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Abstract. We prove that the non-commutative perspective of an operator
convex function is the unique extension of the corresponding commutative per-
spective that preserves homogeneity and convexity.

1. Introduction and preliminaries

Let f be a function defined in the positive (open) half-line. The perspective
function Pf is the function of two variables given by

Pf (t, s) = sf(ts−1) t, s > 0.

Depending on the application, we may also consider the function (t, s) → Pf (s, t)
and denote this as the perspective of f.

If A and B are commuting positive definite matrices then the matrix Pf (A, B)
is well-defined by the functional calculus. Even if A and B do not commute we
may by choosing an appropriate ordering define the perspective by setting

Pf (A, B) = B1/2f(B−1/2AB−1/2)B1/2.

This expression is well-defined and coincides with Pf (A, B), when A and B com-
mute.

Effros [4] only considered the case where each pair in the argument of the
perspective function consists of commuting operators and proved in this way that
the perspective of an operator convex function is operator convex as a function
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of two variables. Ebadian et. al. [3] noticed that virtually the same proof applies
without any commutativity conditions. We include the proof for the convenience
of the reader.

Theorem 1.1. Let f be an operator convex function defined in the positive half-
line. The mapping

(A, B) → Pf (A, B),

defined in pairs of positive definite matrices, is convex.

Proof. Consider positive definite matrices A1, A2 and B1, B2 and take a real num-
ber λ ∈ [0, 1]. We set

A = λA1 + (1− λ)A2 and B = λB1 + (1− λ)B2.

The matrices

X = (λB1)
1/2B−1/2 and Y = ((1− λ)B2)

1/2B−1/2

satisfy

X∗X + Y ∗Y = B−1/2λB1B
−1/2 + B−1/2(1− λ)B2B

−1/2 = 1

and
X∗B

−1/2
1 A1B

−1/2
1 X + Y ∗B

−1/2
2 A2B

−1/2
2 Y

= B−1/2λA1B
−1/2 + B−1/2(1− λ)A2B

−1/2 = B−1/2AB−1/2.

Hence

Pf (λA1 + (1− λ)A2, λB1 + (1− λ)B2) = Pf (A, B)

= B1/2f(B−1/2AB−1/2)B1/2

= B1/2f
(
X∗B

−1/2
1 A1B

−1/2
1 X + Y ∗B

−1/2
2 A2B

−1/2
2 Y

)
B1/2

≤ B1/2
(
X∗f(B

−1/2
1 A1B

−1/2
1 )X + Y ∗f(B

−1/2
2 A2B

−1/2
2 )Y

)
B1/2

= (λB1)
1/2f(B

−1/2
1 A1B

−1/2
1 )(λB1)

1/2

+ ((1− λ)B2)
1/2f(B

−1/2
2 A2B

−1/2
2 )((1− λ)B2)

1/2

= λPf (A1, B1) + (1− λ)Pf (A2, B2),

where we used Jensen’s operator inequality [7]. QED

There are obvious similarities between the notion of a perspective function and
the operator means studied by Kubo and Ando [8]. The crucial difference is that
the representing function of an operator mean is operator monotone (and hence
operator concave). We are considering operator convex functions, and they are
in general not monotone.

Example 1.2. Consider the operator convex function f(t) = − log t defined for
t > 0. The (classical) perspective function is given by

Pf (t, s) = −t log(t−1s) = t log t− t log s,

and the non-commutative perspective is then given by

Pf (A, B) = −A1/2 log(A−1/2BA−1/2)A1/2.
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The relative entropy S(A, B) is defined by setting

S(A, B) = TrA log A− TrA log B

and is known to be a convex function of two variables. For commuting matrices
we have

S(A, B) = TrPf (A, B),

although the two quantities in general are different.

1.1. Spectral functions. Let B(H) denote the set of bounded linear operators
on a Hilbert space H. A function F : D → B(H) defined in a convex domain D
of self-adjoint operators in B(H) is called a spectral function, if it can be written
on the form F (x) = f(x) for some real function f defined in a real interval I,
where f(x) is obtained by applying the functional calculus.

Although this definition appears quite intuitive it contains some hidden as-
sumptions. Firstly, the domain D should be invariant under unitary transforma-
tions and

(1) F (u∗xu) = u∗F (x)u x ∈ D
for every unitary transformation u on H. Secondly, for orthogonal projections p
and q on H, the element pxp + qxq ∈ D and

(2) F (pxp + qxq) = pF (pxp)p + qF (qxq)q

for arbitrary x ∈ B(H) such that pxp and qxq are contained in D. An operator
function x → F (x) is a spectral function if and only if (1) and (2) are satisfied,
cf. [2, 6].

2. The main result

The notion of spectral function is not immediately extendable to functions of
two variables. However, we may consider the two properties of spectral func-
tions noticed by C. Davis as a kind of regularity conditions, and they are readily
extendable to functions of more than one variable.

Definition 2.1. Let F : D → B(H) be a function of two variables defined in a
convex domain D ⊆ B(H)×B(H). We say that F is regular if

(i) The domain D is invariant under unitary transformations of H and

F (u∗xu, u∗yu) = u∗F (x, y)u (x, y) ∈ D
for every unitary u on H.

(ii) Let p and q be orthogonal projections on H. Then the pair of diagonal block
matrices (pxp + qxq, pyp + qyq) ∈ D and

F (pxp + qxq, pyp + qyq) = pF (pxp, pyp)p + qF (qxq, qyq)q

for arbitrary x, y ∈ B(H) such that (pxp, pyp) and (qxq, qyq) are in D.

The following theorem is related to [5, Theorem 2.2].

Theorem 2.2. Let (A, B) → F (A, B) be a regular map from pairs of bounded
positive semi-definite operators on an infinite dimensional Hilbert space H into
B(H) satisfying the conditions:
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(i) F (tA, tB) = tF (A, B) t > 0

(ii) F

(
A1 + A2

2
,
B1 + B2

2

)
≤ F (A1, B1) + F (A2, B2)

2
(iii) F (0, 0) = 0, and B → F (1, B) is continuous on bounded subsets in the

strong operator topology, where 1 denotes the unit operator on H.

Then there exists an operator convex function f : R+ → R such that

F (1, t · 1) = f(t)1 t > 0.

Furthermore,

F (A, B) = A1/2f(A−1/2BA−1/2)A1/2 = Pf (A, B)

for positive definite invertible operators A and B.

Proof. The regularity of F entails that

u∗F (1, t · 1)u = F (1, t · 1) t > 0

for every unitary u in B(H). Thus F (1, t · 1) commutes with every unitary in
B(H) and is therefore of the form

F (1, t · 1) = f(t) · 1 t > 0

for some function f : R+ → R. If A =
∑n

i=1 λiPi is the spectral decomposition of
a finite rank positive definite operator A on H then

(3)

F (1, A) =
n∑

i=1

PiF (Pi, λiPi)Pi

=
n∑

i=1

PiF (1, λi · 1)Pi

=
n∑

i=1

f(λi)Pi = f(A)

by the regularity of F. Since F is mid-point convex it follows that f is mid-point
operator convex and thus operator convex1.

Let now C be a contraction and consider the unitary block matrices

U =

(
C (1− CC∗)1/2

(1− C∗C)1/2 −C∗

)
=

(
C D
E −C∗

)
and

V =

(
C −D
E C∗

)
.

It is plain to calculate that

1

2
U∗

(
A 0
0 0

)
U +

1

2
V ∗

(
A 0
0 0

)
V =

(
C∗AC 0

0 DAD

)
.

1It is a curiosity that continuity is not required to prove that mid-point operator convexity
implies operator convexity.
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We then obtain(
C∗F (A, B)C 0

0 DF (A, B)D

)
=

1

2
U∗

(
F (A, B) 0

0 0

)
U +

1

2
V ∗

(
F (A, B) 0

0 0

)
V

=
1

2
U∗F

((
A 0
0 0

)
,

(
B 0
0 0

))
U +

1

2
V ∗F

((
A 0
0 0

)
,

(
B 0
0 0

))
V

=
1

2
F

(
U∗

(
A 0
0 0

)
U,U∗

(
B 0
0 0

)
U

)
+

1

2
F

(
V ∗

(
A 0
0 0

)
V, V ∗

(
B 0
0 0

)
V

)
≥ F

(
1

2
U∗

(
A 0
0 0

)
U +

1

2
V ∗

(
A 0
0 0

)
V,

1

2
U∗

(
B 0
0 0

)
U +

1

2
V ∗

(
B 0
0 0

)
V

)
= F

((
C∗AC 0

0 DAD

)
,

(
C∗BC 0

0 DBD

))
=

(
F (C∗AC, C∗BC) 0

0 F (DAD, DBD)

)
,

where, in the second equality, we used F (0, 0) = 0 from condition (iii). In par-
ticular, we have proved that

(4) C∗F (A, B)C ≥ F (C∗AC, C∗BC)

for contractions C. However, the homogeneity of F then implies (4) for any op-
erator C. In particular, if C is invertible we obtain

F (A, B) ≥ (C∗)−1F (C∗AC, C∗BC)C−1 ≥ F (A, B),

hence there is equality and thus

C∗F (A, B)C = F (C∗AC, C∗BC).

For invertible A we therefore obtain

A−1/2F (A, B)A−1/2 = F (1, A−1/2BA−1/2).

If B is positive definite and of finite rank, then so is A−1/2BA−1/2 and thus

F (1, A−1/2BA−1/2) = f(A−1/2BA−1/2)

by equation (3).
Let g be a continuous function defined in an open interval I. The functional

calculus X → g(X) is strongly continuous on bounded subsets of self-adjoint
operators X with spectra in I, cf. the proof of [1, Lemma 2.2]. Indeed, if (Xi) is
a bounded net of operators converging strongly to X, then the inequality

‖Xkξ −Xk
i ξ‖ ≤ ‖Xkξ −Xk−1

i Xξ‖+ ‖Xk−1
i Xξ −Xk

i ξ‖

≤ ‖Xkξ −Xk−1
i Xξ‖+ ‖Xk−1

i ‖ · ‖Xξ −Xiξ‖,

together with an induction argument, shows that (Xk
i ) converges strongly to

Xk for any natural number k. The assertion then follows by approximating g
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uniformly by polynomials in a compact subset of I containing the spectrum of
X. The continuity condition in (iii) therefore implies

F (1, A−1/2BA−1/2) = f(A−1/2BA−1/2)

and thus
F (A, B) = A1/2f(A−1/2BA−1/2)A1/2

for positive definite invertible operators A and B defined on H. QED

Remark 2.3. It is crucial in the above proof that the regular map F (A, B) is de-
fined for positive semi-definite operators. We are therefore excluding the limiting
case,

F (A, B) = A1/2f(A−1/2BA−1/2)A1/2 = AB−1A,

that appears by setting f(t) = t−1 for t > 0.

Notice that the above theorem has an obvious counterpart if convexity is re-
placed by concavity.

The theorem states that a non-commutative perspective function, that allows
an extension to positive semi-definite operators, is the unique extension of a
commutative perspective function to a homogeneous, convex and regular operator
mapping. In particular, the geometric operator mean

A#B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2

is the only sensible extension of the geometric mean (t, s) →
√

ts of positive
numbers to a homogeneous and concave operator mapping.
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