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Abstract

Recently a new probability distribution, thespinned Poisson distribution(SPD),
was introduced to model data collected in various health management situations, such
as the spread of an infectious disease when infected cases are removed from the ob-
served population. As the name suggests, the SPD is a generalization of the well-
known Poisson distribution. In this paper, simple data sets are used to show that there
is no guarantee that the equations for the maximum likelihood estimates of the param-
eters associated with the SPD have a non-trivial solution. It follows that even for a
simple data set where a non-trivial SPD may seem appropriate, the fitted SPD may be
just a Poisson distribution.
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1 Introduction

In a recent paper, Shanmugam [3] introduced a new probability distribution, thespinned
Poisson distribution(SPD), to model the spread of an infectious disease when infected cases
are removed (e.g. by health management authorities) during the data collection process. For
parametersρ ≥ 0 andθ > 0, the SPD is defined by

p(y|ρ,θ) = Pr[Y= y] =
1+ρy
1+ρθ

e−θθy

y!
(y= 0,1,2, . . .). (1.1)

Observe thatp(y|0, θ) = e−θθy/y!, so the SPD is a generalization of the well-known Poisson
distribution. Also, ifα = 1/(1+ρθ), then

p(y|ρ,θ) =
1

1+ρθ
e−θθy

y!
+
ρθ

1+ρθ
e−θθy−1

(y−1)!
= αp(y|0, θ)+ (1−α)p(y−1|0, θ), (1.2)

so the spinned Poisson probability Pr[Y = y] can be regarded as a convex combination of
the Poisson probabilities Pr[Y= y] and Pr[Y= y−1].
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Given a random sampley1,y2, . . . ,yn with meany from the SPD (1.1), the parametersρ
andθ can be estimated by using the maximum likelihood estimates (MLEs) ˆρ andθ̂. These
are the values ofρ andθ that maximize the likelihood function

L =

n∏

i=1

p(yi |ρ,θ) =
e−nθθny

(1+ρθ)n

n∏

i=1

1+ρyi

yi !
(1.3)

(or, equivalently, maximize the logarithm ofL) for ρ ≥ 0 andθ > 0. To avoid trivial cases,
assume theyi are not all equal. Also assume (after relabelling the data if necessary) that
y1, . . . ,yk are positive andyk+1 = . . . = yn = 0 (where 1≤ k≤ n).

To find ρ̂ andθ̂, firstly consider the values ofL on the boundary of the parameter space.
Here it is helpful (especially for the caseρ→∞) to use (1.2) to writeL in terms ofα andθ:

L = L(α,θ) = e−nθθn(y−1)
n∏

i=1

αθ+ (1−α)yi

yi !
= e−nθθny−kαn−k

k∏

i=1

αθ+ (1−α)yi

yi !
. (1.4)

Now look atL on each component of the boundary of the region 0≤ α ≤ 1, θ ≥ 0.

(i). If α = 0 (which corresponds toρ =∞), L is 0 if any of theyi are 0. Otherwise (i.e. if
k= n), L is maximized ifθ = y−1.

(ii). If α = 1 (i.e.ρ = 0), L is maximized ifθ = y.

(iii). Whenθ = 0, L= 0 unlessy= k/n (i.e.y1 = . . .= yk = 1), in which caseL= αn−k(1−α)k

is maximized ifα = 1−k/n= 1−y.

(iv). As θ→∞, L→ 0 uniformly inα.

Next consider possible local maxima ofL in the interior 0< ρ,θ <∞ of the parameter
space. These occur when∂ lnL/∂ρ = ∂ lnL/∂θ = 0, which by (1.3) leads to the equations (as
stated in equivalent form by Shanmugam)

y= θ+
ρθ

1+ρθ
(1.5)

and
n∑

i=1

1
1+ρyi

=
n

1+ρθ
. (1.6)

As pointed out in [3], it can be tedious to find exact solutions to these equations. However,
an elementary observation from (1.5) that will be useful later is:

Any solution to (1.5) and (1.6) in 0< ρ,θ <∞ must satisfyθ < y. (1.7)

The principal aim of this note is to demonstrate that even for simple data sets, there
is no guarantee that the system (1.5) and (1.6) has a solution for 0< ρ,θ < ∞. This aim
will be achieved in Sections 2 and 3, where it is shown that the fitted SPD based on MLEs
ρ̂ and θ̂ may be simply one of the three ‘boundary distributions’p(y−1|0,y−1), p(y|0,y)
and (1−y)p(y)+yp(y−1), corresponding to cases (i)–(iii) above, wherep(y) is the limiting
Poisson distribution asθ→ 0,

p(y) = Pr[Y= y] =

{
1 if y= 0
0 otherwise.
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2 Some Simple Examples

Typically the Poisson distribution is used to model count data such as the numbers of new
infections of a particular disease occurring in a population in a fixed time interval, although
Shanmugam illustrated the SPD with counts of the time intervals between successive infec-
tions being detected. The following two examples illustrate the modelling of some (hypo-
thetical) elementary sample count data by a SPD.

Example 1: Suppose a sample containsn observations, with a count ofr ≥ 1 being recorded
on k of these occasions (where 1≤ k ≤ n−1) and a count of 0 recorded on the remaining
n−k occasions (soy= kr/n). Then (1.6) becomes

(n−k)+
k

1+ρr
=

n
1+ρθ

,

which yieldsρ = 0 or ρθ = (kr − nθ)/[r(n− k)]. Substituting the result forρθ into (1.5)
gives θ = kr/n (so ρ = 0) or θ = r − 1. Thus if r = 1, there is no solution to the system
(1.5) and (1.6) for 0< ρ,θ <∞, while for r > 1, the conditionθ = r −1 givesρ = ρ∗ where
ρ∗ = (kr−nr+n)/[r(r −1)(n−k)] (which is positive forr < n/(n−k)) andα = r − rk/n.

Case (a):If r = 1 it follows from the above comments and the remarks in Section 1 about the
behaviour ofL on the boundary of the parameter space that the fitted SPD is whichever of
p(y|0,y) and (1−y)p(y)+yp(y−1) has the greater likelihood. Now, the associated likelihood
values areL1 = e−k(k/n)k andL2 = (1−k/n)n−k(k/n)k, respectively, with ratio of

L1

L2
= f1(k) = e−k(1−k/n)k−n.

It is readily checked thatg1(k) = ln f1(k) satisfiesg1(0)= 0 andg′1(k) = ln(1− k/n) < 0 for
0< k< n, sog1(k) < 0 and f1(k) < 1 for 1≤ k≤ n−1, which meansL1 < L2.

Hence forr = 1 in this example, the fitted SPD is (1−y)p(y)+yp(y−1).

Case (b): If r > 1 it follows from the comments in Section 1 that the fitted SPD is just the
Poisson distributionp(y|0,kr/n) except perhaps ifr < n/(n−k). For r < n/(n−k), use (1.4)
to calculate the ratio of likelihood values

L(r − rk/n, r −1)
L(1,kr/n)

=
(r −1)k(r−1)(n−k)n−knkr−n

rkr−nkk(r−1)
ekr−n(r−1).

If x= kr−n(r −1), sor = (n− x)/(n−k), this can be written as

L(r − rk/n, r −1)
L(1,kr/n)

= f2(x) =

(
n(k− x)
k(n− x)

)k(k−x)
n−k (n− x

n

)n−k
ex,

where 0< x< k < n. If g2(x) = ln f2(x), it is straightforward to showg2(0)= g′2(0)= 0 and
g′′2 (x) = x(n−k)/[(k− x)(n− x)2]. Thusg′′2 (x), g′2(x) andg2(x) are all positive for 0< x< k,
which meansf2(x) > 1, and soL(r − rk/n, r −1)> L(1,kr/n).

Hence forr > 1 in this example, the fitted SPD isp(y|ρ∗, r − 1) if r < n/(n− k), and
otherwise is the Poisson distributionp(y|0,kr/n). �
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Example 2: Suppose the sample count data containsn observations, with 1 recorded on
a> 0 occasions, 2 recorded onb> 0 occasions, and 0 recorded on the remainingn−a−b
occasions (soy= (a+2b)/n).

For this data, (1.6) becomes

(n−a−b)+
a

1+ρ
+

b
1+2ρ

=
n

1+ρθ
,

which after rearrangement gives eitherρ = 0 or

2θ(n−a−b)ρ2+ [(3n−a−2b)θ−2a−2b]ρ+ (nθ−a−2b) = 0. (2.1)

Also (1.5) gives
nθ−a−2b= ρθ(a+2b−n−nθ), (2.2)

which when substituted into (2.1) yields eitherρ = 0 or

2(n−a−b)ρθ = nθ2−2nθ+2a+2b. (2.3)

Now, if a+b= n, (2.3) has no real solution forθ, which means the the MLEs correspond
to the greater of the likelihood valuesL(1,1+b/n) andL(0,b/n). By (1.4), the ratio of these
likelihood values is

f3(b) =
L(1,1+b/n)

L(0,b/n)
= e−n

(

1+
b
n

)n+b ( n
2b

)b
.

If g3(b) = ln f3(b), it is straightforward to showg3(n) = nln(2/e) < 0 andg′3(b) = ln(n+b)−
ln(2b) ≥ 0 for 1≤ b ≤ n. Thusg3(b) < 0 for 1≤ b ≤ n−1, which meansf3(b) < 1, and so
L(1,1+b/n) < L(0,b/n). Hence ifa+b= n, the fitted SPD isp(y−1|0,b/n).

If all of a, b andn− a− b are positive, then substituting the result forρθ from (2.3)
into (2.2) gives

nθ3− (n+a+2b)θ2+2(a+2b)θ−2b= 0. (2.4)

If, for example,a = 0.3n and b = 0.2n (so y = 0.7), the unique real solution to (2.4) is
θ = 0.5, soρ= 0.5 andα= 0.8. Straightforward numerical calculation using (1.4) shows that
L(0.8,0.5) exceeds the maximum boundary valueL(1,0.7), so the fitted SPD isp(y|0.5,0.5).
On the other hand, ifa = 0.2n and b = 0.2n, then the only real solution to (2.4) isθ '
0.702319> y. By (1.7),L has no local maximum in the interior of the parameter space, and
so in this case the fitted SPD is the Poisson distributionp(y|0,0.6). �

Observe that Examples 1 and 2 provide explicit simple data sets for each of the four
possible locations in the parameter space (i.e. at an interior point, or on one of the boundary
componentsα = 0,α = 1 andθ = 0) for the parameters that correspond to the fitted SPD.

3 Fitting an SPD to Infection Count Data

In his paper [3] in which the SPD was introduced, Shanmugam modelled a classic data
set from a smallpox outbreak in a closed community of about 120 members of the Faith
Tabernacle religious group in Abakaliki, Nigeria in 1967. This data has been reported by
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Bailey [1] and O’Neill and Becker [2], amongst others. However, rather than take Shan-
mugam’s approach and use the SPD to model counts of the time intervals between succes-
sive infections being detected, we will fit an SPD to counts of the numbers of new smallpox
infections per day. Often a Poisson distribution is fitted to data of this type, but for the
Abakaliki data, “the usual Poisson distribution is inappropriate to use because of the impact
of removing infected cases [by isolation at the Infectious Disease Hospital] on the incidence
rate and the chance of observing a new case” ([3, p. 299]). Based on the inter-removal times
reported in [2, p. 101], the data for a period of 77 days were:

No of new infections 0 1 2 3
No of days 54 17 5 1

For this data the maximum likelihood equations (1.5) and (1.6) are

30
77

= θ+
ρθ

1+ρθ
(3.1)

and

54+
17

1+ρ
+

5
1+2ρ

+
1

1+3ρ
=

77
1+ρθ

. (3.2)

In fact, there are no solutions to the system (3.1) and (3.2) for 0< ρ,θ <∞ that give a
higher value of the likelihood function than atρ = 0 andθ = 30/77. This can be demon-
strated in several ways, but the following approach has the advantage that it uses the results
of Example 2, rather than working directly with the more complicated (3.1) and (3.2), and
can be adapted readily to certain other data sets.

By (1.4) the likelihood function for the Abakaliki data is

L(α,θ) = e−77θθ7α54(αθ+ (1−α))17
(
αθ+2(1−α)

2

)5 (
αθ+3(1−α)

3!

)

. (3.3)

Sinceαθ(αθ+3(1−α)) ≤ (αθ+ (1−α))(αθ+2(1−α)), then

L(α,θ) ≤
1
3

e−77θθ6α53(αθ+ (1−α))18
(
αθ+2(1−α)

2

)6
=

1
3

L∗(α,θ), (3.4)

whereL∗(α,θ) is the likelihood function for the “modified Abakaliki data”:

No of new infections 0 1 2
No of days 53 18 6

To fit an SPD to this modified data, consider its MLE equation (2.4) which is 77θ3−107θ2+
60θ−12= 0. The only real solution to this equation isθ ' 0.417249> y. By (1.7), the like-
lihood function for the modified data has no local maximum in the interior of the parameter
space, and so is maximized whenα = 1 andθ = 30/77. Hence if 0≤ α ≤ 1 andθ ≥ 0, then
by (3.4) and (3.3),

L(α,θ) ≤
1
3

L∗(α,θ) ≤
1
3

L∗(1,30/77)= L(1,30/77).
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Thus the likelihood function for the original Abakaliki data is maximized whenα = 1 and
θ = 30/77, so the fitted SPD for this data is the Poisson distributionp(y|0,30/77).

This example in Section 3 shows that for a real-life data set, it is still possible that
the fitted SPD is just a Poisson distrbution, even if initial considerations suggest that the
additional generalizations afforded by the SPD model will yield a better fit to the data than
the Poisson distribution.
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