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Abstract

In this paper we study some existence, uniqueness, estimates and global asymptotic
stability results for some functional integro-differential equations of fractional order
with finite delay. To achieve our goals we make extensive use of some fixed point
theorems as well as the so-called Pachpatte techniques.
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1 Introduction

Fractional calculus is a generalization of the classical ordinary differentiation and integra-
tion of an arbitrary non-integer order. The subject is as old as differential calculus. This
topic, from some speculations of G.W. Leibniz (1697) and L. Euler (1730) up to nowadays,
has been progressing.
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Fractional differential and integral equations have recently been applied to various areas
of engineering, science, finance, applied mathematics, bio-engineering, radiative transfer,
neutron transport and the kinetic theory of gases and others [6, 8, 9, 10, 12, 13]. There has
been a significant development in ordinary and partial fractional differential equations in
recent years; see, e.g., the following monographs by Abbas et al. [5], Baleanu et al. [7],
Diethelm [11], Kilbas et al. [14], Miller and Ross [15], Podlubny [17], Samko et al. [18].

Recently, some existence and attractivity results to various classes of integral equations
of two variables have been obtained by Abbas et al. [2, 3, 4].

In [16], Pachpatte proved some results concerning the existence, uniqueness and other
properties of solutions to certain Volterra integral and integro-differential equations in two
variables. The tools utilized in the analysis are based upon the applications of the Banach
fixed point theorem coupled with the so-called Bielecki type norm and certain integral in-
equalities with explicit estimates.

In this paper, by means of integral inequalities and fixed point approach, we improve
some of the above-mentioned results and study the global attractivity of solutions for the
system of partial integro-differential equations of fractional order of the form

cDr
θu(t, x) = f (t, x,u(t,x), (Gu)(t, x)); for (t, x) ∈ J := R+× [0,b], (1)

u(t, x) = φ(t, x); if (t, x) ∈ J̃ := [−α,∞)× [−β,b]\(0,∞)× (0,b], (2)u(t,0) = ϕ(t); t ∈ R+,
u(0, x) = ψ(x); x ∈ [0,b],

(3)

where

(Gu)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1g(t, x, s,y,u(s,y))dyds, (4)

α,β,b > 0, θ = (0,0), r = (r1,r2) ∈ (0,1]× (0,1], R+ = [0,∞), Ir
θ is the left-sided mixed

Riemann-Liouville integral of order r, cDr
θ is the standard Caputo’s fractional derivative of

order r, f : J×C→ R, g : J1×C→ R are given continuous functions, J1 := {(t, x, s,y) : 0 ≤
s ≤ t <∞, 0 ≤ y ≤ x ≤ b]}, ϕ : R+→ R, ψ : [0,b]→ R are absolutely continuous functions
with limt→∞ϕ(t) = 0, and ψ(x) = ϕ(0) for each x ∈ [0,b], Φ : J̃ → R is continuous with
ϕ(t) = Φ(t,0) for each t ∈ R+, and ψ(x) = Φ(0, x) for each x ∈ [0,b], Γ(.) is the (Euler’s)
Gamma function defined by

Γ(ξ) =
∫ ∞

0
tξ−1e−tdt; ξ > 0,

and C := C([−α,0]× [−β,0]) is the space of continuous functions on [−α,0]× [−β,0] with
the standard norm

‖u‖C = sup
(t,x)∈[−α,0]×[−β,0]

|u(t, x)|.

If u ∈C :=C([−α,∞)× [−β,b]), then for any (t, x) ∈ J define u(t,x) by

u(t,x)(τ,ξ) = u(t+τ, x+ ξ); for (τ,ξ) ∈ [−α,0]× [−β,0].

We present our results for Eqs. (1)-(3) in the Banach space of bounded continuous func-
tions.
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2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. Let L1([0,a]× [0,b]); a,b > 0 be the space of Lebesgue-integrable
functions u : [0,a]× [0,b]→ R with the norm

‖u‖1 =
∫ a

0

∫ b

0
|u(t, x)|dxdt.

As usual, by C :=C(J) we denote the space of all continuous functions from J into R.

By BC := BC([−α,∞)× [−β,b]) we denote the Banach space of all bounded and con-
tinuous functions from [−α,∞)× [−β,b] into R equipped with the standard norm

‖u‖BC = sup
(t,x)∈[−α,∞)×[−β,b]

|u(t, x)|.

For u0 ∈ BC and η ∈ (0,∞), we denote by B(u0,η), the closed ball in BC centered at u0 with
radius η.

Definition 2.1. [19] Let r = (r1,r2) ∈ (0,∞)× (0,∞), θ = (0,0) and u ∈ L1([0,a]× [0,b]).
The left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Ir
θu)(t, x) =

1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1u(s,y)dyds.

In particular,

(Iθθu)(t, x) = u(t, x), (Iσθ u)(t, x) =
∫ t

0

∫ x

0
u(s,y)dyds; for almost all (t, x) ∈ [0,a]× [0,b],

where σ = (1,1).
For instance, Ir

θu exists for all r1,r2 > 0, when u ∈ L1([0,a]× [0,b]). Moreover

(Ir
θu)(t,0) = (Ir

θu)(0, x) = 0; t ∈ [0,a], x ∈ [0,b].

Example 2.2. Let λ,ω ∈ (−1,0)∪ (0,∞) and r = (r1,r2) ∈ (0,∞)× (0,∞), then

Ir
θt
λxω =

Γ(1+λ)Γ(1+ω)
Γ(1+λ+ r1)Γ(1+ω+ r2)

tλ+r1 xω+r2 , for almost all (t, x) ∈ [0,a]× [0,b].

By 1−r we mean (1−r1,1−r2) ∈ [0,1)× [0,1). Denote by D2
tx := ∂2

∂t∂x , the mixed second
order partial derivative.

Definition 2.3. [19] Let r ∈ (0,1]× (0,1] and u ∈ L1([0,a]× [0,b]). The Caputo fractional-
order derivative of order r of u is defined by the expression

cDr
θu(t, x) = (I1−r

θ D2
txu)(t, x) =

1
Γ(1− r1)Γ(1− r2)

∫ t

0

∫ x

0

(D2
syu)(s,y)

(t− s)r1(x− y)r2
dyds.
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The case σ = (1,1) is included and we have

(cDσ
θ u)(t, x) = (D2

xyu)(t, x), for almost all (t, x) ∈ [0,a]× [0,b].

Example 2.4. Let λ,ω ∈ (−1,0)∪ (0,∞) and r = (r1,r2) ∈ (0,1]× (0,1], then

cDr
θt
λxω =

Γ(1+λ)Γ(1+ω)
Γ(1+λ− r1)Γ(1+ω− r2)

tλ−r1 xω−r2 , for almost all (t, x) ∈ [0,a]× [0,b].

In the sequel, we need the following lemma

Lemma 2.5. [1] Let f ∈ L1([0,a]× [0,b]). A function u ∈ AC([0,a]× [0,b]) is a solution of
problem 

(cDr
θu)(t, x) = f (t, x); (t, x) ∈ [0,a]× [0,b],

u(t,0) = ϕ(t); t ∈ [0,a], u(0, x) = ψ(x); x ∈ [0,b],
ϕ(0) = ψ(0),

if and only if u satisfies

u(t, x) = µ(t, x)+ (Ir
θ f )(t, x); (t, x) ∈ [0,a]× [0,b],

where
µ(t, x) = ϕ(t)+ψ(x)−ϕ(0).

Denote by D1 := ∂
∂t , the partial derivative of a function defined on J (or J1) with respect

to the first variable, D2 := ∂
∂x , D2D1 := ∂2

∂t∂x . In the sequel we will make use of the following
Lemma due to Pachpatte.

Lemma 2.6. [16] Let u,e, p ∈ C(J), k,D1k,D2k,D2D1k ∈ C(J1) be positive functions. If
e(t, x) is nondecreasing in each variable (t, x) ∈ J and

u(t, x) ≤ e(t, x)+
∫ t

0

∫ x

0
p(s,y)

×

[
u(s,y)+

∫ s

0

∫ y

0
k(s,y, τ,ξ)u(τ,ξ)dξdτ

]
dyds; (t, x) ∈ J, (5)

then,

u(t, x) ≤ e(t, x)
[
1+

∫ t

0

∫ x

0
p(s,y)exp

(∫ s

0

∫ y

0
[p(τ,ξ)+A(τ,ξ)]dξdτ

)
dyds

]
; (t, x) ∈ J, (6)

where

A(t, x) = k(t, x, s,y)+
∫ t

0
D1k(t, x, s,y)ds+

∫ x

0
D2k(t, x, s,y)dy

+

∫ t

0

∫ x

0
D2D1k(t, x, s,y)dyds; (t, x) ∈ J. (7)
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Let G be an operator from ∅ ,Ω ⊂ BC into itself and consider the solutions of equation

(Gu)(t, x) = u(t, x). (8)

Now we review the concept of attractivity of solutions for equation Eq. (8). For u0 ∈ BC
and η ∈ (0,∞), we denote by B(u0,η), the closed ball in BC centered at u0 with radius η.

Definition 2.7. [4] Solutions of Eq. (8) are locally attractive if there exist a ball B(u0,η) in
the space BC such that for arbitrary solutions v= v(t, x) and w=w(t, x) of Eq. (8) belonging
to B(u0,η)∩Ω we have that, for each x ∈ [0,b],

lim
t→∞

(v(t, x)−w(t, x)) = 0. (9)

When the limit Eq. (9) is uniform with respect to B(u0,η), solutions of Eq. (8) are said
to be locally attractive (or equivalently that solutions of Eq. (8) are asymptotically stable).

Definition 2.8. [4] The solution v = v(t, x) of equation Eq. (8) is said to be globally at-
tractive if Eq. (9) hold for each solution w = w(t, x) of Eq. (8). If condition Eq. (9) is
satisfied uniformly with respect to the set Ω, solutions of Eq. (8) are said to be globally
asymptotically stable (or uniformly globally attractive).

3 Main Results

Let us start by defining what we mean by a solution to the system Eqs. (1)-(3).

Definition 3.1. A function u ∈ BC with its mixed derivative D2
tx exists and is integrable is

said to be a solution of the system Eqs. (1)-(3) if u satisfies equations (1) and (3) on J and
the condition Eq. (2) on J̃.

3.1 Existence and Uniqueness

Our first result is about the existence and uniqueness of a solution to Eqs. (1)-(3).

Theorem 3.2. Assume that following assumptions hold,

(H1) The function ϕ is continuous and bounded with

ϕ∗ = sup
(t,x)∈R+×[0,b]

|ϕ(t, x)|;

(H2) There exist positive functions p1, p2 ∈ BC(J) such that

| f (t, x,u1,u2)− f (t, x,v1,v2)| ≤ p1(t, x)‖u1− v1‖C+ p2(t, x)|u2− v2|,

for each (t, x) ∈ J, u1,v1 ∈ C and u2,v2 ∈ R. Moreover, assume that the function t→∫ t
0

∫ x
0 (t− s)r1−1(x− y)r2−1 f (s,y,0, (G0)(s,y))dyds is bounded on J with

f ∗ = sup
(t,x)∈J

1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1| f (s,y,0, (G0)(s,y))|dyds;
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(H3) There exists a positive function q ∈ BC(J1) such that

|g(t, x, s,y,u)−g(t, x, s,y,v)| ≤ q(t, x, s,y)|u− v|,

for each (t, x, s,y) ∈ J1 and u,v ∈ R.

If
p∗1+ p∗2q∗ < 1, (10)

where

p∗i = sup
(t,x)∈J

[ 1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1 pi(s,y)dyds

]
; i = 1,2,

and

q∗ = sup
(t,x)∈J

[ 1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1q(t, x, s,y)dyds

]
,

then the system (1)-(3) has a unique solution on [−α,∞)× [−β,b].

Proof. Let us define the operator N : BC→ BC by

(Nu)(t, x) =


Φ(t, x), (t, x) ∈ J̃,
ϕ(t)+ 1

Γ(r1)Γ(r2)

∫ t
0

∫ x
0 (t− s)r1−1(x− y)r2−1

× f (s,y,u(s,y), (Gu)(s,y))dyds, (t, x) ∈ J.
(11)

It is clear that the function (t, x) 7→ (Nu)(t, x) is continuous on [−α,∞)× [−β,b]. Now we
prove that N(u) ∈ BC for any u ∈ BC. For each (t, x) ∈ J̃ we have

|Φ(t, x)| ≤ sup
(t,x)∈J̃

|Φ(t, x)| := Φ∗,

then Φ ∈ BC. From (H2), and for arbitrarily fixed (t, x) ∈ J we have

|(Nu)(t, x)| =
∣∣∣∣ϕ(t)+

1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× f (s,y,u(s,y), (Gu)(s,y))dyds
∣∣∣∣

≤ |ϕ(t)|+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× | f (s,y,u(s,y), (Gu)(s,y))− f (s,y,0, (G0)(s,y))|dyds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1| f (s,y,0, (G0)(s,y))|dyds

≤ |ϕ(t)|+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

×
(
p1(s,y)|u(s,y)|+ p2(s,y)|(Gu)(s,y)|

)
dyds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1| f (s,y,0, (G0)(s,y))|dyds
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≤ ϕ∗+ f ∗+ p∗1‖u‖BC +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

×p2(s,y)|(Gu)(s,y)− (G0)(s,y)|dyds. (12)

But, (H3) implies that

|(Gu)(t, x)− (G0)(t, x)| ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× |g(t, x, s,y,u(s,y))−g(t, x, s,y,0)|dyds

≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1q(t, x, s,y)|u(s,y)|dyds

≤ q∗‖u‖BC .

Thus, by (12) we get

|(Nu)(t, x)| ≤ ϕ∗+ f ∗+ p∗1‖u‖BC

+
q∗‖u‖BC

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1 p2(s,y)dyds

≤ ϕ∗+ f ∗+ p∗1‖u‖BC + p∗2q∗‖u‖BC

≤ ϕ∗+ f ∗+ (p∗1+ p∗2q∗)‖u‖BC .

Hence N(u) ∈ BC. Let u, v ∈ BC. Using the hypotheses, for each (t, x) ∈ J, we have

|(Nu)(t, x)− (Nv)(t, x)| ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× | f (s,y,u(s,y), (Gu)(s,y))− f (s,y,v(s,y), (Gv)(s,y))|dyds

≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× (p1(s,y)‖u(s,y)− v(s,y)‖C+ p2(s,y)|(Gu)(s,y)− (Gv)(s,y)|)dyds

≤
‖u− v‖BC

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1 p1(s,y)dyds

+
‖u− v‖BC

Γ2(r1)Γ2(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× p2(s,y)
(∫ s

0

∫ y

0
(s−τ)r1−1(y− ξ)r2−1q(s, t, τ,ξ)dξdτ

)
dyds

≤ (p∗1+ p∗2q∗)‖u− v‖BC .

From (10), it follows from the Banach contraction principle that N has a unique fixed point
in BC which is a solution to Eqs. (1)-(3).

3.2 Estimates on the Solutions

Now, we shall prove the following theorem concerning the estimate on the solution to Eqs.
(1)-(3).
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Theorem 3.3. Set
d = ϕ∗+ f ∗. (13)

Assume that (H1)− (H3) and the following hypotheses hold

(H4) p1 = p2 and there exists a positive function p ∈ BC(J) such that,

p1(s,y) ≤ Γ(r1)Γ(r2)(t− s)1−r1(x− y)1−r2 p(s,y), for each (t, x, s,y) ∈ J1,

(H5) k,D1k,D2k,D2D1k ∈ BC(J1), where

k(t, x, s,y) =
1

Γ(r1)Γ(r2)
(t− s)r1−1(x− y)r2−1q(t, x, s,y).

If u is any solution to Eqs. (1)-(3) on [−α,∞)× [−β,b], then for each (t, x) ∈ J,

|u(t, x)| ≤ d
[
1+

∫ t

0

∫ x

0
p(s,y)exp

(∫ s

0

∫ y

0
[p(τ,ξ)+A(τ,ξ)]dξdτ

)
dyds

]
, (14)

where A(t, x) is defined by Eq. (7).

Proof. Using the fact that u is a solution to Eqs. (1)-(3) and from hypotheses, we have for
each (t, x) ∈ J,

|u(t, x)| ≤ |ϕ(t)|+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1| f (t, x,0, (G0)(t, x))|dyds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× | f (s,y,u(s,y), (Gu)(s,y))− f (s,y,0, (G0)(s,y))|dyds

≤ ϕ∗+ f ∗+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1 p1(s,y)

[
‖u(s,y)‖C

+
1

Γ(r1)Γ(r2)

∫ s

0

∫ y

0
(s−τ)r1−1(y− ξ)r2−1q(s,y, τ,ξ)|u(τ,ξ)|dξdτ

]
dyds

≤ d+
∫ t

0

∫ x

0
p(s,y)

[
‖u(s,y)‖C

+
1

Γ(r1)Γ(r2)

∫ s

0

∫ y

0
q(s,y, τ,ξ)|u(τ,ξ)|dξdτ

]
dyds

≤ d+
∫ t

0

∫ x

0
p(s,y)

[
‖u(s,y)‖C+

∫ s

0

∫ y

0
k(s,y, τ,ξ)|u(τ,ξ)|dξdτ

]
dyds.

We consider the function w defined by

w(t, x) = sup{‖u(s,y)‖ : −α ≤ s ≤ t, −β ≤ y ≤ x}, 0 ≤ t <∞, 0 ≤ x ≤ b.

Let (t∗, x∗) ∈ [−α, t]× [−β, x] be such that w(t, x) = |u(t∗, x∗)|.
If (t∗, x∗) ∈ J̃, then w(t, x) = ‖Φ‖C and the previous inequality holds. If (t∗, x∗) ∈ J, then by
the previous inequality, we have for (t, x) ∈ J,

w(t, x) ≤ d+
∫ t

0

∫ x

0
p(s,y)

[
w(s,y)+

∫ s

0

∫ y

0
k(s,y, τ,ξ)w(τ,ξ)dξdτ

]
dyds.
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From Lemma 2.6, we get

w(t, x) ≤ d
[
1+

∫ t

0

∫ x

0
p(s,y)exp

(∫ s

0

∫ y

0
[p(τ,ξ)+A(τ,ξ)]dξdτ

)
dyds

]
; (t, x) ∈ J. (15)

But, for every (t, x) ∈ J, ‖u(t,x)‖C ≤ w(t, x). Hence, Eq. (15) yields Eq. (14).

Theorem 3.4. Set
d := f ∗+ϕ∗p∗(1+q∗). (16)

Assume that (H1)− (H5) hold. If u is any solution to Eq. (2) on [−α,∞)× [−β,b], then

|u(t, x)−ϕ(t)| ≤ d
[
1+

∫ t

0

∫ x

0
p(s,y)exp

(∫ s

0

∫ y

0
[p(τ,ξ)+A(τ,ξ)]dξdτ

)
dyds

]
, (t, x) ∈ J,

(17)
where A is given by Eq. (7).

Proof. Let h(t, x) = |u(t, x)− ϕ(t)|. Using the fact that u is a solution to Eqs. (1)-(3) and
hypotheses, for each (t, x) ∈ J, we have

h(t, x) ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× | f (s,y,u(s,y), (Gu)(s,y))− f (s,y,ϕ(s), (Gϕ)(s))|dyds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1| f (s,y,ϕ(s), (Gϕ)(s))|dyds

≤ d+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× | f (s,y,u(s,y), (Gu)(s,y))− f (s,y,ϕ(s), (Gϕ)(s))|dyds

≤ d+
∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1 p(s,y)

×

[
h(s,y)+

∫ s

0

∫ y

0
k(s,y, τ,ξ)h(τ,ξ)dξdτ

]
dyds. (18)

Now from an application of Lemma 2.6, Eq. (18) yields Eq. (17).

3.3 Global Asymptotic Stability of Solutions

We next prove under more appropriate conditions on the functions involved in Eq. (1)-(3)
that the solutions tends exponentially toward zero as t→∞.

Theorem 3.5. Assume that (H4), (H5) ant the following hypotheses hold

(H6) There exist constants λ > 0 and M ≥ 0 such that

|ϕ(t)| ≤ Me−λt; (19)

| f (t, x,u1,u2)− f (t, x,v1,v2)| ≤ p1(t, x)e−λt(‖u1− v1‖C+ |u2− v2|), (20)



96 S. Abbas, M. Benchohra, and T. Diagana

for each (t, x) ∈ J, u1,v1 ∈ C, u2,v2 ∈ R,

|g(t, x, s,y,u)−g(t, x, s,y,v)| ≤ q(t, x, s,y)|u− v|; (21)

for each (t, x, s,y) ∈ J1, u,v ∈ R,
and f (t, x,0, (G0)(t, x))= 0; for each (t, x) ∈ J and the functions p, q be as in Theorem
3.3,

(H7)
∫ ∞

0

∫ x
0 [p(s,y)+A(s,y)]dyds <∞, where A is given by Eq. (7).

If u is any solution of Eq. (1)-(3) on [−α,∞)× [−β,b], then all solutions to Eq. (1)-(3) are
uniformly globally attractive on J.

Proof. From the hypotheses, for each (t, x) ∈ J, we have that

|u(t, x)| ≤ |ϕ(t)|+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1

× | f (s,y,u(s,y), (Gu)(s,y))−g(s,y,0, (G0)(s,y))|dyds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1| f (s,y,0, (G0)(s,y))|dyds

≤ Me−λt +

∫ t

0

∫ x

0
p(s,y)e−λt

[
u(s,y)+

1
Γ(r1)Γ(r2)

×

∫ s

0

∫ y

0
(s−τ)r1−1(y− ξ)r2−1q(s,y, τ,ξ)|u(τ,ξ)|dξdτ

]
dyds. (22)

From Eq. (22), we get

|u(t, x)|eλt ≤ M+
∫ t

0

∫ x

0
p(s,y)

[
u(s,y)+ k(s,y, τ,ξ)|u(τ,ξ)|dξdτ

]
dyds. (23)

Now an application of Lemma 2.6 to Eq. (23) yields

|u(t, x)|eλt ≤ M
[
1+

∫ t

0

∫ x

0
p(s,y)exp

(∫ s

0

∫ y

0
[p(τ,ξ)+A(τ,ξ)]dξdτ

)
dyds

]
; (t, x) ∈ J,

(24)
Multiplying both sides of Eq. (24) by e−λt and in view of (H6), we get

|u(t, x)| ≤ M
[
e−λt +

∫ t

0

∫ x

0
p(s,y)exp

(
−λt+

∫ s

0

∫ y

0
[p(τ,ξ)+A(τ,ξ)]dξdτ

)
dyds

]
.

Thus, for each x ∈ [0,b], we get
lim
t→∞

u(t, x) = 0.

Hence, the solution u tends to zero as t→∞. Consequently, all solutions to Eq. (1)-(3) are
uniformly globally attractive on [−α,∞)× [−β,b].
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4 An Example

To illustrate our results, we consider the following system of partial integro-differential
equations of fractional order of the form

cDr
θu(t, x) = f (t, x,u(t,x), (Gu)(t, x)); for (t, x) ∈ J := R+× [0,1], (25)

u(t, x) =
1

1+ t2 ; if (t, x) ∈ J̃ := [−1,∞)× [−2,1]\(0,∞)× (0,1], (26)u(t,0) =
1

1+ t2 ; t ∈ R+,

u(0, x) = 1; x ∈ [0,1],
(27)

where

(Gu)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1g(t, x, s,y,u(s,y))dyds, (28)

r1,r2 ∈ (0,1], 
f (t, x,u,v) =

x2t−r1 sin t

2c(1+ t−
1
2 )(1+ |u(t+1, x+2)|+ |v|)

;

f or (t, x) ∈ J, t , 0 and u ∈ C, v ∈ R,

f (0, x,u,v) = 0,

c :=
Γ( 1

2 )

Γ( 1
2 + r1)

1+ Γ( 1
2 )e

Γ( 1
2 + r1)Γ(1+ r2)

 ,


g(t, x, s,y,u) =
t−r1 s−

1
2 ex−y− 1

s−
1
t

2c(1+ t−
1
2 )(1+ |u|)

; f or (t, x, s,y) ∈ J1, st , 0 and u ∈ R,

g(t, x,0,y,u) = g(0, x, s,y,u) = 0,

and
J1 = {(t, x, s,y) : 0 ≤ s ≤ t <∞, 0 ≤ y ≤ x ≤ 1}.

Set

ϕ(t) =
1

1+ t2 ; t ∈ R+.

We can see that (H1) is satisfied because the function ϕ is continuous and bounded with
ϕ∗ = 1. For each u1,v1 ∈ C, u2,v2 ∈ R and (t, x) ∈ J, we have

| f (t, x,u1,u2)− f (t, x, s,v1,v2)| ≤
1

2c(1+ t−
1
2 )

(
x2t−r1 |sin t|

)
(|u1− v1|+ |u2− v2|),

and for each u,v ∈ R and (t, x, s,y) ∈ J1, we have

|g(t, x, s,y,u)−g(t, x, s,y,v)| ≤
1

2c(1+ t−
1
2 )

(
t−r1 s−

1
2 ex−y−t− 1

s−
1
t

)
|u− v|.
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Hence condition (H2) is satisfied with
p1(t, x) = p2(t, x) =

x2t−r1 |sin t|

2c(1+ t−
1
2 )

; t , 0,

p1(0, x) = p2(0, x) = 0,

and condition (H3) is satisfied with
q(t, x, s,y) =

1

2c(1+ t−
1
2 )

(
t−r1 s−

1
2 ex−y−t− 1

s−
1
t

)
; st , 0,

q(t, x,0,y) = k(0, x,0,y) = 0.

We shall show that condition (10) holds with b = 1. Indeed

1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1 p1(s,y)dyds

≤
1

2c(1+ t−
1
2 )Γ(r1)Γ(r2)

∫ t

0

∫ 1

0
(t− s)r1−1(1− y)r2−1x2t−r1dyds

≤
Γ( 1

2 )et−
1
2

2c(1+ t−
1
2 )Γ( 1

2 + r1)Γ(1+ r2)
,

then

p∗1 = p∗2 ≤
Γ( 1

2 )

2cΓ( 1
2 + r1)

.

Also,

1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− y)r2−1q(t, x, s,y)dyds

≤
1

2c(1+ t−
1
2 )Γ(r1)Γ(r2)

∫ t

0

∫ 1

0
(t− s)r1−1(1− y)r2−1t−r1 s−

1
2 exdyds

≤ ext−r1 t−
1
2+r1

Γ( 1
2 )

2c(1+ t−
1
2 )Γ( 1

2 + r1)Γ(1+ r2)

≤
Γ( 1

2 )et−
1
2

2c(1+ t−
1
2 )Γ( 1

2 + r1)Γ(1+ r2)
,

then

q∗ ≤
eΓ( 1

2 )

2cΓ( 1
2 + r1)Γ(1+ r2)

.

Thus,

p∗1+ p∗2q∗ ≤
Γ( 1

2 )

2cΓ( 1
2 + r1)

1+ Γ( 1
2 )e

Γ( 1
2 + r1)Γ(1+ r2)

 = 1
2
< 1,

which is satisfied for each r1,r2 ∈ (0,∞). Consequently Theorem 3.2 implies that the system
Eq. (25)-(27) has a unique solution defined on [−1,∞)× [−2,1].
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