]||yn − x∗||2

+2αn(τ − γα)
〈(γf − µA)x∗, j(yn+1 − x∗)〉

τ − γα
and by Lemma 2.3 we have that yn → x∗ as n→∞. This completes the proof. �

We have the following corollaries.
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Corollary 3.5. Let E = lp space, (1 < p < ∞) and {xn}∞n=1 be generated by
x0 ∈ E,

xn+1 = αnγf(xn) + (I − αnµA)Txn.

Assume that {αn}∞n=1 is a sequence in [0,1] satisfying (C1)− (C3), then {xn}∞n=1

converges strongly to x∗ ∈ F (T ) which solves the variational inequality

〈(γf − µA)x∗, y − x∗〉 ≤ 0, ∀ y ∈ F (T ). (3.9)

Corollary 3.6. (Tian [6]) Let E = H be a real Hilbert space and {xn}∞n=1 be
generated by x0 ∈ H,

xn+1 = αnγf(xn) + (I − αnµA)Txn.

Assume that {αn}∞n=1 is a sequence in [0,1] satisfying (C1)− (C3), then {xn}∞n=1

converges strongly to x∗ ∈ F (T ) which solves the variational inequality (3.9)

Corollary 3.7. (Marino and Xu [7]) Let {xn}∞n=1 be generated by x0 ∈ H,

xn+1 = αnγf(xn) + (I − αnA)Txn.

Assume that {αn}∞n=1 is a sequence in [0,1] satisfying (C1)− (C3), then {xn}∞n=1

converges strongly to x∗ ∈ F (T ) which solves the variational inequality (3.9).

Corollary 3.8. (Xu [12]) Let {xn}∞n=1 be generated by x0 ∈ H,

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0.

Assume that {αn}∞n=1 is a sequence in [0,1] satisfying (C1)− (C3), then {xn}∞n=1

converges strongly to x∗ ∈ F (T ).
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