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ABSTRACT. We introduce and study the family of Besov—Kd&the spaces which is
a generalization of the Besov spaces, the Besov—Morrey spaces and the variable
Besov spaces. As an application of the general results for the Besov—Ko&the
spaces, we identify a pre-dual of the Besov—Morrey space.

1. INTRODUCTION

In this paper, we aim to offer a generalization of Besov spaces. Besov spaces
was introduced by Besov in [3, 1]. For the development of Besov spaces, the
reader is referred to [27, 29, 30, 38]. The reader may also consult [30, Section
6.7.4.2] for a brief history of Besov spaces.

Recently, there are a substantial amount of researches considering Besov spaces
associated with some generalizations of Lebesgue spaces. For instance, when the
Lebesgue spaces used to defined the Besov spaces are replaced by the Morrey
spaces, then we have the Besov—Morrey spaces. The study of Besov—Morrey
spaces was given in [17, 22, 23, 32 37]. Its application on the study of the solution
of Navier—Stroke equation was also provided in [17, 22, 23]. The atomic, molecular
and quarkonial decompositions are established in [32] and the boundedness of
pseudo-differential operators on the Besov—Morrey spaces is obtained in [34]. The
wavelet characterization of Besov—Morrey space is given in [33].

In [39], another family of Besov type spaces is introduced. For this family of
function spaces, the Lebesgue spaces are replaced by the Lebesgue spaces with
variable exponent. For the basic properties of Lebesgue space and Morrey space
with variable exponent, the reader is referred to [0, 13, 19, 26]. The family of
Besov type function spaces introduced in [39] is called as the variable Besov
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spaces. The smooth atomic decompositions of the variable Besov spaces are
presented in [40)].

From the studies of the above new function spaces, we see that there is a general
approach to define and study Besov type spaces for general function spaces. In
fact, a corresponding generalization of Triebel-Lizorkin spaces is obtained in [12,

]. Roughly speaking, in [12], we find that whenever a function space satisfies the
Fefferman—Stein type vector-valued inequality, then, using the terminology given
in [12], the corresponding Littlewood—Paley space is well-defined and possesses

some nice structures such as the atomic and molecular decompositions [14].

In this paper, we identify the condition imposed on a semi-Kéthe function
space X (see Definition 2.1) so that the corresponding Besov type space is well
defined. The condition is given in (2.1). A large family of function spaces fulfills
this condition. For instance, whenever the Hardy—Littlewood maximal operator is
bounded on X, then it satisfies (2.1) (see Lemma 2.2). Moreover, if the translation
operator is bounded on X, it also satisfies (2.1) (see Lemma 2.2).

As demonstrated in [12], some notions appeared in the study of Banach space
are used in the Littlewood—Paley spaces such as the UMD property. Similarly,
we find that the notion of associate space, the absolutely continuity of norm and
the Fatou property are invoked in our study.

This paper is organized as follows. Section 2 contains the definition of the
Besov—Kothe spaces and some of the background materials for the introduction
of Besov—Kothe spaces. We show that the Besov—Kothe space is well-defined in
Section 3. It also presents the atomic and molecular decompositions and a duality
result of Besov—Ko6the spaces. The general results obtained in Section 3 is applied
in Section 4 to block spaces. We introduce the Besov-block space in Section 4 and
show that it is a pre-dual of the Besov—Morrey spaces studied in [17, 22, 23, 39].
Finally, the proofs of Theorems 3.1, 3.2 and 3.3 are given in Section 5.

2. BESOV-KOTHE SPACES

We begin with some notions used to study the Besov-Kothe spaces.

Let M(R™) and P denote the class of Lebesgue measurable functions and the
class of polynomials on R", respectively. Let S(R™) be the space of Schwartz
functions and S’'(R™) be the space of Schwartz distributions. For any f € S’'(R"),
the Fourier transform of f is denoted by f . For any z € R™ and r > 0, let
B(z,r)={yeR": |z —y| <r} and B={B(x,r) : z € R",r > 0}.

Let @ ={Qix:1 € Z, k € Z"} be the set of dyadic cubes, where

Qir={(v1,...,2n) ER™ 1 k; <2y <kj+1,j=1,...,n}

and k = (ki,...,k,). For any dyadic cube, Q € Q, let [(Q) = 27" and zg = 27k
denote the length of () = @);, and the center of the cube, Q) = Q); x, respectively.
Let Q={Q € Q: |Q| < 1}. For any p € M(R") and Q = Q; € Q, write
palz) = 27p(2iz — k).

Definition 2.1. Let p be the Lebesgue measure on R™ (or the counting measure
on N) and M(u) be the set of u-measurable functions. A mapping ||-|| : M(p) —
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[0, 00] is called a semi-Kothe function norm (when p is the counting measure on
N, it is called as a semi-Kéthe sequence norm) if

(1) || - |l is a quasi-norm,

(2) |lxBll < oo, VB € B and

B) < lgl =l <lgl, f.9€ M),

where yp is the characteristic function of B € B.

A quasi-Banach space F C M(R™) is a semi-K6the function space if || - ||r is a
complete semi-Ko6the function norm and

F={feMR"):|flr < oo}

In addition, F is a Kéthe function space if || - || is a norm and |F| < oo implies
|xE|lF < oo for any Lebesgue measurable set F.

Definition 2.1 is inspired by the definition of Kothe function space. We gener-
alize the notion of Kothe function space to semi-Kéthe function space so that our
results apply to the family of block spaces introduced in Section 4 (see Propo-
sition 4.4). The reader is referred to [20, Volume II, Definition 1.b.17] for the
definition of Kothe function space. The preceding definition also generalizes the
notion of Kéthe function space to quasi-Banach space.

Similarly, a quasi-Banach space S C {{a;} : a; € R, i € N} is a semi-Kéthe

sequence space if || - ||s is a complete semi-K&the sequence norm and
S = {{ai}tien : [{aitienlls < oo}
According to the Aoki-Rolewicz theorem [16, Theorem 1.3], there exists a

0 < p = pr < 1 such that || - || satisfies the triangle inequality. Therefore, on the
rest of this paper, we assume that F is a pp-Banach space. Apparently, if F is a
Banach space, then pp = 1.

Definition 2.2. Let L > 0. Let S and F be a semi-Ko6the sequence space and a
semi-Kothe function space, respectively. We call the pair (F,S) a L-regular pair
if

(1) there exists a constant C' > 0 such that for any f € F, i € N and [ € R",

H Z welélf w)lxgu || < COFU)glle (2.1)

(2) For any a = (ao,al,--- ,) €S,
10, ag, ax, -+ )lls < Cllalls  and |[(a1, az,---)lls < Cllalls.

The index L in (2.1) plays a role in the order of vanishing moment conditions
satisfied by the smooth molecules associated with the Besov-Ko&the space, see
Definition 3.3.

The reader may have a wrong impression that (2.1) is too complicate to apply.
In fact, its introduction is motivated by two simple criteria. The first criterion is
given by the translation on R".

Lemma 2.1. If a semi-Kdthe space F satisfies
ITuf e < CA+ U flle, VEEZ (2.2)
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for some C > 0 where T, f(z) = f(x + 1), then F fulfills (2.1).
Proof. As
Y i [gw)lxg., (@) < ) 9@+ 2)|xe,, (), ViEN,

hezn VIR kezn
we have
| 2 gt lotwlbxan, @], < a1+ 2yl < €0+ M)l
WEQ; k+1 F

O

The other criterion is expressed in term of the boundedness of the Hardy—
Littlewood maximal operator.

Lemma 2.2. If the Hardy—Littlewood mazximal operator M is bounded on IF, then
F satisfies (2.1) with L = n.

Proof. Since dist(Q; x, Qir1) < C27(1 4 |l]), for any x € Q; 1, we find that

1
inf w)l < i d
b o)l < 5 /Q . l9(y)|dy

1 n
T, 90 S OO+ )09 ).

The above inequalities yield

H Z inf |Xsz

/ weQ;, k+l

< CO+ ")

SO+ IMglle < CQ+ 1) [lglle-

0J

We find that the above criteria guarantee that a number of well-known function
spaces satisfy (2.1). The rearrangement-invariant (r.-i.) quasi-Banach space [2,

, 25, 28], the Morrey space [12, 17, 22, 23, 32 37] the block space [5] and the
Herz space [11] satisfy (2.1). We offer some examples on non-translation invariant
function spaces that fulfill (2.1). For simplicity, we consider function spaces on
R. Let w : R — (0,00) be a positive Lebesgue measurable function satisfying
w(xz+1) < O(|I|F +1)w(x), z,1 € R for some L > 0. It is trivial that the function
space

I = {f € M(R /|f JPu(z)dz) " < 0, 0<p< oo
={fe M(R): ilelgw z)|f(z)| < oo},

possess property (2.1). In particular, the function space of polynomial growth
(or polynomial decay),

Gr = {f € M(R) : sup(1 + |z|)*| f(x)] < o0}, —00 < L < 0(0 < L < 0),
z€eR

has property (2.1).
The variable Lebesgue spaces provide examples on the use of the boundedness
of the maximal operator on the study of Besov—Kothe space. There are several
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criteria found so that the maximal operator is bounded on LP*). The reader may
referred to [0, 26] for details.

Definition 2.3. Let F and S be a semi-Ko6the function space and a semi-Kothe
sequence space, respectively. The quasi-Banach space (F,S) consists of those
sequence of Lebesgue measurable functions {f;};en satisfying

I{fiYienll@s) = Il fille}ienlls < oo.
Definition 2.4. Let L > 0. Let (F,S) be a L-regular pair. The Besov-Kdthe
space consists of those f € S'(R™) such that
1153000y = i * Flienlles) < o0
where g, ¢ € S(R") satisfy
supp Po(§) € {€: 1§l <1} and suppp(§) C{g:1/2< [ <2}, (2.3)
[60(§)| > C gl <1 and [H(E)]>C 3/5 <[] <5/3 (2.4)

for some constant C' > 0 and ¢;(z) = 2"¢(2'z), i € N\{0}.

The Besov—Ké&the space covers the Besov—Morrey space [17, 22, 23, 32, 33, 34,

| and the variable Besov space [39, 10]. Moreover, the above definition also
introduces some new families of Besov spaces such as Besov-Orlicz spaces, Besov-
Lorentz—Karamata spaces and Besov-rearrangement-invariant quasi-Banach func-
tion spaces when I are Orlicz spaces [31], Lorentz—Karamata spaces [7] and
rearrangement-invariant quasi-Banach function spaces [2], respectively.

3. MAIN RESULTS
We present the main results in this section.

Definition 3.1. Let (F,S) be a L-regular pair. A sequence a = {aq} g belongs
to the Besov-Kithe sequence space by if

||a||b§ = H{Z IaQi,k|XQi,k}’?iOH(F7S) <
keR™

where g is the characteristic function of Q € Q.

We have the following main result for Besov—Kothe space. The proofs of The-
orems 3.1, 3.2 and 3.3 are presented in Section 5.

Theorem 3.1. Let (F,S) be a L-regular pair. The Besov-Kdthe space BE is
independent of pg, ¢ € S(R™) in Definition 2.4.

Next, we show that the Besov—Kothe spaces possess the atomic and molecular
decompositions.
Let K > 0. We say that {ag}geg is a family of K-atoms if it satisfies
(1) suppag C 3Q,
_hl n
(2) |(97ag)(x)| < C4|QI =, v € N™,
(3) [fen vrag(z)dz =0, [N < [K], X € N, when |Q| < 1.
The above definition follows from a simple modification of [9, p.60] or [10, p.46].
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Theorem 3.2. Let K > 0. Let (F,S) be a L-reqular pair. For any f € BS, we
have a sequence s = {sq}qeo € by and a family of K-atoms {aq}oes such that

= Z 5QaQ

Qe
and |[s|lps < C||fl[pg for some constant C' > 0 independent of f.

For any g > 1, let S = {a = {a;}32, : {|a:|?}2, € S} and
') 1
{ai}2ollse = [1{]asl?}, 18",

It is obvious that || - [|s« is a quasi-norm. If S is a quasi-Banach space, S? is also a
quasi-Banach space. The quasi-Banach space S9 is called as the ¢-convexification
of S or the %—th power of S, see [20, Volume II, p.53-54] and [28, Section 2.2],
respectively.

The following definition is introduced for the molecular decompositions of Bg.

Definition 3.2. Let a, L > 0. Let S and F be semi-Kothe sequence space and
semi-Kothe function space, respectively. We call the pair (F,S) a («, L)-regular
pair if F satisfies (2.1) and there exists a 1 < gs such that for any 6; > « and
09 > —a, the mappings

T(Sl {aZ {22] z61/qga }l .

T52 {G'L { Z 2 62/(18@]}

Jj=i+1

are bounded on S%.

For example, if we consider the sequence space,

o0

I = {{ay : HadZlles = (@M al))" <o}, 0<r < oo,

=0

we find that @ = k and we can take ¢« =1 when 1 <r <oo. If 0 <r <1, we
can assign ¢~ to be any number in the interval (1/r, 00).

We state the definition of smooth molecules for Bf in the followings. It is a
modification of the definition of smooth molecules from [9, p.56]. Notice that the
index L in (2.1) is used in the order of the vanishing moment condition imposed
on the smooth molecules.

Definition 3.3. Let o, L > 0 and (FF,S) be a (a, L)-regular pair. A family of
function {mq},eq is a family of molecules for B, if there exist 5 > |a| and
N > -+ L —n such that

/ *mg(z)dr =0, |\ < [E—FL—a—nL A e N, (3.1)

Pr
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when |Q] < 1 and
1

_ Il
|(9'me($)| <Ch|Q ™ (1+1(Q)|x —$Q|)N7

vl < [B], v € N,

0" mg () — 0"mg(y)|

B 1
< GolQ[ e —yP sup -
z—zo|<le—y| (1 +1Q) 7z — 2[)V

Theorem 3.3. Let (F,S) be a (a, L)-regular pair and qspr > 1. Let {mq}oes €
Mg n be a family of molecules for BE. Then, there exists a constant C' > 0 such
that for any f =Y ncs5qmq with s = {sq}ges € bp, f € By and

1fllss < Clisllss-

IfF=1LFPand S=19" 0<p,qg < oo and a € R, then the Besov—K&the space
BE is the “classical” Besov space Bp - The previous molecular decomposition is
a generalization of the celebrated molecular decomposition of Besov space B,
(see [8], Theorem 3.1). The criteria gupr» > 1 is satisfied as g« can be taken as
any number bigger than 1/q. Furthermore, as L? is translation-invariant, L = 0.
Thus, the vanishing moment condition in (3.1) is precisely the conditions for the
Besov space By,

Moreover, the above results also provide the atomic and molecular decompo-
sitions for the Besov—Morrey spaces [32] and the variable Besov spaces [10]. For
the Besov—Morrey spaces studied in [32], the corresponding “classical” Morrey
space is translational invariant. That is, it satisfies (2.2) with L = 0, therefore
the preceding results reestablish the decompositions given in [32].

For any semi-Ko6the function space IF, let ' denote the linear space of integral
of F (see [20, Volume II, p.29] and [21, 11]). More precisely, any linear functional
on F, L, of the form

L(f) = Rnf(w)g(x)dx, geM,

is called an integral of F. Whenever F is a Banach function space, F is also called
as the Kothe dual of F or the associate space of F, see [2, Chapter 1, Section 3]
and [28, p.35].

Similarly, for any semi-Kothe sequence space S, the integral space is the col-
lection of those linear functionals L on S having the representation

L(S) = Z Sili, {lz};.io C C.
i=0
Note that the dual space and the integral space of a semi-Kéthe space are not

necessarily equal, see [2, Chapter 1, Corollary 4.3].

Definition 3.4. We say that a semi-K&the sequence space S has the Fatou prop-
erty if for any s, = {s,;}32, € S satisfying s, ; > 0Vn,j € N,

Sp T s and sup ||s,lls < oo = s €S and |[|s||s = lim ||s,]|s.
neN n—o0
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The reader is referred to [2, Chapter 1, Lemma 1.5, Theorem 1.6 and Theorem
2.7] or [20, Volume II, p.30] for the definition of the Fatou property on Banach
function space, its application on the completeness of Banach function space and
its relation with the Lorentz-Luxemburg theorem of the second associate space
of Banach function space.

We define the notion of absolutely continuous for semi-Kothe sequence space
(see [2], Chapter 1, Section 3 and [12, Definition 2.4]).

Definition 3.5. We say that a semi-Kothe sequence space S has absolutely con-
tinuous quasi-norm if lim; . ||s;||s = 0 for every sequence {s;};eny C S satisfying
S; i/ 0.

Proposition 3.4. Let F and S be a semi-Kothe function space and a semi-Kothe
sequence space, respectively. If S* =S, F* =F and S has absolutely continuous
norm and the Fatou property, then

(F,S)" = (F*,S").
Proof. Let {g;}32, € (F',S") = (F*,S*). For any f = {f:}2, € (F,S), define

- Z 5 fila)gi(z)dx. (3.2)

The definition of integral space yields

GHI < Z [ fillellgille < N{fi}Zoll s [{gi}iZo0ll @ s

Therefore, (F*,S*) C (F,S)*.
Next, let L € (F,S)*. erte 0;j=1ifi=jand é;; =0if i # j. For any j € N,
we consider
Lj(h) = L({héi;}2y), VheT.
Since L; € F* =, we obtain a Lebesgue measurable function g; € F’ such that

L) = | hla)g,(a)de.
Therefore, for any N € N and f = {f;}52, € (F,S), we obtain

Z i(@)g;(@)lde < | Lllopl| Flles)

where ||L]|,p is the operator norm of L.
Let € > 0. Let h; € F with ||h;|lr < 1, j € N, be chosen so that

€
lgsller < | Vhi(w)g;(@)ldw + o5

For any s = {sj};?‘io € S with [|s||s < 1, we have

ngugjuw < Z > bt e < el +
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because [|{s;h;}32/lrs) < 1. Taking supreme over those s € S with [|s[|s <1 on
the left hand side of the above inequalities, we have
||{907917 -3 gN, 07 H '}H(F',S/) S HLHOP +e

Applying the Fatou property, we ﬁnd that g = {g;}32, € (F',§').
Write Ly(f) = Y220 [gn fi(2)gi(x)dx, f = {f;}520 € (F,S). We find that L
and L, are identical on

F = {{/fi}520 € (F,S): f; =0,¥j > N, for some N € N}.

Furthermore, the absolute continuity of || - ||s assures that F is dense in F. There-
fore, L = L, and, hence, we assert that (IF,S)* — (F',S'). O

In fact, the above theorem also shows that any bounded linear functional on

(F,S) is of the form (3.2).

Theorem 3.5. Let o, L > 0 and (F,S) be a (o, L)-regular pair and gspr > 1.
Suppose that (F*,S*) are M-reqular pair for some M > 0 and qsspp- > 1. If

S*=¥§, F* =TF, S has absolutely continuous norm and the Fatou property and
for any p € S(R™)

If = el < Cllellpl flle, VfeF (3.3)
for some C' > 0, then we have
(B3)" = Bi..
Proof. Let g € Bs.. For any ¢ € S(R") satisfying (2.3)-(2.4) and f € B, define

= Z/n@ * 0i(2))(f * pic1 (@) + f * i) + [ * i (2))da.

According to the definition of integral on F, we have

GO <Y Mg * @iller(ILf * picalle + 11F % @ille + [Lf * @ira]le)-

=0

Similarly, using the definition of integral on S and Item (2) of Definition 2.2, we
have

IGNI < Cllglle sl flles)-
Thus, BS. — (B3)*.
Let g € (B%)*. Using Hahn-Banach theorem, we have a linear functional G on
(F,S) such that

9(f) = GUf *¢i}Z). Vf € Bg
and ||g|lop = ||G||op Where || - ||op denotes the operator norm.
Proposition 3.4 provides a family {g;}°, € (F',S’) such that

=3 [ @)= pidr, i € B 5.4



36 K.-P. HO

Theorem 3.3 assures that S(R") C BS. Hence, g € (B3)* — S'(R"). For any
Y € S(R™), applying (3.4) with f = ¢; *x 1, j € N, conditions (2.3) and (2.4)
yield

Jj+1
GRP =D Gixpi o
i=j—1

Thus, condition (3.3) guarantees that

g * oiller < C(llgj-1ller + lg;lle + [|gj41 1)

for all j € N.
Consequently, Ttem (2) of Definition 2.2 assures that

{g * ei}Zoll sy < Cl{gi} 2ol s)-
That is, (BS)* — BS. O
Notice that for any ¢ € S(R™) and locally integrable function f, we have
|f ol < Cllell M(f)

for some C' > 0. Therefore, whenever the Hardy-Littlewood maximal operator is
bounded on F’,| IF satisfies (3.3). In particular LP, 1 < p < oo satisfy (3.3).

4. APPLICATION: BESOV-BLOCK SPACES

In this section, we use the Besov—Kothe space to obtain a pre-dual of the
Besov—Morrey spaces studied in [17, 22, 23, 32, 37]. We call it as the Besov-block
space because this is the Besov type space associated with block space.

Even though the definition of Morrey space is well-known, for completeness,
we recall it from [22, Definition 2.1].

Definition 4.1. Let 1 < ¢ < p < oo, the Morrey space MP is defined by

M ={f € MR"): ||fla = sup 12 7| xpn flle < o0}
zER™ r>0
Notice that a generalization of the above Morrey space with L7 replaced by
Banach function space is given in [12]. In addition, the boundedness of singular
integral operator, the boundedness of the Hardy—Littlewood maximal operator
and the validity of the Fefferman—Stein vector-valued inequalities on this gener-
alization of Morrey space are established in [12, Section 5].
The following Morrey type space is introduced in [12, Definition 5.1].

Definition 4.2. Let X be a r.-i. Banach function space on R" and w(z,r) :
R" x (0,00) — (0, 00) be a Lebesgue measurable function. A f € M(R™) belongs
to M if it satisfies

1
HfHMjf = sup ﬁ”XB(zo,r)fHX < o0

zo€R™ >0 W (T,

where (s, denotes the characteristic function of B(z, r).
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In particular, M? = ML" where w(z,r) = ra v for all z € R™.

Using [12, Theorem 5.5], we have the following fundamental result of MX. To
formulate the following proposition for r.-i. Banach function space X, we use the
notion of Boyd’s indices px,gx. For the definition of Boyd’s indices, the reader
is referred to [12, Definition 4.2] and [20, Volume II, Definition 2.b.1].

Theorem 4.1. Let X be a r.-i. Banach function space on R™ with Boyd’s indices
satisfying 1 < px < qx < 00. If w satisfies
(1) for some 0 <A < ) w(z, 2ir) < C22w(x,r) for any x € R", j € N and
r >0,
(2) there exists Cy > 0 such that w(x,r) > CY, for all™ > 1, x € R" and
(3) there exists Cy > 0 such that

Cyt <w(z,t)/wlx,r) < Cy, 0<r<t<2rn
then MZX is a Kéthe function space.

Proof. It is obvious that MX is a Banach lattice with respect to the ordering
f < g of Lebesgue measurable functions. It remains to show that ygp € MX
whenever E is a Lebesgue measurable set with |E| < oo.

As ENB(xg, 1),y € R", is a bounded Lebesgue set, the proof of [12, Theorem
5.5] guarantees that

1
e (o, ) OE0T < oo 4.1
4m€R"gir§1a41h,r)HXB(Ov)XE“X’ ( )

Next, as X is a Banach function space, || xg||x < oo (see [2, Chapter 1, Definition
1.1 (P4)]). Item (2) assures that w(xg,r) > Cy, for all » > 1 and zy € R".
Therefore, (4.1) and the assertion,

— Ix < Clixslx <
sup  ——||XBor 00,

xoeR”I?lgr (A)(l‘o,'f’) XB( 0, )XE X XE|X
yield XE € Mi)( ]

We generalize the definition of block space introduced in [5].
Definition 4.3. Let X be a semi-Kothe function space on R" and w(z,r) :
R™ x (0,00) — (0,00) be a Lebesgue measurable function. A b € M(R") is a
(w, X)-block if it is supported in a ball B(xg,r), 2o € R", r > 0, and
1

w(xo,r)’

6]l x <

Define B, x by

Box = {Z)\kbk : Z |Ak| < oo and by is a (w,X)—block}.

k=1 k=1
The space B, x is endowed with the norm

£l = inf { > | Ak such that f = A\iby}.
k=1 k=1
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Notice that the terminology “block space” is used in [24, 35] to represent an-
other family of function spaces.

For any 1 < p < ¢ < o0 and w(z,r) = ra" v, Yo € R", write B =B, . In
[5, Theorem 1], we have

(BP)* = MP, (4.2)

where %+§ =1 and %4—1% = 1. Furthermore, we have the subsequent result which
shows that the family of block space is an extension of the family of Lebesgue
spaces.

Proposition 4.2. Let X be a Banach function space on R™. If w =1, then
B, x =X.

Proof. In view of the definition of block space, for any f € B, x, [ =D roq Mebs,
there exist a family of (w, X)-blocks {bx}32; and a sequence of scalars { g},
such that % | |Ax] < 2[ f]lw, - Thus,

1Al <D Il <7 1l < 201 fllss, - (4.3)
k=1 k=1
For the reverse embedding, we see that for any f € X and any R > r > 0,
1 1
Ixs 0,R)\B(0,r)> ——fXxB 0,R
1fxso.msonllx’ POEEE N P pomllx T PO
are (w, X)-blocks. That is, we have
1 xBo.R\BON 5, x < 1FXBORNBOMX (4.4)
1/ xB,m 8, < I/ XB0.R)x- (4.5)

As {fXB(0,29) } jen is a Cauchy sequence in X with limit function f, (4.3) and (4.4)
assure that {fXp(0,27)}jen is also a Cauchy sequence in B,, x that also converges
to f. Therefore, (4.3) and (4.5) ensure that B, x = X. O

In particular, we have 85 = LP, 1 < p < co. We now present and prove an
extension of (4.2).

Theorem 4.3. Let X and w satisfy the conditions in Theorem 4.1. If X* = X',
then
L//J,X = (‘Bw,X)* = Mf .

Proof. Let f € MX™ and b be a (w, X)-block supported in B(xg,r). We find that
f(@)b(x)dx
Rn

because X* = X'.
Thus, if g = Y, .y Abe € Bu,x, we have

<> /R f(2)bp(2)dz

keN

1
< o,r ! T rb < xo,r *
< Itean Sl Dbl € ZosliXooon s

< [ gllss x I f 1 pge= -

[ f@gla)dr

That is, MX" < (B, x)*.
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For the reverse direction, we first notice that for any h € X and B(zy,7) € B,

XB(xo,r)h
IXB@o.m hllxw (o, 7)
is a (w, X)-block. In particular, ||XBonhls. x < [1XB@or) hllxw(To, 7).
For any L € (%8, x)*, by using Hahn-Banach theorem, the linear functional

defined by I(g) = L(XB 0m9) belongs to X*. In view of X* = X', we have a
fr € X’ such that

(4.6)

l(g) = . fr(@)g(x)dz, VgeX.

In addition, without loss of generality, we can assume that suppf, C B(0,r).
Note that for any r, s > 0,

/fr )z = U(xz) = /fs

for any B € B with B C B(0,7) N B(0, s). Hence, f. = f; almost everywhere on
B(0,7) N B(0, s). Therefore there is an unique Lebesgue measurable function f
such that f(z) = f.(2) When x € B(0,71).

Next, we show that f € MX". For any 7o € R” and r > 0, let s > 0 be selected
such that B(xg,r) C B(0,s). As the function given in (4.6) is a (w, X)-block, we

have
1
Ll = sup | [ flah(ads
w(wg, ) ) W(Z0;7) Ialx=1 |/ Blzosr)
xo,T h
= sup / fs(x)XB( o) () (x)dx‘
Iallx=11JB(0,s) w(wg,T)
hXB(:E )
<Ll xy sUp ||~ = [| L[|z, x)*-
P s w(l‘oﬂ“) B x e
As the functionals Ly(g fR" x)dr and L are identical on the set of

(w, X)-block and the Set of finite hnear eomblnatlons of (w, X)-block is dense
in B, x, we conclude that L; = L and (B, x)* = MX". Moreover, as for any
L € (B, x)*, it can be represented as Ly for some Lebesgue measurable function
fe MY Thus, B, x = (Bux)* O

The above theorem identifies a pre-dual of the Morrey space M. Tt extends
the duality result in [5, Theorem 1] for the “classical” Morrey space. Moreover,
notice that there are some researches consider the boundedness of the Calderén—
Zygmund operators on the pre-dual of some Morrey type spaces, see [1, 15].

The above duality result shows the following fundamental result for the block
spaces.

Proposition 4.4. Let X and w satisfy the conditions in Theorem 4.1. If X* =
X', then B, x is a semi-Kdthe function space and || - ||s, , is a norm.

Proof. It follows from the definition that x5 € B, x when B € B and || - ||, , is
a norm. It remains to show that B, x is a lattice. That is, it fulfills item (3) of
Definition 2.1.
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Let |f] < |g| with g € B, x where f,g are Lebesgue measurable functions.
From the proof of Theorem 4.3, we have B, = B} . For any h € M| we
find that

| [ f@htayis| = | [15@lsons@hie)ds] < [ 1#@)]hw)ds

S/Ig(x)llh(fc)\dwé 19115 x 1 ol] v

where we use the (MX" B, x) duality and the fact that MX" is a lattice.
Taking supreme over those h € MJ" with [|A||yx+ < 1 on both sides of the
above inequalities, we obtain || f{ls, » < |glls, x- O

In order to apply the duality results in the previous section, it remains to show
that the block space B, x fulfills Item (1) of Definition 2.2. In case w(z,r) is
independent of x € R™, then the block space satisfies (2.2) with L = 0. For the
general case, we need the following theorem.

The subsequent result has its own independent interest because it extends the
boundedness of Hardy-Littlewood maximal operator to block space.

Theorem 4.5. Let X be a r.-i. Banach function space where the Hardy—Littlewood
mazximal operator is bounded on X . If there exists a constant C' > 0 such that for
any x € R™ and r > 0, w satisfies

e}

ZZ MG (1) (U T (2, 274 ) < Cw(z, 1), (4.7)

Jj=0

where ¢x and ¢x: are the fundamental functions of X and X', respectively (see
[2, Chapter 2, Definition 5.1]), then the Hardy—Littlewood mazimal operator is
bounded on ‘B, x.

Proof. Let b be a (w, X)-block with support B(xg,r) for some xy € R™, r > 0.
Write By, = B(w,2"'r), k € N. Let my = xp, \5M(b), k € N\{0} and
mo = xp,M(b). We have M(b) = > 72 my and suppmy C Byi1\Bg. As the
Hardy-Littlewood maximal operator M is bounded on X, we have

C

w(zg,T)

lmollx < CIIMb)[|x <

for some constant C' > 0 independent of zy and r. That is, mg is a constant-
multiple of a (w, X)-block.

Furthermore, according to the definition of Hardy-Littlewood maximal opera-
tor, we have

1 1
s MO S g [ @l < g bl sl

where we use the Holder inequality for X in the last inequality.
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Consequently,

IXBemlx
Il < =S5 = Iblx e

w(mwg, 28+1r) 1

< 2—kn -n 2(l~c+1)n n (7™ )
> " ox( r)ox (T) w(xo,?“) w(x0,2k+1r)

Write my, = o,b, where

ok+1, )

— 2—kn -n 2(k+1)n n (7™ (x(h

o r T ox( ) gx:(r )—w($o,T)

Then, by, is a (w, X)-block. Moreover, inequality (4.7) yields > "> o5 < C for
some C' > 0. So, M (b) € B, x and there exists a constant C > 0 so that for any
(w, X)-block b,

1M (b) ]|, x < Co.
Finally, let f € B, x. In view of the definition of block space, there exist

a family of (w, X)-blocks {c;}72, and a sequence A = {A\;}32, € ' such that
f=> 01 Aker with [[Alln < 2|[f|ls, - Therefore, we find that

IM ()]l x < ZWIHM el

< COZ [Aelllexlls., x < 2C0[|flle. x-

O

Condition (4.7) is also used in [12; 15] to study the Fefferman—Stein vector-
valued inequality on Morrey spaces associated with r.-i. Banach functions spaces
and weighted Morrey spaces. In addition, (4.7) is fulfilled if the Boyd indices of
X satisty 1 < px < qx < oo and w satisfies

w(z,27r) < C2%w(z,r), Yo € R™ r>0andj €N,

for some 0 < A\ < n/gx, see [12, Corollary 5.3].
The above result and Lemma 2.2 assure that whenever w satisfies (4.7), (B, x, (),
0 < ¢ < o0, is an («, L)-regular pair for some «, L > 0.

Theorem 4.6. Let 1 < r < oo. Suppose that X and w satisfy the conditions in
Theorem 4.1. If X* = X', then

(ng’x) —B" e

Proof. According to [12, Corollary 5.3], if w satisfies condition (1) of Theorem
4.1, then it fulfills (4.7).

Furthermore, in [12, Theorem 5.5], we find that whenever X satisfies the con-
ditions in Theorem 4.1, then the Hardy—Littlewood maximal operator is bounded
on MX". Thus, Theorems 3.5, 4.1 and 4.3 provide the desired result. O
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In particular, we have (Egg)* IB%Z 2 l1<r<ooand1l<p<q<oo. This
q
gives a pre-dual of the Besov—Morrey space studied in [17, 22, 23, 32, 37].

Being the dual space of a normed space, the Besov—Morrey space has some re-
markable features. For instance, the Alaoglu’s Theorem guarantees the following
result.

Corollary 4.7. Let 1 < r < oo and 1 < g < p < oo. The unit ball of the
Besov-Morrey space ]B%l]\}p 18 weak-star compact.

Furthermore, according to the Krein—-Smulian Theorem, we have the subse-
quent corollary.

Corollary 4.8. Forany 1 <r <oco and1 < q <p < oo, if A is a convex set of
IB%{,(/[g such that AN{f € IB%ZJ\}(? | fllger < R} is weak-star closed for every R > 0,
Mq

then A 1s weak-star closed.

5. PROOFS OF THEOREMS 3.1, 3.2 AND 3.3

Lemma 5.1. Let i € N. Let F be a semi-Kdthe function space satisfying (2.1)
for some L > 0. Suppose that g € S'(R™) satisfies suppg C {£ € R : |¢| < 2071}
then,
> Sup 19(2)]xa
kezn *SQik
for some constant C > 0 independent of g.

e < Cllglle

Proof. Applying the Paley-Wiener theorem and following the proof of Lemma 2.4
of [8], we find that for any M > 0, there exists a constant C' > 0 such that for
any y € Qix, @ € Z and k € Z"

sup [g(2)|xq..(x) < C Y 19271+ y)Ixq,, (@) (1 + 1)~
2€Qik lezn

As y € Q) s arbitrary, we have

sup [g(2)|xq, (1) <C Y nf |g(2” T+ y) X, (=) + 1)

2€Qik lezn

Taking summation with respect to £ on both sides and interchanging the sum-
mations on the right hand side, we obtain that

Y sup [g(=)lxqu (@) <C Y D it g(w)lxq,(«) (1 + i)~

. we
kezn “€Qik lczn hezn Qi b+ z

As F is a pp-Banach space, we have

> Sup 19(2) IxQur o

kezn *€Qik

<o S| Tt e

we
lezn " fezm VS ’““

(1+ 1=,
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By (2.1),if M > L+ -+, we have

1) sup [g(2)xauells” < €7 > Il [0 e (1 + [i) =7

kezn *€Wik lezn

| Z Sup 19(2) X Qi

kezn *E@ik

Hence,

|« < Cllglle.

OJ

Lemma 5.2. Let i € N. Let F be a semi-Kdéthe function space satisfying (2.1)
for some L > 0. Suppose that F(x) =3,y 5., fq.,(7) where

[fou (@) < (1422 — 27"k~

for some M > L + pﬂF. Then, there exists a constant C' > 0 such that

IFle < Cll Y Isa. e

kezn

XQik

Proof. We have a constant so that for any fixed k € Z",
(1422 =27k) ™ < C Y xquu(@) @+ 1)~

lezn

x)|§§C7§£: §£:|SQLk

I€Z" keZn
We write g(x) = > 1 czn 150, 1Xq.. (). So, we have

inf |g(w>| - g(x) - SQ¢7k+l7 \V/.T S Qi,k+l

WEQ; k1

Therefore,

XQuan (T) L+ 1)~

and

<Yy infg(w)lxe. (@)1 + 1)

wWERQi,k
leZ™ keZ™
Inequalities (2.1) and M > L + -* ensure that

_ 1/
IFlls < C (D Mgl fe e (1 1) =) " < Cllg]le.

lezr

The following lemma is a simple modification of [3, Lemma 3.3].

Lemma 5.3. Let (F,S) be a (o, L)-reqular pair. If vo, € S(R™) satisfying
(2.3)-(2.4) and {mq}qges is a family of molecules for B, then

(1) if i > j where |Q| = 279", then
(i ¥ mo) ()] < C270 (1 + 2|z — wq) ™
(2) if j > i where |Q| = 27", then for any 0 < § < p%—i—L—a—[p%%—L—a],

(01 % mg) ()] < C27UVGTETT (1 9l — )N
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Proof of Theorem 5.1:

Let o, ¢ € S(R™) and vy, € S(R") satisfy (2.3)-(2.4). To prove the theorem,
we are only required to show that there exits a constant such that [| - || gg(y,.p) <
Cll - IBs(po)- As w0, € S(R") satisfy (2.3)-(2.4), we can construct a pair

of functions 6,0 € S(R") satisfying (2.3)-(2.4) and the Calderén reproducing
formula

Bo(€)o(€) + Y 027 p(27¢) =1, LeR™ (5.1)

i=1
The Littlewood—-Paley analysis and the Shannon sampling theorem conclude that
fl@) = aglg(x), Vf € Bi(vo, ) (5.2)

QeQ

where ag,, = (i * f)(27'k). Moreover, by Lemma 5.1, we obtain

Hag}geslhs = [{ lag.

kezn
< CIH{f *9i}ollms) = CllflB3ooyr  Vf € Bilgo,9).  (5.3)
Next, we consider ¢; * f, i > 0. Form (2.3) and (5.2), for any M > 0, we have

XQz‘,k}ioiO H (F,S)

i1
((f @)= > Y lag,,|(0g,, * v:)(z)|
j=i—1kezZ™
i+l
<C Z Z |an,k|(1 + 2]|$ - ij,kD_M'
j=t—1kezZ"
Lemma 5.2 assures that

i+l

”f*wZH]F <C Z || Z |an,k|XQj,kHF' (54)

j=i—1 keznr

Condition (2) of Definition 2.2 and inequality (5.3) show that for any f €
B§(¢07w>7

1z < CILY_ lag,ulxe,udiZolles) < Clllssn.e)-
kezn

Moreover, with the independent of the functions ¢y and ¢ on the defini-
tion of BE, inequalities (5.3) establish the boundedness of the p-transform be-
cause (p; * f)(27°%k) = (f,pg). Similarly, identity (5.2) with 6; replaced by
i, © € N and the first inequality in (5.4) assure the boundedness of the -
transform. U

Proof of Theorem 3.2:
By some simple modifications of the argument in Theorem 2.6 of [3], we have
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0o, 0 € S(R™) satisfying suppbp, suppf C {z : |z| < 1} and ¢, ¢ € S(R™) satis-
fying (2.3)-(2.4) such that they fulfill (5.1). The Calderén reproducing formula
guarantees that for any f € S§’'(R"),

F@)=>">" [ bz —y)(ei=f)ydy.

1=0 kezn Qz,k

For Q = Qi € Q. we define sq = sup,eq|(¢: * £)(y)] and, for s # 0,

1
dola) =+ [ e =)o x D)y
SQ JQix
We have f = > oc55q0aq. The estimate, [[{sq}gegllis < C|fl|ps, follows from
Lemma 5.1. O

Proof of Theorem 3.5:
As || - || satisfies the triangle inequality provided that r < pg, without loss of
generality, we can assume that gs = 1/pp. Pick an € > 0 such that N > L+ ot

and ¢ > € (the § is given in Definition 5.3). Applying Lemma 5.3, we have

((ix @) <D0 ) Tseull@ixme) @)+ D Y [sgull(W x ma, ) (@)

“—o ken j=it1kezn
i
< C’( Z 9= (i=7)p Z 5,1 (1+ 27|z — xQM])*N
=0 kezn

—(j—i)(—a+d—e A ~E e
+ Z 9—(i—=i)(-a+é—e) Z |3Qj,k|(1 +2]|I _ij,kD - )
j=i+1 keZm

Using the fact that [ is a pp-Banach space, Lemma 5.2 assures that

kezn

Hl/h * f”F SC( Z 2_pF(i_j)ﬁH Z ‘SQj,k|XQj,k||§F
=0

0o oS 1/
+ Y 2EICHI Y Tsg, e, lIF)
S kezn

In view of the definition of (a, L)-regular, we assert that

115 = I{ws * [3Zolles) < O 150 lx@s0 )20l gy = Cllslhe

kezn

because —a + 0 — € > —a. O
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