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BESOV–KÖTHE SPACES AND APPLICATIONS
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Communicated by D. H. Leung

Abstract. We introduce and study the family of Besov–Köthe spaces which is
a generalization of the Besov spaces, the Besov–Morrey spaces and the variable
Besov spaces. As an application of the general results for the Besov–Köthe
spaces, we identify a pre-dual of the Besov–Morrey space.

1. Introduction

In this paper, we aim to offer a generalization of Besov spaces. Besov spaces
was introduced by Besov in [3, 4]. For the development of Besov spaces, the
reader is referred to [27, 29, 36, 38]. The reader may also consult [30, Section
6.7.4.2] for a brief history of Besov spaces.

Recently, there are a substantial amount of researches considering Besov spaces
associated with some generalizations of Lebesgue spaces. For instance, when the
Lebesgue spaces used to defined the Besov spaces are replaced by the Morrey
spaces, then we have the Besov–Morrey spaces. The study of Besov–Morrey
spaces was given in [17, 22, 23, 32, 37]. Its application on the study of the solution
of Navier–Stroke equation was also provided in [17, 22, 23]. The atomic, molecular
and quarkonial decompositions are established in [32] and the boundedness of
pseudo-differential operators on the Besov–Morrey spaces is obtained in [34]. The
wavelet characterization of Besov–Morrey space is given in [33].

In [39], another family of Besov type spaces is introduced. For this family of
function spaces, the Lebesgue spaces are replaced by the Lebesgue spaces with
variable exponent. For the basic properties of Lebesgue space and Morrey space
with variable exponent, the reader is referred to [6, 13, 19, 26]. The family of
Besov type function spaces introduced in [39] is called as the variable Besov
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spaces. The smooth atomic decompositions of the variable Besov spaces are
presented in [40].

From the studies of the above new function spaces, we see that there is a general
approach to define and study Besov type spaces for general function spaces. In
fact, a corresponding generalization of Triebel–Lizorkin spaces is obtained in [12,
14]. Roughly speaking, in [12], we find that whenever a function space satisfies the
Fefferman–Stein type vector-valued inequality, then, using the terminology given
in [12], the corresponding Littlewood–Paley space is well-defined and possesses
some nice structures such as the atomic and molecular decompositions [14].

In this paper, we identify the condition imposed on a semi-Köthe function
space X (see Definition 2.1) so that the corresponding Besov type space is well
defined. The condition is given in (2.1). A large family of function spaces fulfills
this condition. For instance, whenever the Hardy–Littlewood maximal operator is
bounded onX, then it satisfies (2.1) (see Lemma 2.2). Moreover, if the translation
operator is bounded on X, it also satisfies (2.1) (see Lemma 2.2).

As demonstrated in [12], some notions appeared in the study of Banach space
are used in the Littlewood–Paley spaces such as the UMD property. Similarly,
we find that the notion of associate space, the absolutely continuity of norm and
the Fatou property are invoked in our study.

This paper is organized as follows. Section 2 contains the definition of the
Besov–Köthe spaces and some of the background materials for the introduction
of Besov–Köthe spaces. We show that the Besov–Köthe space is well-defined in
Section 3. It also presents the atomic and molecular decompositions and a duality
result of Besov–Köthe spaces. The general results obtained in Section 3 is applied
in Section 4 to block spaces. We introduce the Besov-block space in Section 4 and
show that it is a pre-dual of the Besov–Morrey spaces studied in [17, 22, 23, 39].
Finally, the proofs of Theorems 3.1, 3.2 and 3.3 are given in Section 5.

2. Besov–Köthe spaces

We begin with some notions used to study the Besov–Köthe spaces.
Let M(Rn) and P denote the class of Lebesgue measurable functions and the

class of polynomials on Rn, respectively. Let S(Rn) be the space of Schwartz
functions and S ′(Rn) be the space of Schwartz distributions. For any f ∈ S ′(Rn),

the Fourier transform of f is denoted by f̂ . For any x ∈ Rn and r > 0, let
B(x, r) = {y ∈ Rn : |x− y| < r} and B = {B(x, r) : x ∈ Rn, r > 0}.

Let Q = {Qi,k : i ∈ Z, k ∈ Zn} be the set of dyadic cubes, where

Qi,k = {(x1, . . . , xn) ∈ Rn : kj ≤ 2ixi < kj + 1, j = 1, . . . , n}

and k = (k1, . . . , kn). For any dyadic cube, Q ∈ Q, let l(Q) = 2−i and xQ = 2−ik
denote the length of Q = Qi,k and the center of the cube, Q = Qi,k, respectively.

Let Q̃ = {Q ∈ Q : |Q| ≤ 1}. For any ϕ ∈ M(Rn) and Q = Qi,k ∈ Q, write
ϕQ(x) = 2inϕ(2ix− k).

Definition 2.1. Let µ be the Lebesgue measure on Rn (or the counting measure
on N) andM(µ) be the set of µ-measurable functions. A mapping ‖·‖ :M(µ)→
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[0,∞] is called a semi-Köthe function norm (when µ is the counting measure on
N, it is called as a semi-Köthe sequence norm) if

(1) ‖ · ‖ is a quasi-norm,
(2) ‖χB‖ <∞, ∀B ∈ B and
(3) |f | ≤ |g| ⇒ ‖f‖ ≤ ‖g‖, f, g ∈M(µ),

where χB is the characteristic function of B ∈ B.

A quasi-Banach space F ⊆M(Rn) is a semi-Köthe function space if ‖ · ‖F is a
complete semi-Köthe function norm and

F = {f ∈M(Rn) : ‖f‖F <∞}.
In addition, F is a Köthe function space if ‖ · ‖F is a norm and |E| <∞ implies
‖χE‖F <∞ for any Lebesgue measurable set E.

Definition 2.1 is inspired by the definition of Köthe function space. We gener-
alize the notion of Köthe function space to semi-Köthe function space so that our
results apply to the family of block spaces introduced in Section 4 (see Propo-
sition 4.4). The reader is referred to [20, Volume II, Definition 1.b.17] for the
definition of Köthe function space. The preceding definition also generalizes the
notion of Köthe function space to quasi-Banach space.

Similarly, a quasi-Banach space S ⊆ {{ai} : ai ∈ R, i ∈ N} is a semi-Köthe
sequence space if ‖ · ‖S is a complete semi-Köthe sequence norm and

S = {{ai}i∈N : ‖{ai}i∈N‖S <∞}.
According to the Aoki–Rolewicz theorem [16, Theorem 1.3], there exists a

0 < p = pF ≤ 1 such that ‖ · ‖pF satisfies the triangle inequality. Therefore, on the
rest of this paper, we assume that F is a pF-Banach space. Apparently, if F is a
Banach space, then pF = 1.

Definition 2.2. Let L ≥ 0. Let S and F be a semi-Köthe sequence space and a
semi-Köthe function space, respectively. We call the pair (F,S) a L-regular pair
if

(1) there exists a constant C > 0 such that for any f ∈ F, i ∈ N and l ∈ Rn,∥∥∥ ∑
k∈Zn

inf
w∈Qi,k+l

|g(w)|χQi,k
∥∥∥
F
≤ C(1 + |l|L)‖g‖F. (2.1)

(2) For any a = (a0, a1, · · · , ) ∈ S,

‖(0, a0, a1, · · · )‖S ≤ C‖a‖S and ‖(a1, a2, · · · )‖S ≤ C‖a‖S.

The index L in (2.1) plays a role in the order of vanishing moment conditions
satisfied by the smooth molecules associated with the Besov–Köthe space, see
Definition 3.3.

The reader may have a wrong impression that (2.1) is too complicate to apply.
In fact, its introduction is motivated by two simple criteria. The first criterion is
given by the translation on Rn.

Lemma 2.1. If a semi-Köthe space F satisfies

‖Tlf‖F ≤ C(1 + |l|L)‖f‖F, ∀l ∈ Zn (2.2)
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for some C > 0 where Tlf(x) = f(x+ l), then F fulfills (2.1).

Proof. As∑
k∈Zn

inf
w∈Qi,k+l

|g(w)|χQi,k(x) ≤
∑
k∈Zn
|g(2−il + x)|χQi,k(x), ∀i ∈ N,

we have∥∥∥ ∑
k∈Zn

inf
w∈Qi,k+l

|g(w)|χQi,k(x)
∥∥∥
F
≤ ‖g(2−il + x)‖F ≤ C(1 + |l|L)‖g(x)‖F.

�

The other criterion is expressed in term of the boundedness of the Hardy–
Littlewood maximal operator.

Lemma 2.2. If the Hardy–Littlewood maximal operator M is bounded on F, then
F satisfies (2.1) with L = n.

Proof. Since dist(Qi,k, Qi,k+l) ≤ C2−i(1 + |l|), for any x ∈ Qi,k, we find that

inf
w∈Qi,k+l

|g(w)| ≤ 1

2−in

∫
Qi,k+l

|g(y)|dy

≤ C(1 + |l|n)
1

2−in(1 + |l|)n

∫
Qi,k+l

|g(y)|dy ≤ C(1 + |l|n)(Mg)(x).

The above inequalities yield∥∥∥ ∑
k∈Zn

inf
w∈Qi,k+l

|g(w)|χQi,k
∥∥∥
F
≤ C(1 + |l|n)‖Mg‖F ≤ C(1 + |l|n)‖g‖F.

�

We find that the above criteria guarantee that a number of well-known function
spaces satisfy (2.1). The rearrangement-invariant (r.-i.) quasi-Banach space [2,
12, 25, 28], the Morrey space [12, 17, 22, 23, 32, 37] the block space [5] and the
Herz space [11] satisfy (2.1). We offer some examples on non-translation invariant
function spaces that fulfill (2.1). For simplicity, we consider function spaces on
R. Let ω : R → (0,∞) be a positive Lebesgue measurable function satisfying
ω(x+ l) ≤ C(|l|L + 1)ω(x), x, l ∈ R for some L > 0. It is trivial that the function
space

Lpω = {f ∈M(R) :
( ∫

R
|f(x)|pω(x)dx

)1/p
<∞}, 0 < p <∞

L∞ω = {f ∈M(R) : sup
x∈R

ω(x)|f(x)| <∞},

possess property (2.1). In particular, the function space of polynomial growth
(or polynomial decay),

GL = {f ∈M(R) : sup
x∈R

(1 + |x|)L|f(x)| <∞}, −∞ < L < 0 (0 < L <∞),

has property (2.1).
The variable Lebesgue spaces provide examples on the use of the boundedness

of the maximal operator on the study of Besov–Köthe space. There are several
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criteria found so that the maximal operator is bounded on Lp(x). The reader may
referred to [6, 26] for details.

Definition 2.3. Let F and S be a semi-Köthe function space and a semi-Köthe
sequence space, respectively. The quasi-Banach space (F,S) consists of those
sequence of Lebesgue measurable functions {fi}i∈N satisfying

‖{fi}i∈N‖(F,S) = ‖{‖fi‖F}i∈N‖S <∞.

Definition 2.4. Let L ≥ 0. Let (F,S) be a L-regular pair. The Besov–Köthe
space consists of those f ∈ S ′(Rn) such that

‖f‖BS
F(ϕ0,ϕ) = ‖{ϕi ∗ f}i∈N‖(F,S) <∞

where ϕ0, ϕ ∈ S(Rn) satisfy

supp ϕ̂0(ξ) ⊆ {ξ : |ξ| ≤ 1} and supp ϕ̂(ξ) ⊆ {ξ : 1/2 ≤ |ξ| ≤ 2}, (2.3)

|ϕ̂0(ξ)| > C |ξ| ≤ 1 and |ϕ̂(ξ)| > C 3/5 ≤ |ξ| ≤ 5/3 (2.4)

for some constant C > 0 and ϕi(x) = 2inϕ(2ix), i ∈ N\{0}.

The Besov–Köthe space covers the Besov–Morrey space [17, 22, 23, 32, 33, 34,
37] and the variable Besov space [39, 40]. Moreover, the above definition also
introduces some new families of Besov spaces such as Besov-Orlicz spaces, Besov-
Lorentz–Karamata spaces and Besov–rearrangement-invariant quasi-Banach func-
tion spaces when F are Orlicz spaces [31], Lorentz–Karamata spaces [7] and
rearrangement-invariant quasi-Banach function spaces [2], respectively.

3. Main Results

We present the main results in this section.

Definition 3.1. Let (F,S) be a L-regular pair. A sequence a = {aQ}Q∈Q̃ belongs

to the Besov–Köthe sequence space bSF if

‖a‖bSF =
∥∥{∑

k∈Rn
|aQi,k |χQi,k}∞i=0

∥∥
(F,S) <∞

where χQ is the characteristic function of Q ∈ Q̃.

We have the following main result for Besov–Köthe space. The proofs of The-
orems 3.1, 3.2 and 3.3 are presented in Section 5.

Theorem 3.1. Let (F,S) be a L-regular pair. The Besov–Köthe space BS
F is

independent of ϕ0, ϕ ∈ S(Rn) in Definition 2.4.

Next, we show that the Besov–Köthe spaces possess the atomic and molecular
decompositions.

Let K > 0. We say that {aQ}Q∈Q̃ is a family of K-atoms if it satisfies

(1) supp aQ ⊆ 3Q,

(2) |(∂γaQ)(x)| ≤ Cγ|Q|−
|γ|
n , γ ∈ Nn,

(3)
∫
Rn x

λaQ(x)dx = 0, |λ| ≤ [K], λ ∈ Nn, when |Q| < 1.

The above definition follows from a simple modification of [9, p.60] or [10, p.46].
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Theorem 3.2. Let K > 0. Let (F,S) be a L-regular pair. For any f ∈ BS
F, we

have a sequence s = {sQ}Q∈Q ∈ bSF and a family of K-atoms {aQ}Q∈Q̃ such that

f =
∑
Q∈Q̃

sQaQ

and ‖s‖bSF ≤ C‖f‖BS
F

for some constant C > 0 independent of f .

For any q ≥ 1, let Sq = {a = {ai}∞i=0 : {|ai|q}∞i=0 ∈ S} and

‖{ai}∞i=0‖Sq = ‖{|ai|q}∞i=0‖
1/q
S .

It is obvious that ‖ · ‖Sq is a quasi-norm. If S is a quasi-Banach space, Sq is also a
quasi-Banach space. The quasi-Banach space Sq is called as the q-convexification
of S or the 1

q
-th power of S, see [20, Volume II, p.53-54] and [28, Section 2.2],

respectively.
The following definition is introduced for the molecular decompositions of BS

F.

Definition 3.2. Let α,L ≥ 0. Let S and F be semi-Köthe sequence space and
semi-Köthe function space, respectively. We call the pair (F,S) a (α,L)-regular
pair if F satisfies (2.1) and there exists a 1 ≤ qS such that for any δ1 > α and
δ2 > −α, the mappings

Tδ,1({ai}∞i=0) =
{ i∑
j=0

2(j−i)δ1/qSaj
}∞
i=0

and

Tδ,2({ai}∞i=0) =
{ ∞∑
j=i+1

2(i−j)δ2/qSaj
}∞
i=0

are bounded on SqS .

For example, if we consider the sequence space,

lr,κ =
{
{ai}∞i=0 : ‖{ai}∞i=0‖lr,κ = (

∞∑
i=0

(2iκ|ai|)r)1/r <∞
}
, 0 < r <∞,

we find that α = κ and we can take qlr,κ = 1 when 1 ≤ r ≤ ∞. If 0 < r < 1, we
can assign qlr,κ to be any number in the interval (1/r,∞).

We state the definition of smooth molecules for BS
F in the followings. It is a

modification of the definition of smooth molecules from [9, p.56]. Notice that the
index L in (2.1) is used in the order of the vanishing moment condition imposed
on the smooth molecules.

Definition 3.3. Let α,L ≥ 0 and (F, S) be a (α,L)-regular pair. A family of
function {mQ}Q∈Q̃ is a family of molecules for BS

F, if there exist β > |α| and
N > n

pF
+ L− n such that∫

Rn
xλmQ(x)dx = 0, |λ| ≤

[ n
pF

+ L− α− n
]
, λ ∈ Nn, (3.1)
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when |Q| < 1 and

|∂γmQ(x)| ≤ C1|Q|−
|γ|
n

1

(1 + l(Q)|x− xQ|)N
, |γ| ≤ [β], γ ∈ Nn,

|∂γmQ(x)− ∂γmQ(y)|

≤ C2|Q|−
β
n |x− y|β−[β] sup

|z−xQ|≤|x−y|

1

(1 + l(Q)−1|x− z|)N
.

Theorem 3.3. Let (F,S) be a (α,L)-regular pair and qSpF ≥ 1. Let {mQ}Q∈Q̃ ∈
Mβ,N be a family of molecules for BS

F. Then, there exists a constant C > 0 such
that for any f =

∑
Q∈Q̃ sQmQ with s = {sQ}Q∈Q̃ ∈ bSF, f ∈ BS

F and

‖f‖BS
F
≤ C‖s‖bSF .

If F = Lp and S = lq,α, 0 < p, q ≤ ∞ and α ∈ R, then the Besov–Köthe space
BS

F is the “classical” Besov space Bα
p,q. The previous molecular decomposition is

a generalization of the celebrated molecular decomposition of Besov space Bα
p,q

(see [8], Theorem 3.1). The criteria qlqpLp ≥ 1 is satisfied as qlq can be taken as
any number bigger than 1/q. Furthermore, as Lp is translation-invariant, L = 0.
Thus, the vanishing moment condition in (3.1) is precisely the conditions for the
Besov space Bα

p,q.
Moreover, the above results also provide the atomic and molecular decompo-

sitions for the Besov–Morrey spaces [32] and the variable Besov spaces [40]. For
the Besov–Morrey spaces studied in [32], the corresponding “classical” Morrey
space is translational invariant. That is, it satisfies (2.2) with L = 0, therefore
the preceding results reestablish the decompositions given in [32].

For any semi-Köthe function space F, let F′ denote the linear space of integral
of F (see [20, Volume II, p.29] and [21, 41]). More precisely, any linear functional
on F, L, of the form

L(f) =

∫
Rn
f(x)g(x)dx, g ∈M,

is called an integral of F. Whenever F is a Banach function space, F′ is also called
as the Köthe dual of F or the associate space of F, see [2, Chapter 1, Section 3]
and [28, p.35].

Similarly, for any semi-Köthe sequence space S, the integral space is the col-
lection of those linear functionals L on S having the representation

L(s) =
∞∑
i=0

sili, {li}∞i=0 ⊂ C.

Note that the dual space and the integral space of a semi-Köthe space are not
necessarily equal, see [2, Chapter 1, Corollary 4.3].

Definition 3.4. We say that a semi-Köthe sequence space S has the Fatou prop-
erty if for any sn = {sn,j}∞j=0 ∈ S satisfying sn,j ≥ 0 ∀n, j ∈ N,

sn ↑ s and sup
n∈N
‖sn‖S <∞ ⇒ s ∈ S and ‖s‖S = lim

n→∞
‖sn‖S.
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The reader is referred to [2, Chapter 1, Lemma 1.5, Theorem 1.6 and Theorem
2.7] or [20, Volume II, p.30] for the definition of the Fatou property on Banach
function space, its application on the completeness of Banach function space and
its relation with the Lorentz-Luxemburg theorem of the second associate space
of Banach function space.

We define the notion of absolutely continuous for semi-Köthe sequence space
(see [2], Chapter 1, Section 3 and [12, Definition 2.4]).

Definition 3.5. We say that a semi-Köthe sequence space S has absolutely con-
tinuous quasi-norm if limi→∞ ‖si‖S = 0 for every sequence {si}i∈N ⊂ S satisfying
si ↓ 0.

Proposition 3.4. Let F and S be a semi-Köthe function space and a semi-Köthe
sequence space, respectively. If S∗ = S′, F∗ = F′ and S has absolutely continuous
norm and the Fatou property, then

(F, S)∗ = (F∗,S∗).

Proof. Let {gi}∞i=0 ∈ (F′,S′) = (F∗,S∗). For any f = {fi}∞i=0 ∈ (F, S), define

G(f) =
∞∑
i=0

∫
Rn
fi(x)gi(x)dx. (3.2)

The definition of integral space yields

|G(f)| ≤
∞∑
i=0

‖fi‖F‖gi‖F′ ≤ ‖{fi}∞i=0‖(F,S)‖{gi}∞i=0‖(F′,S′).

Therefore, (F∗,S∗) ⊆ (F,S)∗.
Next, let L ∈ (F,S)∗. Write δij = 1 if i = j and δij = 0 if i 6= j. For any j ∈ N,

we consider
Lj(h) = L({hδij}∞i=0), ∀h ∈ F.

Since Lj ∈ F∗ = F′, we obtain a Lebesgue measurable function gj ∈ F′ such that

Lj(h) =

∫
Rn
h(x)gj(x)dx.

Therefore, for any N ∈ N and f = {fj}∞j=0 ∈ (F,S), we obtain

N∑
j=0

∫
Rn
|fj(x)gj(x)|dx ≤ ‖L‖op‖f‖(F,S)

where ‖L‖op is the operator norm of L.
Let ε > 0. Let hj ∈ F with ‖hj‖F ≤ 1, j ∈ N, be chosen so that

‖gj‖F′ ≤
∫
Rn
|hj(x)gj(x)|dx+

ε

2j
.

For any s = {sj}∞j=0 ∈ S with ‖s‖S ≤ 1, we have

N∑
j=0

sj‖gj‖F′ ≤
N∑
j=0

∫
Rn
|sjhj(x)gj(x)|dx+ ε ≤ ‖L‖op + ε
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because ‖{sjhj}∞j=0‖(F,S) ≤ 1. Taking supreme over those s ∈ S with ‖s‖S ≤ 1 on
the left hand side of the above inequalities, we have

‖{g0, g1, . . . , gN , 0, . . .}‖(F′,S′) ≤ ‖L‖op + ε.

Applying the Fatou property, we find that g = {gj}∞j=0 ∈ (F′,S′).
Write Lg(f) =

∑∞
i=0

∫
Rn fj(x)gj(x)dx, f = {fj}∞j=0 ∈ (F,S). We find that L

and Lg are identical on

F̃ = {{fj}∞j=0 ∈ (F,S) : fj = 0, ∀j ≥ N, for someN ∈ N}.

Furthermore, the absolute continuity of ‖ · ‖S assures that F̃ is dense in F. There-
fore, L = Lg and, hence, we assert that (F,S)∗ ↪→ (F′,S′). �

In fact, the above theorem also shows that any bounded linear functional on
(F,S) is of the form (3.2).

Theorem 3.5. Let α,L ≥ 0 and (F,S) be a (α,L)-regular pair and qSpF ≥ 1.
Suppose that (F∗,S∗) are M-regular pair for some M ≥ 0 and qS∗pF∗ ≥ 1. If
S∗ = S′, F∗ = F′, S has absolutely continuous norm and the Fatou property and
for any ϕ ∈ S(Rn)

‖f ∗ ϕ‖F′ ≤ C‖ϕ‖L1‖f‖F′ , ∀f ∈ F′ (3.3)

for some C > 0, then we have

(BS
F)∗ = BS∗

F∗ .

Proof. Let g ∈ BS∗
F∗ . For any ϕ ∈ S(Rn) satisfying (2.3)-(2.4) and f ∈ BS

F, define

G(f) =
∞∑
i=0

∫
Rn

(g ∗ ϕi(x))(f ∗ ϕi−1(x) + f ∗ ϕi(x) + f ∗ ϕi+1(x))dx.

According to the definition of integral on F, we have

|G(f)| ≤
∞∑
i=0

‖g ∗ ϕi‖F′(‖f ∗ ϕi−1‖F + ‖f ∗ ϕi‖F + ‖f ∗ ϕi+1‖F).

Similarly, using the definition of integral on S and Item (2) of Definition 2.2, we
have

|G(f)| ≤ C‖g‖(F′,S′)‖f‖(F,S).
Thus, BS∗

F∗ ↪→ (BS
F)∗.

Let g ∈ (BS
F)∗. Using Hahn-Banach theorem, we have a linear functional G on

(F,S) such that

g(f) = G({f ∗ ϕi}∞i=0), ∀f ∈ BS
F

and ‖g‖op = ‖G‖op where ‖ · ‖op denotes the operator norm.
Proposition 3.4 provides a family {gi}∞i=0 ∈ (F′,S′) such that

g(f) =
∞∑
i=0

∫
Rn
gi(x)(f ∗ ϕi)(x)dx, ∀f ∈ BS

F. (3.4)
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Theorem 3.3 assures that S(Rn) ⊂ BS
F. Hence, g ∈ (BS

F)∗ ↪→ S ′(Rn). For any
ψ ∈ S(Rn), applying (3.4) with f = ϕj ∗ ψ, j ∈ N, conditions (2.3) and (2.4)
yield

g ∗ ϕj =

j+1∑
i=j−1

gi ∗ ϕj ∗ ϕi.

Thus, condition (3.3) guarantees that

‖g ∗ ϕj‖F′ ≤ C(‖gj−1‖F′ + ‖gj‖F′ + ‖gj+1‖F′)

for all j ∈ N.
Consequently, Item (2) of Definition 2.2 assures that

‖{g ∗ ϕi}∞i=0‖(F′,S′) ≤ C‖{gi}∞i=0‖(F′,S′).

That is, (BS
F)∗ ↪→ BS′

F′ . �

Notice that for any ϕ ∈ S(Rn) and locally integrable function f , we have

|f ∗ ϕ| ≤ C‖ϕ‖L1M(f)

for some C > 0. Therefore, whenever the Hardy–Littlewood maximal operator is
bounded on F′, F satisfies (3.3). In particular Lp, 1 ≤ p <∞ satisfy (3.3).

4. Application: Besov-block spaces

In this section, we use the Besov–Köthe space to obtain a pre-dual of the
Besov–Morrey spaces studied in [17, 22, 23, 32, 37]. We call it as the Besov-block
space because this is the Besov type space associated with block space.

Even though the definition of Morrey space is well-known, for completeness,
we recall it from [22, Definition 2.1].

Definition 4.1. Let 1 ≤ q ≤ p <∞, the Morrey space Mp
q is defined by

Mp
q = {f ∈M(Rn) : ‖f‖Mp

q
= sup

z∈Rn,r>0
r
n
p
−n
q ‖χB(z,r)f‖Lq <∞}.

Notice that a generalization of the above Morrey space with Lq replaced by
Banach function space is given in [12]. In addition, the boundedness of singular
integral operator, the boundedness of the Hardy–Littlewood maximal operator
and the validity of the Fefferman–Stein vector-valued inequalities on this gener-
alization of Morrey space are established in [12, Section 5].

The following Morrey type space is introduced in [12, Definition 5.1].

Definition 4.2. Let X be a r.-i. Banach function space on Rn and ω(x, r) :
Rn× (0,∞)→ (0,∞) be a Lebesgue measurable function. A f ∈M(Rn) belongs
to MX

ω if it satisfies

‖f‖MX
ω

= sup
x0∈Rn,r>0

1

ω(x0, r)
‖χB(x0,r)f‖X <∞

where χB(x,r) denotes the characteristic function of B(x, r).
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In particular, Mp
q =MLq

ω where ω(x, r) = r
n
q
−n
p for all x ∈ Rn.

Using [12, Theorem 5.5], we have the following fundamental result ofMX
ω . To

formulate the following proposition for r.-i. Banach function space X, we use the
notion of Boyd’s indices pX , qX . For the definition of Boyd’s indices, the reader
is referred to [12, Definition 4.2] and [20, Volume II, Definition 2.b.1].

Theorem 4.1. Let X be a r.-i. Banach function space on Rn with Boyd’s indices
satisfying 1 < pX ≤ qX <∞. If ω satisfies

(1) for some 0 ≤ λ < n
qX

, ω(x, 2jr) ≤ C2jλω(x, r) for any x ∈ Rn, j ∈ N and
r > 0,

(2) there exists C1 > 0 such that ω(x, r) ≥ C1, for all r ≥ 1, x ∈ Rn and
(3) there exists C2 > 0 such that

C−12 ≤ ω(x, t)/ω(x, r) ≤ C2, 0 < r ≤ t < 2r,

then MX
ω is a Köthe function space.

Proof. It is obvious that MX
ω is a Banach lattice with respect to the ordering

f ≤ g of Lebesgue measurable functions. It remains to show that χE ∈ MX
ω

whenever E is a Lebesgue measurable set with |E| <∞.
As E∩B(x0, 1), x0 ∈ Rn, is a bounded Lebesgue set, the proof of [12, Theorem

5.5] guarantees that

sup
x0∈Rn,0<r≤1

1

ω(x0, r)
‖χB(x0,r)χE‖X <∞. (4.1)

Next, as X is a Banach function space, ‖χE‖X <∞ (see [2, Chapter 1, Definition
1.1 (P4)]). Item (2) assures that ω(x0, r) ≥ C1, for all r ≥ 1 and x0 ∈ Rn.
Therefore, (4.1) and the assertion,

sup
x0∈Rn,1≤r

1

ω(x0, r)
‖χB(x0,r)χE‖X < C‖χE‖X <∞,

yield χE ∈MX
ω . �

We generalize the definition of block space introduced in [5].

Definition 4.3. Let X be a semi-Köthe function space on Rn and ω(x, r) :
Rn × (0,∞) → (0,∞) be a Lebesgue measurable function. A b ∈ M(Rn) is a
(ω,X)-block if it is supported in a ball B(x0, r), x0 ∈ Rn, r > 0, and

‖b‖X ≤
1

ω(x0, r)
.

Define Bω,X by

Bω,X =

{ ∞∑
k=1

λkbk :
∞∑
k=1

|λk| <∞ and bk is a (ω,X)-block

}
.

The space Bω,X is endowed with the norm

‖f‖Bω,X = inf
{ ∞∑
k=1

|λk| such that f =
∞∑
k=1

λkbk
}
.
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Notice that the terminology “block space” is used in [24, 35] to represent an-
other family of function spaces.

For any 1 < p ≤ q ≤ ∞ and ω(x, r) = r
n
q
−n
p , ∀x ∈ Rn, write Bp

q = Bω,Lq . In
[5, Theorem 1], we have

(Bp
q)
∗ = Mp′

q′ (4.2)

where 1
q
+ 1
q′

= 1 and 1
p
+ 1
p′

= 1. Furthermore, we have the subsequent result which

shows that the family of block space is an extension of the family of Lebesgue
spaces.

Proposition 4.2. Let X be a Banach function space on Rn. If ω ≡ 1, then

Bω,X = X.

Proof. In view of the definition of block space, for any f ∈ Bω,X , f =
∑∞

k=1 λkbk,
there exist a family of (ω,X)-blocks {bk}∞k=1 and a sequence of scalars {λk}∞k=1

such that
∑∞

k=1 |λk| ≤ 2‖f‖Bω,X . Thus,

‖f‖X ≤
∞∑
k=1

|λk|‖bk‖X ≤
∞∑
k=1

|λk| ≤ 2‖f‖Bω,X . (4.3)

For the reverse embedding, we see that for any f ∈ X and any R > r > 0,

1

‖fχB(0,R)\B(0,r)‖X
fχB(0,R)\B(0,r),

1

‖fχB(0,R)‖X
fχB(0,R)

are (ω,X)-blocks. That is, we have

‖fχB(0,R)\B(0,r)‖Bω,X ≤ ‖fχB(0,R)\B(0,r)‖X (4.4)

‖fχB(0,R)‖Bω,X ≤ ‖fχB(0,R)‖X . (4.5)

As {fχB(0,2j)}j∈N is a Cauchy sequence in X with limit function f , (4.3) and (4.4)
assure that {fχB(0,2j)}j∈N is also a Cauchy sequence in Bω,X that also converges
to f . Therefore, (4.3) and (4.5) ensure that Bω,X = X. �

In particular, we have Bp
p = Lp, 1 ≤ p ≤ ∞. We now present and prove an

extension of (4.2).

Theorem 4.3. Let X and ω satisfy the conditions in Theorem 4.1. If X∗ = X ′,
then

B′ω,X = (Bω,X)∗ =MX∗

ω .

Proof. Let f ∈MX∗
ω and b be a (ω,X)-block supported in B(x0, r). We find that∣∣∣∣∫

Rn
f(x)b(x)dx

∣∣∣∣ ≤ ‖χB(x0,r)f‖X′‖χB(x0,r)b‖X ≤
1

ω(x0, r)
‖χB(x0,r)f‖X∗

because X∗ = X ′.
Thus, if g =

∑
k∈N λkbk ∈ Bω,X , we have∣∣∣∣∫

Rn
f(x)g(x)dx

∣∣∣∣ ≤∑
k∈N

|λk|
∣∣∣∣∫

Rn
f(x)bk(x)dx

∣∣∣∣ ≤ ‖g‖Bω,X‖f‖MX∗
ω
.

That is, MX∗
ω ↪→ (Bω,X)∗.
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For the reverse direction, we first notice that for any h ∈ X and B(x0, r) ∈ B,

χB(x0,r)h

‖χB(x0,r)h‖Xω(x0, r)
(4.6)

is a (ω,X)-block. In particular, ‖χB(x0,r)h‖Bω,X ≤ ‖χB(x0,r)h‖Xω(x0, r).
For any L ∈ (Bω,X)∗, by using Hahn–Banach theorem, the linear functional

defined by l(g) = L(χB(,0,r)g) belongs to X∗. In view of X∗ = X ′, we have a
fr ∈ X ′ such that

l(g) =

∫
Rn
fr(x)g(x)dx, ∀g ∈ X.

In addition, without loss of generality, we can assume that suppfr ⊆ B(0, r).
Note that for any r, s > 0,∫

B

fr(x)dx = l(χB) =

∫
B

fs(x)dx

for any B ∈ B with B ⊆ B(0, r) ∩ B(0, s). Hence, fr = fs almost everywhere on
B(0, r) ∩ B(0, s). Therefore, there is an unique Lebesgue measurable function f
such that f(x) = fr(x) when x ∈ B(0, r).

Next, we show that f ∈MX∗
ω . For any x0 ∈ Rn and r > 0, let s > 0 be selected

such that B(x0, r) ⊆ B(0, s). As the function given in (4.6) is a (ω,X)-block, we
have

1

ω(x0, r)
‖χB(x0,r)f‖X∗ =

1

ω(x0, r)
sup
‖h‖X=1

∣∣∣∣∫
B(x0,r)

f(x)h(x)dx

∣∣∣∣
= sup
‖h‖X=1

∣∣∣∣∫
B(0,s)

fs(x)
χB(x0,r)(x)h(x)

ω(x0, r)
dx

∣∣∣∣
≤ ‖L‖(Bω,X)∗ sup

‖h‖X=1

∥∥∥∥hχB(x0,r)

ω(x0, r)

∥∥∥∥
Bω,X

= ‖L‖(Bω,X)∗ .

As the functionals Lf (g) =
∫
Rn f(x)g(x)dx and L are identical on the set of

(ω,X)-block and the set of finite linear combinations of (ω,X)-block is dense
in Bω,X , we conclude that Lf = L and (Bω,X)∗ = MX∗

ω . Moreover, as for any
L ∈ (Bω,X)∗, it can be represented as Lf for some Lebesgue measurable function
f ∈MX∗

ω . Thus, B′ω,X = (Bω,X)∗. �

The above theorem identifies a pre-dual of the Morrey space MX
ω . It extends

the duality result in [5, Theorem 1] for the “classical” Morrey space. Moreover,
notice that there are some researches consider the boundedness of the Calderón–
Zygmund operators on the pre-dual of some Morrey type spaces, see [1, 18].

The above duality result shows the following fundamental result for the block
spaces.

Proposition 4.4. Let X and ω satisfy the conditions in Theorem 4.1. If X∗ =
X ′, then Bω,X is a semi-Köthe function space and ‖ · ‖Bω,X is a norm.

Proof. It follows from the definition that χB ∈ Bω,X when B ∈ B and ‖ · ‖Bω,X is
a norm. It remains to show that Bω,X is a lattice. That is, it fulfills item (3) of
Definition 2.1.
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Let |f | ≤ |g| with g ∈ Bω,X where f, g are Lebesgue measurable functions.
From the proof of Theorem 4.3, we have B′ω,X = B∗ω,X . For any h ∈ MX

ω , we
find that∣∣ ∫ f(x)h(x)dx

∣∣ =
∣∣ ∫ |f(x)|(sgnf(x))h(x)dx

∣∣ ≤ ∫ |f(x)||h(x)|dx

≤
∫
|g(x)||h(x)|dx ≤ ‖g‖Bω,X‖h‖MX∗

ω

where we use the (MX∗
ω ,Bω,X) duality and the fact that MX∗

ω is a lattice.
Taking supreme over those h ∈ MX∗

ω with ‖h‖MX∗
ω
≤ 1 on both sides of the

above inequalities, we obtain ‖f‖Bω,X ≤ ‖g‖Bω,X . �

In order to apply the duality results in the previous section, it remains to show
that the block space Bω,X fulfills Item (1) of Definition 2.2. In case ω(x, r) is
independent of x ∈ Rn, then the block space satisfies (2.2) with L = 0. For the
general case, we need the following theorem.

The subsequent result has its own independent interest because it extends the
boundedness of Hardy–Littlewood maximal operator to block space.

Theorem 4.5. Let X be a r.-i. Banach function space where the Hardy–Littlewood
maximal operator is bounded on X. If there exists a constant C > 0 such that for
any x ∈ Rn and r > 0, ω satisfies

∞∑
j=0

2−jnr−nφX′(r
n)φX(2(j+1)nrn)ω(x, 2j+1r) < Cω(x, r), (4.7)

where φX and φX′ are the fundamental functions of X and X ′, respectively (see
[2, Chapter 2, Definition 5.1]), then the Hardy–Littlewood maximal operator is
bounded on Bω,X .

Proof. Let b be a (ω,X)-block with support B(x0, r) for some x0 ∈ Rn, r > 0.
Write Bk = B(x0, 2

k+1r), k ∈ N. Let mk = χBk+1\BkM(b), k ∈ N\{0} and
m0 = χB0M(b). We have M(b) =

∑∞
k=0mk and suppmk ⊆ Bk+1\Bk. As the

Hardy–Littlewood maximal operator M is bounded on X, we have

‖m0‖X ≤ C‖M(b)‖X ≤
C

ω(x0, r)

for some constant C > 0 independent of x0 and r. That is, m0 is a constant-
multiple of a (ω,X)-block.

Furthermore, according to the definition of Hardy–Littlewood maximal opera-
tor, we have

χBk+1\Bk |M(b)| ≤ 1

2knrn

∫
B(x,r)

|b(x)|dx ≤ 1

2knrn
‖b‖X‖χB(x,r)‖X′

where we use the Hölder inequality for X in the last inequality.
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Consequently,

‖mk‖X ≤
‖χBk+1\Bk‖X

2knrn
‖b‖X‖χB(x,r)‖X′

≤ 2−knr−nφX(2(k+1)nrn)φX′(r
n)
ω(x0, 2

k+1r)

ω(x0, r)

1

ω(x0, 2k+1r)
.

Write mk = σkbk where

σk = 2−knr−nφX(2(k+1)nrn)φX′(r
n)
ω(x0, 2

k+1r)

ω(x0, r)
.

Then, bk is a (ω,X)-block. Moreover, inequality (4.7) yields
∑∞

k=0 σk < C for
some C > 0. So, M(b) ∈ Bω,X and there exists a constant C0 > 0 so that for any
(ω,X)-block b,

‖M(b)‖Bω,X < C0.

Finally, let f ∈ Bω,X . In view of the definition of block space, there exist
a family of (ω,X)-blocks {ck}∞k=1 and a sequence Λ = {λk}∞k=1 ∈ l1 such that
f =

∑∞
k=1 λkck with ‖Λ‖l1 ≤ 2‖f‖Bω,X . Therefore, we find that

‖M(f)‖Bω,X ≤
∞∑
k=1

|λk|‖M(ck)‖Bω,X

≤ C0

∞∑
k=1

|λk|‖ck‖Bω,X ≤ 2C0‖f‖Bω,X .

�

Condition (4.7) is also used in [12, 15] to study the Fefferman–Stein vector-
valued inequality on Morrey spaces associated with r.-i. Banach functions spaces
and weighted Morrey spaces. In addition, (4.7) is fulfilled if the Boyd indices of
X satisfy 1 < pX ≤ qX <∞ and ω satisfies

ω(x, 2jr) ≤ C2jλω(x, r), ∀x ∈ Rn, r > 0 and j ∈ N,

for some 0 ≤ λ < n/qX , see [12, Corollary 5.3].
The above result and Lemma 2.2 assure that whenever ω satisfies (4.7), (Bω,X , l

q),
0 < q <∞, is an (α,L)-regular pair for some α,L > 0.

Theorem 4.6. Let 1 ≤ r < ∞. Suppose that X and ω satisfy the conditions in
Theorem 4.1. If X∗ = X ′, then

(BlrBω,X )∗ = Blr
′

MX∗
ω
.

Proof. According to [12, Corollary 5.3], if ω satisfies condition (1) of Theorem
4.1, then it fulfills (4.7).

Furthermore, in [12, Theorem 5.5], we find that whenever X satisfies the con-
ditions in Theorem 4.1, then the Hardy–Littlewood maximal operator is bounded
on MX∗

ω . Thus, Theorems 3.5, 4.1 and 4.3 provide the desired result. �
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In particular, we have (Blr
Bpq

)∗ = Blr
′

Mp′
q′

, 1 ≤ r < ∞ and 1 < p ≤ q ≤ ∞. This

gives a pre-dual of the Besov–Morrey space studied in [17, 22, 23, 32, 37].
Being the dual space of a normed space, the Besov–Morrey space has some re-

markable features. For instance, the Alaoglu’s Theorem guarantees the following
result.

Corollary 4.7. Let 1 < r ≤ ∞ and 1 ≤ q ≤ p < ∞. The unit ball of the
Besov–Morrey space Blr

Mp
q

is weak-star compact.

Furthermore, according to the Krein–Smulian Theorem, we have the subse-
quent corollary.

Corollary 4.8. For any 1 < r ≤ ∞ and 1 ≤ q ≤ p <∞, if A is a convex set of
Blr
Mp
q

such that A ∩ {f ∈ Blr
Mp
q

: ‖f‖Blr
M
p
q

< R} is weak-star closed for every R > 0,

then A is weak-star closed.

5. Proofs of Theorems 3.1, 3.2 and 3.3

Lemma 5.1. Let i ∈ N. Let F be a semi-Köthe function space satisfying (2.1)
for some L ≥ 0. Suppose that g ∈ S ′(Rn) satisfies supp ĝ ⊆ {ξ ∈ Rn : |ξ| ≤ 2i+1},
then,

‖
∑
k∈Zn

sup
z∈Qi,k

|g(z)|χQi,k‖F ≤ C‖g‖F

for some constant C > 0 independent of g.

Proof. Applying the Paley-Wiener theorem and following the proof of Lemma 2.4
of [8], we find that for any M > 0, there exists a constant C > 0 such that for
any y ∈ Qi,k, i ∈ Z and k ∈ Zn

sup
z∈Qi,k

|g(z)|χQi,k(x) ≤ C
∑
l∈Zn
|g(2−il + y)|χQi,k(x)(1 + |l|)−M .

As y ∈ Qi,k is arbitrary, we have

sup
z∈Qi,k

|g(z)|χQi,k(x) ≤ C
∑
l∈Zn

inf
y∈Qi,k

|g(2−il + y)|χQi,k(x)(1 + |l|)−M .

Taking summation with respect to k on both sides and interchanging the sum-
mations on the right hand side, we obtain that∑

k∈Zn
sup
z∈Qi,k

|g(z)|χQi,k(x) ≤ C
∑
l∈Zn

∑
k∈Zn

inf
w∈Qi,k+l

|g(w)|χQi,k(x)(1 + |l|)−M .

As F is a pF-Banach space, we have∥∥ ∑
k∈Zn

sup
z∈Qi,k

|g(z)|χQi,k
∥∥pF
F

≤ CpF
∑
l∈Zn

∥∥∥ ∑
k∈Zn

inf
w∈Qi,k+l

|g(w)|χQi,k
∥∥∥pF
F

(1 + |l|)−MpF .
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By (2.1), if M > L+ n
pF

, we have∥∥ ∑
k∈Zn

sup
z∈Qi,k

|g(z)|χQi,k
∥∥pF
F ≤ CpF

∑
l∈Zn
‖g‖pFF |l|

LpF(1 + |l|)−MpF .

Hence, ∥∥ ∑
k∈Zn

sup
z∈Qi,k

|g(z)|χQi,k
∥∥
F < C‖g‖F.

�

Lemma 5.2. Let i ∈ N. Let F be a semi-Köthe function space satisfying (2.1)
for some L ≥ 0. Suppose that F (x) =

∑
k∈Zn sQi,kfQi,k(x) where

|fQi,k(x)| ≤ (1 + 2i|x− 2−ik|)−M

for some M > L+ n
pF

. Then, there exists a constant C > 0 such that

‖F‖F ≤ C‖
∑
k∈Zn
|sQi,k |χQi,k‖F.

Proof. We have a constant so that for any fixed k ∈ Zn,

(1 + 2i|x− 2−ik|)−M ≤ C
∑
l∈Zn

χQi,l+k(x)(1 + |l|)−M .

Therefore,

|F (x)| ≤ C
∑
l∈Zn

∑
k∈Zn
|sQi,k |χQi,l+k(x)(1 + |l|)−M .

We write g(x) =
∑

k∈Zn |sQi,k |χQi,k(x). So, we have

inf
w∈Qi,k+l

|g(w)| = g(x) = sQi,k+l , ∀x ∈ Qi,k+l

and

|F (x)| ≤ C
∑
l∈Zn

∑
k∈Zn

inf
w∈Qi,k−l

|g(w)|χQi,k(x)(1 + |l|)−M .

Inequalities (2.1) and M > L+ n
pF

ensure that

‖F‖F ≤ C
(∑
l∈Zn
‖g‖pFF |l|

LpF(1 + |l|)−MpF
)1/pF < C‖g‖F.

�

The following lemma is a simple modification of [8, Lemma 3.3].

Lemma 5.3. Let (F,S) be a (α,L)-regular pair. If ϕ0, ϕ ∈ S(Rn) satisfying
(2.3)-(2.4) and {mQ}Q∈Q̃ is a family of molecules for BS

F, then

(1) if i ≥ j where |Q| = 2−jn, then

|(ϕi ∗mQ)(x)| ≤ C2−(i−j)β(1 + 2j|x− xQ|)−N .
(2) if j > i where |Q| = 2−jn, then for any 0 < δ < n

pF
+L−α− [ n

pF
+L−α],

|(ϕi ∗mQ)(x)| ≤ C2
−(j−i)( n

pF
+L−α+δ)

(1 + 2i|x− xQ|)−N .
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Proof of Theorem 3.1:
Let ϕ0, ϕ ∈ S(Rn) and ψ0, ψ ∈ S(Rn) satisfy (2.3)-(2.4). To prove the theorem,
we are only required to show that there exits a constant such that ‖ · ‖BS

F(ψ0,ψ) ≤
C‖ · ‖BS

F(ϕ0,ϕ). As ϕ0, ϕ ∈ S(Rn) satisfy (2.3)-(2.4), we can construct a pair

of functions θ0, θ ∈ S(Rn) satisfying (2.3)-(2.4) and the Calderón reproducing
formula

θ0(ξ)ϕ0(ξ) +
∞∑
i=1

θ(2−iξ)ϕ(2−iξ) = 1, ξ ∈ Rn. (5.1)

The Littlewood–Paley analysis and the Shannon sampling theorem conclude that

f(x) =
∑
Q∈Q̃

aQθQ(x), ∀f ∈ BS
F(ψ0, ψ) (5.2)

where aQi,k = (ϕi ∗ f)(2−ik). Moreover, by Lemma 5.1, we obtain

‖{aQ}Q∈Q̃‖bSF =
∥∥{∑

k∈Zn
|aQi,k |χQi,k}∞i=0

∥∥
(F,S)

≤ C‖{f ∗ ϕi}∞i=0‖(F,S) = C‖f‖BS
F(ϕ0,ϕ), ∀f ∈ BS

F(ϕ0, ϕ). (5.3)

Next, we consider ψi ∗ f , i ≥ 0. Form (2.3) and (5.2), for any M > 0, we have

|(f ∗ ψi)(x)| =
i+1∑
j=i−1

∑
k∈Zn
|aQj,k ||(θQj,k ∗ ψi)(x)|

≤ C
i+1∑
j=i−1

∑
k∈Zn
|aQj,k |(1 + 2j|x− xQj,k |)−M .

Lemma 5.2 assures that

‖f ∗ ψi‖F ≤ C
i+1∑
j=i−1

‖
∑
k∈Zn
|aQj,k |χQj,k‖F. (5.4)

Condition (2) of Definition 2.2 and inequality (5.3) show that for any f ∈
BS

F(ψ0, ψ),

‖f‖BS
F(ψ0,ψ) ≤ C‖{

∑
k∈Zn
|aQj,k |χQj,k}∞j=0‖(F,S) ≤ C‖f‖BS

F(ϕ0,ϕ).

Moreover, with the independent of the functions ϕ0 and ϕ on the defini-
tion of BS

F, inequalities (5.3) establish the boundedness of the ϕ-transform be-
cause (ϕi ∗ f)(2−ik) = 〈f, ϕQ〉. Similarly, identity (5.2) with θi replaced by
ψi, i ∈ N and the first inequality in (5.4) assure the boundedness of the ψ-
transform. �

Proof of Theorem 3.2:
By some simple modifications of the argument in Theorem 2.6 of [8], we have
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θ0, θ ∈ S(Rn) satisfying suppθ0, suppθ ⊆ {x : |x| ≤ 1} and ϕ0, ϕ ∈ S(Rn) satis-
fying (2.3)-(2.4) such that they fulfill (5.1). The Calderón reproducing formula
guarantees that for any f ∈ S ′(Rn),

f(x) =
∞∑
i=0

∑
k∈Zn

∫
Qi,k

θi(x− y)(ϕi ∗ f)(y)dy.

For Q = Qi,k ∈ Q̃, we define sQ = supy∈Q |(ϕi ∗ f)(y)| and, for sQ 6= 0,

aQ(x) =
1

sQ

∫
Qi,k

θi(x− y)(ϕi ∗ f)(y)dy.

We have f =
∑

Q∈Q̃ sQaQ. The estimate, ‖{sQ}Q∈Q̃‖bSF ≤ C‖f‖BS
F
, follows from

Lemma 5.1. �

Proof of Theorem 3.3:
As ‖ · ‖rF satisfies the triangle inequality provided that r ≤ pF, without loss of
generality, we can assume that qS = 1/pF. Pick an ε > 0 such that N > L+ n

pF
+ ε

and δ > ε (the δ is given in Definition 5.3). Applying Lemma 5.3, we have

|(ψi ∗ f)(x)| ≤
i∑

j=0

∑
k∈Zn
|sQj,k ||(ψi ∗mQj,k)(x)|+

∞∑
j=i+1

∑
k∈Zn
|sQj,k ||(ψi ∗mQj,k)(x)|

≤ C
( i∑
j=0

2−(i−j)β
∑
k∈Zn
|sQj,k |(1 + 2j|x− xQj,k |)−N

+
∞∑

j=i+1

2−(j−i)(−α+δ−ε)
∑
k∈Zn
|sQj,k |(1 + 2j|x− xQj,k |)

−L− n
pF
−ε)

.

Using the fact that F is a pF-Banach space, Lemma 5.2 assures that

‖ψi ∗ f‖F ≤C
( i∑
j=0

2−pF(i−j)β‖
∑
k∈Zn
|sQj,k |χQj,k‖

pF
F

+
∞∑

j=i+1

2pF(i−j)(−α+δ−ε)‖
∑
k∈Zn
|sQj,k |χQj,k‖

pF
F
)1/pF .

In view of the definition of (α,L)-regular, we assert that

‖f‖BS
F

= ‖{ψi ∗ f}∞i=0‖(F,S) ≤ C
∥∥{∑

k∈Zn
|sQj,k |χQj,k}∞i=0

∥∥
(F,S) = C‖s‖bSF

because −α+ δ − ε > −α. �
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