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Abstract

In this article we will use ultrafilter theory to present a modified proof that a lo-
cally compact group with a countable basis has a left invariant and a right invariant
Haar measure. To facilitate this result, we shall first show that the topological space
consisting of all ultrafilters on a non-empty set X is homeomorphic to the topological
space of all nonzero multiplicative functionals in the first dual space `?∞(X).
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1 Introduction

Let G = ((0,∞), .) be the multiplicative group of the set of positive real numbers with the
usual topology. Then G is a locally compact and Hausdorff topological group. Let C0(G)
be the space of all real valued and continuous functions f on G such that f is zero outside
some compact set K f . Then:

I( f ) =
∫

G

f (x)
x

dx, f ∈C0(G)

is an invariant integral or Haar integral on G,i.e.∫
G

f (ax)
x

dx =
∫

G

f (x)
x

dx,∀a ∈G, f ∈C0(G) .

Further for each Borel set E in G,

ν(E) =
∫

E

1
x

dx

is an invariant measure or Haar measure; i.e. ν(aE) = ν(E) for all a ∈G. Here a Borel set E
is a member of the smallest σ-algebra containing all the open sets.
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Invariant integrals for a special class of topological groups has long been known. The
first of such integrals was given in 1897 by Hurwitz for S O(n), where S O(n) is the special
orthogonal group [3].

Shortly before his death in 1933 Alfred Haar proved the existence of left invariant and
right invariant measures on a locally compact group with a countable basis. Haar’s construc-
tion on invariant measure was reformulated in terms of a linear functional and extended to
arbitrary locally compact groups by Andre Weil [3]. The Haar measure has been extended
to other spaces including Uniform Spaces [3], [5]. Although Weil’s approach is very ele-
gant it obscures the original proof by Haar. Most books, for example [3], [1], [6], and [7]
present Weil’s and H. Cartan’s proof.

In 1999 after nearly 58 years, AMS published the work of J. Von Neumann regarding
the Haar measure. The author of this article believes that the original proof by Haar (which
was refined and extended by Von Neumann ) utilizes the most interesting and illuminating
approach.

In his proof of the Haar measure Von Neumann uses the theory of generalized limit
developed in the same book [8]. In this article we will present an alternative approach by
using ultrafilters in place of Von Neumann’s theory of limits. The application of ultrafil-
ters and the basic tools of Banach algebra make this proof more understandable. We will
conclude by presenting several examples of the Haar measure.

2 Ultrafilters

Definition 2.1. Let X be a nonempty set. Let P be a collection of subsets of X, i.e. each
member of P is a subset of X. We call P an ultrafilter if it satisfies the following properties:

(a) P , φ and φ < P

(b) A,B ∈ P implies A∩B ∈ P so P is closed under finite intersection.

(c) A ∈ P,B ⊆ X and A ⊆ B implies B ∈ P hence P is closed under superset operation.

(d) A ⊆ X implies A ∈ P or X \A ∈ P

Remark 2.2. If P satisfies only properties (a), (b) and (c) then P is called a filter. Property
(d) is called the maximality property.

Example 2.3. Let x ∈ X and put x̂ = {A ⊆ X : x ∈ A}. Evidently x̂ is an ultrafilter in X. We
call x̂ a principal ultrafilter. An ultrafilter Q which is not of this form is called nonprincipal.
We shall see shortly that by Zorn’s lemma nonprincipal ultrafilter exists if X has infinitely
many elements.

Theorem 2.4. Let X be a nonempty set and let C be a collection of subsets of X with the
finite intersection property, i.e. A1, . . . ,An ∈ C implies ∩n

i=1Ai , φ. Then there exists an
ultrafilter P in X such that C ⊆ P.

Proof. Apply Zorn’s lemma [4, Theorem 3.8]. �
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Remark 2.5. Let {xn}
∞
n=1 be a sequence in X with xn , xm if n ,m. For each natural number

n let An = {xk : k ≥ n}. Then C = {An : n ∈ N} has the finite intersection property. By Theorem
2.4 C is contained in an ultrafilter P. it is clear that P is a nonprincipal ultrafilter.

Definition 2.6. Let X be an infinite set. We define the symbol β1X as:

β1X = {P : P is an ultrafilter in X}.

Thus each point of β1X is an ultrafilter in X.

Definition 2.7. For each A ⊆ X let:

Ā = {P ∈ β1X : A ∈ P} .

Then one can show that B = {Ā : A ⊆ X} is a base for a topology on β1X, which we will
denote by τ1.

Theorem 2.8. The topological space (β1X, τ1) is a nonmetrizable compact Hausdorff
space. Furthermore X̂ = {x̂ : x ∈ X} is dense in β1X;i.e. the set of principal ultrafilters
form a dense subset of this space.

Proof. See [4, Theorems 3.18 and 3.36]. �

3 Bounded Linear Functionals and Ultrafilters

Definition 3.1. Let X be a nonempty set and let C be the field of complex numbers. We
define

`∞(X) = { f : X→C| f is a bounded function}

It is well known that `∞(X) is a commutative Banach algebra with identity when
equipped with the usual addition, scalar multiplication and pointwise multiplication of func-
tions as well as the sup norm. In addition one can show that `∞(X) is a B?-algebra where
the involution is conjugate of a function.

Definition 3.2. We define the first dual space of `∞(X) by:

`?∞(X) = {ξ : `∞(X)→C|ξis bounded (continuous )and linear }.

Definition 3.3. We define β2(X) by the following:

β2X = {ξ ∈ `?∞(X) : ξis nonzero and multiplicative}.

So each ξ ∈ β2(X) is a nonzero homomorphism from algebra `∞(X) in to the algebra of
the set of complex numbers C.

Example 3.4. Let x ∈ X and define x̃ : `∞(X) → C by x̃( f ) = f (x). Evidently each x̃ is
nonzero multiplicative linear functional. Since each algebra homomorphism is continuous
[9, 10.7 (c)] we will have x̃ ∈ β2(X). We call each x̃ an evaluation map. Also we note that if
ξ ∈ β2(X) and fA is the characteristic function of A ⊆ X then ξ( fA) is either 1 or zero.
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Remark 3.5. Since each algebra homomorphism is continuous we could define β2X as the
set of all nonzero homomorphisms from `∞(X) into C.

Definition 3.6. We define a topology τ2 in β2(X) using net convergence.Let {ξα : α ∈ D} be
a net in β2(X) we say ξα converges to ξ, denoted by ξα→ ξ if and only if ξα( f )→ ξ( f ) for
each f ∈ `∞(X). To see what are the basic open sets in this topology for each f ∈ `∞(X),
define ψ f : β2X→C by ψ f (ξ) = ξ( f ). Then τ2 is the smallest topology on β2X so that each
ψ f is continuous, hence τ2 is the Gelfand topology. See [9, 11.8].

Theorem 3.7. (β2X, τ2) is a non metrizable compact Hausdorff space. Furthermore X̃ =
{x̃ : x ∈ X} is dense in β2X.

Proof. See [9, Theorem 11.9]. �

Theorem 3.8. The spaces (β1X, τ1) and (β2X, τ2) are homeomorphic.

Proof. First we will show that the algebraA generated by the set of all characteristic func-
tions { fA : A ⊆ X} is dense in `∞(X). Let f ∈ `∞(X) be given. Suppose that f is real valued
and that f (x) ≥ 0 for all x ∈ X. Let ‖ f ‖∞ be the sup norm of f . For each natural number n
and i ∈ {1, · · ·n} put:

Ai = f −1[
(i−1)‖ f ‖∞

n
,
i‖ f ‖∞

n
)

and B = f −1({‖ f ‖∞}). Evidently A1, · · · ,An and B are pairwise disjoint and their union
is X. Now it is easy to see that the sequence:

fn = ‖ f ‖∞ fB+1/nΣn
i=1(i−1)‖ f ‖∞ fAi

converges in sup norm to f . If f is arbitrary but still real valued we decompose f into
its positive and negative parts. So f = f + − f −, where both f + and f − are real valued and
nonnegative functions in `∞(X). By application of the first part one can find a sequence fn
in `∞(X) which converges in sup norm to f . For a complex valued function f we can write
f = g+ ih where g and h are real valued functions in `∞(X). An application of the preceding
part for g and h shows that the algebraA is dense in `∞(X). Now define:

ϕ : (β2X, τ2)→ (β1X, τ1)

by ϕ(ξ) = {A ⊆ X : ξ( fA) = 1}. It is routine to check that ϕ(ξ) is an ultrafilter. Furthermore,
ϕ(x̃) = x̂;i.e. ϕ sends an evaluation map x̃ to a principal ultrafilter x̂. To prove that ϕ is
continuous it suffices to show that ϕ−1(Ā) is open for each A ⊆ X. So let ξ ∈ ϕ−1(Ā). Now
O = {η ∈ β2(X) : |η( fA)− ξ( fA| <

1
2 } is an open neighborhood of ξ and lies in ϕ−1(Ā),hence

ϕ is continuous. By Theorem 2.8 the set of all principal ultrafilters are dense in β1X and as
we observed the range of ϕ contains all the principal ultrafilters ,so ϕ is surjective. To show
ϕ is injective suppose that ϕ(ξ1) = ϕ(ξ2). Hence ξ1 and ξ2 are equal on algebra A which
is dense in `∞(X). Thus they are equal on the whole space and ϕ is a homeomorphism by
compactness. �
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4 Topological Groups

Definition 4.1. Let G be a group with a topology τ. We say that (G, τ) is a topologi-
cal group if the mappings : G ×G → G and : G → G defined by (x,y) → xy and x →
x−1 respectively are continuous. Also for nonempty subsets A and B of G we define:

AB = {ab : a ∈ A,b ∈ B} and A−1 = {a−1 : a ∈ A}
In the sequel we assume G is a locally compact Hausdorff topological group with the iden-
tity denoted by e. The following theorem plays a major role in the development of Haar
measure.

Theorem 4.2. Let O be an open neighborhood of e in G and let C and D be disjoint compact
sets in G.Then:

(a) there exists a compact set A in G with e ∈ int(A) such that:
A−1A ⊆ O

(b) there exists a compact set B in G with e ∈ int(B) such that:
B−1B ⊆G \ (D−1C).

Proof. See [8, 15.2, 15.3.1 and 15.3.2]. �

Lemma 4.3. Let:
I = {A ⊆G : A is compact and e ∈ int(A)}

Let C and D be disjoint compact subsets of G. Put:
J(C,D) = {A ∈ I : A−1A ⊆G \ (D−1C)}

Then:
F = {J(C,D) : C and D are disjoint compact subsets of G }

has the finite intersection property.

Proof. Let n be a natural number. Suppose that for each i ∈ {1, · · · ,n}, Ci and Di are disjoint
compact subsets of G. By theorem 4.2 there exists for each i ∈ {1, · · · ,n} a compact subset
Ai with e ∈ int(Ai) and A−1

i Ai ⊆ G \ (D−1
i Ci). Now let A = ∩n

i=1Ai, then A ∈ I, and for
all i ∈ {1, · · · ,n} we have A−1A ⊆ A−1

i Ai . Hence A ∈ ∩n
i=1J(Ci,Di). Thus F has the finite

intersection property. �

5 Relative Measure of a Compact Set, Haar Number

Lemma 5.1. Let A and C be compact sets in G with int(A) , ∅. Then there exists x1 · · · , xk ∈

G such that :
C ⊆ ∪k

i=1xiA.

Proof. See [8, 15.1]. �

Definition 5.2. Let A and C be compact sets with int(A) , ∅. We define the left measure of
C with respect to A or the Haar number of C with respect to A, denoted n[C

A ] by:

n[
C
A

] =min{k : ∃x1, · · · xk ∈G such that C ⊆ ∪k
i=1xiA} .

Note that n[C
A ] is well defined by Lemma 5.1.
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Example 5.3. Let G = (R2,+),A = {(x,y) ∈ R2 : x2 + y2 ≤ 1} and C = {(x,y) ∈ R2 : 2 ≤ x ≤
4,5 ≤ y ≤ 6}. Then n[C

A ] = 2.

6 Pre-Haar Measure of a Compact Set

Definition 6.1. Let A and E be compact sets in G such that the interiors of A and E are not
empty. For each compact set C in G define:

λA(C) =
n[C

A ]

n[ E
A ]
.

We call λA(C) the left pre-Haar measure of C.

Remark 6.2. Note that n[ E
A ] is a positive integer. For the remainder of this article we will

assume that E denotes a fixed compact set in G with nonempty interior.

Theorem 6.3. λA satisfies the following properties, where C and D are compact sets in G:

(a) 0 ≤ λA(C) <∞

(b) if C ⊆ D then λA(C) ≤ λA(D)

(c) λA(C∪D) ≤ λA(C)+λA(D)

(d) if D−1C∩A−1A = ∅, then λA(C∪D) = λA(C)+λA(D)

(e) if int(C) , ∅, then λA(C) ≥ 1
n[ E

C ]

(f) λA(C) ≤ n[C
E ]

(g) λA(xC) = λA(C) for each x ∈G

Proof. See [8, 15.1]. �

Remark 6.4. We note that in Theorem 6.3(d) if D−1C∩A−1A is empty then also C∩D = ∅
but the converse is not true. So we cannot show that λA is finitely additive on the collection
of compact sets.

7 Finitely Additive Left Invariant Measure on Compact Sets

Theorem 7.1. Let C be the collection of all compact subsets of G. Then there exists a
function λ : C→ [0,∞) satisfying the following properties:

(a) if C ⊆ D then λ(C) ≤ λ(D)
(b) λ(C∪D) ≤ λ(C)+λ(D)
(c) if C and D are disjoint then λ(C∪D) = λ(C)+λ(D)
(d) if int(C) is not empty then λ(C) > 0
(e) λ(xC) = λ(C) for each x ∈G
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Proof. Let I be the collection of all compact subset A of G such that e ∈ int(A). For each
compact set C in C define a function:

xC : I→ R by xC(A) = λA(C)
.
By Theorem 6.3 (f),xC is bounded, hence xC is in the commutative Banach algebra

`∞(I). For each pair of disjoint compact sets C and D put:
J(C,D) = {A ∈ I : D−1C∩A−1A = ∅}

and
F = {J(C,D) : C and D in C and C∩D = ∅}

By Lemma 4.3 F has the finite intersection property. So Theorem 2.4 implies that
there exists an ultrafilter P in I such that F ⊂ P. By Theorem 3.7 there exists a nonzero
multiplicative linear functional ξ ∈ `?∞(I) such that:

{U ⊆ I : ξ( fU) = 1} = P

where fU is the characteristic function of U. Now define:
λ : C→ [0,∞) by λ(C) = ξ(xC).

We will show that λ has the desired properties. First we prove that λ is finitely additive.
Let C and D be disjoint where C,D ∈C. Hence J(C,D) is a member ofP. SinceP∈ clβ1IJ(C,D)

there exists a net {Aα} in J(C,D) such that Âα→P in the topology of β1I. Hence Ãα→ ξ in
the topology of β2I by Theorem 3.2. Therefor:

(i) λAα(C) = xC(Aα)→ ξ(xC) = λ(C)
(ii) λAα(D) = xD(Aα)→ ξ(xD) = λ(D)
(iii) λAα(C∪D) = xC∪D(Aα)→ ξ(xC∪D) = λ(C∪D).
Therefore, by (i), (ii), (iii) and Theorem 6.3(d)

λ(C∪D) = λ(C)+λ(D)
So λ satisfies property (c); i.e, λ is finitely additive. Now let {Bα} be a net in I such that

B̃α converges to ξ. Hence:
(iv) λBα(C) = xC(Bα)→ ξ(xC) = λ(C).
So, 0 ≤ λ(C) ≤ n[C

E ] by Theorem 6.3(f). If int(C) , ∅, then Theorem 6.3(e) implies that:
λ(C) ≥ 1

n[ E
C ]
> 0

so λ also satisfies property (d). A similar argument will show that λ satisfies the remain-
ing properties. �

8 Left Invariant Measure

Definition 8.1. Let λ be a finitely additive measure on compact sets in G as in Theorem 7.
We define two new set functions µ and ν by the following:

(a) for each open set O in G, µ(O) = sup{λ(C) : C ⊆ O,C compact}
(b) for each set M in G, ν(M) = in f {µ(O) : M ⊆ O,O open}.
One can show that ν is an outer measure.

Definition 8.2. A set M in G (M ⊆G ) is called ν-measurable if for each set K in G:
ν(K) = ν(K∩M)+ ν(K∩ (G \M)).
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Theorem 8.3. Let B be the Borel σ-algebra in G; which is the smallest σ-algebra in G
containing all the open sets. Then the set of all ν-measurable sets is a σ-algebra Γ which
contains the σ-algebra B. Furthermore the restriction of ν to B satisfies the following:

(a) if{An}
∞
n=1 ⊆ B, then ν(∪∞n=1An) ≤ Σ∞n=1ν(An)

(b) if {An}
∞
n=1 ⊆ B, and An∩Am = ∅ whenever n , m then

ν(∪∞n=1An) = Σ∞n=1ν(An)
(c) ν(A) ≤ ν(B), for A and B in B with A ⊆ B
(d) λ(C) ≤ ν(C) for every compact set C
(e) for any open set O we have:
ν(O) ≤ sup{ν(C) : C compact and C ⊆ O}
(f) ν(A) = in f {ν(O) : A ⊆ O,O open}
(g) ν(int(C)) ≤ λ(C) ≤ ν(C) for each compact set C
(h) ν(aB) = ν(B) for each Borel set B and each a ∈G
(i) ν(A) > 0 if A is any Borel set for which int(A) , ∅
(j) ν(A) <∞ if A is any Borel set for which Ā is compact
We call ν a left invariant Haar measure on G.

Proof. See [8, 2, 3, and 4]. �

9 Examples of Haar Measure

We will conclude this article by presenting several examples of Haar measure and posing
an open question.

Example 9.1. Let c be a positive real number and put Gc = (−c,c), so that Gc is the open
interval with end points −c and c.For each x and y in Gc define:

x? y =
x+ y

1+ xy
c2

.

To show that x? y is in Gc first note that for all x and y in Gc we have:

(c+ x) > 0, (c+ y) > 0, (c− x) > 0, (c− y) > 0.

So we get (a) (c+ x)(c+ y) > 0 and (b) (c− x)(c− y) > 0. Also we have (c) c2 + xy > 0.
Now by (a), (b) and (c) −c < x? y < c. The associativity of ? operation follows from the
following:

(x? y)? z = x? (y? z) =
x+ y+ z+ xyz

c2

1+ xy+yz+zx
c2

.

Now it is evident that (Gc,?) is a locally compact Hausdorff topological group with
the usual topology, where the identity is 0 and the inverse of each x is −x. To find the
Haar measure of Gc we follow the technique developed in [8, 14.2.4]. Let B be the Borel
σ-Algebra of Gc and h : Gc→ [0,∞) be a measurable function. Define:

(a) ν : B→ [0,∞) by ν(E) =
∫

E h(t)dt
where the integral

∫
E h(t)dt is the Lebesgue integral. One can show that ν is a measure

on B, in particular if h(t) = 1 for all t in Gc then ν is the Lebesgue measure on B. Now we
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find a function h such that the measure ν given in (a) is invariant measure. First note that
for each E ∈ B and each a ∈Gc , a?E is also in B. Now let E = [α,β] then for each a ∈Gc,
a?E = [a?α,a?β], hence we must have:

ν(E) = ν(a?E) =
∫

E
h(t)dt =

∫
a?E

h(t)dt ,

so: ∫ β

α
h(t)dt =

∫ a?β

a?α
h(t)dt.

Note that:
a?α = (a+α)c2

aα+c2 and a?β = (a+β)c2

aβ+c2 .
Now by change of variable t = a?u we get:∫ β

α
h(t)dt =

∫ a?β

a?α
h(t) =

∫ β

α
h(a?u)

(c2−a2)c2

(au+ c2)2 du .

Thus for each a and u in Gc:
h(u) = (c2−a2)c2

(au+c2)2 h(a?u),

hence h(−a) = c2

c2−a2 h(0) . Let h(0) = 1, so that h(t)= c2

c2−t2 . Now one can show that:

ν(E) =
∫

E

c2

c2− t2 dt

is a Haar measure on Gc.

Example 9.2. Let c ∈ R,c > 0. Define:

ϕ : R→ (−c,c) , ϕ(t) =
2c
π

tan−1(t).

Note that ϕ is a homeomorphism between R and (−c,c) where both are equipped with
the usual topology. For each x and y in R define x ◦ y = ϕ−1(ϕ(x)?ϕ(y)) where ? is the
group operation defined in Example 9.1. It is routine to check that R with operation ◦ is a
topological group. Further:

x◦ y = tan
( tan−1 x+ tan−1 y

1+ 4
π2 tan−1 x tan−1 y

)
.

In addition for all x,y and z in R we have:

(x◦ y)◦ z = x◦ (y◦ z) = tan(
tan−1 x+ tan−1 y+ tan−1 z+a tan−1 x tan−1 y tan−1 z

1+a tan−1 x tan−1 y+a tan−1 x tan−1 z+a tan−1 y tan−1 z
)

where a = 4
π2 .

To find Haar measure of (R,◦) we will find a function h = h(t) such that ν(E) =
∫

E h(t)dt
is an invariant measure. Using a change in variable as in Example 9.1 and letting h(0) = 1
we obtain:

ν(E) =
∫

E

1
(1+ t2)(1− ( 2

π tan−1 t)2)
dt .
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In particular , if E = [a,b] then:

ν(E) =
π

4
ln

(1+ k tan−1 b)(1− k tan−1 a)
(1− k tan−1 b)(1+ k tan−1 a)

where k = 2
π .

Example 9.3. Let G = {(x,y) ∈ R2 : x2− y2 , 0}. For (x,y) and (a,b) in G define:

(x,y)? (a,b) = (ax+by,bx+ay) .

It is easy to show that (G,?) is a commutative topological group where G has the usual
topology. Note that G is an open set. To find Haar measure of (G,?) we find a function
h = h(x,y) such that :

ν(E) =
∫ ∫

E h(x,y)dµ(x,y)
is invariant measure on Borel σ-algebra in G , where µ is Lebesgue measure on R2.
So let (α,β) be a point in G. Hence we must have:

(a)
∫ ∫

E
h(x,y)dµ(x,y) =

∫ ∫
(α,β)?E

h(x,y)dµ(x,y).

Now let x = 1
δ (αX−βY) and y =1

δ (−βX +αY). By Using change of variables in (a) we
get:∫ ∫

E h(x,y)dµ(x,y) =
∫ ∫

E h( 1
δ (αX−βY), 1

δ(−βX+αY)
1

|α2−β2 |
dµ(X,Y)

Hence we must have:
h(x,y) = h( 1

δ (αx−βy), 1
δ (−βx+αy)) 1

|α2−β2 |
for all (x,y) and all (α,β) in G.

Thus h(α,β) = h(1,0) 1
|α2−β2 |

. Leth(1,0) = 1. Then h(x,y) = 1
|x2−y2 |

.

Example 9.4. Let G = {(x,y,z) ∈ R3 : x3+y3+z3−3xyz, 0}. For (x,y,z), (a,b,c) ∈G define:
(x,y,z)? (a,b,c) = (ax+ cy+bz,bx+ay+ cz,cx+by+az).
Note that G is an open subset of R3. It is easy to show that (G,?) is a commutative

topological group in fact it is a Lie group. Now using the technique in example 9.3 or the
fact that G is a Lie grou one can show that:

ν(E) =
∫

E
1

|x3+y3+z3−3xyz|dµ(x,y,z) is Haar Measure on G, where E is a Borel set in G.

Example 9.5. Let G = {x = (x1, · · · xn) ∈ Rn : x1 , 0}. For x,y ∈G define:
x? y = (x1y1, x1y2+ x2, · · · x1yk + xk, · · · x1yn+ xn).
Note that G is an open subset of Rn. Now one can show that (G,?) is a non commutative

topological group, in fact it is a Lie group with dimension n. By [4, 15.17e]:
νr(E) =

∫
E

1
|x1 |

dx1 · · ·dxn

is a right Haar measure and
ν`(E) =

∫
E

1
|x1 |n

dx1 · · ·dxn

is left Haar measure on G. In this example the left and right Haar measure on G are
different if n > 1.

Remark 9.6. Examples 9.1, 9.2, 9.3 and 9.4 are from the author of this article. However
in example 9.4 the fact that (G,?) is a group was mentioned to the author by late Mohsen
Hashtroody. One can generalize example 9.4 to dimension n.
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Example 9.5 is a generalization of a popular example in [2],

Example 9.7. Let G be the set of all real n×n upper triangular matrices A = (ai j)n×n such
that aii = 1 for i = 1, · · ·n. Note that there are k = n2−n

2 elements above the diagonal of each
matrix. Identify each matrix A with a point x = (x1 · · · xk) ∈ Rk. So we may assume G = Rk,
hence G is a noncommutative topological group with the usual topology on Rk with ?

operation as matrix multiplication. Note that (G,+) and (G,?) are Lie groups where one
is commutative that is ,(G,+) and the other one (G,?) is not,when n > 1. However one can
show that [1, p. 243] the Lebesgue measure on G = Rk is Haar measure on both topological
groups.

In Example 9.6 we mentioned that G = Rk with k = n2−n
2 has two different Lie group

structure. Furthermore the Lebesgue measure on Rk is Haar measure on both Lie groups.
Now we ask the following question:

Question 9.8. What are the real k dimensional manifolds with at least two different Lie
group structures that have the same Haar measure?
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