
African Diaspora Journal of Mathematics

Volume 21, Number 2, pp. 1–14 (2018)

ISSN 1539-854X

www.math-res-pub.org/adjm

K̈ S  G D

D-H B-W

B G∗

Laboratoire de Physique Quantique de la matière

et de Modélisation Mathématique (LPQ3M),
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Abstract

In this paper we give a generalization of the doubly D-homothetically warped

metric introduced by Blair [4], and we study the construction of Kählerian structure

on the product of two almost contact metric structures. It is shown that if one factor is

β-Kenmotsu, the other is β-Kenmotsu or α-Sasakian, and if one factor is cosymplectic,

the other is α-Sasakian, but the product of two α-Sasakian is never Kählerian. Several

examples are discussed.
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1 Introduction

On the product of two almost contact manifolds, A. Morimoto [8] defined a natural almost

complex structure (see (4.2) in this paper) and proved that this almost complex structure

is integrable if and only if the two factors are normal almost contact manifolds. Later, M.

Capursi [6] investigated almost Hermitian geometry of the product of two almost contact

metric manifolds with the product metric, with respect to the almost complex structure de-

fined by Morimoto. He shows that this product is Hermitian, Kählerian, almost Kählerian

or nearly Kählerian, if and only if, the two factors are normal, cosymplectic, almost cosym-

plectic or nearly cosymplectic respectively.
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†E-mail address: mohamed.belkhelfa@gmail.com
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Extending ideas from Capursi and Morimoto, Blair and Oubiña [5] considered confor-

mal and related changes of the product metric with respect to a family of almost complex

structures (see relation (3.1)) containing the one of Morimoto. Under the Kähler condition

on the product manifold, Blair and Oubina proved that if one factor is Sasakian, the other

is not, but that locally the second factor is of the type studied by Kenmotsu. The resuls are

more general and given in terms of trans-Sasakian, α-Sasakian and β-Kenmotsu structures,

finally they asked the open question: What kind of change of the product metric will make

both factors Sasakian?

In [10], Watanabe survey almost Hermitian, Kähler, almost quaternionic Hermitian

and quaternionic Kähler structures, naturally constructed on products of manifolds with

almost contact metric and Sasakian structures and open intervals, as an application of these

constructions. Next, he investigated almost Hermitian structures, naturally defined on the

product manifolds of two almost contact metric and Sasakian manifolds, and asked some

problems related to these topics.

Here we introduce the notion of generalized doubly D-homothetic bi-warping. We

give an application to some questions of the characterization of certain geometric structures

(Theorem 4.4), which is the main result, and it supports the view of Calabi-Eckmann man-

ifold that almost Hermitian structures defined on the product of two Sasakian manifolds

which are never Kählerian. This text is organized in the following way.

Section 2 is devoted to the background of the structures which will be used in the sequel.

In section 3 we introduce the notion of generalized doubly D-homothetic bi-warping and

prove some basic properties.

In section 4 we give an application to some questions of the characterization of certain ge-

ometric structures specially we study the construction of Kählerian structure on the product

of two trans-Sasakian structures with examples.

2 Review of needed notions

For more background on almost complex structure manifolds, we recommend the reference

[11].

An almost complex manifold with a Hermitian metric is called an almost Hermitian mani-

fold. For an almost Hermitian manifold (M, J,g) we thus have

J2
= −1, g(JX, JY) = g(X,Y).

An almost complex structure J is integrable, and hence the manifold is a complex manifold,

if and only if its Nijenhuis tensor N j vanishes, with

N j(X,Y) = [JX, JY]− [X,Y]− J[X, JY]− J[JX,Y].

For an almost Hermitian manifold (M, J,g), we define the fundamental Kähler form Ω as:

Ω(X,Y) = g(X, JY).

(M, J,g) is then called almost Kähler if Ω is closed i.e. dΩ = 0. An almost Kähler manifold

with integrable J is called a Kähler manifold, and thus is characterized by the conditions:
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dΩ = 0 and NJ = 0. One can prove that both of these conditions combined are equivalent

with the single condition

∇J = 0.

An odd-dimensional Riemannian manifold (M2n+1,g) is said to be an almost contact

metric manifold if there exist on M a (1,1) tensor field ϕ, a vector field ξ (called the structure

vector field) and a 1-form η such that

η(ξ) = 1, ϕ2(X) = −X+η(X)ξ and g(ϕX,ϕY) = g(X,Y)−η(X)η(Y), (2.1)

for any vector fields X,Y on M. In particular, in an almost contact metric manifold we also

have ϕξ = 0 and η◦ϕ = 0 (see [2] and [3]).

Such a manifold is said to be a contact metric manifold if dη = Φ, where Φ(X,Y) =

g(X,ϕY) is called the fundamental 2-form of M. If, in addition, ξ is a Killing vector field,

then M is said to be a K-contact manifold. It is well-known that a contact metric manifold

is a K-contact manifold if and only if ∇Xξ = −ϕX, for any vector field X on M.

On the other hand, the almost contact metric structure of M is said to be normal if

Nϕ(X,Y) = [ϕ,ϕ](X,Y)+2dη (X,Y)ξ = 0, (2.2)

for any X, Y, where [ϕ,ϕ] denotes the Nijenhuis torsion of ϕ, given by

[ϕ,ϕ](X,Y) = ϕ2[X,Y]+ [ϕX,ϕY]−ϕ[ϕX,Y]−ϕ[X,ϕY].

In [9], the author proves that (ϕ,ξ,η,g) is trans-Sasakian structure if and only if it is

normal and

dη = αΦ, dΦ = 2βη∧Φ, (2.3)

where α = 1
2n
δΦ(ξ), β = 1

2n
divξ and δ is the codifferential of g.

It is well known that the trans-Sasakian condition may be expressed as an almost contact

metric structure satisfying

(∇Xϕ)Y = α
(

g(X,Y)ξ −η(Y)X
)

+β
(

g(ϕX,Y)ξ −η(Y)ϕX
)

. (2.4)

From this formula one easily obtains

∇Xξ = −αϕX−βϕ2X, (2.5)

(∇Xη)Y = αg(X,ϕY)+βg(ϕX,ϕY), (2.6)

It is clear that a trans-Sasakian manifold of type (1,0) is a Sasakian manifold and a trans-

Sasakian manifold of type (0,1) is a Kenmotsu manifold. A trans-Sasakian manifold of

type (0,0) is called a cosymplectic manifold. More generally, a trans-Sasakian structure

(ϕ,ξ,η,g) on M is said to be



















(a) : α−S asaki i f β = 0,

(b) : β−Kenmotsu i f α = 0,

(c) : Cosymplectic i f α = β = 0.

(2.7)

where α and β are two constants (see [3] and [11]).

The relation between trans-Sasakian, α-Sasakian and, β-Kenmotsu structures was dis-

cussed by Marrero [7].
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Proposition 2.1. (Marrero [7]) A trans-Sasakian manifold of dimension ≥ 5 is either α-

Sasakian, β-Kenmotsu or cosymplectic.

Proposition 2.2. (Marrero [7]) Let M be a 3-dimensional Sasakian manifold with structure

tensors (ϕ,ξ,η,g) , f > 0 a non-constant function on M and g = f g+ (1− f )η⊗ η. Then

(ϕ,ξ,η,g) is a trans-Sasakian structure of type
( 1

f
, 12ξ(ln f )

)

.

We can give a generalisation for the above proposition as follows:

Proposition 2.3. Let (Mϕ,ξ,η,g) be a 3-dimensional trans-Sasakian manifold of type (α,β),

f > 0 a non-constant function on M and g = f g+ (1− f )η⊗ η. Then (ϕ,ξ,η,g) is a trans-

Sasakian structure of type
(α

f
,β+ 1

2
ξ(ln f )

)

.

Proof Let (M,ϕ,ξ,η,g) be a 3-dimensional trans-Sasakian manifold of type (α,β), f > 0

a non-constant function on M and g = f g+ (1− f )η⊗ η. First, note that (M,ϕ,ξ,η,g) is an

almost contact metric manifold.

We have dη = αΦ and Φ = fΦ , where Φ and Φ are the fundamental 2-forms of g and g

respectively, so

dη = dη

=
α

f
Φ,

and

dΦ = d( fΦ)

= 2
(1

2
d
(

ln f
)

+βη
)

∧Φ

= 2
(1

2
ξ(ln f )+β

)

η∧Φ

putting α = α
f

and β = 1
2
ξ(ln f )+β, the proof is completed.

Proposition 2.4. If (M2n+1,ϕ,ξ,η,g) is a Kenmotsu manifold with η exact ( i.e. η= dρ where

ρ ∈ C∞(M)) and g̃ = e−2ρg+ (1− e−2ρ)η⊗η. Then (ϕ,ξ,η, g̃) is a cosymplectic structure.

Proof Let (M2n+1,ϕ,ξ,η,g) be a Kenmotsu manifold i.e.

dη = 0, dΦ = 2η∧Φ and (ϕ,ξ,η) is normal.

For all X and Y vectors fields on M, we have

Φ̃(X,Y) = g̃(X,ϕY)

= e−2ρg(X,ϕY)

= e−2ρ
Φ(X,Y)
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Then,

dΦ̃ = d(e−2ρ
Φ)

= −2e−2ρdρ∧Φ+ e−2ρdΦ

= 2e−2ρ(η−dρ)∧Φ,

so, if η = dρ then dΦ̃ = 0 and (M2n+1,ϕ,ξ,η,g) is a cosymplectic manifold.

3 Generalized doublyD-homothetic bi-warping

In [4], Blair introduced the notion of doubly D-homothetically warped metric on M̃ =

M′×M where M′ and M are two almost contact metric manifolds by

g̃ = Fg′+F(F −1)η′ ⊗η′+ f g+ f ( f −1)η⊗η,

where f is a positive function on M′ and F is a positive function on M.

Our idea is to generalize this notion by putting

g̃ = F2g′+F2(H2−1)η′ ⊗η′+ f 2g+ f 2(h2−1)η⊗η.

with f ,h,F and H are smooth functions on M̃ = M′×M such that f h , 0 and FH , 0 ev-

erywhere. We refer to this construction as generalized doublyD-homothetic bi-warping.

In particular, if H = h = ±1 then we have a generalized doubly warped product metric [5]

and if H = F and h = f we get the generalized doublyD-homothetically warped metric [4],

but if F = H = ±1 we get aD-homothetic bi-warped metric [1].

Using the Koszul formula for the Levi-Civita connection of a Riemannian metric, one

can obtain the following:

Proposition 3.1. Let ∇̃,∇′ and ∇ denote the Riemannian connections of g̃,g′, and g respec-

tively. For all X′,Y′ vector fields tangent to M′ and independent of M and similarly for

X,Y, we have

2g̃(∇̃X′Y
′,Z′) = 2g̃(∇X′Y

′,Z′)

+F2(H2−1)
(

(

g′(∇′X′ξ
′,Y′)+g′(∇′Y′ξ

′,X′)
)

η′(Z′)

+2dη′(X′,Z′)η′(Y′)+2dη′(Y′ ,Z′)η′(X′)
)

− g̃
(

X′(lnF2)ϕ′2Y′ +Y′(lnF2)ϕ′2X′,Z′
)

+ g̃
(

X′
(

ln(F2H2)
)

η′(Y′)ξ′+Y′
(

lnF2H2)η′(X′)ξ′,Z′
)

+ g̃
(

g′(ϕ′X′,ϕ′Y′)
(

ϕ′2grad′(lnF2)−
1

H2
η′(grad′(lnF2))ξ′

)

,Z′
)

+ g̃
(

η′(X′)η′(Y′)
(

ϕ′2grad′(lnF2H2)−
1

H2
η′
(

grad′(lnF2H2)
)

ξ′
)

,Z′
)

,

2g̃(∇̃XY′,Z′) = 2g̃(∇̃Y′X,Z
′) = −2g̃(∇̃Z′Y

′,X)

= g̃
(

−X(lnF2)ϕ′2Y′ +X
(

ln(F2H2)η′(Y′)ξ′
)

,Z′
)
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2g̃(∇̃X′Y,Z) = 2g̃(∇̃Y X′,Z) = −2g̃(∇̃ZY,X′)

= g̃
(

−X′(ln f 2)ϕ2Y +X′
(

ln( f 2h2)
)

η(Y)ξ,Z
)

2g̃(∇̃XY,Z) = 2g̃(∇XY,Z)

+ f 2(h2−1)
(

(

g(∇Xξ,Y)+g(∇Y ξ,X)
)

η(Z)

+2dη(X,Z)η(Y)+2dη(Y,Z)η(X)
)

− g̃
(

X(ln f 2)ϕ2Y +Y(ln f 2)ϕ2X,Z
)

+ g̃
(

X
(

ln( f 2h2)
)

η(Y)ξ +Y
(

ln f 2h2)η(X)ξ,Z
)

+ g̃
(

g(ϕX,ϕY)
(

ϕ2grad(ln f 2)−
1

h2
η(grad(ln f 2))ξ

)

,Z
)

+ g̃
(

η(X)η(Y)
(

ϕ2grad(ln f 2h2)−
1

h2
η
(

grad(ln f 2h2)
)

ξ
)

,Z
)

,

Theorem 3.2. Let (M′ϕ′,ξ′,η′ , ,g′) and (M, ,ϕ,ξ,η,g) be two almost contact metric man-

ifolds and g̃ the doubly D-homothetically warped metric on M̃ = M′ ×M so, we have the

following assertions:

1. The submanifold M is quasi umbilical if grad′h = grad′ f in which case its second

fundamental form σ is given by

σ(X,Y) = −
1

2F2

(

g(X,Y)+ (h2
+ f h−1)η(X)η(Y)

)(

grad′ f 2
+

1−H2

H2
ξ′( f 2)ξ′

)

.

2. The submanifold M is minimal if and only if h2
=

c
f 2 − 2n where c is a positive

constant in which case its second fundamental form σ is given by

σ(X,Y) = −
1

2F2

(

g(X,Y)− (2n+1)η(X)η(Y)
)(

grad′ f 2
+

1−H2

H2
ξ′( f 2)ξ′

)

.

3. If ∇ξξ = 0 then,

∇̃ξξ = −
1

2F2

(

grad′( f 2h2)+
1−H2

H2
ξ′( f 2h2)ξ′

)

.

Proof 1. Let σ the second fundamental form of M, we have

g̃
(

∇̃XY,Z′
)

= − f Z′( f )g(X,Y)− f
(

(h2−1)Z′( f )+ f hZ′(h)
)

η(X)η(Y)

= −
1

2
g′
(

g(ϕX,ϕY)grad′ f 2
+η(X)η(Y)grad′( f 2h2),Z′

)

= −
1

2F2
g̃
(

g(ϕX,ϕY)grad′ f 2
+η(X)η(Y)grad′( f 2h2),Z′

)

+
1

2
(H2−1)η′

(

g(ϕX,ϕY)grad′ f 2
+η(X)η(Y)grad′( f 2h2)

)

η′(Z′)

= −
1

2F2
g̃
(

g(ϕX,ϕY)grad′ f 2
+η(X)η(Y)grad′( f 2h2)

+
1−H2

H2

(

g(ϕX,ϕY)ξ′( f 2)+η(X)η(Y)ξ′( f 2h2)
)

ξ′,Z′
)
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since g̃
(

∇XY,Z′
)

= 0 and knowing that σ = ∇̃XY −∇XY then

σ(X,Y) =
1

2F2

(

g(ϕX,ϕY)grad′ f 2
+η(X)η(Y)grad′( f 2h2)

+
1−H2

H2

(

g(ϕX,ϕY)ξ′( f 2)+η(X)η(Y)ξ′ ( f 2h2)
)

ξ′
)

...(∗)

If grad′h = grad′ f then we obtain

σ(X,Y) = −
1

2F2

(

g(X,Y)+ (h2
+ f h−1)η(X)η(Y)

)(

grad′ f 2
+

1−H2

H2
ξ′( f 2)ξ′

)

.

2. From the equation (*) we have

H =
1

2n+1
trg σ =

1

2n+1

2n+1
∑

i=1

σ(ei,ei)

where {ei}i=1,2n+1 is an orthonormal basis on M so,

H =
−1

2(2n+1)F2

(

2ngrad′ f 2
+grad′( f 2h2)+

1−H2

H2

(

2nξ′( f 2)+ ξ′( f 2h2)
)

ξ′
)

=
−1

2(2n+1)F2

(

grad′
(

(2n+h2) f 2)
+

1−H2

H2
ξ′
(

(2n+h2) f 2)ξ′
)

we can notice easily that

H = 0⇔ (2n+h2) f 2
= c⇔ h2

=
c

f 2
−2n,

with c is a positive constant. In this case, replacing h2
=

c
f 2 −2n in equation (*) we obtain

σ(X,Y) = −
1

2F2

(

g(X,Y)− (2n+1)η(X)η(Y)
)(

grad′ f 2
+

1−H2

H2
ξ′( f 2)ξ′

)

.

3. From proposition (3.1), we have

g̃(∇̃XY,Z′) = − f Z′( f )g(X,Y)− f
(

(h2−1)Z′( f )− f hZ′(h)
)

η(X)η(Y),

so,

g̃(∇̃ξξ,Z
′) = − f Z′( f )− f

(

(h2−1)Z′( f )− f hZ′(h)
)

= −
1

2

(

Z′( f 2)+ (h2−1)Z′( f 2)+ f 2Z′(h2)
)

= −
1

2
Z′( f 2h2)

= −
1

2
g′
(

grad′( f 2h2),Z′
)

= −
1

2F2

(

g̃
(

grad′( f 2h2),Z′
)

−F2(H2−1)η′
(

grad′( f 2h2)
)

η′(Z′)
)

= −
1

2F2
g̃
(

grad′( f 2h2)+
1−H2

H2
ξ′( f 2h2)ξ′,Z′

)

.
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On the other hand, we can easily prove that if ∇ξξ = 0 then

g̃(∇̃ξξ,Z) = 0,

hence

∇̃ξξ = −
1

2F2

(

grad′( f 2h2)+
1−H2

H2
ξ′( f 2h2)ξ′

)

,

This completes the proof.

Next, we introduce a class of almost complex structure J̃ on the product manifold M̃ :

J̃(X′,X) =
(

ϕ′X′−
f h

FH
η(X)ξ′ , ϕX+

FH

f h
η′(X′)ξ

)

, (3.1)

for any vector filds X′ of M′ and any vector filds X of M.

For FH
f h
= e2µ where µ is a function on M′×M, we notice that J is the family of almost

complex structures introduced by Blair-Oubiña [5] and for FH
f h
= 1 we observe that the case

corresponds to Morimotos almost complex structure [8].

That J2
= −I is easily checked and for all X̃ = (X′,X), Ỹ = (Y′,Y) on M̃ we can see that

g̃ is almost Hermitian with respect to J̃ i.e.

g̃
(

J̃(X′,X), J̃(Y′ ,Y)
)

= g̃((X′,X), (Y′ ,Y)).

Note that the fundamental 2-form of (J̃, g̃) is very simply as follows:

Ω̃ = F2φ′+ f 2φ+2 f hFH(η′∧η)

where we denote by φ′(X′,Y′) = g′(X′,ϕ′Y′) and φ(X,Y) = g(X,ϕY) for any vector fields X′,

Y′ of M′ and any vector fields X, Y of M.

It is easily observed that,

dΩ̃ = 2FdF ∧φ′+F2dφ′+2 f d f ∧φ+ f 2dφ

+ 2d( f hFH)(η′∧η)+2 f hFH(dη′∧η−η′ ∧dη).

Remark 3.3. If φ′, φ, η′ and η are closed with f ,h,F and H are constants then the 2-form Ω̃

is closed and the structure (J̃, g̃) is almost Kählerian.

4 Application to geometric structures

In the remaining part of the paper, we consider M′ and M as two almost contact metric

manifolds and f ,h,F and H as functions on M̃ = M′ ×M such that f h = FH = ±1, i.e. we

have .

g̃ = F2g′+ (1−F2)η′ ⊗η′+ f 2g+ (1− f 2)η⊗η, (4.1)

and

J̃(X′,X) =
(

ϕ′X′−η(X)ξ′ , ϕX+η′(X′)ξ
)

. (4.2)

Using the proposition (3.1), one can obtain the following:
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Proposition 4.1. Let ∇′,∇ and ∇̃ denote the Riemannian connections of g′,g, and g̃ respec-

tively. For all X′,Y′ vector fields tangent to M′ and independent of M and similarly for

X,Y, we give the connection ∇̃ explicitly:

∇̃X′Y
′
= ∇′X′Y

′ −
α′

F2
(1−F2)

(

η′(Y′)ϕ′X′+η′(X′)ϕ′Y′
)

−
1

2

(

Y′(lnF2)ϕ′2X′+X′(ln F2)ϕ′2Y′
)

+ g′(ϕ′X′,ϕ′Y′)
(

β′(1−F2)ξ′+
1

2

(

ϕ′2grad′(lnF2)

−F2η′
(

grad′(lnF2)
)

ξ′
)

+
1

2 f 2

(

ϕ2gradF2− f 2η
(

gradF2)ξ
)

g′(ϕ′X′,ϕ′Y′).

∇̃X′Y = ∇̃Y X′ = −
1

2

(

Y(ln F2)ϕ′2X′+X′(ln f 2)ϕ2Y
)

,

∇̃XY = ∇XY −
α

f 2
(1− f 2)

(

η(Y)ϕX +η(X)ϕY
)

−
1

2

(

Y(ln f 2)ϕ2X +X(ln f 2)ϕ2Y
)

+ g(ϕX,ϕY)
(

β(1− f 2)ξ+
1

2

(

ϕ2grad(ln f 2)

− f 2η
(

grad(ln f 2)
)

ξ
)

+
1

2F2

(

ϕ′2grad′ f 2−F2η′
(

grad′ f 2)ξ′
)

g(ϕX,ϕY).

Knowing that (∇̃X̃ J̃)Ỹ = ∇̃X̃(J̃Ỹ)− J̃∇̃X̃Ỹ for all X̃ and Ỹ vectors fields on M̃ with using

the proposition (4.1), we compute the covariant derivative of J̃.

(

∇̃X′ J̃
)

Y′ = (∇′X′ϕ
′)Y′ − (∇′X′η

′)(Y′)ξ−
1

2
Y′(lnF2)ϕ′X′

+
1

2

(

(

ξ(ln F2)+
2α′

F2
(1−F2)

)

η′(Y′)−ϕ′Y′(lnF2)
)

ϕ′2X′

−
1

2
g′(ϕ′X′,Y′)

(

2β′(1−F2)ξ′ +ϕ′grad′(lnF2)

−F2η′
(

grad′(lnF2)
)

ξ′
)

−
1

2 f 2
g(ϕ′X′,Y′)

(

ϕgradF2 − f 2η
(

grad(F2)
)

ξ
)

+
1

2
g′(ϕ′X′,ϕ′Y′)

(

2β′(1−F2)ξ+ϕ′grad′(ln F2)

−F2η′
(

grad′(lnF2)
)

ξ
)

+
1

2 f 2
g′(ϕ′X′,ϕ′Y′)

(

ϕgradF2
+ f 2η

(

grad(F2)
)

ξ′
)

,
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(

∇̃X J̃
)

Y′ = η′(Y′)∇Xξ+
( α

f 2
(1− f 2)η′(Y′)+

1

2
Y′(ln f 2)

)

ϕX

−
1

2

(

(ϕ′Y′)(ln f 2)− ξ(ln f 2)η′(Y′)
)

ϕ2X,

(

∇̃X′ J̃
)

Y = −η(Y)∇X′ ξ
′ −
( α′

F2
(1−F2)η(Y)−

1

2
Y(ln F2)

)

ϕ′X′

−
1

2

(

(ϕY)(ln F2)− ξ′(ln F2)η(Y)
)

ϕ′2X′,

(

∇̃X J̃
)

Y = (∇Xϕ)Y − (∇Xη)(Y)ξ′ −
1

2
Y(ln f 2)ϕX

+
1

2

(

(

ξ′(ln f 2)+
2α

f 2
(1− f 2)

)

η(Y)−ϕY(ln f 2)
)

ϕ2X

−
1

2
g(ϕX,Y)

(

2β(1− f 2)ξ+ϕgrad(ln f 2)− f 2η
(

grad(ln f 2)
)

ξ
)

−
1

2F2
g(ϕX,Y)

(

ϕ′grad′ f 2−F2η′
(

grad′( f 2)
)

ξ′
)

+
1

2
g(ϕX,ϕY)

(

2β(1− f 2)ξ′+ϕgrad(ln f 2)− f 2η
(

grad(ln f 2)
)

ξ′
)

+
1

2F2
g(ϕX,ϕY)

(

ϕ′grad′ f 2
+F2η′

(

grad′( f 2)
)

ξ
)

,

Now, we can declare the following proposition:

Proposition 4.2. Let (M′,ϕ′,ξ′,η′,g′) and (M,ϕ,ξ,η,g) be two almost contact metric man-

ifolds. Consider the almost Hermitian structure (g̃, J̃) on M′ ×M given in (4.1) and (4.2)

with
{

grad′ f 2
= −2αξ′, grad ln f 2

= −2βξ,

gradF2
= 2α′ξ, grad′ lnF2

= −2β′ξ′.

Then, (M′ ×M, g̃, J̃) is Kählerian if and only if (M′,ϕ′,ξ′,η′ ,g′) and (M,ϕ,ξ,η,g) are two

trans-Sasakian manifolds of type (α′,β′) and (α,β) respectively.

Proof. Replacing the formulas

{

grad′ f 2
= −2αξ′, grad ln f 2

= −2βξ,

gradF2
= 2α′ξ, grad′ lnF2

= −2β′ξ′.

in the components of ∇̃J̃, we get

(

∇̃X′ J̃
)

Y′ =(∇′X′ϕ
′)Y′ −α′

(

g′(X′,Y′)ξ′−η′(Y′)X′
)

−β′
(

g′(ϕ′X′,Y′)ξ′−η′(Y′)ϕ′X′
)

+g′
(

∇′X′ξ
′−α′ϕ′X′−βϕ′2X′,Y′

)

ξ,
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(

∇̃X′ J̃
)

Y =η(Y)
(

∇′X′ξ
′−α′ϕ′X′−β′ϕ′2X′

)

,

(

∇̃X J̃
)

Y′ =η′(Y′)
(

∇Xξ−αϕX −βϕ2X
)

,

(

∇̃X J̃
)

Y =(∇Xϕ)Y −α
(

g(X,Y)ξ −η(Y)X
)

−β
(

g(ϕX,Y)ξ −η(Y)ϕX
)

+g
(

∇Xξ−αϕX−βϕ2X,Y
)

ξ′.

Suppose that (M̃, J̃, g̃) is Kählerian i.e. ∇̃J̃ = 0, we get

(∇′X′ϕ
′)Y′ =α′

(

g′(X′,Y′)ξ′−η′(Y′)X′
)

−β′
(

g′(ϕ′X′,Y′)ξ′ −η′(Y′)ϕ′X′
)

,

∇′X′ξ
′
= α′ϕ′X′−β′ϕ′2X′,

∇Xξ = αϕX−βϕ2X,

(∇Xϕ)Y =α
(

g(X,Y)ξ −η(Y)X
)

−β
(

g(ϕX,Y)ξ −η(Y)ϕX
)

,

i.e. M′ and M are two trans-Sasakian manifolds of type (α′,β′) and (α,β) respectively.

Conversely, suppose that M′ and M are two trans-Sasakian manifolds of type (α′,β′)

and (α,β) respectively. It is clear that if we use the formulas (2.4)-(2.6) in the components

of ∇̃J̃ above, we get directly ∇̃J̃ = 0. �

Remark 4.3. A similar result was obtained by Blair and Oubiña [5] using the generalized

doubly warped product.

Now suppose that M′ is β′-Kenmotsu, then from the above proposition we get grad′ ln F2
=

−2β′ξ′ and F is independent of M. Knowing that, if η′ is exact i.e. η′ = dρ′ where ρ′ is a

function on M′ then ξ′ = grad′ρ′.

In addition, if M′ is a connected manifold then

F2
= e−2β′ρ′ .

On the other hand, if M is α-Sasakian then from the proposition (4.2) we obtain grad′ f 2
=

−2αξ′ and f is independent of M. Thus we obtain

f 2
= −2αρ′,

and we have the following theorem:
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Theorem 4.4. Let M′ and M be almost contact metric manifolds. Consider the almost

Hermitian structure (g̃, J̃) on M′×M given in (4.1) and (4.2). Then,

(1): If F2
= e−2β′ρ′ and f 2

= e−2βρ then,

M′×M is Kählerian if and only if M′ is β′-Kenmotsu connected manifold and M is

β-Kenmotsu connected manifold.

(2): If F2
= e−2β′ρ′ and f 2

= −2αρ′ then,

M′×M is Kählerian if and only if M′ is β′-Kenmotsu connected manifold and M is

α-Sasakian manifold.

(3): If F = constant and f 2
= −2αρ′ then,

M′×M is Kählerian if and only if M′ is cosymplectic connected manifold and M is

α-Sasakian manifold.

(4): If F and f are constant then,

M′×M is Kählerian if and only if M′ and M are cosymplectic connected manifolds.

Proof. We can draw α, α′, β and β′ from the initial conditions, then using proposition (4.2)

and the different cases given in (2.7) we obtain directly the four results of the theorem. �

Remark 4.5. In this theorem, the result in the case (4) was gotten by M. Capursi ([6]).

Proposition 4.6. Let (M′,ϕ′,ξ′,η′ ,g′) and (M,ϕ,ξ,η,g) be two Sasakian manifolds. the

manifold (M′ ×M, J̃, g̃) equipped with the Hermitian structure (J̃, g̃) defined by (4.1) and

(4.2) is never Kähler.

Proof Suppose that M′ and M are two Sasakian manifolds i.e. α′ = α = 1, then from

proposition (4.2), we get

grad′ f 2
= −2ξ′, and gradF2

= 2ξ,

with f is independent of M and F is independent of M′.

But knowing that ξ is Killing i.e.

g(∇Xξ,Y)+g(∇Y ξ,X) = 0,

the following relation holds for all X,Y on M

g(∇XgradF2,Y) = 0,

giving

∇XgradF2
= 0 ⇒∇Xξ = 0,

and since M supposed Sasakian so, ϕX = 0 for all X on M i.e. ϕ = 0, a contradiction.

Exercise 4.7. Let (x,y,z) be cartesian coordinates on E3 and put

ξ =
∂

∂z
, η = −τdx+dz,
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ϕ =





















0 −1 0

1 0 0

0 −τ 0





















, g =





















ρ2
+τ2 0 −τ

0 ρ2 0

−τ 0 1





















where ρ and τ are functions on E3 such that ρ , 0 everywhere.

Then the structure (ϕ,ξ,η,g) is a:

(1) Sasaki when τ2 = −2ρ2 and τ3 = 0,

(2) Cosymplectic when ρ3 = 0, τ2 = 0, and τ3 = 0 ,

(3) Kenmotsu when ρ3 = ρ, τ2 = 0 and τ3 = 0.

where ρi =
∂ρ

∂xi
and τi =

∂τ
∂xi

[1].

Now, we use the product of the almost contact metric manifold (E3,ϕ,ξ,η,g) by itself, i.e.

using (4.1) and (4.2) with a straightforward computation we can get the associated matrices

of g̃ and J̃ on E6
= E′3 ×E3

g̃ =





















































F2ρ′2+τ′2 0 −τ′ 0 0 0

0 F2ρ′2 0 0 0 0

−τ′ 0 1 0 0 0

0 0 0 f 2ρ2
+τ2 0 −τ

0 0 0 0 f 2ρ2 0

0 0 0 −τ 0 1





















































,

J̃ =





















































0 −1 0 0 0 0

1 0 0 0 0 0

0 −τ′ 0 τ 0 −1

0 0 0 0 0−1 0

0 0 0 1 0 0

−τ′ 0 1 0 −τ 0





















































.

Using the above cases in theorem (4.4), the manifold (E6, g̃, J̃) is Kählerian if and only if

one of these assertions is satisfied:

(1): ρ′
3
= ρ′, τ′

2
= τ′

3
= 0, F2

= e−2β′(z′−
∫

τ′dx′),

ρ3 = ρ, τ2 = τ3 = 0, f 2
= e−2β(z−

∫

τdx).

(2): ρ′
3
= ρ′, τ′

2
= τ′

3
= 0, F2

= e−2β′(z′−
∫

τ′dx′),

τ2 = −2ρ2, τ3 = 0 f 2
= −2α(z′−

∫

τ′dx′).

(3): ρ′
3
= τ′

2
= τ′

3
= 0, F = constant,

τ2 = −2ρ2, τ3 = 0 f 2
= −2α(z′−

∫

τ′dx′).

(4): ρ′
3
= τ′

2
= τ′

3
= ρ3 = τ2 = τ3 = 0, F and f are constants.
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