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Abstract

In this paper, we deal with a class of backward doubly stochastic differential equa-
tions (BDSDEs, in short) involving subdifferential operator of a convex function and
driven by Teugels martingales associated with a Lévy process. We show the exis-
tence and uniqueness result by means of Yosida approximation. As an application, we
give the existence of stochastic viscosity solution for a class of multivalued stochastic
partial differential-integral equations (MSPIDEs, in short).
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process, Teugels martingale, multivalued stochastic partial differential-integral equation.

1 Introduction

Backward stochastic differential equations (BSDEs, in short) related to a multivalued max-
imal monotone operator defined by the subdifferential of a convex function have first been
introduced by Gegout-Petit and Pardoux [14]. Further, Pardoux and Răşcanu [27] proved
the existence and uniqueness of the solution of BSDEs, on a random (possibly infinite) time
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interval, involving a subdifferential operator in order to give a probabilistic interpretation
for the viscosity solution of some parabolic and elliptic variational inequalities. Follow-
ing, Ouknine [24], N’zi and Ouknine [19, 20], Bahlali et al. [3, 4] discussed this type of
BSDEs driven by a Brownian motion or the combination of a Brownian motion and an
independent Poisson point process under the conditions of Lipschitz, locally Lipschitz or
some monotone conditions on the coefficients.

Recently, a new class of BSDEs, named backward doubly stochastic differential equa-
tions (BDSDEs, in short) involving a standard forward stochastic integral and a backward
stochastic integral has been introduced by Pardoux and Peng [26] in order to give a prob-
abilistic representation for a class of quasilinear stochastic partial differential equations
(SPDEs, in short). Following it, Matoussi and Scheutzow [18], Bally and Matoussi [5],
Zhang and Zhao [32], Aman and Mrhardy[1] and Boufoussi et al. [6, 7] studied this kind
of BDSDEs from different aspects.

The main tool in the theory of BSDEs is the martingale representation theorem for a
martingale which is adapted to the filtration of a Brownian motion or a Poisson point process
(Pardoux and Peng [25], Tang and Li [31]). Recently, Nualart and Schoutens [21] gave
a martingale representation theorem associated with a Lévy process. This class of Lévy
processes includes Brownian motion, Poisson process, Gamma process, negative binomial
process and Meixner process as special cases. Based on [21], they showed the existence
and uniqueness of the solution for BSDEs driven by Teugels martingales associated with a
Lévy process in [22]. These results were important from a pure mathematical point of view
as well as from application point of view in the world of finance. Specifically, they could
be used for the purpose of option pricing in a Lévy market and related partial differential
equation which provided an analogue of the famous Black-Scholes formula. Motivated by
[26] and [22], Ren et al. [30] considered a class of BDSDEs driven by Teugels martingales
and an independent Brownian motion, obtained the existence and uniqueness of solutions
to these equations, which allowed to give a probabilistic interpretation for the solution to a
class of stochastic partial differential-integral equations (SPDIEs, in short). Very recently,
Ren and Fan [29] derived the existence and uniqueness of the solution for BSDEs driven by
a Lévy process involving a subdifferential operator and gave a probabilistic interpretation
for the solutions of a class of partial differential-integral inclusions (PDIIs, in short).

Motivated by the above works, the first aim of this paper is to derive existence and
uniqueness result to the following BDSDE involving subdifferential operator of a convex
function and driven by Teugels martingales associated with a Lévy process: for each t ∈
[0,T ], 

dYt + f (t,Yt,Zt)dt+g(t,Yt,Zt)dBt ∈ ∂ϕ(Yt)dt+
∑∞

i=1 Z(i)
t dH(i)

t ,

YT = ξ,

(1.1)

where ∂ϕ is a subdifferential operators. The integral with respect to {Bt} is a backward
Kunita-Itô integral (see Kunita [16]) and this one with respect to {H(i)

t }i≥1 is a standard
forward Itô integral (see Gong [15]). Our method is based on the Yosida approximation.

On the other hand, since the pioneering paper due to Buckdahn and Ma [9],[10],[11],
the notion of stochastic viscosity solution has been intensely studied in the last ten year.
Among others, we can cite the work of Boufoussi et al. [6], [7], Aman and Mrhardy [1],



Multivalued Stochastic Partial Differential-Integral Equations 3

Aman and Ren [2] and Ren et al. [28], etc. In all these different works, authors have set
existence results to stochastic viscosity solution of several types of SPDE. The tool is en-
tirely probabilistic and used the connection between these SPDE and associated BDSDEs.
Following this way, the second goal in this paper is to give stochastic viscosity solution for
multivalued stochastic partial differential-integral equations (MSPDIEs, in short): for each
(t, x) ∈ [0,T ]×Rd,

(
∂u
∂t (t, x)+Lu(t, x)+ f

(
t, x,u(t, x), (u1

k(t, x))∞k=1

)
+g(t, x,u(t, x))Ḃt

)
∈ ∂ϕ(x),

u(T, x) = u0(x),
(1.2)

where L is the second-order differential integral operator of the diffusion process given by

Lφ(t, x) = m1

d∑
i=1

σi(x)
∂φ

∂xi
(t, x)+

1
2

d∑
i=1

σ2
i (x)
∂2φ

∂x2
i

(t, x)

+

∫
R

[
φ(t, x+σ(x)y)−φ(t, x)−〈∇φ(t, x),σ(x)y〉

]
ν(dy),

(1.3)

and

φ1
k(t, x) =

∫
R

(φ(t, x+σ(x)y)−φ(t, x))pk(y)ν(dy),

with σ a Rd-valued function, which is the drift coefficient of SDE driven by the Lévy
process {Lt : t ∈ [0,T ]}: for each t ∈ [0,T ]

Xt = x+
∫ t

0
σ(Xs−)dLs. (1.4)

The quantity m1 is defined by m1 = E(L1), and the definition of pk will be given in Section
2. Notice that equation (1.4) is the stochastic version of the partial differential integral
equation (PDIEs, in short) introduced by El Otmani in [23]. Our study is motivate by
the fact that almost all deterministic problems in many applied fields have their stochastic
counterparts. The method is also fully probabilistic and uses connection between MSPDIE
(1.1) and BDSDE (1.1) in Markovian framework.

The paper is organized as follows. In Section 2, we introduce some preliminaries and
notations. Section 3 is devoted to the existence and uniqueness result for BDSDEs involving
subdifferential operator of a convex function and driven by a Lévy process. Finally, in
section 4 we derive a probabilistic representation (in stochastic viscosity sense) for the
solution of a class of MSPDIEs via BDSDEs proposed in Section 3.

2 Preliminaries and notations

Let T > 0 be a fixed terminal time and {Bt : t ∈ [0,T ]} be a standard R-valued Brownian
motion defined on a complete probability space (Ω,F ,P). Let us also consider {Lt : t ∈
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[0,T ]}, a R-valued Lévy process corresponding to a standard Lévy measure ν defined on a
complete probability space (Ω′,F ′,P′) with the following characteristic function:

E(eiuLt ) = exp
[
iaut−

1
2
κ2u2t+ t

∫
R

(eiux−1− iux1{|x|<1})ν(dx)
]
,

where a ∈ R, κ ≥ 0. Moreover, the Lévy measure ν satisfies the following conditions:

1.
∫
R

(1∧ y2)ν(dy) <∞,

2.
∫

]−ε,ε[c eλ|y|ν(dy) <∞, for every ε > 0 and for some λ > 0,

which provides that Lt has moments of all orders, i.e.
∫ +∞
−∞
|x|iν(dx) <∞, ∀i ≥ 2.

We consider the product space (Ω̄, F̄ , P̄), defined by

Ω̄ = Ω×Ω′; F̄ = F ⊗F ′ ; P̄ = P⊗P′.

Further, random variables ξ(ω), ω ∈ Ω and ζ(ω′), ω′ ∈ Ω′ can be considered as random
variables on Ω̄ via the following identifications:

ξ(ω,ω′) = ξ(ω); ζ(ω,ω′) = ζ(ω′).

In this fact, the processes B and L are assumed independent. Next, denoting by N the
totality of P̄-null sets of F̄ , and for each t ∈ [0,T ], we define

Ft = F
B

t,T ⊗F
L

t ∨N ,

where for any process {ηt},F
η
s,t = σ{ηr − ηs : s ≤ r ≤ t} and F ηt = F

η
0,t. Since {F B

t,T }t≥0 is
decreasing and {F L

t }t≥0 is increasing, the objet {Ft}t≥0 is neither increasing nor decreasing.
Thus it does not a filtration.

We denote by (H(i))i≥1 the linear combination of so-called Teugels martingale Y (i)
t asso-

ciated with the Lévy process {Lt : t ∈ [0,T ]} defined by

H(i)
t = ci,iY

(i)
t + ci,i−1Y (i−1)

t + · · ·+ ci,1Y (1)
t ,

where for all i ≥ 1, Y (i)
t = L(i)

t − E[L(i)
t ] = L(i)

t − tE[L(i)
1 ] for each t ∈ [0,T ]. More precisely,

denoting ∆Ls = Ls − Ls− , the processes L(i)
t is defined as follows: L(1)

t = Lt and L(i)
t =∑

0<s≤t(∆Ls)i for i ≥ 2. It was shown in Nualart and Schoutens [21] that L(i)
t is a power-jump

processes and the coefficients ci,k correspond to the orthonormalization of the polynomials
qi−1(x)= ci,ixi−1+ci,i−1xi−2+ · · ·+ci,1 with respect to the measure µ(dx)= x2ν(dx)+κ2δ0(dx):∫

R
qn(x)qm(x)µ(dx) = 0 if n , m and

∫
R

q2
n(x)µ(dx) = 1.

We set

pk(x) = xqk−1(x).

The martingales (H(i))i≥1 can be chosen to be pairwise strongly orthonormal martingales,
i.e. [H(i),H( j)] = 0, i , j, and {[H(i),H(i)]t − t}t≥0 are uniformly integrable martingales with
initial value 0 and

〈
H(i),H( j)

〉
t
= δi jt.
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Remark 2.1. The case of ν = 0 corresponds to the classic Brownian case and all non-zero
degree polynomials qi(x) will vanish, giving H(i)

t = 0, i = 2,3, · · · , i.e. all power jump pro-
cesses of order strictly greater than one will be equal to zero. If ν only has mass at 1, we
have the Poisson case; here also H(i)

t = 0, i = 2,3, · · · , i.e. all power jumps processes will be
the same, and equal to the original Poisson process. Both cases are degenerate in this Lévy
framework.

Let us introduce the following appropriate spaces:

• `2 =
{
x = (xn)n≥1; ‖x‖`2 =

(∑∞
n=1 |xn|

2
)1/2
<∞

}
.

• H2 the subspace of the Ft-measurable and R-valued processes (Yt)t∈[0,T ] such that

‖Y‖2
H2 = E

∫ T

0
|Yt|

2 dt < +∞.

• S 2 the subspace of the R-valued, Ft-measurable, right continuous left limited (rcll, in
short) processes (Yt)t∈[0,T ] such that

‖Y‖2S 2 = E

(
sup

0≤t≤T
|Yt|

2
)
< +∞.

• P2(l2) the space of jointly predictable processes (Z)t∈[0,T ] taking values in `2 such that

‖Z‖2
P2(l2) = E

∫ T

0
‖Zs‖

2
`2

ds =
∞∑

i=1

E

∫ T

0
|Z(i)

s |
2 ds <∞.

Now, we make the following assumptions:

(H1) The coefficients f : [0,T ]×Ω×R× `2→ R and g : [0,T ]×Ω×R× `2→ R satisfy, for
all t ∈ [0,T ], y ∈ R and z ∈ `2,

(i) f (t, ·,y,z) and g(t, ·,y,z) are Ft-measurable,

(ii) f (·,0,0), g(·,0,0) ∈ H2;

(H2) There exist some constants C > 0 and 0 < α < 1 such that for every (t,ω) ∈ [0,T ]×
Ω, (y1,z1), (y2,z2) ∈ R× `2

| f (t,ω,y1,z1)− f (t,ω,y2,z2)|2 ≤C
(
|y1− y2|

2+ ‖z1− z2‖
2
`2

)
,

|g(t,ω,y1,z1)−g(t,ω,y2,z2)|2 ≤C|y1− y2|
2+α‖z1− z2‖

2
`2

;

(H3) Let ϕ : R→ (−∞,+∞] be a proper lower semi continuous convex function satisfying
ϕ(y) ≥ ϕ(0) = 0;

(H4) The terminal value ξ ∈ L2(Ω,FT ,P) satisfies

E
(
|ξ|2+ϕ(ξ)

)
<∞.
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Define:

Dom(ϕ) = {u ∈ R : ϕ(u) < +∞} ,

∂ϕ(u) = {u∗ ∈ R : 〈u∗,v−u〉+ϕ(u) ≤ ϕ(v), for all v ∈ R},

Dom(∂ϕ) = {u ∈ R : ∂ϕ(u) , ∅},

Gr(∂ϕ) = {(u,u∗) ∈ R2 : u ∈ Dom(∂ϕ),u∗ ∈ ∂ϕ(u)}.

Notice that the subdifferential ∂ϕ is often identified with its graph Gr(∂ϕ).
Now, we introduce a multi-valued maximal monotone operator on R defined by the

subdifferential of the above function ϕ.
For all x ∈ R, define

ϕε(x) =min
y

(
1
2
|x− y|2+εϕ(y)

)
=

1
2
|x− Jε(x)|2+εϕ(Jε(x)),

where Jε(x) = (I+ε∂ϕ)−1(x) is called the resolvent of the monotone operator A = ∂ϕ. Then,
we have the following proposition which appeared in Brezis [8].

Proposition 2.2. (1) The function ϕε : R → R is a convex with Lipschitz continuous
derivatives;

(2) for all x ∈ R,

1
ε

Dϕε(x) =
1
ε
∂ϕε(x) =

1
ε

(x− Jε(x)) ∈ ∂ϕ(Jε(x));

(3) for all x,y ∈ R,

|Jε(x)− Jε(y)| ≤ |x− y|;

(4) for all x ∈ R,

0 ≤ ϕε(x) ≤ 〈Dϕε(x), x〉 ;

(5) for all x,y ∈ R and ε,δ > 0,〈
1
ε

Dϕε(x)−
1
δ

Dϕδ(y), x− y
〉
≥ −

(
1
ε
+

1
δ

)
|Dϕε(x)||Dϕδ(y)|.

We first give the definition of BDSDEs involving subdifferential operator of a convex
function and driven by Lévy process.

Definition 2.3. By definition a solution to BDSDE (ξ, f ,g,ϕ) is a triple of (Y,U,Z) of jointly
measurable processes such that

1. (Y,Z) ∈ S 2×P2(l2), U ∈ H2;

2. (Yt,Ut) ∈ ∂ϕ, dP⊗ dt-a.e. on [0,T ];

3. for all t ∈ [0,T ]

Yt +

∫ T

t
Us ds = ξ+

∫ T

t
f (s,Ys,Zs)ds+

∫ T

t
g(s,Ys,Zs)dBs−

∞∑
i=1

∫ T

t
Z(i)

s dH(i)
s .
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3 Existence and uniqueness result for BDSDE driven by Lévy
process

The first result of the paper is the following theorem:

Theorem 3.1. Assume that the assumptions (H1)–(H4) hold. Then the BDSDE (ξ, f ,g,ϕ)
has a unique solution.

For the prove of this theorem, let us consider the following BDSDEs:

Yεt +
1
ε

∫ T

t
Dϕε(Yεs )ds = ξ+

∫ T

t
f (s,Yεs ,Z

ε
s )ds+

∫ T

t
g(s,Yεs ,Z

ε
s )dBs

−

∞∑
i=1

∫ T

t
Zε,(i)s dH(i)

s , 0 ≤ t ≤ T, (3.1)

where ϕε is the Yosida approximation of the operator A = ∂ϕ. Since 1
εDϕε(Y

ε
s ) is Lipschitz

continuous, it is known from a recent result of Ren et al. [30], that Eq. (3.1) has a unique
solution (Yε,Zε) ∈ S 2×P2(l2).

Setting Uεt =
1
εDϕε(Y

ε
t ), 0 ≤ t ≤ T, our aim is to prove that the net (Yε,Uε,Zε) converges

to a process (Y,U,Z) which is the desired solution of the BDSDEs.
In the sequel, C > 0 is a constant which can change its value from line to line. Firstly,

we give a priori estimates on the solution.

Lemma 3.2. Assume that assumptions (H1)–(H4) hold. Then there exists a constant C1 > 0
such that for all ε > 0

E

(
sup

0≤t≤T
|Yεt |

2+

∫ T

0
‖Zεs ‖

2
`2

ds
)
≤C1.

Proof. Applying the Itô formula to |Yεt |
2 yields that

|Yεt |
2+

2
ε

∫ T

t
Yεs Dϕε(Yεs )ds = |ξ|2+2

∫ T

t
Yεs− f (s,Yεs ,Z

ε
s )ds+2

∫ T

t
Yεs−g(s,Yεs ,Z

ε
s )dBs

+

∫ T

t
|g(s,Yεs ,Z

ε
s )|2 ds−

∞∑
i=1

∫ T

t
|Zε,(i)s |

2 d[H(i),H(i)]s

−2
∞∑

i=1

∫ T

t
Yεs−Z

ε,(i)
s dH(i)

s . (3.2)

Noting that the fact Yεs Dϕε(Yεs ) ≥ 0 and taking expectation on the both sides, we obtain

E|Yεt |
2+E

∫ T

t
‖Zεs ‖

2
`2

ds ≤ E|ξ|2+2E
∫ T

t
Yεs− f (s,Yεs ,Z

ε
s )ds

+E

∫ T

t
|g(s,Yεs ,Z

ε
s )|2 ds. (3.3)
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Using the elementary inequality 2ab ≤ β2a2+ b2

β2 for all a,b ≥ 0, β > 0, and (H2), we obtain
for all M > 0

2y f (s,y,z) = 2y( f (s,y,z)− f (s,0,0))+2y f (s,0,0)

≤
1
M
|y|2+MC|y|2+MC‖z‖2

`2
+ |y|2+ | f (s,0,0)|2

≤

(
1+

1
M
+MC

)
|y|2+ | f (s,0,0)|2+MC‖z‖2

`2

and

|g(s,y,z)|2 = |g(s,y,z)−g(s,0,0)+g(s,0,0)|2

≤

(
1+

1
β

)
|g(s,y,z)−g(s,0,0)|2+ (1+β)|g(s,0,0)|2

≤

(
1+

1
β

)
C|y|2+ (1+β)|g(s,0,0)|2+α

(
1+

1
β

)
‖z‖2
`2
.

Choosing M = 1−α
2C ,β=

3α
1−α , where 0< α < 1 is a constant appearing in (H2), it follows from

(3.3) that

E|Yεt |
2+

1−α
6
E

∫ T

t
‖Zεs ‖

2
`2

ds

≤ CE
(
|ξ|2+

∫ T

t
|Yεs |

2 ds+
∫ T

0
| f (s,0,0)|2 ds+

∫ T

0
|g(s,0,0)|2 ds

)
.

Gronwall inequality and Bulkholder-Davis-Gundy inequality show the desired result. �

Lemma 3.3. Assume that the assumptions (H1)–(H4) hold. Then there exists a constant
C2 > 0 independent of ε such that

(i) E
∫ T

0

(
1
ε

∣∣∣Dϕε(Yεs )
∣∣∣)2

ds ≤C2;

(ii) Eϕ
(
Jε(Yεt )

)
≤C2;

(iii) E|Yεt − Jε(Yεt )|2 ≤ ε2C2.

Proof. (i) For each t ∈ [0,T ], given an equidistant partition of interval [t,T ] such that t =
t0 < t1 < t2 < · · · < tn = T and ti+1− ti = 1

n , the subdifferential inequality shows

ϕε(Yεti+1
) ≥ ϕε(Yεti )+ (Yεti+1

−Yεti )Dϕε(Y
ε
ti ).

From (3.1), we obtain

ϕε(Yεti )+
1
ε

∫ ti+1

ti
Dϕε(Yεti )Dϕε(Y

ε
s )ds ≤ ϕε(Yεti+1

)+
∫ ti+1

ti
Dϕε(Yεti ) f (s,Yεs ,Z

ε
s )ds

+

∫ ti+1

ti
Dϕε(Yεti )g(s,Yεs ,Z

ε
s )dBs

−2
∞∑
j=1

∫ ti+1

ti
Dϕε(Yεti )(Z

ε
s )( j) dH( j)

s .
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Summing up the above formula over i and letting n→∞, we obtain

ϕε(Yεt−)+
1
ε

∫ T

t
|Dϕε(Yεs−)|

2 ds

≤ ϕε(ξ)+
∫ T

t
Dϕε(Yεs−) f (s,Yεs ,Z

ε
s )ds+

∫ T

t
Dϕε(Yεs−)g(s,Yεs ,Z

ε
s )dBs

−2
∞∑
j=1

∫ T

t
Dϕε(Yεs−)(Z

ε
s )( j) dH( j)

s .

Taking expectation on the both sides, we get

Eϕε(Yεt )+
1
ε
E

∫ T

t
|Dϕε(Yεs )|2 ds ≤ Eϕε(ξ)+E

∫ T

0
Dϕε(Yεs ) f (s,Yεs ,Z

ε
s )ds. (3.4)

From the inequalities

Dϕε(y) f (s,y,z) ≤
1
2ε
|Dϕε(y)|2+

ε

2
| f (s,y,z)|2

≤
1
2ε
|Dϕε(y)|2+ε(| f (s,y,z)− f (s,0,0)|2+ | f (s,0,0)|2)

≤
1
2ε
|Dϕε(y)|2+εC|y|2+εC‖z‖2

`2
+ε| f (s,0,0)|2,

from the facts that ϕε(Yεt ) ≥ 0 and ϕε(ξ) ≤ εϕ(ξ) and by employing (3.4), we obtain

1
2ε
E

∫ T

0
|Dϕε(Yεs )|2 ds ≤CE

(
ϕ(ξ)+

∫ T

0
| f (s,0,0)|2 ds+T sup

0≤t≤T
|Yεt |

2+

∫ T

0
‖Zεt ‖

2
`2

dt
)
.

Lemma 3.2 shows the desired result.
(ii) From (3.4) we obtain

Eϕε(Yεt ) ≤ εEϕ(ξ)+
1
2ε
E

∫ T

t
|Dϕε(Yεs )|2 ds+εE

∫ T

t
| f (s,Yεs ,Z

ε
s )|2 ds.

Using ϕ(Jε(Yεt )) ≤ 1
εϕε(Y

ε
t ) and (i), we obtain (ii).

The last part of the Lemma simply follows from the fact that

|x− Jε(x)| = 2ϕε(x)−2εϕ(Jε(x)).

This completes the proof of Lemma 3.3. �

Let (εn)n≥0 be a sequence of strictly positif real numbers such that limn→∞ εn = 0. In
what follows, we aim to show that (Yεn ,Zεn)n≥0 is a Cauchy sequence in S 2×P2(l2).

Lemma 3.4. Assume that the assumptions (H1)–(H4) hold. Then there exists a constant C3
independent of ε, δ > 0 such that

E

(
sup

0≤t≤T
|Yεt −Yδt |

2+

∫ T

0
‖Zεt −Zδt ‖

2
`2

dt
)
≤C3(ε+δ).
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Proof. Applying the Itô formula to |Yεt −Yδt |
2 yields the equality

|Yεt −Yδt |
2 = −2

∫ T

t
(Yεs −Yδs )

(
1
ε

Dϕε(Yεs )ds−
1
δ

Dϕδ(Yδs )
)

ds

+2
∫ T

t
(Yεs −Yδs )( f (s,Yεs ,Z

ε
s )− f (s,Yδs ,Z

δ
s ))ds

+2
∫ T

t
(Yεs −Yδs )(g(s,Yεs ,Z

ε
s )−g(s,Yδs ,Z

δ
s ))dBs

+

∫ T

t
|g(s,Yεs ,Z

ε
s )−g(s,Yδs ,Z

δ
s )|2 ds−

∫ T

t
‖Zεs −Zδs‖

2
`2

ds

−2
∞∑

i=1

∫ T

t
(Yεs −Yδs )(Zε,(i)s −Zδ,(i)s )dH(i)

s . (3.5)

Taking expectations, we obtain

E|Yεt −Yδt |
2+E

∫ T

t
‖Zεs −Zδs‖

2
`2

ds

= −2E
∫ T

t
(Yεs −Yδs )

(
1
ε

Dϕε(Yεs )ds−
1
δ

Dϕδ(Yδs )
)

ds

+2E
∫ T

t
(Yεs −Yδs )( f (s,Yεs ,Z

ε
s )− f (s,Yδs ,Z

δ
s ))ds

+E

∫ T

t
|g(s,Yεs ,Z

ε
s )−g(s,Yδs ,Z

δ
s )|2 ds. (3.6)

Using the elementary inequality 2ab ≤ β2a2 + b2

β2 for all a,b ≥ 0 and (H2), we get as in the
proof of Lemma 3.2

(Yεs −Yδs )( f (s,Yεs ,Z
ε
s )− f (s,Yδs ,Z

δ
s ))

≤
2C

1−α
|Yεs −Yδs |

2+
1−α

2
|Yεs −Yδs |

2+
1−α

2
‖Zεs −Zδs‖

2
`2

and
|g(s,Yεs ,Z

ε
s )−g(s,Yδs ,Z

δ
s )|2 ≤C|Yεs −Yδs |

2+α‖Zεs −Zδs‖
2
`2
.

Noting (5) of Proposition 2.2, we obtain

E|Yεt −Yδt |
2+

1−α
2
E

∫ T

t
‖Zεs −Zδs‖

2
`2

ds

≤ CεE
∫ T

t
|Yεs −Yδs |

2 ds

+2
(
1
ε
+

1
δ

)
E

∫ T

t
|Dϕε(Yεs )||Dϕδ(Yδs ))|ds. (3.7)

Lemma 3.3 shows that

2
(
1
ε
+

1
δ

)
E

∫ T

t
|Dϕε(Yεs )||Dϕδ(Yδs ))|ds ≤ (ε+δ)C.
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So, we can obtain

E|Yεt −Yδt |
2+E

∫ T

t
‖Zεs −Zδs‖

2
`2

ds ≤CE
∫ T

t
|Yεs −Yδs |

2 ds+C(ε+δ).

The Gronwall inequality shows that

sup
0≤t≤T

E|Yεt −Yδt |
2+E

∫ T

t
‖Zεs −Zδs‖

2
`2

ds ≤C(ε+δ).

The Bulkholder-Davis-Gundy inequality yields the desired result. �

Proof of Theorem 3.1

Existence. Lemma 3.4 shows that (Yεn ,Zεn) is a Cauchy sequence in S 2×P2(l2), whenever
limn→∞ εn = 0 . As a consequence, the limε↓0(Yε,Zε) exist in the same space. Denote this
limit by (Y,Z). From the same lemma it follows that (Y,Z) belongs to S 2×P2(l2). For each
ε ≥ 0, let us define

Uεt =
1
ε

Dϕε(Yεt )

and

Ūεt =
∫ t

0
Uεs ds.

Then, for all ε, δ > 0, it follows from (3.1) that

E

(
sup

0≤t≤T
|Ūεt − Ūδt |

2
)
≤CE

(
sup

0≤t≤T
|Yεt −Yδt |

2+

∫ T

0
‖Zεt −Zδt ‖

2
`2

dt
)
,

which, together with Lemma 3.4 shows that (Ūε) is a Cauchy net. Hence, there exists a
measurable process Ūt such that

lim
ε→0
E

(
sup

0≤t≤T
|Ūεt − Ūt|

2
)
= 0.

Furthermore, Lemma 3.3 (i) implies that

sup
ε
E

∫ T

0
|Uεt |

2 dt = sup
ε
E

∫ T

0

(
1
ε
|Dϕε(Yεt )|

)2

dt <∞,

which shows that (Ūε)ε is bounded in the space L2(Ω,H1[0,T ]), and converges weakly to Ū
in the same space. In particular Ū is absolutely continuous so that there exists a measurable
process (Ut)0≤t≤T ∈ H

2 such that Ūt =
∫ t

0 Us ds.
Next, we will show that (Yt,Ut) ∈ ∂ϕ, dP⊗ dt-a.e. on [0,T ]. A consequence of assertion

(2) in Proposition 2.2 is that Uεt belongs to the subdifferential ∂ϕ(Jε(Yεt )), and hence∫ b

a
Uεt (Vt − Jε(Yεt ))dt+

∫ b

a
ϕ(Jε(Yεt ))dt ≤

∫ b

a
ϕ(Vt)dt (3.8)
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for all V = (Vt)t∈[a,b] ∈ H([a,b]). Moreover, for all 0 ≤ a < b ≤ T and all processes V ∈
H2([a,b]), Lemma 5.8 in [14] provides us the convergence∫ b

a
Uεt (Vt −Yεt )dt→

∫ b

a
Ut(Vt −Yt)dt, in probability as ε ↓ 0. (3.9)

From (i) of Lemma 3.3, i.e. from supε>0E
∫ T

0 |U
ε
t |

2dt < ∞ together with assertion (iii) in
Lemma 3.3 we see ∫ b

a
Uεt (Jε(Yεt )−Yεt )dt→ 0, as ε ↓ 0. (3.10)

which together with Proposition 2.2 provides that Uεt ∈ ∂ϕ(Jε(Yεt )) and∫ b

a
Uεt (Vt − Jε(Yεt )dt+

∫ b

a
ϕ(Jε(Yεt ))dt ≤

∫ b

a
ϕ(Vt)dt.

In virtue of the inequality in (3.8) we obtain:∫ b

a
Ut(Vt −Yt)dt+

∫ b

a
ϕ(Yt)dt

=

∫ b

a
Ut(Vt −Yt)dt−

∫ b

a
Uεt (Vt −Yεt )dt

+

∫ b

a
Uεt (Vt − Jε(Yεt ))dt+

∫ b

a
ϕ(Jε(Yεt ))dt+

∫ b

a
Uεt (Jε(Yεt )−Yεt )dt

≤

∫ b

a
Ut(Vt −Yt)dt−

∫ b

a
Uεt (Vt −Yεt )dt+

∫ b

a
ϕ(Vt)dt

+

∫ b

a
Uεt (Jε(Yεt )−Yεt )dt. (3.11)

Taking the liminf (in probability) in the inequality (3.11) as ε ↓ 0 and involving (3.9) and
(3.10), we obtain ∫ b

a
Ut(Vt −Yt)dt+

∫ b

a
ϕ(Yt)dt ≤

∫ b

a
ϕ(Vt)dt. (3.12)

Since in (3.12) we may choose any pair (a,b) ∈ R×R for which 0 ≤ a ≤ b ≤ T , and the
process V ∈ H([a,b]) is arbitrary, we infer

Ut(Vt −Yt)+ϕ(Yt) ≤ ϕ(Vt), dP⊗dt-a.e.. (3.13)

From (3.13) it follows that (Yt,Ut) ∈ ∂ϕ, dP⊗dt-a.e. on [0,T ]. Taking limits on both sides
of (3.1), we obtain the existence of the solution.

Uniqueness. Let (Yt,Ut,Zt)0≤t≤T and (Y ′t ,U
′
t ,Z
′
t )0≤t≤T be two solutions of BDSDE(ξ, f ,g,ϕ).

Define
(∆Yt,∆Ut,∆Zt)0≤t≤T = (Yt −Y ′t ,Ut −U′t ,Zt −Z′t )0≤t≤T .

Applying the Itô formula to |∆Yt|
2 shows that
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E|∆Yt|
2+2E

∫ T

t
∆Us∆Ys ds+E

∫ T

t
‖∆Zt‖

2
`2

ds

= 2E
∫ T

t
∆Ys[ f (s,Ys,Zs)− f (s,Y ′s,Z

′
s)]ds

+E

∫ T

t
|g(s,Ys,Zs)−g(s,Y ′s,Z

′
s)|

2 ds. (3.14)

Since ∂ϕ is monotone, and Ut ∈ ∂ϕ(Yt), for all t ∈ [0,T ], we have

∆Us∆Ys ≥ 0, dP⊗dt-a.e.

Furthermore, by applying the same procedure as in the proof of Lemma 3.4, we obtain

E|∆Yt|
2+E

∫ T

t
‖∆Zt‖

2
`2

ds ≤CE
∫ T

t
|∆Ys|

2 ds+
1
2
E

∫ T

t
‖∆Zs‖

2
`2

ds.

The Gronwall inequality entails ∆Yt = 0 dP⊗dt-a.e., and so the uniqueness of the solution
follows. �

4 Stochastic viscosity solutions of multivalued SPDIEs

In this section, we derive the existence of the stochastic viscosity solution of a class of mul-
tivalued SPDIE (1.2) via BDSDE with subdifferential operator and driven by Lvy process
studied in the previous section.

4.1 Notion of stochastic viscosity solution of multivalued SPDIEs

Recall that FB = {F B
t,T }0≤t≤T stands for the filtration generated by Brownian motion B =

{Bt}0≤t≤T . The objetMB
0,T denotes all the FB-stopping times τ such 0 ≤ τ ≤ T , a.s. andMB

∞

is the set of all almost surely finite FB-stopping times. For generic Euclidean spaces E and
E1, we introduce the following spaces:

1. The symbol Ck,n([0,T ]× E; E1) stands for the space of all E1-valued functions de-
fined on [0,T ]× E which are k-times continuously differentiable in t and n-times
continuously differentiable in x, and Ck,n

b ([0,T ] × E; E1) denotes the subspace of
Ck,n([0,T ]×E; E1) in which all functions have uniformly bounded partial derivatives.

2. For any sub-σ-field G ⊆ F B
T , Ck,n(G, [0,T ]×E; E1) (resp. Ck,n

b (G, [0,T ]×E; E1)) de-
notes the space of all Ck,n([0,T ]× E; E1) (resp. Ck,n

b ([0,T ]× E; E1)-valued random
variable that are G⊗B([0,T ]×E)-measurable;

3. Ck,n(FB, [0,T ]×E; E1) (resp.Ck,n
b (FB, [0,T ]×E; E1)) is the space of all random fields

ϕ ∈ Ck,n(FT , [0,T ]×E; E1 (resp. Ck,n(FT , [0,T ]×E; E1), such that for fixed x ∈ E and
t ∈ [0,T ], the mapping ω→ α(t,ω, x) is FB-progressively measurable.

4. For any sub-σ-field G ⊆ F B and a real number p ≥ 0, Lp(G; E) denotes the set of all
E-valued, G-measurable random variable ξ such that E|ξ|p <∞.
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Furthermore, regardless of the dimension, we denote by 〈·, ·〉 and | · | the inner product and

norm in E and E1, respectively. For (t, x,y) ∈ [0,T ]×Rd×R, we denote Dx =

(
∂

∂x1
, ....,

∂

∂xd

)
,

Dxx = (∂2
xi x j

)d
i, j=1, Dy =

∂

∂y
, Dt =

∂

∂t
. The meaning of Dxy and Dyy is then self-explanatory.

The coefficients

f : Ω× [0,T ]×Rd ×R× `2→ R

g : Ω× [0,T ]×Rd ×R→ R

σ : Rd→ Rd

u0 : Rd→ R,

satisfying the assumptions:

(H5)


| f (t, x,y,z)| ≤ K(1+ |x|+ |y|+ ‖z‖),

|u0(x)|+ |ϕ(u0(x))| ≤ K(1+ |x|).

(H6)


‖σ(x)−σ(x′)‖ ≤ K|x− x′|,

| f (t, x,y,z)− f (t, x,y′,z′)| ≤ K(|y− y′|+ ‖z− z′‖`2).

(H7) The function g ∈ C0,2,3
b ([0,T ]×Rd ×R;R).

The definition of stochastic viscosity solution to MSPDIE (1.1) uses the stochastic sub-
and super-jets introduced by Buckdahn and Ma [9]. Let us recall the following relevant
definitions.

Definition 4.1. Let τ ∈ MB
0,T , and ξ ∈ Fτ. We say that a sequence of random variables

(τk, ξk) is a (τ,ξ)-approximating sequence if for all k, (τk, ξk) ∈MB
∞×L2(Fτ,Rd) such that

(i) ξk→ ξ in probability;

(ii) either τk ↑ τ a.s., and τk < τ on the set {τ > 0}; or τk ↓ τ a.s., and τk > τ on the set
{τ < T }.

The symbol S(n), in the next definition, stands for the set of all symmetric n×n matri-
ces.

Definition 4.2. Let (τ,ξ) ∈ MB
0,T × L2

(
F B
τ ;Rd

)
and u ∈ C

(
FB, [0,T ]×Rd

)
. We denote by

J
1,2,+
g u(τ,ξ) the stochastic g-superjet of u at (τ,ξ) the set of R×Rd ×S(n)-valued and F B

τ -
measurable random vector (a, p,X) which is such that for all (τ,ξ)-approximating sequence
(τk, ξk), we have

u(τk, ξk) ≤ u(τ,ξ)+a(τk −τ)+b(Bτk −Bτ)+
c
2

(Bτk −Bτ)2+ 〈p, ξk − ξ〉

+〈q, ξk − ξ〉(Bτk −Bτ)+
1
2
〈X(ξk − ξ), ξk − ξ〉

+o(|τk −τ|)+o(|ξk − ξ|2). (4.1)
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The F B
τ -measurable random vector (b,c,q) taking values in R×Rd ×Rd is defined by

b = g(τ,ξ,u(τ,ξ)), c = (g∂ug)(τ,ξ,u(τ,ξ))

q = ∂xg(τ,ξ,u(τ,ξ))+∂ug(τ,ξ,u(τ,ξ))p.

Similarly,J1,2,−
g u(τ,ξ) denotes the set of all stochastic g-subjet of u at (τ,ξ) if the inequality

in (4.1) is reversed.

Remark 4.3. Let us note that ∂ϕ(y) = [ϕ′l(y),ϕ′r(y)], for every y ∈ Dom(ϕ), where ϕ′l(y) and
ϕ′r(y) denote the left and right derivatives of ϕ.

In order to simplify the notation in the definition of stochastic viscosity solution of
multivalued SPDIEs, we set

V f (τ,ξ,a, p,X) = −a−
1
2

Trace(σσ∗(ξ)X)−m1〈p,σ(ξ)〉−
1
2

∫
R
〈Xσ(ξ),σ(ξ)〉y2ν(dy)

− f
(
τ,ξ,u(τ,ξ),

∫
R
〈p,σ(ξ)y〉pk(y)ν(dy)

)
.

Definition 4.4. (1) A random field u ∈ C
(
FB, [0,T ]×Rd

)
which satisfies u (T, x) = u0 (x),

for all x ∈ Rd, is called a stochastic viscosity subsolution of MSPDIE (1.1) if

u(τ,ξ) ∈ Dom(ϕ), ∀ (τ,ξ) ∈MB
0,T ×L2

(
F B
τ ;Rd

)
, P-a.s.,

and at any (τ,ξ) ∈MB
0,T ×L2

(
F B
τ ;Rd

)
, for any (a, p,X) ∈J1,2,+

g u(τ,ξ), the following inequal-
ity holds P-a.s.

V f (τ,ξ,a, p,X)+ϕ′l(u(τ,ξ)−
1
2

(g∂ug)(τ,ξ,u(τ,ξ)) ≤ 0; (4.2)

(2) A random field u ∈ C
(
FB, [0,T ]×Rd

)
which satisfies that u (T, x) = u0 (x), for all x ∈ Rd,

is called a stochastic viscosity supersolution of MSPDIE (1.2) if

u(τ,ξ) ∈ Dom(ϕ), ∀ (τ,ξ) ∈MB
0,T ×L2

(
F B
τ ;Rd

)
, P-a.s.,

and at any (τ,ξ) ∈MB
0,T ×L2

(
F B
τ ;Rd

)
, for any (a, p,X) ∈J1,2,−

g u(τ,ξ), the following inequal-
ity holds P-a.s.

V(τ,ξ,a, p,X)+ϕ′r(u(τ,ξ)−
1
2

(g∂ug)(τ,ξ,u(τ,ξ)) ≥ 0; (4.3)

(3) A random field u ∈C
(
FB, [0,T ]×Rd

)
is called a stochastic viscosity solution of MSPDIE

(1.1) if it is both a stochastic viscosity subsolution and a stochastic viscosity supersolution.

Remark 4.5. Observe that if f is deterministic and g ≡ 0, Definition 4.4 becomes the gener-
alization of the definition of (deterministic) viscosity solution of MPDIE given by N’zi and
Ouknine in [20].

To finish this section, we state the notion of random viscosity solution which will be a
bridge linking the stochastic viscosity solution and its deterministic counterpart.

Definition 4.6. A random field u ∈C(FB, [0,T ]×Rd) is called an ω-wise viscosity solution
if for P-almost all ω ∈Ω, u(ω, ·, ·) is a (deterministic) viscosity solution of MSPDIE (1.2).
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4.2 Doss-Sussmann transformation

In this section, we will introduce the stochastic flow η ∈ C(FB, [0,T ] ×Rd ×R), unique
solution of the following stochastic differential equation in the Stratonovich sense:

η(t, x,y) = y+
∫ T

t
〈g(s, x,η(s, x,y)),◦dBs〉, (4.4)

where (4.4) should be viewed as going from T to t (i.e. y should be understood as the initial
value). Under the assumption (H7), the mapping y 7→ η(t, x,y) defines a diffeomorphism
for all (t, x), P-a.s. such that its y-inverse ε(t, x,y) is the solution to the following first-order
SPDE:

ε(t, x,y) = y−
∫ T

t
〈Dyε(s, x,y), g(s, x,η(s, x,y))◦dBs〉.

We refer the reader to [10] for a lucid discussion on this topic. We now give the following
result which proof follows the same procedure as the proof of Lemma 4.8 in [7].

Proposition 4.7. Assume that the assumptions (H1)–(H7) hold. If for (τ,ξ) ∈ MB
0,T ×

L2
(
F B
τ ;Rd

)
, u ∈ C

(
FB, [0,T ]×Rd

)
and (au,Xu, pu) belongs to J1,2,+

g u(τ,ξ), then (av,Xv, pv)
belongs to J1,2,+

0 v(τ,ξ), with v(·, ·) = ε(·, ·,u(·, ·)) and

av = Dyε(τ,ξ,u(τ,ξ))au

pv = Dyε(τ,ξ,u(τ,ξ))pu+Dxε(τ,ξ,u(τ,ξ))

Xv = Dyε(τ,ξ,u(τ,ξ))Xu+2Dxyε(τ,ξ,u(τ,ξ))p∗u
+Dxxε(τ,ξ,u(τ,ξ))+Dyyε(τ,ξ,u(τ,ξ))pu p∗u.

Conversely, if for (τ,ξ) ∈MB
0,T ×L2

(
F B
τ ;Rd

)
, v ∈C

(
FB, [0,T ]×Rd

)
and (av,Xv, pv) ∈J1,2,+

0 v(τ,ξ),
then (au,Xu, pu) ∈ J1,2,+

g u(τ,ξ) with u(·, ·) = η(·, ·,v(·, ·)) and

au = Dyη(τ,ξ,v(τ,ξ))av

pu = Dyη(τ,ξ,v(τ,ξ))pv+Dxη(τ,ξ,v(τ,ξ))

Xu = Dyη(τ,ξ,v(τ,ξ))Xv+2Dxyη(τ,ξ,v(τ,ξ))p∗v
+Dxxη(τ,ξ,v(τ,ξ))+Dyyη(τ,ξ,v(τ,ξ))pv p∗v.

One of the key ideas of Buckdahn and Ma is to use the Doss-Sussman transformation
to convert a SPDE to a PDE with random coefficients, so that the stochastic viscosity so-
lution can be studied ω-wisely. However, if we apply Doss-Sussman transformation to the
MSPDIE (1.2) the resulting equation is not necessarily the multivalued PDIE studied by
N’zi and Ouknine in [20], because of the presence of the subdifferential term. For this
reason we will require the Doss-Sussman transformation in the following way:

Corollary 4.8. Assume that the assumptions (H1)–(H7) hold. Let us define and consider
(τ,ξ) ∈MB

0,T ×L2
(
F B
τ ;Rd

)
, u ∈ C

(
FB, [0,T ]×Rd

)
.
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(1) for (au,Xu, pu) ∈ J1,2,+
g u(τ,ξ), u satisfies (4.2) if and only if v(·, ·) = ε(·, ·,u(·, ·)) satisfies

V f̃ (τ,ξ,av, pv,Xv)+
ϕ′l(η(τ,ξ,v(τ,ξ))
Dyη(τ,ξ,v(τ,ξ))

≤ 0; (4.5)

(2) for (au,Xu, pu) ∈ J1,2,−
g u(τ,ξ), u satisfies (4.3) if and only if v(·, ·) = ε(·, ·,u(·, ·)) satisfies

V f̃ (τ,ξ,av, pv,Xv)+
ϕ′l(η(τ,ξ,v(τ,ξ))
Dyη(τ,ξ,v(τ,ξ))

≥ 0; (4.6)

where (av, pv,Xv) is defined by Proposition 4.7 and

f̃ (t, x,y, (θk)k≥1) =
1

Dyη(t, x,y)

[
f
(
t, x,η(t, x,y),Dyη(t, x,y)θk +η1

k(t, x,y)
)

−
1
2

(g∂ug)(t, x,η(t, x,y))+Lxη(t, x,y)+λ〈σ∗(x)Dxyη(t, x,y),σ(x)pv〉

+
1
2
λDyyη(t, x,y)|σ(x)pv|

2
]
.

with θk =
∫
R
〈pv,σ(x)u〉pk(u)ν(du) and λ = 1+

∫
R

u2ν(du).

Proof. Let (τ,ξ) ∈MB
0,T × L2

(
F B
τ ;Rd

)
be given and (au, pu,Xu) ∈ J1,2,+

g u(τ,ξ). We assume
that u is a stochastic subsolution of MSPDIE (1.2), i.e.

u(τ,ξ) ∈ Dom(ϕ), ∀ (τ,ξ) ∈MB
0,T ×L2

(
F B
τ ;Rd

)
, P-a.s.,

such that

V f (τ,ξ,a, p,X)+ϕ′l(u(τ,ξ)−
1
2

(g∂u g)(τ,ξ,u(τ,ξ)) ≤ 0, P-a.s.

In view of Proposition 4.7 and since Dyη(t, x,y) > 0, for all (t, x,y), we obtain by little
calculation

V f̃ (τ,ξ,av, pv,Xv)+
ϕ′l(η(τ,ξ,v(τ,ξ)))
Dyη(τ,ξ,v(τ,ξ))

≤ 0.

The converse part of (1) can be proved similarly. In the same manner one can show the
second assertion (2). �

5 Probabilistic representation result for stochastic viscosity so-
lution to MSPDIEs

In this section, we aim to show that the solution of multivalued BDSDE with jump gives
the viscosity solution of a semi-linear MSPDIE in the Markovian case.
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5.1 A class of reflected diffusion process

We now introduce a class of diffusion processes. Let σ : Rd → Rd be a uniformly bounded
function satisfying the uniform Lipschitz condition with some constant C > 0, for all x,y ∈
Rd:

|σ(x)−σ(y)| ≤C|x− y|. (5.1)

For each (t, x) ∈ [0,T ]×Rd, from [17] and reference therein, let {Xt,x
s , s ∈ [t,T ]} be a unique

pair of progressively measurable process, which is a solution to the SDE (1.4) in the Marko-
vian framework:

Xt,x
s = x+

∫ s

t
σ(Xt,x

r− )dLr, (5.2)

where, as above, (Lt)0≤t≤T is a given Lévy process. Furthermore, we have the following
proposition.

Proposition 5.1. There exists a constant C > 0 such that for all 0 ≤ t < t′ ≤ T and x, x′ ∈Rd,
such that

E

[
sup

0≤s≤T

∣∣∣Xt,x
s −Xt′,x′

s

∣∣∣4] ≤C
(
|t′− t|2+ |x− x′|4

)
5.2 Existence of viscosity solution for MSPDIEs

Fix T > 0 and for all (t, x) ∈ [0,T ]×Rd, let Xt,x
s , s ∈ [t,T ] denote the solution of the SDE

(5.2). And we suppose now that the data (ξ, f ,g) of the multi-valued BDSDE possibly with
jumps take the form

ξ = u0(Xt,x
T ),

f (s,y,z) = f (s,Xt,x
s ,y,z),

g(s,y) = f (s,Xt,x
s ,y).

And we make the following assumptions:
We assume that u0 ∈ C(Rd;R), f ∈ C([0,T ]×Rd ×R× `2;R) and g ∈ C([0,T ]×Rd ×R;R)
such that the hypotheses (H1)–(H7) hold. It follows from the results of the Section 3 that,
for all (t, x) ∈ [0,T ]×Rd, there exists a unique triplet (Y t,x,Zt,x,U t,x) for the solution of the
following
(1) (Y t,x

s ,U
t,x
s ) ∈ ∂ϕ, dP⊗ ds-a.e. on [t,T ]

(2) Y t,x
s +

∫ T

s
U t,x

r dr = u0(Xt,x
T )+

∫ T

s
f (r,Xt,x

r ,Y
t,x
r ,Z

t,x
r )dr+

∫ T

s
g(r,Xt,x

r ,Y
t,x
r )dBr

−

∞∑
i=1

∫ T

s
(Zt,x)(i)

r dH(i)
r , t ≤ s ≤ T.

We extend processes Y t,x, Zt,x, U t,x on [0,T ] by putting Y t,x
s = Y t,x

t , Z
t,x
s = 0, U t,x

s = 0, s ∈
[0, t].

We have this result whose proof is similar to that of Theorem 2.1 which appeared in
[26]
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Proposition 5.2. Let the ordered triplet (Y t,x
s ,U

t,x
s ,Z

t,x
s ) be the unique solution of the multi-

valued BDSDE (5.2). Then, for (s, t, x) ∈ [0,T ]× [0,T ]×Rd, the random field (s, t, x) 7→
E′(Y t,x

s ) is a.s. continuous (Y t,x has jumps), where E′ is the expectation with respect to P′,
introduced at page 3.

We are ready now to derive our main result in this section.

Theorem 5.3. Suppose that the assumptions (H1)–(H7) are satisfied. Then, the function
u(t, x) defined by u(t, x) = Y t,x

t is a stochastic viscosity solution of MSPDIE (1.2)

Proof. Since the variable u(t, x) = Y t,x
t = E

′(Y t,x
t ), does not depend on ω′, it follows from

Proposition 5.2 that u ∈C(F B, [0,T ]×Rd). Next, for all (τ,ξ) ∈MB(0,T )×L2(F B,Rd),

ϕ(u(τ(ω), ξ(ω))) = ϕ
(
Yτ(ω),ξ(ω)
τ(ω)

)
<∞, P-a.s.,

which implies that u(τ,ξ) ∈ Dom(ϕ) P-a.s.Thus it remains to show that u is the stochastic
viscosity solution to MSPDIE (1.2). In other word, using Corollary 4.8, it suffices to prove
that v(t, x) = ε(t, x,u(t, x)) satisfies (4.5) and (4.6). For this reason and, for each (t, x) ∈
[0,T ]×Rd, δ > 0, let {(Y t,x,δ

s ,Zt,x,δ
s ), 0≤ s≤ T } denote the solution of the following BDSDE:

Y t,x,δ
s +

1
δ

∫ T

s
Dϕδ(Y t,x,δ

r )dr = u0(Xt,x
T )+

∫ T

s
f (r,Xt,x

r ,Y
t,x,δ
r ,Zt,x,δ

r )dr

+

∫ T

s
g(r,Xt,x

r ,Y
t,x,δ
r )dBr

−

∞∑
i=1

∫ T

s
(Zt,x,δ)(i)

r dH(i)
r . (5.3)

Setting Y t,x,δ
t = uδ(t, x), it is shown by Theorem 3.6 in [2], that the function vδ(t, x) =

ε(t, x,uδ(t, x)) is an ω-wise viscosity solution to this MSPDIE:
(i)

(
∂vδ

∂t
(t, x)−

[
Lvδ(t, x)+ f̃δ(t, x,vδ(t, x),σ∗(x)∇vδ(t, x))

])
= 0, (t, x) ∈ [0,T ]×Rd,

(ii) v(T, x) = u0(x), x ∈ Rd,

(5.4)

where

f̃δ(t, x,y,z) = f̃ (t, x,y,z)−
1
δDϕδ(η(t, x,y))

Dyη(t, x,y)
.

Moreover, an appeal to Lemma 3.5 shows that, along a subsequence,

|vδ(t, x)− v(t, x)| → 0, a.s., as δ→ 0, (5.5)

for all (t, x) ∈ [0,T ]×Rd.
On the other hand, for all (τ,ξ) ∈ MB(0,T )× L2(F B,Rd) and ω ∈ Ω be fixed, let us

consider (av, pv,Xv) ∈ J1,2,+
0 (v(τ(ω), ξ(ω))). Thus, since vδ is an ω-wise viscosity solution
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to the MSPDIE (5.4), and by Lemma 6.1 in Crandall- Ishii-Lions [12], there exist sequences

δn(ω)↘ 0,

(τn(ω), ξn(ω)) ∈ [0,T ]×Rd,

(an
v , p

n
v ,X

n
v ) ∈ J1,2,+

0 (vδn(τn(ω), ξn(ω)))

satisfying

(τn(ω), ξn(ω),an
v , p

n
v ,X

n
v ,v
δn(τn(ω), ξn(ω))) → (τ(ω), ξ(ω),av, pv,Xv,v(τ(ω), ξ(ω)))

n → ∞,

such that for (τn(ω), ξn(ω)) ∈ [0,T ]×Rd,

V f̃ (ω)(τn(ω), ξn(ω),an
v ,X

n
v , p

n
v)+

1
δn

Dϕδn(η(τn(ω), ξn(ω),vδn(τn(ω), ξn(ω))))

Dyη(τn(ω), ξn(ω),vδn(τn(ω), ξn(ω)))
≤ 0. (5.6)

In order to simplify the notation, we remove the dependence of ω. Let y ∈ Dom(ϕ) be such
that y < u(τ,ξ) = η(τ,ξ,v(τ,ξ)). The uniform convergence on compact subsets in probability
(ucp) of vδn to v implies that there exists n0 > 0 such that ∀n ≥ n0, y < η(τn, ξn,vδn(τn, ξn)).
Therefore, inequality (5.6) yields(

η(τn, ξn,vδn(τn, ξn))− y
)
V f̃δn

(
τn, ξn,an

v ,X
n
v , p

n
v
)

≤
[
ϕ(y)−ϕ(Jδn(η(τ,ξ,vδn(τ,ξ))))

] 1
Dyη(τn, ξn,vδn(τn, ξn))

.

Taking the limit in this last inequality, we get for all y < η(τ,ξ,v(τ,ξ))

V f̃ (τ,ξ,av,Xv, pv) ≤ −
ϕ(η(τ,ξ,v(τ,ξ)))−ϕ(y)
η(τ,ξ,v(τ,ξ))− y

1
Dyη(τ,ξ,v(τ,ξ))

,

which implies that

V f̃ (τ,ξ,av,Xv, pv)+
ϕ′l(η(τ,ξ,v(τ,ξ)))
Dyη(τ,ξ,v(τ,ξ))

≤ 0,

and we derive that v satisfies (4.5). Hence, according to Corollary 4.8, u is a stochastic
viscosity subsolution of MSPDIE (1.2). By similar arguments, one can prove that u is a
stochastic viscosity supersolution of MSPDIE (1.2). This completes the proof. �
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