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Abstract

This paper is concerned with the abstract fractional differential equations with non-
local condition. By using the contraction mapping principle and the theory of the mea-
sures of noncompactness and the condensing maps, we obtain the existence results of
mild solutions for the above equations.
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1 Introduction

Fractional differential equations are increasingly used for many mathematical models in
engineering, physics, economics, etc., so the theory of fractional differential equations has
been extensively studied by several authors ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).

On the other hand, Cauchy problems with nonlocal conditions are appropriate models
for describing many natural phenomena, which cannot be described using classical Cauchy
problems. This is why they have been studied extensively(cf., e.g., [5, 10, 11, 12, 13] and
references therein).

Of concern is the following fractional differential equation on a separable Banach space
X

dq

dtq
x(t) = Ax(t)+ f (t, x(t)), t ∈ (0, T],

x(0)= g(x), (1.1)
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whereT > 0, 0< q< 1. The fractional derivative is understood here in the Caputo sense.A
is the infinitesimal generator of an analytic semigroup{S(t)}t≥0 of uniformly bounded linear
operators onX, that is, there existsM ≥ 1 such that‖S(t)‖ ≤ M.

In this paper, the mild solutions of (1.1) will be established under various conditions
of the functionsf , g. Firstly, we assume thatf , g satisfy the Lipschitz conditions. Sec-
ondly, we establish the existence theorem based on a special measure of noncompactness
without the assumptions that the nonlinearityf satisfies a Lipschitz type condition and the
semigroup{S(t)}t≥0 generated byA is compact.

2 Preliminaries

In this paper, we setJ := [0, T] and denote byX a separable Banach space with norm‖ ∙ ‖,
by L(X) the Banach space of all linear and bounded operators onX, and byC([a, b], X) the
space of allX-valued continuous functions on [a, b] with the supremum norm as follows:

‖x‖[a,b] = ‖x‖C([a,b],X) = sup{‖x(t)‖ : t ∈ [a, b]}, for anyx ∈C([a, b],X).

Moreover, we abbreviate‖μ‖Lp([0,T],R+) with ‖μ‖Lp, for anyμ ∈ Lp([0, T], R+).
Now we recall some basic concepts in the theory of measures of noncompactness and

the condensing maps. (see, e.g., [14, 15]).

Definition 2.1. Let E be a Banach space, 2E the family of all nonempty subsets ofE, (A, ≥)
a partially ordered set,β : 2E→A. If for everyΩ ∈ 2E:

β(co(Ω)) = β(Ω) for every Ω ∈ 2E,

thenβ is called a measure of noncompactness (MNC) inE.

A MNC β is called:

(i) monotone, ifΩ0,Ω1 ∈ 2E, Ω0 ⊂ Ω1 impliesβ(Ω0) ≤ β(Ω1);

(ii) nonsingular, ifβ({a}∪Ω) = β(Ω) for everya ∈ E, Ω ∈ 2E;

(iii) invariant with respect to union with compact sets, ifβ({D} ∪Ω) = β(Ω) for every
relatively compact setD ⊂ E, Ω ∈ 2E.

If A is a cone in a normed space, we say that the MNCβ is

(iv) algebraically semiadditive, ifβ(Ω0+Ω1) ≤ β(Ω0)+β(Ω1) for eachΩ0,Ω1 ∈ 2E;

(v) regular, ifβ(Ω) = 0 is equivalent to the relative compactness ofΩ;

(vi) real, ifA is [0,+∞) with the natural order.

Now, letG : [0,h]→ 2E be a multifunction. It is called:

(i) integrable, if it admits a Bochner integrable selectionk : [0,h] → E, k(t) ∈ G(t) for
a.e.t ∈ [0,h];
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(ii) integrably bounded, if there exists a functionϑ ∈ L1([0,h], E) such that

‖G(t)‖ := sup{‖k‖ : k ∈G(t)} ≤ ϑ(t) a.e. t ∈ [0,h].

As an example of the MNC possessing all these properties, we consider the Hausdorff

MNC
χ(Ω) = inf {ε > 0 :Ω has a finiteε-net}.

We present the following assertion aboutχ-estimates for a multivalued integral (Theo-
rem 4.2.3 of [15]).

Proposition 2.2. For an integrable, integrably bounded multifunction G: [0,h]→ 2X where
X is a separable Banach space, let

χ(G(t)) ≤m(t), for a.e. t ∈ [0,h],

where m∈ L1
+([0,h]). Thenχ(

∫ t

0
G(s)ds) ≤

∫ t

0
m(s)ds for all t∈ [0,h].

Definition 2.3. A continuous mapF : Y ⊆ E→ E is called condensing with respect to a
MNC β (or β-condensing) if for every bounded setΩ ⊆ Y which is not relatively compact,
we have

β(F(Ω)) � β(Ω).

The following fixed point principle (see, e.g., [14, 15]) will be used later.

Theorem 2.4.LetM be a bounded convex closed subset of E andF :M→M aβ-condensing
map. Then FixF = {x : x= F(x)} is nonempty.

Based on the works in [1, 2, 16], we set the following definition.

Definition 2.5. Let

$q(σ) =
1
π

∞∑

n=1

(−1)n−1σ−qn−1Γ(nq+1)
n!

sin(nπq), σ ∈ (0,∞)

be a one-side stable probability density, and

ξq(σ) =
1
q
σ−1− 1

q$q(σ−
1
q ) ≥ 0, σ ∈ (0,∞).

For anyx ∈ X, we define operators{Q(t)}t≥0 and{R(t)}t≥0 by

Q(t)x =

∫ ∞

0
ξq(σ)S(tqσ)xdσ,

R(t)x = q
∫ ∞

0
σtq−1ξq(σ)S(tqσ)xdσ.

Remark2.6. ([16]) It is not difficult to verify that forv ∈ [0,1],
∫ ∞

0
σvξq(σ)dσ =

∫ ∞

0
σ−qv$q(σ)dσ =

Γ(1+v)
Γ(1+qv)

.
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Then, we can see

‖Q(t)‖ ≤ M, ‖R(t)‖ ≤
M
Γ(q)

tq−1, t > 0.

We define the mild solution for problem (1.1) as follows.

Definition 2.7. A function x ∈C(J, X) satisfying the equation

x(t) = Q(t)g(x)+
∫ t

0
R(t− s) f (s, x(s))ds, t ∈ J, (2.1)

is called a mild solution of problem (1.1).

3 Lipschitz conditions

Here, we will obtain mild solutions under the following assumptions.

(A1) f : J×X→ X is continuous. There exist constantL,G > 0 such that

‖ f (t, x)− f (t, y)‖ ≤ L‖x−y‖, x, y ∈ X,

‖g(u)−g(v)‖ ≤ G‖u−v‖J, u, v ∈C(J, X)

for all t ∈ J.

(A2)

M(G+
LTq

Γ(q+1)
) < 1.

Under these assumptions, we can prove the following result.

Theorem 3.1.Let (A1)-(A2) be satisfied. Then the problem (1.1) has a unique mild solution.

Proof. Define an operatorH onC(J, X) by

(Hx)(t) = Q(t)g(x)+
∫ t

0
R(t− s) f (s, x(s))ds.

Then it is clear thatH : C(J, X)→C(J, X). Moreover, we have from Assumption (A1),

‖(Hx)(t)− (Hy)(t)‖ ≤ ‖Q(t)‖ ∙ ‖g(x)−g(y)‖+
∫ t

0
‖R(t− s)‖‖ f (s, x(s))− f (s, y(s))‖ds

≤ MG‖x−y‖J +
LM
Γ(q)

∫ t

0
(t− s)q−1‖x(s)−y(s)‖ds

≤ M(G+
LTq

Γ(q+1)
)‖x−y‖J, x, y ∈C(J, X).

From (A2), we find thatH is a contraction operator onC(J, X), thusH has a unique fixed
point, which gives rise to a unique mild solution. This completes the proof. �
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4 g is compact

In this section, we will derive mild solutions under the following assumptions.

(H1) f : J×X→ X satisfiesf (∙, w) : J→ X is measurable for allw ∈ X and f (t, ∙) : X→ X
is continuous for a.e.t ∈ J, and there exists a functionsμ(∙) ∈ Lp(J, R+) (p> 1

q) such
that

‖ f (t, w)‖ ≤ μ(t)‖w‖

for almost allt ∈ J.

(H2) There exists a functionη ∈ Lp(J,R+) such that for any bounded setD ⊂ X,

χ( f (t, D)) ≤ η(t)χ(D), a.e. t ∈ J.

(H3) (i)The functiong : C(J, X)→ X is continuous and compact.

(ii) There exists a constantN > 0 such that

‖g(x)‖ ≤ N for all x ∈C(J, X).

Theorem 4.1.Assume that (H1)-(H3) are satisfied. Then there exists at least a mild solution
of problem (1.1) on C(J, X), provided that

M
Γ(q)

l p,qT
pq−1

p max{‖μ‖Lp, ‖η‖Lp} < 1, (4.1)

where lp,q = ( p−1
pq−1)1− 1

p .

Proof. Define the operatorG : C(J, X)→C(J, X) in the following way:

(Gx)(t) = Q(t)g(x)+
∫ t

0
R(t− s) f (s, x(s))ds, t ∈ J.

Clearly, the operatorG is well defined, and the fixed point ofG is the mild solution of
problem (1.1). We will showG is β-condensing.

Obviously, (H3) and the Lebesgue dominated convergence theorem enable us to prove
thatG is continuous.

Consider the set
Br = {x ∈C(J, X) : ‖x‖J ≤ r},

wherer is a constant chosen so that

r >
MN

1− M
Γ(q) l p,qT

pq−1
p ‖μ‖Lp

.

By the Hölder inequality, we have

∫ t

0
(t− s)q−1μ(s)ds≤ t

pq−1
p l p,q‖μ‖Lp ≤ T

pq−1
p l p,q‖μ‖Lp. (4.2)
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For t ∈ J, x ∈ Br , by (4.2) we get

‖(Gx)(t)‖ ≤ ‖Q(t)g(x)‖+
∫ t

0
‖R(t− s) f (s, x(s))‖ds

≤ MN+
M
Γ(q)

∫ t

0
(t− s)q−1μ(s)‖x(s)‖ds

≤ MN+
M
Γ(q)

l p,qT
pq−1

p ‖μ‖Lp ∙ r < r.

Hence for some positive numberr, GBr ⊂ Br .
Let χ be a Hausdorff MNC in X. For every bounded subsetΩ ⊂ C(J, X), we consider

the measure of noncompactnessβ in the spaceC(J, X) with values in the coneR2
+ of the

following way:
β(Ω) = (Ψ(Ω),modc(Ω)),

where
Ψ(Ω) = sup

t∈J
χ(Ω(t)),

andmodc(Ω) is the module of equicontinuity ofΩ given by:

modc(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|≤δ

‖x(t1)− x(t2)‖.

Next, we show that the operatorG is β-condensing on every bounded subset ofC(J, X).
LetΩ ⊂C(J, X) be a nonempty, bounded set such that

β(G(Ω)) ≥ β(Ω). (4.3)

Firstly, we estimateΨ(Ω). For anyt ∈ J, we set

F̃(Ω)(t) =

{∫ t

0
R(t− s) f (s, x(s))ds: x ∈ Ω

}

.

We consider the multifunctions∈ [0, t]( F(s),

F(s) = {R(t− s) f (s, x(s)) : x ∈ Ω} .

Obviously,F is integrable, and from (H1) and (4.2) it follows that it is integrably bounded.
Moreover, noting that (H2) we have the following estimate for a.e.s∈ [0, t]:

χ(F(s)) ≤
M
Γ(q)

(t− s)q−1χ ({ f (s, x(s)) : x ∈ Ω})

≤
M
Γ(q)

(t− s)q−1η(s)χ(Ω(s)).

Applying Proposition 2.2, we have

χ(F̃(Ω)(t)) = χ

(∫ t

0
F(s)ds

)

≤
M
Γ(q)

∫ t

0
(t− s)q−1η(s)χ(Ω(s))ds

≤
M
Γ(q)

l p,qT
pq−1

p ‖η‖LpΨ(Ω).
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This, together with (H3)(i), shows

χ(G(Ω)(t)) ≤
M
Γ(q)

l p,qT
pq−1

p ‖η‖LpΨ(Ω).

Furthermore

Ψ(GΩ) ≤
M
Γ(q)

l p,qT
pq−1

p ‖η‖LpΨ(Ω),

which implies, by (4.1) and (4.3),Ψ(Ω) = 0.
Secondly, we will provemodc(Ω) = 0. For 0< t2 < t1 < T andx ∈ Ω, we have

∫ t2

0
‖[R(t1− s)−R(t2− s)] f (s, x(s))‖ds

≤ q
∫ t2

0

∫ ∞

0
σ

∥∥∥[(t1− s)q−1− (t2− s)q−1]ξq(σ)S((t1− s)qσ) f (s, x(s))
∥∥∥dσds

+q
∫ t2

0

∫ ∞

0
σ(t2− s)q−1ξq(σ)‖S((t1− s)qσ)−S((t2− s)qσ)‖ ∙ ‖ f (s, x(s))‖dσds

≤
M
Γ(q)

∫ t2

0
|(t1− s)q−1− (t2− s)q−1| ∙μ(s)‖x(s)‖ds

+q
∫ t2

0

∫ ∞

0
σ(t2− s)q−1ξq(σ)‖S((t1− s)qσ)−S((t2− s)qσ)‖ ∙μ(s)‖x(s)‖dσds

≤ ‖x‖J ∙
[ M
Γ(q)

∫ t2

0
|(t1− s)q−1− (t2− s)q−1| ∙μ(s)ds

+q
∫ t2

0

∫ ∞

0
σ(t2− s)q−1ξq(σ)‖S((t1− s)qσ)−S((t2− s)qσ)‖ ∙μ(s)dσds

]
.

Obviously, the first term on the right-hand side tends to 0 ast2→ t1. The second term on
the right-hand side tends to 0 ast2→ t1 as a consequence of the continuity ofS(t) in the
uniform operator topology fort > 0.

Moreover, by (4.2), we can see (t− ∙)q−1μ(∙) ∈ L1 and
∫ t1

t2
‖R(t1− s)‖‖ f (s, x(s))‖ds ≤

M
Γ(q)
∙ ‖x‖J

∫ t1

t2
(t1− s)q−1μ(s)ds

→ 0, as t2→ t1.

Combining with the continuity ofS(t) in the uniform operator topology fort > 0, we
have

‖(Gx)(t1)− (Gx)(t2)‖

≤ ‖Q(t1)−Q(t2)‖N+

∫ t2

0
‖[R(t1− s)−R(t2− s)] f (s, x(s))‖ds

+

∫ t1

t2
‖R(t1− s)‖‖ f (s, x(s))‖ds

→ 0, as t2→ t1,

thenmodc(GΩ) = 0. By (4.3), we havemodc(Ω) = 0. Hence

β(Ω) = (0, 0).
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The regularity property ofβ implies the relative compactness ofΩ.
Now, it follows from Definition 2.3 thatG is β-condensing.
According to Theorem 2.4, problem (1.1) has at least one mild solution. �

Finally, we give examples to illustrate our abstract results above. Letk> 0 be an integer,
0< s1 < s2 < ∙ ∙ ∙ < sm< T, cj ∈ R( j = 0, 1, 2, ∙ ∙ ∙ ,m), h(∙) ∈ L1([0, T], R). Define

(1) X = L2([0, T]), Au= u′′ with D(A) = H2([0, π])∩H1
0([0, π]) .

(2) f (t, x(t))(ξ) = c0sinx(t)(ξ).

(3) f (t, x(t))(ξ) = 1
k√t

sinx(t)(ξ).

(4) g(ϕ(t, ξ)) =
m∑

j=1
cjϕ(sj , ξ),ϕ ∈C([0, T], X).

(5) g(ϕ(t, ξ)) =
∫ T

0
h(s)sin(1+ϕ(s, ξ))ds,ϕ ∈C([0, T], X).

Then, we obtain

• Agenerates an analytic and uniformly bounded semigroup{S(t)}t≥0 onX with ‖S(t)‖ ≤
1.

• Whencj , j = 0, 1, ∙ ∙ ∙ ,m is small enough, ”(1)+(2)+(4)” makes the assumptions in
Theorem 3.1 satisfied. Therefore, the corresponding nonlinear nonlocal problem
(1.1) has a unique mild solution.

• ”(1)+(3)+(5)” makes the assumptions (H1)-(H3) in Theorem 4.1 satisfied. Therefore,
the corresponding nonlinear nonlocal problem (1.1) has at least a mild solution if (4.1)
holds.
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