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1 Introduction

Let H be a real Hilbert space. A mapping A : D(A) ⊂ H→ H is called monotone if for all
x,y ∈ D(A), the following inequality holds:

〈Ax−Ay, x− y〉 ≥ 0. (1.1)

The notion of monotonicity has been extended to real normed spaces E in two ways.

The first involves mappings from E to E∗. A mapping A : D(A)⊂ E→ E∗ is called monotone
if for all x,y ∈ D(A),

〈x− y,Ax−Ay〉 ≥ 0, (1.2)

where 〈, 〉 denotes the duality pairing between elements of E and elements of E∗. It is said
to be strongly monotone if there exists a positive constant k such that for all x,y ∈ D(A),

〈x− y,Ax−Ay〉 ≥ k‖x− y‖2. (1.3)

Note that if E is a real Hilbert space H, then H = H∗ and (1.2) coincides with (1.1).

The second extension of the notion of monotonicity to real normed spaces involves map-
pings E into itself . A mapping A : D(A)⊂ E→ E is called accretive if for every x,y ∈D(A),
there exists j(x− y) ∈ J(x− y) such that the following inequality holds:

〈Ax−Ay, j(x− y)〉 ≥ 0, (1.4)

where J : E→ 2E∗ is the normalized duality mapping of E defined by:

J(x) :=
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖2 and ‖ f ‖ = ‖x‖

}
.

Here, if E is a real Hilbert space, J becomes the identity map and condition (1.4) reduces to
(1.1). Hence, in real Hilbert spaces, accretive operators become monotone. Consequently,
accretive operators can be regarded as extension of Hilbert space monotonicity condition to
real normed spaces.

A mapping A : D(A) ⊂ E → E is called strongly accretive if there exists a constant k > 0
such that for every x,y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ k‖x− y‖2.

An integral equation of Hammerstein type (see, e.g., Hammerstein [29]) is an equation of
the form:

u(x)+
∫
Ω

κ(x,y) f (y,u(y))dy = h(x), (1.5)

where dy is a σ-finite measure on the measure spaceΩ; the real kernel κ is defined onΩ×Ω,
f is a real-valued function defined on Ω×R and is, in general, nonlinear and h is a given
function on Ω. If we now define an operator K : F (Ω,R)→F (Ω,R) by

Kv(x) :=
∫
Ω

κ(x,y)v(y)dy, a.e. x ∈Ω
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and the so-called superposition or Nemytskii operator F : F (Ω,R)→F (Ω,R) by

Fu(y) := f (y,u(y)) a.e. y ∈Ω,

where F (Ω,R) denotes a space of functions mapping Ω into R, then, the integral equation
(1.5) can be put in operator theoretic form as follows:

u+KFu = 0, (1.6)

where, without loss of generality, we have taken h ≡ 0.

Interest in equation (1.6) stems mainly from the fact that several problems that arise in
differential equations, for instance, elliptic boundary value problems whose linear parts
possess Green’s functions can, as a rule, be transformed into the form (1.6). Among these,
we mention the problem of the forced oscillations of finite amplitude of a pendulum (see,
e.g., Pascali and Sburlan [34], Chapter IV).

Equations of Hammerstein type play a crucial role in the theory of optimal control systems
and in automation and network theory (see, e.g., Dolezale [28]).

Several existence and uniqueness theorems have been proved for equations of Hammerstein
type (see, e.g., Brézis and Browder ([9],[7],[8]), Browder [10], Browder and De Figueiredo
[11], Bowder and Gupta [12], Chepanovich [13], De Figueiredo [25]).

In general, equations of Hammerstein type (1.6) are nonlinear and there is no known method
to find closed form solutions for them. Consequently, methods of approximating solutions
of such equations are of interest.

In the special case in which the operator F is angle bounded (defined below) and weakly
compact, Brézis and Browder [9, 8] proved the strong convergence of a suitably defined
Galerkin approximation to a solution of (1.6). Before we state this theorem, we need the
following definitions.

Let H be a real Hilbert space. A nonlinear operator A : H→ H is said to be angle-bounded
with angle β > 0 if

〈Ax−Az,z− y〉 ≤ β〈Ax−Ay, x− y〉 (1.7)

for any triple of elements x,y,z ∈ H. For y = z, inequality (1.7) implies the monotonicity of
A.

A monotone linear operator A : H→ H is said to be angle-bounded with angle α > 0 if

|〈Ax,y〉 − 〈Ay, x〉| ≤ 2α〈Ax, x〉
1
2 〈Ay,y〉

1
2 (1.8)

for all x,y ∈ H. It is known that the two definitions of angle boundedness are equivalent
(see Pascali and Sburlan, [34], Ch. IV, p.189).
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We now state the theorem of Brézis and Browder referring to above.

Theorem BB (Brézis and Browder, [8]). Let H be a separable real Hilbert space and C be
a closed subspace of H. Let K : H→ C be a bounded continuous monotone operator and
F : C→ H be an angle-bounded and weakly compact mapping. For a given f ∈C, consider
the Hammerstein equation

(I+KF)u = f (1.9)

and its n-th Galerkin approximation given by

(I+KnFn)un = P∗ f , (1.10)

where Kn = P∗nKPn : H → Cn and Fn = PnFP∗n : Cn → H, where the symbols have their
usual meanings (see, [34]). Then, for each n ∈ N, the Galerkin approximation (1.10) ad-
mits a unique solution un in Cn and {un} converges strongly in H to the unique solution
u ∈C of the equation (1.9).

It is obvious that if an iterative algorithm can be developed for the approximation of solu-
tions of equations of Hammerstein type (1.9), this will certainly be preferred.

The first satisfactory results on iterative methods for approximating solutions of Hammer-
stein equations, as far as we know, were obtained by Chidume and Zegeye [24, 23, 22].
Under the setting of a real Hilbert space H, for F,K : H→ H, they defined an auxiliary map
on the Cartesian product E := H×H, T : E→ E by

T [u,v] = [Fu− v,Kv+u].

We note that
T [u,v] = 0⇔ u solves (1.6) and v = Fu.

With this, they were able to obtain strong convergence of an iterative scheme defined in the
Cartesian product space E to a solution of Hammerstein equation (1.6). Extensions to a real
Banach space setting were also obtained.

Let X be a real Banach space and K,F : X→ X be accretive type mappings. Let E := X×X.
The same authors (see, [24, 23]) defined T : E→ E by

T [u,v] = [Fu− v,Kv+u]

and obtained strong convergence theorems for solutions of Hammerstein equations under
various continuity conditions in the Cartesian product space E.

The method of proof used by Chidume and Zegeye provided the clue to the establishment of
the following coupled explicit algorithm for computing a solution of the equation u+KFu=
0 in the original space X. With initial vectors u0,v0 ∈ X, sequences {un} and {vn} in X are
defined iteratively as follows:

un+1 = un−αn(Fun− vn),n ≥ 0, (∗)
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vn+1 = vn−αn(Kvn+un),n ≥ 0. (∗∗)

where {αn} is a sequence in (0,1) satisfying appropriate conditions. The recursion for-
mulas (*) and (**) have been used successfully to approximate solutions of Hammerstein
equations involving nonlinear accretive-type operators. Following this, Chidume and Djitte
studied this explicit coupled iterative algorithms and proved several strong convergence
theorems (see, Chidume and Djitte [16], [19] ). For recent results using these recursion
formulas or their modifications, the reader may consult any of the following references:
Amata et. al. [6], Chidume and Djitte [15], [17], [18], Djitte and Sene [26], [27], Chidume
and Ofeodu [20], Chidume and Shehu [21], Irina [30], Javadi [31], Ofoedu and Onyi [33],
Shehu [36], Sweilam et. al. [38], and also Chapter 13 of [14].

For Hammerstein equations involving monotone mappings from E to E∗, very little has
been achieved. Part of the difficulty is that inequalities involving vectors in E do not gener-
ally hold in E∗. For instance, if E = Lp (p > 2), then E∗ = Lq with (1 < q < 2) and generally
an inequality that holds in Lp (p > 2) is reversed in Lp (1 < p < 2), (see, e.g., Chidume
[14], Chapter 5.) Interestingly enough, almost all the existence theorems proved for Ham-
merstein equations involve monotone mappings (see, e.g., Brézis and Browder [9, 7, 8],
Browder [10], Browder et al. [11], and Browder and Gupta [12]). We note that it has been
remarked that in dealing with the Nemytskii operator, which is intimately connected with
the Hammertsein integral equation, its properties are distinguished, in applications, accord-
ing to two important cases: Lp(Ω) spaces, 1 < p <∞, and L1(Ω), (see Pascali and Sburlan
[34], Chapter IV, pp. 165, 172). Thus, developing iterative methods for approximating
solutions of nonlinear Hammerstein integral equations in these cases is of paramount im-
portance.

Recently, in [37] Sow et. al. proposed an algorithm of Mann type for approximating solu-
tions of Hammerstein equations with bounded and strongly monotone mappings.

It is our purpose in this paper to construct a coupled iterative process of Krasnoselskii
type and prove its strong convergence to the unique solution of the Hammerstein equa-
tion u+KFu = 0 with Lipschitz and strongly monotone mappings in certain Banach spaces
including all Hilbert spaces and all lp,Lp or Wm,p-spaces, 1 < p < ∞. Furthermore, our
thechnique of proof is of independent interest.

2 Preliminaries

Let E be a normed linear space. The modulus of convexity of E, δE : (0,2]→ [0,1] is
defined by:

δE(ε) := inf
{
1−

1
2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

For p > 1, E is said to be p-uniformly convex if there exists a constant c > 0 such that
δE(ε) ≥ cε p for all ε ∈ (0,2].
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Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to be smooth if the
limit

lim
t→0+

‖x+ ty‖− ‖x‖
t

exists for each x,y ∈ S . E is said to be uniformly smooth if it is smooth and the limit is
attained uniformly for each x,y ∈ S .

The modulus of smoothness of E , ρE , is defined by :

ρE(τ) := sup
{
‖x+ y‖+ ‖x− y‖

2
−1 : ‖x‖ = 1,‖y‖ = τ

}
; τ > 0.

E is said to be q-uniformly smooth, if there exists a constant c > 0 and a real number q > 1
such that ρE(τ) ≤ cτq.

Typical examples of such spaces are the Lp, `p and Wm
p spaces for 1 < p <∞ where,

Lp (or lp) or Wm
p is
{

2−uniformly smooth and p−uniformly convex if 2 ≤ p <∞;
2−uniformly convex and p−uniformly smooth if 1 < p < 2.

Let Jq denote the generalized duality mapping from E to 2E∗ defined by

Jq(x) :=
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖q and ‖ f ‖ = ‖x‖q−1

}
where 〈., .〉 denotes the generalized duality pairing. J2 is called the normalized duality map-
ping and is denoted by J.

It is well known that E is smooth if and only if J is single valued. Moreover, if E is a
reflexive smooth and strictly convex Banach space, then J−1 is single valued, one-to-one,
surjective and it is the duality mapping from E∗ into E.

Remark 2.1. Note also that a duality mapping exists in each Banach space. We recall from
[2] some of the examples of this mapping in lp,Lp,Wm,p-spaces, 1 < p <∞.

(i) lp : Jx= ‖x‖2−p
lp

y ∈ lq, x= (x1, x2, · · · , xn, · · · ), y= (x1|x1|
p−2, x2|x2|

p−2, · · · , xn|xn|
p−2, · · · ),

(ii) Lp : Ju = ‖u‖2−p
Lp
|u|p−2u ∈ Lq,

(iii) Wm,p : Ju = ‖u‖2−p
Wm,p

∑
|α≤m|(−1)|α|Dα

(
|Dαu|p−2Dαu

)
∈W−m,q,

where 1 < q <∞ is such that 1/p+1/q = 1.

Theorem 2.2 (H. K. Xu [39]). Let p > 1 be a given real number. Then the following are
equivalent in a Banach space:

(i) E is p-uniformly convex.
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(ii) There is a constant c1 > 0 such that for every x,y ∈ E and jx ∈ Jp(x), The following
inequality holds:

‖x+ y‖p ≥ ‖x‖p+ p〈y, jx〉+ c1‖y‖p.

(iii) There is a constant c2 > 0 such that for every x,y ∈ E and jx ∈ Jp(x), jy ∈ Jp(y), the
following inequality holds:

〈x− y, jx− jy〉 ≥ c2‖x− y‖p.

Lemma 2.3. Let E be a 2-uniformly convex and smooth real Banach space. Then J−1 is
Lipschitz from E∗ into E, i.e., there exists a constant L > 0 such that for all u,v ∈ E∗,

‖J−1u− J−1v‖ ≤ L‖u− v‖. (2.1)

Proof. The proof follows from inequality (iii) of Theorem 2.2 with p = 2. �

Lemma 2.4 ([5]). Let p ≥ 2 and q > 1, and let E be a p-uniformly convex and q-uniformly
smooth real Banach space. Then, the duality mapping J : E→ E∗ is Lipschitz on bounded
subsets of E; that is, for all R > 0, there exists a positive constant m2 such that

‖Jx− Jy‖ ≤ m2‖x− y‖,

for all x,y ∈ E with ‖x‖ ≤ R, ‖y‖ ≤ R.

Let E be a smooth real Banach space with dual E∗. The Lyapunov function φ : E×E→ R,
defined by

φ(x,y) = ‖x‖2−2〈x, Jy〉+ ‖y‖2, x,y ∈ E, (2.2)

introduced by Alber, has been studied by Alber [3], Alber and Guerre-Delabriere [4],
Kamimura and Takahashi[32], Reich[35] and a host of other authors. This functional φ
will play a central role in what follows. If E = H, a real Hilbert space, then equation (2.2)
reduces to φ(x,y) = ‖x− y‖2 for x,y ∈ H. It is obvious from the definition of the function φ
that

(‖x‖− ‖y‖)2 ≤ φ(x,y) ≤ (‖x‖+ ‖y‖)2 ∀ x,y ∈ E. (2.3)

Let V : E×E∗→ R be the functional defined by:

V(x, x∗) = ‖x‖2−2〈x, x∗〉+ ‖x∗‖2, ∀ x ∈ E, x∗ ∈ E∗. (2.4)

Then, it is easy to see that

V(x, x∗) = φ(x, J−1x∗) ∀ x ∈ E, x∗ ∈ E∗. (2.5)

Lemma 2.5 (Alber, [3]). Let X be a reflexive striclty convex and smooth real Banach space
with X∗ as its dual. Then,

V(x, x∗)+2〈J−1x∗− x,y∗〉 ≤ V(x, x∗+ y∗) (2.6)

for all x ∈ X and x∗,y∗ ∈ X∗.
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Similarly, if E is a reflexive smooth and strictly convex real Banach space, we introduce the
functional φ∗ : E∗×E∗→ R, defined by:

φ∗(x∗,y∗) = ‖x∗‖2−2〈J−1y∗, x∗〉+ ‖y∗‖2, x∗,y∗ ∈ E∗, (2.7)

and the functional V∗ : E∗×E→ R defined from E∗×E to R by:

V∗(x∗, x) = ‖x∗‖2−2〈x, x∗〉+ ‖x‖2, x ∈ E, x∗ ∈ E∗. (2.8)

It is easy to see that
V∗(x∗, x) = φ∗(x∗, Jx) ∀ x ∈ E, x∗ ∈ E∗. (2.9)

In what follows, the product space E×E∗ is equiped with the following norm:

‖w‖ =
(
‖x‖2+ ‖x∗‖2

) 1
2
∀w = (x, x∗) ∈ E×E∗.

Finally, we introduce the functional ψ : (E×E∗)× (E×E∗)→ R defined by:

ψ(w1,w2) := φ(x,y)+φ∗(x∗,y∗) ∀ w1 = (x, x∗) ∈ E×E∗, w2 = (y,y∗) ∈ E×E∗.

We now prove the following results.

3 Convergence in lp,Lp and Wm,p-spaces, 1 < p ≤ 2

Theorem 3.1. For q> 1, let E be a 2-uniformly convex and q-uniformly smooth real Banach
space. Let F : E → E∗, K : E∗ → E be Lipschitz and strongly monotone mappings with
D(K) = R(F) = E∗. For given u1 ∈ E and v1 ∈ E∗, let {un} and {vn} be generated iteratively
by:

un+1 = J−1(Jun−λ(Fun− vn)), n ≥ 1,
vn+1 = J(J−1vn−λ(Kvn+un)), n ≥ 1,

(3.1)

where J is normalized duality mapping from E into E∗ and λ ∈ (0,1). Suppose that the
equation u+KFu = 0 has a unique solution ū. Then, there exists some δ > 0 such that if
λ ∈ (0, δ), the sequence {un} converges strongly to ū, the sequence {vn} converges strongly to
v̄, with v̄ = Fū.

Proof. Let X = E×E∗ with the norm ‖z‖ = (‖u‖2+ ‖v‖2)
1
2 , where z = (u,v) ∈ E×E∗. Define

the sequence {wn} in X by: wn = (un,vn). Let ū ∈ E be the unique solution of u+KFu = 0
and set v̄ := Fū and w̄ := (ū, v̄). We observe that ū = −Kv̄.

In what follows, k1 and k2 denote the strongly monotonicity constants of F and K, L1 the
Lipschitz constant of J−1 and LF and LK the Lipschitz constants of F and K.

The proof is in two steps.

Step 1: We first prove that {wn} is bounded. There exists r > 0 such that: ψ(w̄,w1) ≤ r.
We show that ψ(w̄,wn) ≤ r for all n ≥ 1. The proof is by induction. We have ψ(w̄,w1) ≤ r.
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Assume that ψ(w̄,wn) ≤ r for some n ≥ 1. We show that ψ(w̄,wn+1) ≤ r. Using the fact that
K is bounded (because Lipschitz) and Lemma 2.4, there exists a positive constant m2 such
that

‖J(J−1v−λ(Kv+u))− J(J−1v)‖ ≤ λm2‖Kv+u‖ ∀λ ∈ (0,1), (u,v) ∈ E×E∗ : ψ(w̄, (u,v)) ≤ r.
(3.2)

Set

k :=min{k1,k2}, L =max{1,LF ,LK}, and δ =min
{
1,

k
4L2(L1+m2)

}
. (3.3)

Using the definition of un+1, we compute as follows:

φ(ū,un+1) = φ(ū, J−1(Jun−λ(Fun− vn)))

= V(ū, Jun−λ(Fun− vn)).

Using Lemma 2.5, with y∗ = λ(Fun− vn), we have:

φ(ū,un+1) = V(ū, Jun−λ(Fun− vn))

≤ V(ū, Jun)−2λ〈J−1(Jun−λ(Fun− vn))− ū,Fun− vn〉

= φ(ū,un)−2λ〈un− ū,Fun− vn〉−2λ〈J−1(Jun−λ(Fun− vn))−un,Fun− vn〉

= φ(ū,un)−2λ〈un− ū,Fun−Fū〉

−2λ〈J−1(Jun−λ(Fun− vn))− J−1(Jun),Fun− vn〉−2λ〈un− ū, v̄− vn〉.

Using the strong monotonocity of F, Schwartz inequality and the Lipschitz property of J−1,

we obtain

φ(ū,un+1) ≤ φ(ū,un)−2λk1‖un− ū‖2+

2λ‖J−1(Jun−λ(Fun− vn))− J−1(Jun)‖‖Fun− vn‖+2λ〈un− ū,vn− v̄〉

≤ φ(ū,un)−2λk1‖un− ū‖2+2λ2L1‖Fun− vn‖
2+2λ〈un− ū,vn− v̄〉.

Using the fact that F is Lipschitz and v̄ = Fū, we have:

φ(ū,un+1) ≤ φ(ū,un)−2λk1‖un− ū‖2+2λ2L1
(
‖Fun−Fū+ v̄− vn‖

)2
+2λ〈un− ū,vn− v̄〉

≤ φ(ū,un)−2λk1‖un− ū‖2+2λ2L1
(
‖Fun−Fū‖+ ‖vn− v̄‖

)2
+2λ〈un− ū,vn− v̄〉

≤ φ(ū,un)−2λk1‖un− ū‖2+2λ2L1(2‖Fun−Fū‖2+2‖vn− v̄‖2)+2λ〈un− ū,vn− v̄〉

≤ φ(ū,un)−2λk1‖un− ū‖2+4λ2L1(L2
F‖un− ū‖2+ ‖vn− v̄‖2)+2λ〈un− ū,vn− v̄〉.

Finally, we obtain:

φ(ū,un+1) ≤ φ(ū,un)−2λk1‖un− ū‖2+4λ2L1L2‖wn− w̄‖2+2λ〈un− ū,vn− v̄〉 (3.4)

Similarly, using the definition of vn+1, we compute as follows:

φ∗(v̄,vn+1) = φ∗(v̄, J(J−1vn−λ(Kvn+un)))

= V∗(v̄, J−1vn−λ(Kvn+un)).
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Using Lemma 2.5, with y∗ = λ(Kvn+un), we have:

φ∗(v̄,vn+1) = V∗(v̄, J−1vn−λ(Kvn+ vn))

≤ V∗(v̄, J−1vn)−2λ〈Kvn+un, J(J−1vn−λ(Kvn+un))− v̄〉

= φ∗(v̄,vn)−2λ〈Kvn+un,vn− v̄〉−2λ〈Kvn+un, J(J−1vn−λ(Kvn+un))− vn〉

= φ∗(v̄,vn)−2λ〈Kvn−Kv̄,vn− v̄〉

−2λ〈Kvn+un, J(J−1vn−λ(Kvn+un))− J(J−1vn)〉−2λ〈un− ū,vn− v̄〉.

Using the strong monotonocity of K, the Lipschitz property of K, the fact that ū = −Kv̄,
Schwartz inequality and inequality (3.2), it follows that

φ∗(v̄,vn+1) ≤ φ∗(v̄,vn)−2λk2‖vn− v̄‖2+

2λ‖J(J−1vn−λ(Kvn+un))− J(J−1vn)‖‖Kvn+un‖−2λ〈un− ū,vn− v̄〉

≤ φ∗(v̄,vn)−2λk2‖vn− v̄‖2+2λ2m2‖Kvn−Kv̄− ū+un‖
2

−2λ〈vn− v̄,un− ū〉.

Using the fact that K is Lipschitz , ū = −Kv̄ we have:

φ∗(v̄,vn+1) ≤ φ∗(v̄,vn)−2λk2‖vn− v̄‖2+2λ2m2(2‖Kvn−Kv̄‖2+2‖− ū+un‖
2)

−2λ〈un− ū,vn− v̄〉.

≤ φ∗(v̄,vn)−2λk2‖vn− v̄‖2+4λ2m2L2(‖vn− v̄‖2+‖un− ū‖2)

−2λ〈un− ū,vn− v̄〉.

Therefore,

φ∗(v̄,vn+1) ≤ φ∗(v̄,vn)−2λk2‖vn− v̄‖2+4λ2m2L2‖wn− w̄‖2−2λ〈un− ū,vn− v̄〉. (3.5)

Adding up (3.4) and (3.5), using the fact that λ ∈ (0, δ) and the definition of δ in (3.3), we
have:

ψ(w̄,wn+1) ≤ ψ(w̄,wn)−2λk‖wn− w̄‖2+4λ2L2(L1+m2)‖wn− w̄‖2

≤ ψ(w̄,wn)−λ(2k−4λL2(L1+m2))‖wn− w̄‖2

≤ ψ(w̄,wn)−λk‖wn− w̄‖2 ≤ r.

Hence, by induction, {wn} is bounded.

Step 2: We prove that {wn} converges to w̄ = (ū, v̄). We have:

ψ(w̄,wn+1) ≤ ψ(w̄,wn)−λk‖wn− w̄‖2.

Therefore, the sequence {ψ(w̄,wn+1)} converges, since it is monotone decreasing and bounded
below by zero. Consequently,

λk‖wn− w̄‖2 ≤ ψ(w̄,wn)−ψ(w̄,wn+1)→ 0, as n→ +∞.

This yields wn→ w̄ as n→ +∞. Hence, un→ ū and vn→ v̄. This completes the proof. �
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Corollary 3.2. Let E be a real Banach space either lp, or Lp or Wm,p, 1 < p ≤ 2 with dual
E∗ and let F : E → E∗, K : E∗ → E be Lipschitz and strongly monotone mappings with
D(K) = R(F) = E∗. For given u1 ∈ E and v1 ∈ E∗, let {un} and {vn} be generated iteratively
by:

un+1 = J−1(Jun−λ(Fun− vn)), n ≥ 1,
vn+1 = J(J−1vn−λ(Kvn+un)), n ≥ 1,

(3.6)

where J is normalized duality mapping from E into E∗ and λ ∈ (0,1). Suppose that the
equation u+KFu = 0 has a unique solution ū. Then, there exists some δ > 0 such that if
λ ∈ (0, δ), the sequence {un} converges strongly to ū, the sequence {vn} converges strongly to
v̄, with v̄ = Fū.

Proof. Since lp,Lp or Wm,p-spaces, 1 < p ≤ 2 are 2-uniformly convex and p-uniformly
smooth Banach spaces, then the proof follows from Theorem 3.1. �

4 Convergence in lp,Lp and Wm,p-spaces, 2 ≤ p <∞

Note that for p, 1 < p < ∞, a Banach space E with dual E∗ is p-uniformly convex if and
only if E∗ is q-uniformly smooth, where q > 1 is the conjugate of p. Therefore, for E, a
2-uniformly smooth and s-uniformly convex real Banach space, the following hold:

(i) The dual space E∗ is 2−uniformly convex and q-uniformly smooth, where q is the
conjugate of s;

(ii) The duality mapping J∗ of E∗ coincides with J−1, the inverse of the duality mapping
of E.

Using these observations and Lemmas 2.3 and 2.4, we have:

Lemma 4.1. Let E be a 2-uniformly smooth and p-uniformly convex real Banach space.
Then J is Lipschitz from E into E∗, i.e., there exists a constant L> 0 such that for all x,y ∈ E,

‖Jx− Jy‖ ≤ L‖x− y‖. (4.1)

Lemma 4.2. Let E be a 2-uniformly smooth and p-uniformly convex real Banach space.
Then, J−1 : E∗ → E, the inverse of the duality mapping of E , J is Lipschitz on bounded
subsets of E∗; that is, for all R > 0, there exist a positive constant m2 such that

‖J−1u− J−1v‖ ≤ m2‖u− v‖,

for all u,v ∈ E∗ with ‖u‖ ≤ R, ‖v‖ ≤ R.

From (i) and (ii), using the same method of proof as in Theorem 3.1 and using Lemmas 4.1
and 4.2 we have the following result.
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Theorem 4.3. For s> 1, let E be a 2-uniformly smooth and s-uniformly convex real Banach
space with dual E∗. Let F : E → E∗, K : E∗ → E be Lipschitz and strongly monotone
mappings with D(K) = R(F) = E∗. For given u1 ∈ E and v1 ∈ E∗, let {un} and {vn} be
generated iteratively by:

un+1 = J−1(Jun−λ(Fun− vn)), n ≥ 1,
vn+1 = J(J−1vn−λ(Kvn+un)), n ≥ 1,

(4.2)

where J is normalized duality mapping from E into E∗ and λ ∈ (0,1). Suppose that the
equation u+KFu = 0 has a unique solution ū. Then, there exists some δ > 0 such that if
λ ∈ (0, δ), the sequence {un} converges strongly to ū, the sequence {vn} converges strongly to
v̄, with v̄ = Fū.

Corollary 4.4. Let E be a real Banach space either lp, or Lp, or Wm,p, 2 ≤ p < ∞ with
dual E∗ and let F : E→ E∗, K : E∗→ E be Lipschitz and strongly monotone mappings with
D(K) = R(F) = E∗. For given u1 ∈ E and v1 ∈ E∗, let {un} and {vn} be generated iteratively
by:

un+1 = J−1(Jun−λ(Fun− vn)), n ≥ 1,
vn+1 = J(J−1vn−λ(Kvn+un)), n ≥ 1,

(4.3)

where J is normalized duality mapping from E into E∗ and λ ∈ (0,1). Suppose that the
equation u+KFu = 0 has a unique solution ū. Then, there exists some δ > 0 such that if
λ ∈ (0, δ), the sequence {un} converges strongly to ū, the sequence {vn} converges strongly to
v̄, with v̄ = Fū.

Proof. Since lp,Lp or Wm,p-spaces, 2 ≤ p < ∞ are 2-uniformly smooth and p-uniformly
convex Banach spaces, then the proof follows from Theorem 4.3. �

Remark 4.5. In [37], the main theorems (Theorem 3.3 and Theorem 3.4) are valid for the
class of bounded strongly monotone mappings and the algorithm used is of Mann Type.
Here, the algorithm used is of Krasnoselskii type and strong convergence are proved for the
class of Lipschitz strongly monotone mappings.

The class of mappings used in [37] is larger than the one used here but the arguments used in
the proofs in [37] do not work when the algorithm used in [37] is replaced by the algorithm
(4.3) proposed in the present work. The results obtained in both papers are complementary
but not comparable in the sense that the class of mappings used are different and the algo-
rithms used also are different.

For the class of Lipschitz strongly monotone mappings, class considered in the present work,
it is kown that the algorithm (4.3) is preferable than the algorithm used in [37]. In fact, the
recursion formula (4.3) used here is known to be superior to the recursion formula in [37]
in the following sense: (i) The recursion formula (4.3) requires less computation time than
the recursion formula of the Mann algorithm used in [37] because the parameter λ is fixed
in (0,1) whereas in the algorithm used in [37], λ is replaced by a sequence {αn} in (0,1)
satisfying some conditions. In addition, The αn must be choosen at each step of the iter-
ation process. (ii) The Krasnoselskii-type algorithm usually yields rate of convergence as
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fast as that of a geometric progression whereas the Mann algorithm usually has order of
convergence of the form o(1/n).
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gestions that helped to improve the presentation of this paper.
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