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Abstract

This paper is concerned with the abstract fraction@édential equations with non-
local condition. By using the contraction mapping principle and the theory of the mea-
sures of noncompactness and the condensing maps, we obtain the existence results of
mild solutions for the above equations.
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1 Introduction

Fractional diferential equations are increasingly used for many mathematical models in
engineering, physics, economics, etc., so the theory of fractiofiateintial equations has
been extensively studied by several authors ([1, 2, 3, 4,5, 6, 7, 8, 9, 10]).

On the other hand, Cauchy problems with nonlocal conditions are appropriate models
for describing many natural phenomena, which cannot be described using classical Cauchy
problems. This is why they have been studied extensively(cf., e.g., [5, 10, 11, 12, 13] and
references therein).

Of concern is the following fractional fierential equation on a separable Banach space
X

%x(t) = AX(t) + F(t.x(1)). t e (0, ],
X(0) = g(¥). (L.1)
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whereT >0, 0< g< 1. The fractional derivative is understood here in the Caputo sénse.
is the infinitesimal generator of an analytic semigré8(i)}:-o of uniformly bounded linear
operators orX, that is, there exist® > 1 such that|S(t)|| < M.

In this paper, the mild solutions of (1.1) will be established under various conditions
of the functionsf, g. Firstly, we assume that, g satisfy the Lipschitz conditions. Sec-
ondly, we establish the existence theorem based on a special measure of noncompactness
without the assumptions that the nonlinearfitgatisfies a Lipschitz type condition and the
semigroup S(t)}i=0 generated byA is compact.

2 Preliminaries

In this paper, we set .= [0, T] and denote by a separable Banach space with ndjr,
by L(X) the Banach space of all linear and bounded operato§ and byC([a, b], X) the
space of allX-valued continuous functions oa,[b] with the supremum norm as follows:

IXllfa b1 = IXllc(a by, x) = SURIIX()Il : t € [a, b]}, for anyx € C([a, b], X).

Moreover, we abbreviat@||_r(o,7,r+) With [|ullLe, for anyu € LP([0, T], R*).
Now we recall some basic concepts in the theory of measures of noncompactness and
the condensing maps. (see, e.g., [14, 15]).

Definition 2.1. Let E be a Banach space’; the family of all nonempty subsets Bf (A, >)
a partially ordered seg : 2F — A. If for everyQ e 25:

B(Co(Q)) =B(Q) forevery Qe 2F,
theng is called a measure of noncompactness (MNCE.in
A MNC gis called:
(i) monotone, ifQg, Q € 25, Qp c Q1 impliesB(Qo) < B(Q1);
(i) nonsingular, ifB({a} U Q) = B(Q) for everyae E, Q € 2F;

(iii) invariant with respect to union with compact sets,8{fD} U Q) = B(Q2) for every
relatively compact séb c E, Q € 2F,

If Ais acone inanormed space, we say that the MNE
(iv) algebraically semiadditive, f(Qo + Q1) < B(Q0) +B(Q1) for eachQg, Q; € 2F;
(v) regular, ifB(Q2) = 0 is equivalent to the relative compactnes€xf
(vi) real, if A is [0, +c0) with the natural order.
Now, letG : [0,h] — 2F be a multifunction. It is called:

() integrable, if it admits a Bochner integrable selection0,h] — E, k(t) € G(t) for
a.e.te[0,h];
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(ii) integrably bounded, if there exists a functigre L1([0, h], E) such that

IG()|| ;= sud]|lkl| : ke G(t)} < 9(t) a.e.te]0,h].

As an example of the MNC possessing all these properties, we consider the Hausdor
MNC
x(Q) =inf{e > 0:Q has a finites-net.

We present the following assertion abguéstimates for a multivalued integral (Theo-
rem 4.2.3 of [15]).

Proposition 2.2. For an integrable, integrably bounded multifunction {8, h] — 2X where
X is a separable Banach space, let

x(G(@®) <m(t), for aete]0,h],
where me L1([0,h]). Then)((fot G(9)d9) < fotm(s)ds forall te [0, h].

Definition 2.3. A continuous magy : Y € E — E is called condensing with respect to a
MNC g (or g-condensing) if for every bounded ftC Y which is not relatively compact,
we have

B(5(€)) £ B(Q).
The following fixed point principle (see, e.g., [14, 15]) will be used later.

Theorem 2.4.Lett be a bounded convex closed subset of Egntlt — 9t aS-condensing
map. Then Fig = {x: X = (X)} is nonempty.

Based on the works in [1, 2, 16], we set the following definition.

Definition 2.5. Let

@q(0) = }T i(—l)“—la-qmlr(%rl) sin(rg), o € (0, 00)

be a one-side stable probability density, and
1 _1-1 -1
&q(o) = ao- 1wmg(c"9) >0, o€ (0,0).
For anyx € X, we define operatof€(t)}i>0 and{R(t)}i>0 by

Q(H)x

f N &q(0)S(t%) xdor,
0

R(t)x

q f ) ot ¢4 () S(t%r) xdo
0

Remark2.6. ([16]) It is not difficult to verify that forv € [0, 1],

I'd+v)
r@d+qv)

f B oVéq(o)do = f ) o Vay(o)do =
0 0
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Then, we can see

IQMI <M. IRW) < %tq‘l, t>0.

We define the mild solution for problem (1.1) as follows.

Definition 2.7. A function x € C(J, X) satisfying the equation

t
X(t) = Q)0 + fo Rt-9f(s x(9)ds ted (2.1)

is called a mild solution of problem (1.1).

3 Lipschitz conditions

Here, we will obtain mild solutions under the following assumptions.

(A1) f:JIxX— Xis continuous. There exist constdniG > 0 such that

1t x) - ft, Yyl < LiIx-yll, xyeX
g -gW)II < Gllu-vil;, u,veC(J X)
forallte J.
(A2)
M(G + r(l(_;; l)) <1l

Under these assumptions, we can prove the following result.
Theorem 3.1.Let (A1)-(A2) be satisfied. Then the problem (1.1) has a unique mild solution.

Proof. Define an operatot onC(J, X) by
t
(HX)(t) = Q()a(X) + fo R(t—9)f(s, x(s))ds
Then it is clear thatH : C(J, X) — C(J, X). Moreover, we have from Assumption (A1),

t
QW99 — gl + fo IRE- 9l (s x(9) - F(s Y(S)llds

I(HX)) — (HYO <
t
< MG||x—y||J+% fo (t— 97 YIx(9) — Y(9)lds
< M(G+r(:+ql))IIX—y||J, X,y € C(J, X).

From (A2), we find thatH is a contraction operator db(J, X), thusH has a unique fixed
point, which gives rise to a unique mild solution. This completes the proof. O
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4 gis compact
In this section, we will derive mild solutions under the following assumptions.

(H1) f:JIxX — X satisfiesf(-, w) : J — X is measurable for alve X and f(t,-) : X —» X
is continuous for a.et. € J, and there exists a functiop$) € L°(J, R*) (p> %‘) such
that

1t WII < gl
for almost allt € J.

(H2) There exists a functiome LP(J,R*) such that for any bounded detc X,
x(f(t, D)) < n(t)x(D), ae. teld

(H3) ()The functiong : C(J, X) — X is continuous and compact.
(i) There exists a constat > 0 such that

lg(x)ll <N forall xe C(J, X).

Theorem 4.1. Assume that (H1)-(H3) are satisfied. Then there exists at least a mild solution
of problem (1.1) on CJ, X), provided that

M

pg-1
——IpqT P maxlulle. Inlle} < 1, (4.1)
r(g) ™

—1.\1-4
where bq = (57) P

Proof. Define the operatag : C(J, X) — C(J, X) in the following way:

t
(X)) = QI + fo Rt-9f(s x(9)ds ted

Clearly, the operatog is well defined, and the fixed point @ is the mild solution of
problem (1.1). We will shovwg is -condensing.
Obviously, (H3) and the Lebesgue dominated convergence theorem enable us to prove
thatG is continuous.
Consider the set
B = {xe C(J X): [IXlls <},

wherer is a constant chosen so that
MN

r> .
M '|'&pl
1- (g 'P.d [leellLp

By the Holder inequality, we have

t ~ pa-t pa-t
[ =9 but9ds< tF nalis < T gl (4.2)
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Forte J, xe By, by (4.2) we get

IA

t
IGHOI < QMO+ fo IRt-9F(s x(9)llds

M [t ~
MN*m (t— 9% u(9)lIx(s)llds

M
< MN+ lpgT P ||,u|||_p r<r.
F()pq

Hence for some positive numberGgB; c B;.

Let y be a Hausddf MNC in X. For every bounded subs@tc C(J, X), we consider
the measure of noncompactngsi the spaceC(J, X) with values in the con®? of the
following way:

B(Q) = (¥(2), mod(Q2)),
where
P(€Q) = supr (1)),
ted
andmod(Q?) is the module of equicontinuity & given by:

mod(Q) = I|m sup max ||x(t1) X(t)II.

er|1 to|<o

Next, we show that the operat@ris 8-condensing on every bounded subset(d, X).
Let Q c C(J, X) be a nonempty, bounded set such that

B(G(€2) = B(QY). (4.3)

Firstly, we estimat&’(Q2). For anyt € J, we set

F(Q)(t) = {f R(t-s)f(s, x(s))ds: xe Q}.
0
We consider the multifunctioae [0,t] — F(9),
F(s) ={R(t-9f(s x(9): xe Q}.

Obviously,F is integrable, and from (H1) and (4.2) it follows that it is integrably bounded.
Moreover, noting that (H2) we have the following estimate for a€|[0,1]:

A a-1
r(q)(t T x ({f(s x(s) 1 xe Q)

M g-1
< F(q)(t )T (I ((9)).

Applying Proposition 2.2, we have
t
X(f F(s)ds)

f (t— 9% I(r(AS)ds

x(F(9)

IA

X(F(Q)(®)

IA

()

IA

@ lpgT 7 Il W(Q).
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This, together with (H3)(i), shows

M po-t
x(G(Q)(1) < @Ip,q_r P |InllLe (<)

Furthermore

M pa-1
Y(GQ) < @lp,q-r P 7l (L),

which implies, by (4.1) and (4.3¥(Q2) = 0.
Secondly, we will provenod,(Q) = 0. For O<t, <ty < T andx e Q, we have

t2

; I[R(ty — ) = R(t2 - 9)] f (s, x(s))llds

IA

to o
q fo fo o[t - 97— (ta— 9T Heq(@)S((t — 990) (s x(9)|| derdls

153 00
+q f f ot 9T g(@)IS((t — 99) - S((t2 - 9% 1 1(s x(9)lIderds
0 0
M [
I'(a) Jo

to 00
+GIf f o (t2— 97 &q(0)IS((t - 9)%) — S((t2 - 9)%0) I u()IX(S)llderdls
0 0

IA

(1= 9%~ (o - 9T Y- u(9IX(s)llds

IA

t2
R P AR CRR L BTCTE

153 00
+q‘f0 L o(ta— S)q—lfq(O')HS((tl — S)qo') -S((tz— S)q0')|| -u(s)dod S].

Obviously, the first term on the right-hand side tends to §as t;. The second term on
the right-hand side tends to 0 gs— t; as a consequence of the continuityS({f) in the
uniform operator topology far> 0.

Moreover, by (4.2), we can see(-)%u(-) € L and

ty M 1
IRt-9MIF(s XSS < —axls f (tr - 9% Tu(9)ds
to l—‘(q) to

— 0, as t,—>t;.

Combining with the continuity of(t) in the uniform operator topology fdr> 0, we
have

16X (t) — (G ()]
T2
1Q(t) — Q(t2)IIN + j; I[R(ta - 8) - R(t2 - 9)1 f (s, X(9))lld's

t1
+ | IR(ta—9)llIf (s x())llds
t2
— 0, as ty—ty,

IA

thenmod,(GQ) = 0. By (4.3), we havenod,(Q2) = 0. Hence
B€) = (0, 0).
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The regularity property g8 implies the relative compactnessf
Now, it follows from Definition 2.3 thagz is 8-condensing.
According to Theorem 2.4, problem (1.1) has at least one mild solution. O

Finally, we give examples to illustrate our abstract results abovek +€tbe an integer,
O<s <<-<sn<T,cjeR(j=0,1,2,--,m), h()eLY[0,T],R). Define

(1) X=L%([0, T]), Au=u" with D(A) = HZ([0, x]) N H3([O, x]) .
(2) Tt x(1))(&) = cosinx(t)(£).
(3) f(t, x(®)(E&) = ﬁsinX(t)(f)-

(@) 9e(.6) = 2 (5 8. £C(0. T). X)

(5) gle(t, &) = foT h(s)sin(1+¢(s, £))ds ¢ € C([0, T], X).
Then, we obtain

e Agenerates an analytic and uniformly bounded semig{8{p}i-o on X with ||S(t)|| <
1.

e Whencj, j=0,1,---,mis small enough, "(3}(2)+(4)” makes the assumptions in
Theorem 3.1 satisfied. Therefore, the corresponding nonlinear nonlocal problem
(1.1) has a unique mild solution.

e "(1)+(3)+(5)" makes the assumptions (H1)-(H3) in Theorem 4.1 satisfied. Therefore,
the corresponding nonlinear nonlocal problem (1.1) has at least a mild solution if (4.1)
holds.
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