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22 BP 582 Abidjan 22, Côte d’Ivoire

Abstract

We study the existence of solutions of the quasilinear equation

(D(u(t))φ(u′(t)))′ = f (t,u(t),u′(t)), a.e. t ∈ [0,T ],

submitted to nonlinear Neumann-Steklov boundary conditions on [0,T ], where
φ :]− a,a[→ R, (0 < a < +∞) is an increasing homeomorphism such that φ(0) = 0,
f : [0,T ]×R2 → R a L1-Carathéodory function, D : R −→]0,+∞[ is a continuous
function. Using topological methods, we obtain existence and multiplicity results.

AMS Subject Classification: 34B15.
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1 Introduction

This work is devoted to the study of the existence of solutions of the following φ-Laplacian
boundary value problem:{

(D(u(t))φ(u′(t)))′ = f (t,u(t),u′(t)), a.e. t ∈ [0,T ],
φ(u′(0)) = g0(u(0)), φ(u′(T )) = gT (u(T )),

(1.1)

where φ: ]− a,a[→ R, (0 < a < +∞) is an increasing homeomorphism such that φ(0) = 0,
f : [0,T ]×R2 → R is a L1-Carathéodory function, D : R −→]0,+∞[, g0,gT : R −→ R are
continuous.
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The boundary conditions in (1.1) are Neumann-Steklov nonlinear boundary conditions.
In 2011 Giovanni Cupini, Cristina Marcelli and Francesca Papalini studied in [6] the prob-
lem {

(a(u(t))φ(u′(t)))′ = f (t,u(t),u′(t)), a.e. t ∈ R,
u(−∞) = µ1, u(+∞) = µ2.

(1.2)

where a : R→ R is a positive continuous function, f : R3→ R is a Carathéodory function
and φ : R→ R is an increasing homeomorphism with φ(0) = 0.
In 2008, Cristian Bereanu and Jean Mawhin [3] proved, for D(x) = 1 and f continuous,
existence and multiplicity results for problem (1.1). They proved, under some conditions
upon f , g0 and gT , an Ambrosetti-Prodi type multiplicity result.

In the following results, for D : R −→]0,+∞[, we give some additional information
concerning the location of the solution of (1.1) when the lower and upper-solutions are
ordered or not. Moreover, in our multiplicity results, we need only one strict lower-solution
and one strict upper-solution. Generally, in the lower and upper-solutions method, to show
existence of at least one solution of a problem, we need existence of one lower-solution
and one upper-solution, for that, we also give some ways for the construction of lower and
upper-solutions of (1.1). These ways are new.

After introducing notations and preliminaries results in section 2, we study in section 3
the existence of at least one solution of (1.1) when the upper-solution and the lower-solution
are in well order.
In section 4, we study the existence and location of at least one solution of (1.1) when the
upper-solution and the lower-solution are not in well order.
In section 5, using results of sections 3 and 4, we prove the existence and location of at least
one solution of (1.1) when the upper-solution and the lower-solution are ordered or not.
In section 6, we prove the existence of multiple solutions of (1.1) by the lower and upper-
solutions method.
Finally in section 7, we give some new types of construction of lower and upper-solutions.

2 Notations and preliminaries

We denote:
◦ C =C([0,T ]), the Banach space of continuous functions on [0,T ];
◦ ||u||C = ||u||∞ =max{|u(t)|; t ∈ [0,T ]}, the norm of C;
◦ C1 = C1([0,T ]), the Banach space of continuous functions on [0,T ], having continuous
first derivative on [0,T ];
◦ ||u||C1 = ||u||C + ||u′||C , the norm of C1;
◦ AC = AC([0,T ]), the set of absolutely continuous functions on [0,T ];
◦ L1 = L1(0,T ), the Banach space of functions Lebesgue integrable on [0,T ];
◦ ||x||L1 =

∫ T
0 |x(t)|dt, the norm of L1;

◦ Br, the corresponding open ball of C1 of center 0 and radius r;
◦ Br, the corresponding close ball of C1 of center 0 and radius r;
◦ dLS , the Leray-Schauder degree and dB the Brouwer degree;
◦ ∂A, the boundary of the bounded set A.
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We introduce:
◦ the continuous operator P : C1→C1 defined by

P(u) = u(T )−u′(T )+φ−1(gT (u(T )));

◦ the continuous operator G : C→C defined by

G(u) = D(u(0))g0(u(0));

◦ the continuous operators Q,H1,H2 : L1→C defined by

Q(u) = Qu =
1
T

∫ T

0
u(s)ds, H1(u)(t) =

∫ t

0
u(s)ds and H2(u)(t) =

∫ T

t
u(s)ds, ∀t ∈ [0,T ].

Definition 2.1. f : [0,T ]×R2→ R is L1-Carathéodory if:

(i) f (., x,y) : [0,T ]→ R is measurable for all (x,y) ∈ R2;

(ii) f (t, ., .) : R2→ R is continuous for a.e. t ∈ [0,T ];

(iii) For each compact set K ⊂ R2, there is a function µK ∈ L1 such that | f (t, x,y)| ≤ µK(t)
for a.e. t ∈ [0,T ] and all (x,y) ∈ K.

Definition 2.2. A solution of problem (1.1) is a function u ∈ C1 such that ‖u′‖∞ < a, (D ◦
u).(φ◦u′) ∈ AC and satisfies (1.1).

3 Existence of solutions with well ordered upper and lower-solutions

3.1 Equivalent Fixed point problem

Consider N f : C1→ L1 defined by N f (u)= f (.,u(.),u′(.)), the Nemytskii operator associated
to f . It is standard to show that N f is continuous and sends bounded sets into bounded sets.
We construct the associated fixed point operator, following the approach in [[3] and [4]].

Proposition 3.1. u ∈C1 is a solution of the problem (1.1) if and only if u is a fixed point of
the operator Θ defined on C1 by

Θ(u) = P(u)−H2
[
φ−1 ◦

[
(D1 ◦u)[G(u)+H1(N f (u))]

]]
. (3.1)

where D1 is given by ∀x ∈ R, D1(x) = 1
D(x) .

Furthermore, ∀u ∈C1, ‖ (Θ(u))′ ‖∞< a and Θ is completely continuous on C1 if

0 < m ≤ D(u(t)) ≤ M, for every u ∈C1 and t ∈ [0,T ] (3.2)

for some constants m, M.
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Proof. Problem (1.1) is equivalent to{
u′(t) = φ−1[(D1 ◦u)(t)[H1(N f (u))(t)+D(u(0))g0(u(0))]

]
,

φ(u′(T )) = gT (u(T )).

Assume that u ∈C1 is a solution of the problem (1.1); then

u′(T ) = φ−1(gT (u(T ))).

Hence

u(t) = u(T )−
∫ T

t
φ−1[(D1 ◦u)(s)[D(u(0))g0(u(0))+

∫ s

0
N f (u)(x)dx]

]
ds

= u(T )−u′(T )+φ−1(gT (u(T )))−
∫ T

t
φ−1[(D1 ◦u)(s)[D(u(0))g0(u(0))+∫ s

0
N f (u)(x)dx]

]
ds

= (Θ(u))(t).

Assume that u ∈C1 is such that

u = Θ(u) = P(u)−H2
[
φ−1[(D1 ◦u)[G(u)+H1(N f (u))]

]]
, (3.3)

then,
u(T ) = u(T )−u′(T )+φ−1(gT (u(T )))

and
u′(t) = φ−1[(D1 ◦u)(t)[H1(N f (u))(t)+D(u(0))g0(u(0))]].

Hence

φ(u′(0)) = g0(u(0)), φ(u′(T )) = gT (u(T )) and ((D◦u)φ(u′))′ = N f (u).

It follows that u is a solution of the problem (1.1).
Using Arzelá-Ascoli’s Theorem, it is not difficult to see that Θ is completely continuous.
As

∀u ∈C1, (Θ(u))′ = φ−1 ◦
[
(D1 ◦u)[G(u)+H1(N f (u))]

]
,

we have
∀u ∈C1, ‖ (Θ(u))′ ‖∞< a.

3.2 Existence of solutions

Definition 3.2. A function α ∈C1 is a lower-solution of the problem (1.1) if (D◦α).(φ◦α′) ∈
AC, ‖α′‖∞ < a, {

(D(α(t))φ(α′(t)))′ ≥ f (t,α(t),α′(t)), a.e. t ∈ [0,T ],
φ(α′(0)) ≥ g0(α(0)) and φ(α′(T )) ≤ gT (α(T )).

(3.4)
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Definition 3.3. A function β ∈ C1 is an upper-solution of the problem (1.1) if (D ◦ β).(φ ◦
β′) ∈ AC, ‖β′‖∞ < a,{

(D(β(t))φ(β′(t)))′ ≤ f (t,β(t),β′(t)), a.e. t ∈ [0,T ],
φ(β′(0)) ≤ g0(β(0)) and φ(β′(T )) ≥ gT (β(T )).

(3.5)

Definition 3.4. A lower-solution α of (1.1) is said to be strict if every solution u of (1.1)
with u(t) ≥ α(t) on [0,T ] is such that u(t) > α(t) on [0,T ].

Definition 3.5. An upper-solution β of (1.1) is said to be strict if every solution u of (1.1)
with u(t) ≤ β(t) on [0,T ] is such that u(t) < β(t) on [0,T ].

Proposition 3.6. Let α be a lower-solution of (1.1) such that:
(i) ∀t0 ∈]0,T [, there exist ε0 > 0 and I0 an open interval such that t0 ∈ I0, and

(D(x)φ(α′(t)))′ ≥ f (t, x,y) for a.e. t ∈ I0,

∀ (x,y) ∈ [α(t),α(t)+ε0]× [α′(t)−ε0,α
′(t)+ε0];

(ii) φ(α′(0)) > g0(α(0));
(iii) φ(α′(T )) < gT (α(T )).
Then α is a strict lower-solution.

Proof. Let u be a solution of (1.1) such that α(t)≤ u(t), ∀t ∈ [0,T ]. As α is not a solution,
α is not identical to u.
Suppose by contradiction that there exists t̃ ∈ [0,T ] such that α(̃t) = u(̃t), hence

A = {t ∈ [0,T ]; α(t) = u(t)} , ∅

and A is closed. Let t0 =min A, hence

min
t∈[0,T ]

[u(t)−α(t)] = u(t0)−α(t0) = 0.

(I) Assume that t0 ∈]0,T [, then we have u′(t0)−α′(t0) = 0 and there exists I0 and ε0 > 0
according to assumption (i). It follows that we can choose t1 ∈ I0 such that t1 < t0, u′(t1) <
α′(t1), and

∀t ∈ [t1, t0], (u(t),u′(t)) ∈]α(t),α(t)+ε0[×]α′(t)−ε0,α
′(t)+ε0[.

Hence, for almost every t ∈ [t1, t0],

(D(u(t))φ(α′(t)))′− f (t,u(t),u′(t)) ≥ 0.

As φ is an increasing homeomorphism,

φ(u′(t0))−φ(α′(t0)) = 0

and
φ(u′(t1)) < φ(α′(t1)). (3.6)
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We also have

−(D(u(t1))φ(u′(t1))−D(u(t1))φ(α′(t1)))
= −
∫ t0

t1
[(D(u(s))φ(α′(s)))′− (D(u(s))φ(u′(s)))′]ds

= −
∫ t0

t1
[(D(u(s))φ(α′(s)))′− f (s,u(s),u′(s))]ds ≤ 0,

which contradicts (3.6).

(II) Assume that t0 = 0; then α′(0) ≤ u′(0), so that;

φ(u′(0))−φ(α′(0)) ≥ 0. (3.7)

As φ(α′(0)) > g0(α(0)), using (3.7) we have the contradiction

0 ≤ φ(u′(0))−φ(α′(0)) = g0(u(0))−φ(α′(0)) = g0(α(0))−φ(α′(0)) < 0.

(III) Assume that t0 = T ; then (u−α)′(T ) ≤ 0, so that;

φ(u′(T ))−φ(α′(T )) ≤ 0. (3.8)

As φ(α′(T )) < gT (α(T )), using (3.8) we have the contradiction

0 ≥ φ(u′(T ))−φ(α′(T )) = gT (u(T ))−φ(α′(T )) = gT (α(T ))−φ(α′(T )) > 0.

Proposition 3.7. Let β be an upper-solution of (1.1) such that:
(i) ∀t0 ∈]0,T [, there exist ε0 > 0 and I0 an open interval such that t0 ∈ I0, and

(D(x)φ(β′(t)))′ ≤ f (t, x,y) for a.e. t ∈ I0,

∀ (x,y) ∈ [β(t)−ε0,β(t)]× [β′(t)−ε0,β
′(t)+ε0];

(ii) φ(β′(0)) < g0(β(0));
(iii) φ(β′(T )) > gT (β(T )).
Then β is a strict upper-solution.

Proof. The proof is similar to the proof of Proposition 3.6.

We introduce the following Lemma (See [7], Lemma 6.3 and Corollary 6.4). It is fun-
damental for the proof of the following theorem. For α ∈C1 and β ∈C1 such that

α(t) ≤ β(t), ∀t ∈ [0,T ],

we can define a function γ : [0,T ]×R→ R by

γ(t, x) =max{α(t),min{x,β(t)}}.

Lemma 3.8. For u ∈C1 the three following properties are true.

a) d
dtγ(t,u(t)) exists for a.e. t ∈ [0,T ].
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b) d
dtγ(t,u(t)) =


α′(t) i f u(t) < α(t)
u′(t) i f α(t) ≤ u(t) ≤ β(t)
β′(t) i f β(t) < u(t)

.

c) if (un)n ⊂ C1 is such that un → u in C1. Then γ(.,un)→ γ(.,u) in C and for almost

every t ∈ [0,T ], lim
n→+∞

d
dt
γ(t,un(t)) =

d
dt
γ(t,u(t)).

Theorem 3.9. Assume that there exist a lower-solution α and an upper-solution β of (1.1)
such that ∀t ∈ [0,T ], α(t) ≤ β(t). Then the problem (1.1) admits at least one solution u, such
that

α(t) ≤ u(t) ≤ β(t), ∀t ∈ [0,T ].

Moreover, if α and β are strict, then

α(t) < u(t) < β(t), ∀t ∈ [0,T ], and dLS [I−Θ,Ωα,β,0] = 1,

where
Ωα,β = {u ∈C1; ∀t ∈ [0,T ], α(t) < u(t) < β(t), ‖ u′ ‖∞< a},

Θ is the fixed point operator associated to (1.1).

In order to prove the Theorem 3.9, we consider the auxiliary boundary value problem
(D(γ(t,u(t)))φ(u′(t)))′ = F(u)(t), a.e. t ∈ [0,T ],
φ(u′(0)) = g0(γ(0,u(0))),
u(T ) = γ(T,u(T ))−δ(u′(T ))+φ−1(gT (γ(T,u(T )))),

(3.9)

where δ : R→ R is defined by

δ(x) =max{−a,min{x,a}}.

and F : C1→ L1 given by, ∀u ∈C1 and for a.e. t ∈ [0,T ],

F(u)(t) = f (t,γ(t,u(t)), δ(
d
dt
γ(t,u(t))))+ arctan(u(t)−γ(t,u(t))).

A solution of problem (3.9) is a function u ∈C1 such that ‖u′‖∞ < a, (D◦u).(φ◦u′) ∈ AC
and satisfies (3.9).

Consider the operators P1 : C1→C1 and G1 : C1→C1 given by, ∀u ∈C1,

P1(u) = γ(T,u(T ))−δ(u′(T ))+φ−1(gT (γ(T,u(T ))))

and
G1(u) = D(γ(0,u(0)))g0(γ(0,u(0))).

We show that the problem (3.9) is equivalent to the fixed point problem u = Θ̃(u) where
Θ̃ : C1→C1 is defined by

Θ̃(u)(t) = P1(u)−
∫ T

t
φ−1
[
D1(γ(s,u(s)))[G1(u)+

∫ s

0
F(u)(x)dx]

]
ds, ∀t ∈ [0,T ].



Nonlinear φ-Laplacian Equations with Neumann-Steklov Boundary Conditions 23

By Arzelá-Ascoli Theorem, Θ̃ is completely continuous. We can see that for all u in C1, we
have

‖Θ̃(u)‖C1 <max{|αL|, |βM |}+3a+aT.

Lemma 3.10. Any solution u of (3.9) is such that α(t) ≤ u(t) ≤ β(t), ∀t ∈ [0,T ]

Proof. We limit ourselves to prove that α(t) ≤ u(t) for every t ∈ [0,T ]; the proof of the
other inequality u(t) ≤ β(t) for every t ∈ [0,T ] is similar. Let us assume on the contrary that,
for some t0 ∈ [0,T ], max

t∈[0,T ]
[α(t)−u(t)] = α(t0)−u(t0) > 0.

If t0 ∈]0,T [ then α′(t0) = u′(t0). Thus φ(α′(t0)) = φ(u′(t0)). We can find ω > 0 such that
∀t ∈]t0, t0+ω[, α(t)> u(t). We have, ∀t ∈]t0, t0+ω[, γ(t,u(t))= α(t) and δ( d

dtγ(t,u(t)))= α′(t)
for a.e. t ∈]t0, t0+ω[. It follows that ∀t ∈]t0, t0+ω[,

D(α(t))(φ(α′(t))−φ(u′(t))) =
∫ t

t0

[
(D(α(s))[φ(α′(s))−φ(u′(s))]

]′ds

=

∫ t

t0

[
(D(α(s))φ(α′(s)))′− (D(γ(s,u(s)))φ(u′(s)))′

]
ds

=

∫ t

t0
[(D(α(s))φ(α′(s)))′− f (s,α(s),α′(s))+

arctan(α(s)−u(s))]ds

≥

∫ t

t0
arctan(α(s)−u(s))ds > 0.

As ∀x ∈ R, D(x) > 0 and φ is an increasing homeomorphism, we obtain

D(α(t))(φ(α′(t))−φ(u′(t))) > 0⇒ φ(α′(t))−φ(u′(t)) > 0⇒ α′(t)−u′(t) > 0,

a contradiction.

If t0 = 0 then α′(0) ≤ u′(0), hence φ(α′(0)) ≤ φ(u′(0)). Moreover, as γ(0,u(0)) = α(0) we
deduce, using (3.4), that

φ(α′(0))−φ(u′(0)) = φ(α′(0))−g0(α(0)) ≥ 0.

We have φ(α′(0)) ≤ φ(u′(0)) and φ(α′(0))−φ(u′(0)) ≥ 0 hence

φ(α′(0))−φ(u′(0)) = 0.

We can find ω > 0 such that ∀t ∈]0,ω[, α(t) > u(t). We have ∀t ∈]0,ω[, γ(t,u(t)) = α(t) and
δ( d

dtγ(t,u(t))) = α′(t) for a.e. t ∈]0,ω[. It follows that ∀t ∈]0,ω[,

D(α(t))(φ(α′(t))−φ(u′(t))) =
∫ t

0

[
(D(α(s))[φ(α′(s))−φ(u′(s))]

]′ds

=

∫ t

0

[
(D(α(s))φ(α′(s)))′− (D(γ(s,u(s)))φ(u′(s)))′

]
ds

=

∫ t

0
[(D(α(s))φ(α′(s)))′− f (s,α(s),α′(s))+

arctan(α(s)−u(s))]ds

≥

∫ t

0
arctan(α(s)−u(s))ds > 0.
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As ∀x ∈ R, D(x) > 0 and φ is an increasing homeomorphism, we obtain

D(α(t))(φ(α′(t))−φ(u′(t))) > 0⇒ φ(α′(t))−φ(u′(t)) > 0⇒ α′(t)−u′(t) > 0,

a contradiction.

If t0 = T then α(T )−u(T ) > 0 and α′(T ) ≥ u′(T ).
As α(T )− u(T ) > 0, we have γ(T,u(T )) = α(T ). As α′(T ) ≥ u′(T ), we have δ(α′(T )) ≥
δ(u′(T )). Therefore we obtain the contradiction

0 < α(T )−u(T ) = α(T )−α(T )+δ(u′(T ))−φ−1(gT (α(T )));

= δ(u′(T ))−φ−1(gT (α(T )));

≤ δ(α′(T ))−φ−1(gT (α(T )));

≤ α′(T )−φ−1(gT (α(T ))) ≤ 0.

Proof of Theorem 3.9. Θ̃ is completely continuous and Θ̃(C1)⊂ Bλ for λ>max{|αL|, |βM |}+

3a+ aT . Hence we have, by a straightforward application of Schauder Theorem, Θ̃ has a
fixed point U which is a solution of (3.9). Therefore, using Lemma 3.10, U is also a solu-
tion of (1.1).
Assume that α and β are strict lower and upper-solutions of (1.1).
Let

λ >max{|αL|, |βM |}+3a+aT

large enough such that
Θ̃(v) , v for any v ∈ ∂Bλ.

Since Θ̃ is completely continuous, we can calculate the topological degree of I − Θ̃. The
function H define by H(t,v) = tΘ̃(v) is continuous and compact on [0,1]× Bλ. If for some
t ∈ [0,1] and v ∈ ∂Bλ we have v−H(t,v) = 0, then tΘ̃(v) = v. As ‖v‖C1 = λ and ‖Θ̃(v)‖C1 ≤ λ

for any v ∈ ∂Bλ, this imposes t = 1 and v = Θ̃(v), therefore the presence of a fixed point
of Θ̃ on ∂Bλ, situation which we excluded. We can thus apply the homotopy invariance
properties of Leray-Schauder degree, to obtain

dLS (I− Θ̃,Bλ,0) = dLS (I,Bλ,0) = 1.

By the definition of strict lower or upper-solution, neither α nor β can be a solution of
(3.9). Hence (3.9) has no solution on the boundary of Ωα,β. Moreover, using the additivity-
excision property of the Leray-Schauder degree (see [10]), we have

dLS [I− Θ̃,Ωα,β,0] = dLS [I− Θ̃,Bλ,0] = 1.

On the other hand, as the completely continuous operator Θ associated to (1.1) is equal to
Θ̃ on Ωα,β, we deduce that

dLS [I−Θ,Ωα,β,0] = 1.
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4 Existence of solutions with non ordered upper and lower-solutions

In the following theorem, we give some additional information concerning the location of
the solution when the lower and upper-solutions are not ordered. The proof of the following
theorem is similar to the proof of [Theorem 8.10 in [11]] and [Theorem 1 in [2]].

Theorem 4.1. Assume that there exist a lower-solution α and an upper-solution β of (1.1)
such that

∃̃t ∈ [0,T ] such that α(̃t) > β(̃t); (4.1)

Then the problem (1.1) admits at least one solution u, such that

min{α(tu),β(tu)} ≤ u(tu) ≤max{α(tu),β(tu)} (4.2)

for some tu ∈ [0,T ] and
‖u‖∞ ≤max{‖α‖∞,‖β‖∞}+aT. (4.3)

Proof. Let R = max{‖α‖∞,‖β‖∞}+ aT . Consider the functions f ∗ : [0,T ]×R2 −→ R

given by

f ∗(t,u,v) =



2 if u > R+1
(1+R−u) f (t,u,v)+2(u−R) if R < u ≤ R+1
f (t,u,v) if −R ≤ u ≤ R
(1+R+u) f (t,u,v)+2(u+R) if −R−1 ≤ u < −R
−2 if u < −R−1,

(4.4)

g∗T : R −→ R given by

g∗T (u) =



−2 if u > R+1
(1+R−u)gT (u)−2(u−R) if R < u ≤ R+1
gT (u) if −R ≤ u ≤ R
(1+R+u)gT (u)−2(u+R) if −R−1 ≤ u < −R
2 if u < −R−1

(4.5)

and g∗0 : R −→ R given by:

g∗0(u) =



2 if u > R+1
(1+R−u)g0(u)+2(u−R) if R < u ≤ R+1
g0(u) if −R ≤ u ≤ R
(1+R+u)g0(u)+2(u+R) if −R−1 ≤ u < −R
−2 if u < −R−1.

(4.6)

f ∗ is a L1-Carathéodory function, g∗0 and g∗T are continuous. Consider the modified
problem {

(D(u(t))φ(u′(t)))′ = f ∗(t,u(t),u′(t)) a.e. t ∈ [0,T ],
φ(u′(0)) = g∗0(u(0)), φ(u′(T )) = g∗T (u(T )).

(4.7)
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α is a lower-solution, and β is an upper-solution of (4.7).
Let η : R −→ R given by: η(t) = R+2. We have

(D(η(t))φ(η′(t)))′ = 0 < 2 = f ∗(t,η(t),η′(t)), a.e. t ∈ [0,T ],

φ(η′(0)) = 0 < 2 = g∗0(η(0)), φ(η′(T )) = 0 > −2 = g∗T (η(T )).

Hence, η is an upper-solution of (4.7).
Let σ : R −→ R given by: σ(t) = −R−2. We have

(D(σ(t))φ(σ′(t)))′ = 0 > −2 = f?(t,σ(t),σ′(t)), a.e. t ∈ [0,T ],

φ(σ′(0)) = 0 > −2 = g?0 (σ(0)), φ(σ′(T )) = 0 < 2 = g?T (σ(T )).

Hence, σ is a lower-solution of (4.7). We have

∀t ∈ [0,T ], σ(t) <min{β(t),α(t)} ≤max{β(t),α(t)} < η(t).

Let
Ωσ,β = {u ∈C1; ∀t ∈ [0,T ], σ(t) < u(t) < β(t), ‖ u′ ‖∞< a},

Ωα,η = {u ∈C1; ∀t ∈ [0,T ], α(t) < u(t) < η(t), ‖ u′ ‖∞< a},

and
Ωσ,η = {u ∈C1; ∀t ∈ [0,T ], σ(t) < u(t) < η(t), ‖ u′ ‖∞< a}.

Using (4.1), we have
Ωσ,β∩Ωα,η = ∅.

We also have
(Ωσ,β∪Ωα,η) ⊂Ωσ,η.

Consider
Ω = Ωσ,η \ (Ωσ,β∪Ωα,η).

It follows that

Ω = {u ∈Ωσ,η; ∃ (t1, t2) ∈ [0,T ]2 such that β(t1) < u(t1) and u(t2) < α(t2)}

and
∂Ω = ∂Ωσ,η∪∂Ωσ,β∪∂Ωα,η.

As any constant function between β(̃t) and α(̃t) is contained in Ω, Ω is a non-empty set.
Let Γ1 be the fixed point operator associated to (4.7). Next, let us consider u ∈ Ω such that
Γ1(u)= u and ‖u‖∞ =R+2. Notice that we have ‖u′‖∞ < a. Hence there exists t0 ∈ [0,T ] such
that u(t0) =max

[0,T ]
u = R+2 or u(t0) =min

[0,T ]
u = −R−2. Consider the case u(t0) =max

[0,T ]
u = R+2.

If t0 ∈]0,T [, then u′(t0) = 0 and there exists ε > 0 such that u(t) > R+1 for all t ∈ [t0, t0+ε].
Moreover,

(D(u(t))φ(u′(t)))′ = 2 > 0,

hence

D(u(t))φ(u′(t)) =
∫ t

t0
(D(u(s))φ(u′(s)))′ds > 0, for all t ∈ [t0, t0+ε].



Nonlinear φ-Laplacian Equations with Neumann-Steklov Boundary Conditions 27

As (D(u(t)) > 0, we have φ(u′(t)) > 0 for all t ∈ [t0, t0+ε].
This implying that u is strictly increasing on [t0, t0+ε], which is a contradiction.

If t0 = 0, then u′(0) ≤ 0 and we obtain the contradiction

0 ≥ φ(u′(0)) = g∗0(R+2) = 2 > 0.

If t0 = T , then u′(T ) ≥ 0 and we obtain the contradiction

0 ≤ φ(u′(T )) = g∗T (R+2) = −2 < 0.

In the same way, we obtain a contradiction if u(t0) =min
[0,T ]

u = −R−2.

Therefore
[u ∈ ∂Ω, Γ1(u) = u]⇒ ‖u‖∞ < R+2. (4.8)

Now, let u ∈ ∂Ω be such that Γ1(u) = u. It follows from (4.8) that ‖u‖∞ < R+2, ‖u′‖∞ < a,
and u ∈ ∂Ωσ,β ∪ ∂Ωα,η. It follows that there exists t0 ∈ [0,T ] such that u(t0) = α(t0) or
u(t0) = β(t0), implying that

|u(t0)| ≤max{‖α‖∞,‖β‖∞}.

Then,

|u(t)| ≤ |u(t0)|+
∫ T

0
|u′(t)|dt < R for all t ∈ [0,T ],

therefore,
[u ∈ ∂Ω, Γ1(u) = u]⇒ ‖u‖∞ < R. (4.9)

We have two cases.
Case 1. Assume that there exists u ∈ ∂Ω be such that Γ1(u) = u. Using (4.9), we deduce that
‖u‖∞ < R, implying that u is a solution of (1.1), and (4.2) and (4.3) are satisfied. In this case
there exists τ ∈ [0,T ] such that u(τ) = α(τ) or u(τ) = β(τ).
Case 2. Assume that Γ1(u) , u for all u ∈ ∂Ω. Then, like in the proof of Theorem 3.9, we
have

dLS [I−Γ1,Ωσ,η,0] = dLS [I−Γ1,Ωσ,β,0]

= dLS [I−Γ1,Ωα,η,0]

= 1

By the additivity property of the Leray-Schauder degree, we have

dLS [I−Γ1,Ω,0] = −1.

By the existence property of the Leray-Schauder degree, there exists u ∈Ω such that
Γ1(u) = u. It follows that there exists (t1, t2) ∈ [0,T ]2 such that u(t1) < α(t1) and u(t2) > β(t2).
Then, using once again that ‖u′‖∞ < a, it follows that ‖u‖∞ < R , hence u is a solution of
(1.1) and (4.3) is satisfied. Moreover, from u ∈Ω it follows that (4.2) holds true.
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5 Existence of solutions with upper and lower-solutions ordered
or not

Theorem 5.1. Assume that there exist a lower-solution α and an upper-solution β of (1.1).
Then the problem (1.1) admits at least one solution u, such that

‖u‖∞ ≤max{‖α‖∞,‖β‖∞}+aT. (5.1)

Proof. If ∀t ∈ [0,T ], α(t) ≤ β(t), by Theorem 3.9, the problem (1.1) admits at least one
solution u, such that

α(t) ≤ u(t) ≤ β(t), ∀t ∈ [0,T ].

Moreover, (5.1) is satisfied.
If

∃̃t ∈ [0,T ] such that α(̃t) > β(̃t), (5.2)

by Theorem 4.1, the problem (1.1) admits at least one solution u, such that

‖u‖∞ ≤max{‖α‖∞,‖β‖∞}+aT.

Example 5.2. Consider the problem

( eu(t)u′(t)√
a2−(u′(t))2

)′ = −c|u′(t)|q− bmax{0,u(t)}
√

t
+ t for a.e. t ∈ [0,T ],

u′(0)√
a2−(u′(0))2

= −(u(0))2 and u′(T )√
a2−(u′(T ))2

= (u(T ))2

where a > 0, b > 0, c > 0, T > 0 and q > 0. Then α(t) = T
√

T
b and β(t) = 0 are lower and

upper-solutions. Using Theorem 5.1, we deduce the existence of at least one solution.

6 Existence of multiple solutions

In this section we use Theorem 3.9 and Theorem 4.1 to prove existence of multiple solutions
for the problem (1.1). In the following theorem we prove existence of at least three solutions
of problem (1.1).

Theorem 6.1. Assume that there exist α a lower-solution and σ a strict lower-solution of
problem (1.1), η an upper-solution and β a strict upper-solution of the problem (1.1), such
that

∀t ∈ [0,T ], α(t) ≤ β(t) < σ(t) ≤ η(t). (6.1)

Then the boundary value problem (1.1) admits at least three solutions u, v and w, with

α(t) ≤ u(t) < β(t), ∀t ∈ [0,T ]; σ(t) < v(t) ≤ η(t), ∀t ∈ [0,T ];

β(tw) ≤ w(tw) ≤ σ(tw), for some tw ∈ [0,T ].



Nonlinear φ-Laplacian Equations with Neumann-Steklov Boundary Conditions 29

Proof. Using Theorem 3.9 and the fact that β and η are strict, the problem (1.1) admits
at least two solutions u, v such that

α(t) ≤ u(t) < β(t), ∀t ∈ [0,T ] and σ(t) < v(t) ≤ η(t), ∀t ∈ [0,T ]. (6.2)

Using Theorem 4.1, the problem (1.1) admits at least one solution w such that

β(tw) =min{σ(tw),β(tw)} ≤ w(tw) ≤max{σ(tw),β(tw)} = σ(tw) (6.3)

for some tw ∈ [0,T ]. Using (6.2) and (6.3), we have u , w and w , v.

In the following Theorems we prove existence of at least two solutions of the problem
(1.1).

Theorem 6.2. With the previous notations, assume that there exist α and σ two lower-
solutions of the problem (1.1), and β a strict upper-solution of the problem (1.1), such that

∀t ∈ [0,T ], α(t) ≤ β(t) < σ(t);

Then the boundary value problem (1.1) admits at least two solutions u and w, with

α(t) ≤ u(t) < β(t), ∀t ∈ [0,T ],

and
∃ tw ∈ [0,T ] such that β(tw) ≤ w(tw) ≤ σ(tw). (6.4)

Proof. Using Theorem 3.9, and the fact that β is strict, the problem (1.1) admits at least
one solution u, such that

α(t) ≤ u(t) < β(t). (6.5)

Using Theorem 4.1, the problem (1.1) admits at least one solution w such that

β(tw) =min{σ(tw),β(tw)} ≤ w(tw) ≤max{σ(tw),β(tw)} = σ(tw) (6.6)

for some tw ∈ [0,T ]. Using (6.5) and (6.6), we have u , w.

Theorem 6.3. With the previous notations, assume that there exist a strict lower-solution
α, and two upper-solutions β and η of (1.1) such that

∀t ∈ [0,T ], β(t) < α(t) ≤ η(t);

Then the boundary value problem (1.1) admits at least two solutions u and w, with

α(t) < u(t) ≤ η(t), ∀t ∈ [0,T ],

and
∃ tw ∈ [0,T ] such that β(tw) ≤ w(tw) ≤ α(tw). (6.7)

Proof. The proof is similar to the proof of Theorem 6.2.
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7 Construction of lower and upper-solutions

Theorem 7.1. If there exists a constant ω such that

f (t,ω,0) ≤ 0, a.e. t ∈ [0,T ], g0(ω) ≤ 0 and gT (ω) ≥ 0, (7.1)

then, the function α given by α(t) = ω, ∀t ∈ [0,T ], is a lower-solution of problem (1.1).
If there exists a constant ω1 such that

f (t,ω1,0) ≥ 0, a.e. t ∈ [0,T ], g0(ω1) ≥ 0 and gT (ω1) ≤ 0, (7.2)

then, the function β given by β(t) = ω1, ∀t ∈ [0,T ], is an upper-solution of problem (1.1).

Proof. If (7.1) holds, for α given by α(t) = ω, ∀t ∈ [0,T ], we have

(D(α(t))φ(α′(t)))′ = 0 ≥ f (t,ω,0) = f (t,α(t),α′(t)), a.e. t ∈ [0,T ],

φ(α′(0)) = 0 ≥ g0(ω) = g0(α(0)),

φ(α′(T )) = 0 ≤ gT (ω) = gT (α(T )).

If (7.2) holds, for β given by β(t) = ω1, ∀t ∈ [0,T ], we have

(D(β(t))φ(β′(t)))′ = 0 ≤ f (t,ω1,0) = f (t,β(t),β′(t)), a.e. t ∈ [0,T ],

φ(β′(0)) = 0 ≤ g0(ω1) = g0(β(0)),

φ(β′(T )) = 0 ≥ gT (ω1) = gT (β(T )).

α is a lower-solution and β an upper-solution of problem (1.1).

Lemma 7.2. Assume that there exist (A,B) ∈ R2 and h ∈ L1 such that∫ T

0
h(t)dt−B+A = 0. (7.3)

Assume that 0 < m ≤ D(x) ≤ M, ∀x ∈ R, for some constants m, M.
Then the problem {

(D(u(t))φ(u′(t)))′ = h(t), a.e. t ∈ [0,T ],
D(u(0))φ(u′(0)) = A, D(u(T ))φ(u′(T )) = B,

(7.4)

has at least one solution.

Proof. We use an argument used by Bereanu and Mawhin in [3]. Let us decompose any
u ∈C1 in the form u = u+ ũ, (u = u(0), ũ(0) = 0) and let C̃1 = {u ∈C1 : u(0) = 0}.
Consider the family of problem{

(D(̃u(t))φ(̃u′(t)))′ = λh(t), a.e. t ∈ [0,T ],
D(̃u(0))φ(̃u′(0)) = λA, D(̃u(T ))φ(̃u′(T )) = λB λ ∈ [0,1].

(7.5)

For each λ ∈ [0,1], the problem (7.5) is equivalent to the fixed point problem in C̃1,

ũ = H1 ◦
[
φ−1 ◦

[
(D1 ◦ ũ)[λA+λH1(h)]

]]
= N(λ, ũ). (7.6)
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Using Arzelá-Ascoli’s Theorem, we see that, N : [0,1]× C̃1 → C̃1 is completely continu-
ous. For each λ ∈ [0,1], any possible fixed point ũ of N(λ, .) is such that ‖̃u‖C1 < a(T + 1).
Therefore,

dLS [I−N(1, .),Ba(T+1),0] = dLS [I−N(0, .),Ba(T+1),0]

= dLS [I,Ba(T+1),0] = 1.

Then, from the existence property of the Leray-Schauder degree, there exists ũ ∈ C̃1 such
that ũ = N(1, ũ), which is a solution of the problem (7.4).

Theorem 7.3. Assume that:

(1) ∃θ > 0 such that D(x− θ) = D(x) = D(x+ θ), ∀x ∈ R;

(2) There exists (d,e) ∈ R2 such that, for a.e. t ∈ [0,T ] and for all (x,y) ∈]−∞,d]×]−a,a[,

f (t, x,y) ≤ f (t,d,e);

(3) g0 is an increasing homeomorphism;

(4) gT is a decreasing homeomorphism.

Then the problem (1.1) has at least one lower-solution.

Proof. As D is positive, continuous and periodic, there exist two constants m and M
such that 0 < m ≤ D(x) ≤ M, ∀x ∈ R.
Let (i, j) ∈ R2 be such that

g0(i) > 0, gT ( j) > 0 and
∫ T

0
f (t,d,e)dt−mgT ( j)+Mg0(i) = 0. (7.7)

Using Lemma 7.2, we have that the problem{
(D(u(t))φ(u′(t)))′ = f (t,d,e), a.e. t ∈ [0,T ],
D(u(0))φ(u′(0)) = Mg0(i), D(u(T ))φ(u′(T )) = mgT ( j),

(7.8)

admits at least one solution.
Let w be a solution of problem (7.8). Consider the function

α = w−Aθ, with A ∈ N∗, such that w(t)−Aθ <min{d, i, j}, ∀t ∈ [0,T ].

∀t ∈ [0,T ], we have α′(t) ∈]− a,a[, α′(t) = w′(t), α(t) ∈]−∞,d[ and D(α(t)) = D(w(t)).
Therefore

(D(α(t))φ(α′(t)))′ = (D(w(t))φ(w′(t)))′ = f (t,d,e) ≥ f (t,α(t),α′(t)), a.e. t ∈ [0,T ],

D(α(0))φ(α′(0)) = D(w(0))φ(w′(0)) = Mg0(i) ≥ D(α(0))g0(i) ≥ D(α(0))g0(α(0)),

D(α(T ))φ(α′(T )) = D(w(T ))φ(w′(T )) = mgT ( j) ≤ D(α(T ))gT ( j) ≤ D(α(T ))gT (α(T )).

Consequently, α is a lower-solution of problem (1.1).
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Theorem 7.4. Assume that:

(1) ∃θ > 0 such that D(x− θ) = D(x) = D(x+ θ), ∀x ∈ R;

(2) There exists (d1,e1) ∈ R2 such that, for a.e. t ∈ [0,T ] and for all (x,y) ∈ [d1,+∞[×]−
a,a[,

f (t, x,y) ≥ f (t,d1,e1);

(3) g0 is an increasing homeomorphism;

(4) gT is a decreasing homeomorphism.

Then the problem (1.1) has at least one upper-solution.

Proof. As D is positive, continuous and periodic, there exist two constants m and M
such that 0 < m ≤ D(x) ≤ M, ∀x ∈ R.
Let (i1, j1) ∈ R2 be such that

g0(i1) < 0, gT ( j1) < 0 and
∫ T

0
f (t,d1,e1)dt−mgT ( j1)+Mg0(i1) = 0. (7.9)

Using Lemma 7.2, we have that the problem{
(D(u(t))φ(u′(t)))′ = f (t,d1,e1), a.e. t ∈ [0,T ],
D(u(0))φ(u′(0)) = Mg0(i1), D(u(T ))φ(u′(T )) = mgT ( j1),

(7.10)

admits at least one solution.
Let w1 be a solution of problem (7.10). Consider the function

β = w1+Bθ, with B ∈ N∗, such that w1(t)+Bθ >max{d1, i1, j1}, ∀t ∈ [0,T ].

∀t ∈ [0,T ], we have β′(t) ∈]− a,a[, β′(t) = w′1(t), β(t) ∈]d1,+∞[ and D(β(t)) = D(w1(t)).
Therefore

(D(β(t))φ(β′(t)))′ = (D(w1(t))φ(w′1(t)))′ = f (t,d1,e1) ≤ f (t,β(t),β′(t)), a.e. t ∈ [0,T ],

D(β(0))φ(β′(0)) = D(w1(0))φ(w′1(0)) = Mg0(i1) ≤ D(β(0))g0(i1) ≤ D(β(0))g0(β(0)),

D(β(T ))φ(β′(T )) = D(w1(t))φ(w′1(T )) = mgT ( j1) ≥ D(β(T ))gT ( j1) ≥ D(β(T ))gT (β(T )).

Consequently, β is an upper-solution of problem (1.1).

Theorem 7.5. Assume that:

(1) ∃θ > 0 such that D(x− θ) = D(x) = D(x+ θ), ∀x ∈ R;

(2) There exist (d,e) ∈ R2 and (d1,e1) ∈ R2 such that,
for a.e. t ∈ [0,T ] and for all (x,y) ∈]−∞,d]×]−a,a[, f (t, x,y) ≤ f (t,d,e),
for a.e. t ∈ [0,T ] and for all (x,y) ∈ [d1,+∞[×]−a,a[, f (t, x,y) ≥ f (t,d1,e1);

(3) g0 is an increasing homeomorphism;

(4) gT is a decreasing homeomorphism.
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Then the problem (1.1) has at least one lower-solution and at least one upper-solution.
Therefore the problem (1.1) admits at least one solution.

Proof. By Theorem 7.3, the problem (1.1) has at least one lower-solution and by the
Theorem 7.4, the problem (1.1) has at least one upper-solution. Therefore, by Theorem 5.1,
the problem (1.1) admits at least one solution.

Corollary 7.6. Assume that:

(a) ∃θ > 0 such that D(x− θ) = D(x) = D(x+ θ), ∀x ∈ R;

(b) for a.e. t ∈ [0,T ] and for all y ∈ [−a,a], f (t, .,y) is increasing
for a.e. t ∈ [0,T ] and for all x ∈]−∞,+∞[, f (t, x, .) is increasing in [−a,a];

(c) g0 is an increasing homeomorphism;

(d) gT is a decreasing homeomorphism.

Then the problem (1.1) has at least one lower-solution and at least one upper-solution.

Proof. By (b), we have:
There exists d ∈ R such that for a.e. t ∈ [0,T ] and for all (x,y) ∈]−∞,d]×]−a,a],
f (t, x,y) ≤ f (t,d,a).
There exists d1 ∈ R such that for a.e. t ∈ [0,T ] and for all (x,y) ∈ [d1,+∞[×[−a,a[,
f (t, x,y) ≥ f (t,d1,−a).
It follows that, conditions (1), (2), (3) and (4) of Theorem 7.5 hold.

Theorem 7.7. Assume that:

(1) D is a function having continuous first derivative on R and,
∃(b,c) ∈]−∞,+∞[×]0,+∞[ such that D′(x) ≥ 0, ∀x ∈]−∞,b] and D(x) ≥ c, ∀x ∈ R;

(2) There exists (d,e) ∈ R×]− a,a] such that for a.e. t ∈ [0,T ], f (t,d,e) ≥ 0 and, for a.e.
t ∈ [0,T ] and for all (x,y) ∈]−∞,d]×]−a,e],

f (t, x,y) ≤ f (t,d,e);

(3) g0 is an increasing function;

(4) gT is a decreasing function;

(5) There exists (i, j) ∈ R2 such that

φ−1
(
g0(i)+

1
c

max
t∈[0,T ]

∫ t

0
f (s,d,e)ds

)
< e and

1
c

∫ T

0
f (t,d,e)dt−gT ( j)+g0(i) = 0.

(7.11)

Then the problem (1.1) has at least one lower-solution.
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Proof. Using Lemma 7.2, the problem{
(cφ(u′(t)))′ = f (t,d,e), a.e. t ∈ [0,T ],
φ(u′(0)) = g0(i), φ(u′(T )) = gT ( j),

(7.12)

admits at least one solution.
Let w be a solution of problem (7.12). Consider the function

α = w−A, with A, such that w(t)−A <min{d, i, j,b}, ∀t ∈ [0,T ].

We have

φ(α′(t)) = φ(w′(t)) = g0(i)+
1
c

∫ t

0
f (s,d,e)ds, ∀t ∈ [0,T ],

hence α′(t) < e, ∀t ∈ [0,T ], Therefore, for a.e. t ∈ [0,T ],

(D(α(t))φ(α′(t)))′ = (D(α(t)))′φ(α′(t))+D(α(t))(φ(α′(t)))′,

= D′(α(t))[α′(t)φ(α′(t))]+D(α(t))(φ(w′(t)))′,

≥ D(α(t))(
1
c

f (t,d,e)),

≥ c(
1
c

f (t,d,e)),

≥ f (t,d,e),

≥ f (t,α(t),α′(t)),

and

φ(α′(0)) = φ(w′(0)) = g0(i) ≥ g0(α(0)),

φ(α′(T )) = φ(w′(T )) = gT ( j) ≤ gT (α(T )).

Consequently, α is a lower-solution of problem (1.1).

Theorem 7.8. Assume that:

(1) D is a function having continuous first derivative on R and,
∃(b1,c1) ∈]−∞,+∞[×]0,+∞[ such that D′(x) ≤ 0, ∀x ∈ [b1,+∞[ and D(x) ≥ c1, ∀x ∈
R;

(2) There exists (d1,e1) ∈ R× [−a,a[ such that for a.e. t ∈ [0,T ], f (t,d1,e1) ≤ 0 and, for a.e.
t ∈ [0,T ] and for all (x,y) ∈ [d1,+∞[×[e1,a[,

f (t, x,y) ≥ f (t,d1,e1)

(3) g0 is an increasing function;

(4) gT is a decreasing function;

(5) There exists (i1, j1) ∈ R2 such that

φ−1
(
g0(i1)+

1
c1

min
t∈[0,T ]

∫ t

0
f (s,d1,e1)ds

)
> e1 and

1
c1

∫ T

0
f (t,d1,e1)dt−gT ( j1)+g0(i1)= 0.

(7.13)
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Then the problem (1.1) has at least one upper-solution.

Proof. Using Lemma 7.2, the problem{
(c1φ(u′(t)))′ = f (t,d1,e1), a.e. t ∈ [0,T ],
φ(u′(0)) = g0(i1), φ(u′(T )) = gT ( j1),

(7.14)

admits at least one solution.
Let w1 be a solution of problem (7.14). Consider the function

β = w1+B, with B, such that w1(t)+B >max{d1, i1, j1,b1}, ∀t ∈ [0,T ].

We have

φ(β′(t)) = φ(w′1(t)) = g0(i1)+
1
c1

∫ t

0
f (s,d1,e1)ds, ∀t ∈ [0,T ],

hence β′(t) > e1, ∀t ∈ [0,T ], Therefore

(D(β(t))φ(β′(t)))′ = (D(β(t)))′φ(β′(t))+D(β(t))(φ(β′(t)))′,

= D′(β(t))[β′(t)φ(β′(t))]+D(β(t))(φ(w′1(t)))′,

≤ D(β(t))(
1
c1

f (t,d1,e1)),

≤ c1(
1
c1

f (t,d1,e1)),

≤ f (t,d1,e1),

≤ f (t,β(t),β′(t)),

and

φ(β′(0)) = φ(w′(0)) = g0(i1) ≤ g0(β(0)),

φ(β′(T )) = φ(w′(T )) = gT ( j1) ≥ gT (β(T )).

Consequently, β is an upper-solution of the problem (1.1).

Theorem 7.9. Assume that:

(1) D is a function having continuous first derivative on R and,
∃(b,c,b1) ∈]−∞,+∞[×]0,+∞[×]−∞,+∞[ such that D′(x)≥ 0, ∀x ∈]−∞,b], D′(x)≤
0, ∀x ∈ [b1,+∞[ and D(x) ≥ c, ∀x ∈ R;

(2) There exists (d,e) ∈ R×]− a,a] such that for a.e. t ∈ [0,T ], f (t,d,e) ≥ 0 and, for a.e.
t ∈ [0,T ] and for all (x,y) ∈]−∞,d]×]−a,e], f (t, x,y) ≤ f (t,d,e)
there exists (d1,e1) ∈ R× [−a,a[ such that for a.e. t ∈ [0,T ], f (t,d1,e1) ≤ 0 and, for
a.e. t ∈ [0,T ] and for all (x,y) ∈ [d1,+∞[×[e1,a[, f (t, x,y) ≥ f (t,d1,e1);

(3) g0 is an increasing function;

(4) gT is a decreasing function;
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(5) There exist (i, j) ∈ R2 and (i1, j1) ∈ R2 such that

φ−1
(
g0(i)+

1
c

max
t∈[0,T ]

∫ t

0
f (s,d,e)ds

)
< e and

1
c

∫ T

0
f (t,d,e)dt−gT ( j)+g0(i) = 0

and

φ−1
(
g0(i1)+

1
c

min
t∈[0,T ]

∫ t

0
f (s,d1,e1)ds

)
> e1 and

1
c

∫ T

0
f (t,d1,e1)dt−gT ( j1)+g0(i1)= 0.

Then the problem (1.1) has at least one lower-solution and at least one upper-solution.
Therefore the problem (1.1) admits at least one solution.

Proof. By Theorem 7.7, the problem (1.1) has at least one lower-solution and by Theo-
rem 7.8, the problem (1.1) has at least one upper-solution. Therefore, by Theorem 5.1, the
problem (1.1) admits at least one solution.

Corollary 7.10. Assume that:

(a) D is a function having continuous first derivative on R and,
∃(b,c,b1) ∈]−∞,+∞[×]0,+∞[×]−∞,+∞[ such that D′(x)≥ 0, ∀x ∈]−∞,b], D′(x)≤
0, ∀x ∈ [b1,+∞[ and D(x) ≥ c, ∀x ∈ R;

(b) There exists d ∈ R such that for a.e. t ∈ [0,T ], f (t,d,a) ≥ 0, there exists d1 ∈ R such that
for a.e. t ∈ [0,T ], f (t,d1,−a) ≤ 0 and,
for a.e. t ∈ [0,T ] and for all y ∈ [−a,a], f (t, .,y) is increasing
for a.e. t ∈ [0,T ] and for all x ∈]−∞,+∞[, f (t, x, .) is increasing in [−a,a];

(c) g0 is an increasing homeomorphism;

(d) gT is a decreasing homeomorphism.

Then the problem (1.1) has at least one lower-solution and at least one upper-solution.
Therefore the problem (1.1) admits at least one solution.

Proof. By (b), (c) and (d), we have:
There exists d ∈ R such that for a.e. t ∈ [0,T ], f (t,d,a) ≥ 0 and, for a.e. t ∈ [0,T ] and for all
(x,y) ∈]−∞,d]×]−a,a],

f (t, x,y) ≤ f (t,d,a);

∃(i, j) ∈ R2 such that

φ−1
(
g0(i)+

1
c

max
t∈[0,T ]

∫ t

0
f (s,d,a)ds

)
< a and

1
c

∫ T

0
f (t,d,a)dt−gT ( j)+g0(i) = 0,

There exists d1 ∈ R such that for a.e. t ∈ [0,T ], f (t,d1,−a) ≤ 0 and, for a.e. t ∈ [0,T ] and for
all (x,y) ∈ [d1,+∞[×[−a,a[,

f (t, x,y) ≥ f (t,d1,−a);

∃(i1, j1) ∈ R2 such that

φ−1
(
g0(i1)+

1
c

max
t∈[0,T ]

∫ t

0
f (s,d1,−a)ds

)
>−a and

1
c

∫ T

0
f (t,d1,−a)dt−gT ( j1)+g0(i1)= 0.

Therefore, conditions (1), (2), (3), (4) and (5) of Theorem 7.9 hold.
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Example 7.11. Consider the problem
(

(u(t))4+(u(t))2+1
(u(t))4+1 ·

u′(t)√
1−(u′(t))2

)′
=

(u′(t))3
√

t
+

−u(t)+1
(u(t))2−2u(t)+2 for a.e. t ∈ [0,1],

u′(0)√
1−(u′(0))2

= u(0) and u′(T )√
1−(u′(T ))2

= −u(1)
(7.15)

We have a = 1, D(x) = x4+x2+1
x4+1 , g0(x) = x and g1(x) = −x, ∀x ∈ R;

for a.e. t ∈ [0,1] and for all (x,y) ∈ R2, f (t, x,y) = y3
√

t
+ −x+1

x2−2x+2 .
We also have: D′(x) ≥ 0, ∀x ∈]−∞,−1], D′(x) ≤ 0, ∀x ∈ [1,+∞[ and D(x) ≥ 1, ∀x ∈ R.
For a.e. t ∈ [0,1], f (t,0,1) = 1√

t
+ 1

2 > 0
and, for a.e. t ∈ [0,1] and for all (x,y) ∈]−∞,0]×]−1,1], f (t, x,y) ≤ f (t,0,1);
For a.e. t ∈ [0,1], f (t,2,−1) = −1√

t
− 1

2 < 0
and, for a.e. t ∈ [0,1] and for all (x,y) ∈ [2,+∞[×[−1,1[, f (t, x,y) ≥ f (t,2,−1);

φ−1
(
g0(0)+ max

t∈[0,1]

∫ t

0
f (s,0,1)ds

)
< 1 and

∫ 1

0
f (t,0,1)dt−g1(−

5
2

)+g0(0) = 0.

φ−1
(
g0(0)+ max

t∈[0,1]

∫ t

0
f (s,2,−1)ds

)
> −1 and

∫ 1

0
f (t,2,−1)dt−g1(

5
2

)+g0(0) = 0.

g0 is an increasing function and g1 a decreasing function.
Taking b = −1, b1 = 1, c = 1, d = 0, e = 1, d1 = 2, e1 = −1, i = i1 = 0, j = −5

2 and j1 = 5
2 , and

the fact that g0 is an increasing function and g1 a decreasing function, by Theorem 7.9, we
deduce the existence of at least one lower-solution, at least one upper-solution and at least
one solution of the problem (7.15).
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