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Abstract
In this paper we survey research progress related to the existence of an adjoint

for linear operators on Banach spaces. We introduce a new pair separable Banach
spaces which are required for the general theory. We then discuss a number ways one
can explicitly construct an adjoint and then prove that one always exists for bounded
linear operators. However, this is not true for the class of closed densely defined linear
operators. In this case, we can only show that one exists for operators of Baire class
one. The existence of an adjoint allows us to construct the polar decomposition. As
applications, we extend the Poincaré inequality and the Stone-von Neumann version of
the spectral theorem to all operators of Baire class one on a separable Banach space.
Our results even show that the spectral theorem is natural for Hilbert spaces (in a
certain well-defined sense). As a final application, we provide the natural Banach
space version of the Schatten class of compact operators.
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Introduction

The motivation for this work is the desire to extend advances in the Feynman operator
calculus (and path integrals) to Banach spaces (see [GZ] and [GZ4]). The direct approach
means that more of the known operator theory on Hilbert spaces is required for Banach
spaces. This paper represents our progress to date.
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Summary

The first section is devoted to the construction of two separable Hilbert spaces KS2[Rn] and
GS2[Rn]. These spaces have the special property that, for each classical Banach space B ,
we have:

GS2[Rn] ↪→ B ↪→ KS2[Rn] (as continuous dense embeddings). (0.1)

Remark 0.1. This statement may be disconcerting on first blush, since, for example, L∞[Rn]
is not separable. Actually, our results show explicitly that the separable or (non-separable)
property of a space depends, not on the size of the space, but the nature of the topology
imposed.

We give examples to show that other (useful) spaces of this type may be constructed
with similar or dissimilar properties.

In the second section, we construct the adjoint for operators of Baire class one (i.e.,
strong limits of continuous linear operators). In the third section, we extend the standard
Poincaré inequality to Banach spaces. In the fourth section we extend the Stone-von Neu-
mann spectral theorem and show that, with a slight generalization of the notion of a spec-
tral measure, the theorem holds for all closed densely defined linear operators on a Hilbert
space. In the fourth section we construct the natural version of the Schatten classes for
Banach spaces.

1 Preliminaries

In this section, we want to construct two new Hilbert spaces KS2[Rn] and GS2[Rn] which
satisfy equation (0.1) for the following classical Banach spaces:

1. the bounded continuous functions on Rn, C0[Rn], which vanish at infinity;

2. the bounded uniformly continuous functions on Rn, Cu[Rn];

3. the bounded continuous functions on Rn, Cb[Rn]; and,

4. the Lebesgue spaces Lp[Rn], for 1≤ p≤ ∞.

1.1 The Hilbert Space KS2

In order to construct our first Hilbert space, recall that Alexiewicz [AL] has shown that the
class D(R), of Denjoy integrable functions (restricted and wide sense), can be normed in
the following manner: for f ∈ D(R), define ‖ f‖D by

‖ f‖D = sup
s

∣∣∣∣Z s

−∞

f (r)dr
∣∣∣∣ . (1.1)

It is clear that this is a norm, and it is known that D(R) is not complete. The restricted
Denjoy integral is equivalent to the Henstock-Kurzweil integral (see [HS] and [KW]).
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Replacing R by Rn in (1.1), for f ∈ D(Rn), we also obtain a norm on D(Rn):

‖ f‖D = sup
r>0

∣∣∣∣ZBr

f (x)dx
∣∣∣∣ = sup

r>0

∣∣∣∣ZRn
EBr(x) f (x)dx

∣∣∣∣ < ∞, (1.2)

where Br is any closed cube of diagonal r centered at the origin in Rn with sides parallel to
the coordinate axes, and EBr(x) is the indicator function of Br.

To construct our space on Rn, let Qn be the set {x = (x1,x2 · · · ,xn) ∈ Rn} such that
xi is rational for each i. Since this is a countable dense set in Rn, we can arrange it as
Qn = {x1,x2,x3, · · ·}. For each l and i, let Bl(xi) be the closed cube centered at xi, with
sides parallel to the coordinate axes and diagonal rl = 2−l, l ∈ N. Now choose the natural
order which maps N×N bijectively to N:

{(1,1), (2,1), (1,2), (1,3), (2,2), (3,1), (3,2), (2,3), · · ·}.

Let {Bk, k ∈ N} be the resulting set of (all) closed cubes {Bl(xi) |(l, i) ∈ N×N} centered
at a point in Qn, and let Ek(x) be the indicator function of Bk, so that Ek(x) is in Lp[Rn]∩
L∞[Rn] for 1≤ p < ∞. Define Fk( · ) on L1[Rn] by

Fk( f ) =
Z
Rn

Ek(x) f (x)dx. (1.3)

It is clear that Fk( · ) is a bounded linear functional on Lp[Rn] for each k, ‖Fk‖∞
≤ 1 and, if

Fk( f ) = 0 for all k, f = 0 so that {Fk} is fundamental on Lp[Rn] for 1≤ p≤ ∞ .
Let tk = 2−k so that ∑

∞
k=1 tk = 1 and define a measure dP(x,y) on Rn ×Rn by:

dP(x,y) =
[
∑

∞

k=1 tkEk(x)Ek(y)
]

dxdy.

We now define an inner product ( · )2 on L1[Rn] by

( f ,g)2 =
Z
Rn×Rn

f (x)g(y)∗dP(x,y)

= ∑
∞

k=1 tk

[Z
Rn

Ek(x) f (x)dx
][Z

Rn
Ek(y)g(y)dy

]∗
.

(1.4)

We call the completion of L1[Rn], with the above inner product, the Kuelbs-Steadman space,
KS2[Rn]. This space was first constructed in [ST]. Here, one was interested in showing that
L1[Rn] can be densely and continuously embedded in a Hilbert space which contains the
Denjoy-integrable functions. To see that this is the case, let f ∈ D[Rn], then:

‖ f‖2
KS2 = ∑

∞

k=1 tk

∣∣∣∣Z
Rn

Ek(x) f (x)dx
∣∣∣∣2

6 sup
k

∣∣∣∣Z
Rn

Ek(x) f (x)dx
∣∣∣∣2

6 ‖ f‖2
D ,

so f ∈ KS2[Rn]. (This space is related to one constructed by Kuelbs [KB] for other pur-
poses.) It is shown in [GZ2] that this space also provides a complete mathematical founda-
tion for the path integral and allows us to construct it in the manner originally suggested by
Feynman (see [FH]).

It is clear that C0[Rn], Cb[Rn] and Cu[Rn] are contained as continuous dense embeddings
in KS2[Rn].
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Theorem 1.1. The space KS2[Rn] contains Lp[Rn] (for each p, 1 6 p 6 ∞) as continuous,
compact, dense embeddings.

Proof. The proof of the first part is easy, if we notice that L1[Rn]∩ Lp[Rn] is dense for
1≤ p < ∞. If f ∈ L∞[Rn], then

∣∣R
Bk

f (x)dx
∣∣2
6 ‖ f‖2

L∞ for all k, so that ‖ f‖KS2 6 ‖ f‖L∞ . The
proof of compactness follows from the fact that, if { fn} is any weakly convergent sequence
in Lp[Rn] with limit f , then Ek(x) ∈ Lq[Rn], 1 < q≤ ∞, so thatZ

Rn
Ek(x) [ fn(x)− f (x)]dx→ 0

for each k. Thus, { fn} converges strongly to f in KS2[Rn]. Finally, note that dµk = Ek(x)dx
defines a measure inM[Rn], the dual space of L∞[Rn], and that KS2[Rn]⊃ L1[Rn]∗∗ =M[Rn].

�

The fact that L∞[Rn] ⊂ KS2[Rn], while KS2[Rn] is separable, makes it clear in a very
forceful manner that separability is not an inherited property.

It is of particular interest that KS2[Rn] ⊃M[Rn], the space of bounded finitely additive
set functions defined on the Borel sets B[R]n. (Recall that M[Rn] also contains the Dirac
delta measure.)

Remark 1.2. There is quite a lot of flexibility in the choice of the family of positive numbers

{tk},
∞

∑
k=1

tk = 1. This is somewhat akin to the standard metric used for R∞. Recall that, for

any two points X , Y ∈ R∞, d(X ,Y ) =
∞

∑
n=1

1
2n

|X−Y |
1+|X−Y | . The family of numbers { 1

2n } can be

replaced by any other sequence of positive numbers whose sum is one, without affecting the
topology. In [GZ] and [GZ1], we have used physical analysis to choose the family {tk} so
they are interpreted as probabilities for the occurrence of a particular discrete path.

There is also some flexibility with the order for N×N. The important fact is that the
properties of KS2[Rn] are invariant for any choices.

Remark 1.3. We could replace the family {Ek, k ∈ N} by the Hermite functions for Rn,
obtaining similar results. We favor the present approach because the construction method-
ology is simple, does not depend on a basis and is independent of the particular Banach
space. For examples, of other constructions, see Section 1.3.

1.2 The Hilbert Space GS2

Let B be a dense continuous embedding in a separable Hilbert space H , so there is an
M > 0 such that ‖x‖H 6M‖x‖B , for all x ∈ B . In what follows, we assume that M = 1. In
order to construct our second Hilbert space, we need the following result by Lax [L].

Theorem 1.4 (Lax). Let A∈ L[B]. If A is selfadjoint on H (i.e., (Ax,y)H = (x,Ay)H ,∀x,y∈
B), then A is bounded on H and ‖A‖H 6 k‖A‖B for some positive constant k.

Proof. Let x ∈ B and, without loss, we can assume that k = 1 and ‖x‖H = 1. Since A is
selfadjoint,

‖Ax‖2
H = (Ax,Ax) =

(
x,A2x

)
6 ‖x‖H

∥∥A2x
∥∥

H =
∥∥A2x

∥∥
H .
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Thus, we have ‖Ax‖4
H 6

∥∥A4x
∥∥

H , so it is easy to see that ‖Ax‖2n
H 6

∥∥A2nx
∥∥

H for all n. It
follows that:

‖Ax‖H 6 (
∥∥A2nx

∥∥
H )1/2n 6 (

∥∥A2nx
∥∥

B)1/2n

6 (
∥∥A2n

∥∥
B)1/2n(‖x‖B)1/2n 6 ‖A‖B (‖x‖B)1/2n.

Letting n→∞, we get that ‖Ax‖H 6 ‖A‖B for x in a dense set of the unit ball of H . We are
done, since the norm is attained on a dense set of the unit ball. �

For our second Hilbert space, fix B and define GS2
B by:

GS2
B =

{
u ∈ B

∣∣∣ ∑
∞

n=1 t−1
n |(u,En)2|

2 < ∞

}
, with

(u,v)1 = ∑
∞

n=1 t−1
n (u,En)2 (En,v)2 .

For convenience, let H1 = GS2
B and KS2 = H2. for u ∈ B , let T12u be defined by T12u =

∑
∞
n=1 tn (u,En)2 En.

Theorem 1.5. The operator T12 is a positive trace class operator on B with a bounded ex-
tension to H2. In addition, H1 ⊂B ⊂H2 (as continuous dense embeddings),

(
T 1/2

12 u, T 1/2
12 v

)
1
=

(u, v)2 and
(

T−1/2
12 u, T−1/2

12 v
)

2
= (u, v)1.

Proof. First, since terms of the form {uN = ∑
N
k=1 t−1

n (u,Ek)2 Ek : u ∈ B} are dense in B ,
we see that H1 is dense in B . It follows that H1 is also dense in H2.

For the operator T12, we see that B ⊂H2 ⇒ (u,En)2 is defined for all u ∈ B , so that T12
maps B → B and:

‖T12u‖2
B ≤

[
∑

∞

n=1 t2
n ‖En‖2

B

][
∑

∞

n=1 |(u,En)2|
2
]

= M ‖u‖2
2 ≤M ‖u‖2

B .

Thus, T12 is a bounded operator on B . It is clearly trace class and, since (T12u, u)2 =
∑

∞
n=1 tn |(u,En)2|

2 > 0, it is positive. From here, it’s easy to see that T12 is selfadjoint on H2
so, by Theorem 1.4, it has a bounded extension to H2.

An easy calculation now shows that
(

T 1/2
12 u, T 1/2

12 v
)

1
=(u, v)2 and

(
T−1/2

12 u, T−1/2
12 v

)
2
=

(u, v)1. �

We call GS2
B the Gross-Steadman space for B . Historically, Gross [G] first proved that

every real separable Banach space contains a separable Hilbert space as a dense embedding,
and that this space is the support of a Gaussian measure.

1.3 The Uniqueness Problem

The purpose of this section is to take a look at other spaces with many of the same and/or
different properties compared to KS2 and GS2.

In this first example we show that the Banach space C[0,1] has (at least) two pair of
Hilbert spaces satisfying H1 ⊂ C[0,1]⊂H2, as dense continuous embeddings.
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Example 1.6. The first pair is H1
0 [0,1]⊂ C[0,1]⊂ L2[0,1], where C[0,1] is the set of con-

tinuous functions with the sup norm and H1
0 [0,1] is the completion in the L2 norm of the

functions u(x) ∈ C[0,1], with u′(x) continuous and u(0) = u(1) = 0. In this case, the norms
for our respective Hilbert spaces are generated by the following inner products:

(u,v)2 =
Z 1

0
u(x)v(x)dx and (u,v)1 =

Z 1

0
u′(x)v′(x)dx.

We can take J2 = I2. However, from

〈u,J1v〉=
Z 1

0
u′(x)v′(x)dx,

we must take J1 =
[
− d2

dx2

]
, with Dirichlet boundary conditions (see Barbu [B], pg., 4). It

follows that the natural operator relating the spaces must be T12 =
[
− d2

dx2

]−1
.

With additional effort, one can show that T12 is a bounded compact operator on C[0,1],
with a bounded extension to L2[0,1]. Furthermore, one has (u,v)1 = (T−1/2

12 u,T−1/2
12 v)2 and

(u,v)2 = (T1/2
12 u,T1/2

12 v)1.
The second pair of spaces will be used in the next section, so we provide additional

detail. To construct them, let {en(x), n∈N}, be the orthonormal basis for L2[0,1] generated
by the polynomials {1,x,x2, . . .} ⊂ C[0,1]. If we set

Fn(u) =
Z 1

0
en(x)u(x)dx,

we see that the set of vectors {Fn, n ∈ N} is fundamental on C[0,1] (and also L1[0,1]). If
tn = 1

2n , define an inner product on C[0,1] by:

(u,v)2 = ∑
∞

n=1 tnFn(u)F̄n(v) = ∑
∞

n=1 tn
Z 1

0

Z 1

0
en(x)ēn(y)u(x)v̄(y)dxdy.

If H2[0,1] is the completion of C[0,1] in the norm generated by the inner product, we obtain
a Hilbert space.

Since

‖u‖2 =

[
∑

∞

n=1 tn

∣∣∣∣Z 1

0
en(x)u(x)dx

∣∣∣∣2
]1/2

,

Just as with KS2, it is easy to see that H2 contains all Lp spaces, 1 ≤ p ≤ ∞ as continuous
dense compact embeddings.

Now, define the operator T12 on C[0,1] by:

T12u =
∞

∑
n=1

tn (u,en)2 en.

Since C[0,1] ⊂ H2, (u,en)2 is defined for all u ∈ C[0,1]. Thus, T12 maps C[0,1]→ C[0,1]
and:

‖T12u‖2
0 ≤

[
∞

∑
n=1

t2
n

][
∑

∞

n=1 |(u,en)2|
2
]

= M ‖u‖2
2 ≤M ‖u‖2

0 .
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Thus, T12 is a bounded operator on C[0,1]. Define H1 by:

H1 =

{
u ∈ C[0,1]

∣∣∣∣∣ ∞

∑
n=1

1
tn
|(u,en)2|

2 < ∞

}
, (u,v)1 =

∞

∑
n=1

1
tn

(u,en)2 (en,v)2 .

With the above inner product, H1 is a Hilbert space and, since terms of the form {uN =
∑

N
k=1

1
tn

(u,ek)2 ek : u ∈ C[0,1]} are dense in C[0,1], we see that H1 is dense in C[0,1]. It
follows that H1 is also dense in H2. It is easy to see that T12 is a positive selfadjoint trace
class operator with respect to the H2 inner product so, by Theorem 1.4 of Lax, T12 has a
bounded extension to H2 and ‖T12‖2 ≤ ‖T12‖0. Finally, it is easy to see that, for u,v ∈H1,
(u,v)1 = (T−1/2

12 u,T−1/2
12 v)2 and (u,v)2 = (T1/2

12 u,T1/2
12 v)1. It follows that H1 is continuously

embedded in H2, hence also in C[0,1].

1.3.1 The Strong Distribution Pair

In this example, we construct a related pair of Hilbert spaces SD2[Rn] and WD2[Rn] that we
call strong distribution spaces. It will be shown that SD2[Rn] contains W k,p(Rn), for each
k, p, in addition to other interesting properties.

In order to construct SD2[Rn], we return to our construction of KS2[Rn] and replace
Ek(x) by Gk(x), where

Gk(x) = ex
0Ek(x), ex

0 =
1
n

n

∑
j=1

ex j

3[[|xi|+1]]
.

It is easy to see that |ex
0| < 1. Following the same steps as in the construction of KSp, 1 ≤

p≤ ∞, we obtain the strong distribution spaces SDp:

SDp[Rn] =
{

u(x)
∣∣∣∣∑∞

k=1 tk

∣∣∣∣Z
Rn

Gk(x)u(x)dx
∣∣∣∣p

< ∞

}
.

The proof of the next theorem is now easy.

Theorem 1.7. For 1 ≤ p ≤ ∞ and each q, 1 6 q 6 ∞, SDp[Rn] ⊃ Lq[Rn] as a continuous,
compact, dense embedding.

As before the spaces are reflexive for 1 < p < ∞, so that that SDp[Rn] ⊃ L1[Rn]∗∗ =
M[Rn], the space of finitely additive measures on Rn.

If D denotes the standard partial differential operator, let

Dα = Dα1Dα2 · · ·Dαk .

Theorem 1.8. If u ∈ SD2[Rn] and Dαu = vα in the weak distributional sense, then vα ∈
SD2[Rn].

Proof. Since each Gk ∈ C∞
c [Rn], we haveZ

Rn
Gk(x)Dαu(x)dx = (−1)|α|

Z
Rn

DαGk(x)vα(x)dx.
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An easy calculation shows that, for any i, ∂xiGk(x) = Gk(x), so thatZ
Rn

Gk(x)Dαu(x)dx = (−1)|α|
Z
Rn

Gk(x)vα(x)dx.

It now follows that, for any w ∈ SD2[Rn], (Dαu,w)SD2 = (−1)|α|(vα,w)SD2 , so that vα ∈
SD2[Rn]. �

The next result explains our use of the term strong distribution in describing SD2[Rn].

Corollary 1.9. If u is in the domain of Dα, then for any w ∈ SD2[Rn], (Dαu,w)SD2 =
(−1)|α|(u,w)SD2 so that, in particular, ‖Dαu‖SD2 = ‖u‖SD2 .

Corollary 1.10. For any p, 1≤ p≤ ∞ and all k ∈ N, W k, p[Rn]⊂ SD2[Rn].

A look at the definition of SDp[Rn], for any p makes it clear that the last three results
hold for these spaces also.

We can define T12 by

T12u(x) = ∑
∞

k=1 tk(u,Gk)SDGk(x)

and
WD2[Rn] =

{
u
∣∣∣∑∞

k=1 t−1
k

∣∣(u,Gk)SD

∣∣2
< ∞

}
with

(u,v)WD = ∑
∞

k=1 t−1
k (u,Gk)SD(Gk,v)SD

It is clear that the pairs of Hilbert spaces rigging L1[Rn] are not unique.

Definition 1.11. For the classical Banach spaces, the pair of Hilbert spaces KS2[Rn] and
GS2[Rn] will be called the adjoint canonical pair.

2 Adjoint Theory on Banach Spaces

In this section, H2 will always represent KS2[Rn], B will be one of the classical Banach
spaces and H1 will represent GS2[Rn].

2.1 Preliminaries

Let L[B] denote the bounded linear operators on B . By a duality map J : B 7→ B ′, we mean
the set

J(u) =
{

fu ∈ B ′
∣∣∣〈u, fu〉= ‖u‖2 = ‖ fu‖2

}
, ∀u ∈ B.

For fixed u define a seminorm pu( · ) on B by pu(x) = ‖u‖B ‖x‖B , and define f̂ s
u( ·) by:

f̂ s
u(x) =

‖u‖2
B

‖u‖2
2

(x,u)2 .

On the closed subspace M = 〈u〉 ,
∣∣ f̂ s

u(x)
∣∣ = ‖u‖B ‖x‖B 6 pu(x). By the Hahn-Banach Theo-

rem, f̂ s
u( ·) has an extension, f s

u( ·), to B such that | f s
u(x)| 6 pu(x) = ‖u‖B ‖x‖B for all x ∈ B
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(see Rudin [RU], Theorem 3.3, page 57). From here, we see that ‖ f s
u‖B ′ ≤ ‖u‖B . On the

other hand, we have ‖u‖2
B = f s

u(u) 6 ‖u‖B ‖ f s
u‖B ′ , so that f s

u( ·) is a duality mapping for u.
We call f s

u( ·) the Steadman duality map on B associated with H2.
Recall that a densely defined operator A is called accretive if Re〈Au, fu〉 ≥ 0 for u ∈

D(A) and any duallity map fu. It is called m-accretive if, in addition, it is closed and
Ran(I +A) = B . (Its called m-dissipative if −A is m-accretive.)

2.2 Faces of The Adjoint

Before stating the main results of this section, we begin with a few examples associated
with the question of adjoints for Banach spaces that are not Hilbert spaces.

If B ⊂H ⊂B∗, with B a continuous dense embedding in H , It is reasonable to identify
H with H ∗ use this relationship to construct A∗. The following can happen in this case:

1. It is not always possible to define an A∗ on B .

2. The restriction of an operator on H to B need not exist.

3. If A extends from B to a bounded linear operator on H , so that A∗ exists, then A∗

need not restrict to B .

Example 2.1. Let B = `1, H = `2 and B∗ = `∞, so that B ⊂ H ⊂ B∗. Let A : `1 → `1 be
defined by

Ax =


1 1

2
1
3

1
4 · · · 1

n · · · · · ·
0 0 0 · · · · · · · · ·
0 0 0 · · · · · · · · ·
...

...
...

... · · · · · · · · · · · ·





x1
x2
...
...

...


=



∑
∞
n=1

1
n xn

0
...
...

...


.

Since ‖Ax‖1 =
∣∣∑∞

n=1
1
n xn

∣∣ 6 ∑
∞
n=1 |xn| = ‖x‖1, it is clear that A is bounded. We also have

that

A∗x =



1 0 0 · · · · · · · · ·
1
2 0 0 · · · · · · · · ·
1
3 0 0 · · · · · · · · ·
...

...
...

... · · · · · · · · ·
1
n 0 0 · · · · · · · · ·
...

...
...

... · · · · · · · · · · · ·





x1
x2
...
...
...

...


= x1



1
1
2
1
3
...
1
n
...


,

so that

‖A∗x‖2 = |x1|
[
∑

∞

n=1
1
n2

]1/2

6
[
∑

∞

n=1 |xn|2
]1/2

[
∑

∞

n=1
1
n2

]1/2

< ∞

and ‖A∗x‖1 = |x1|∑∞
n=1

1
n = ∞. Thus, A∗ is not bounded on `1 (not even densely defined).

The fact that it is bounded on `2 also shows that A has a bounded extension to `2.
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It is well-known that we cannot always identify H with H ∗ without consequence. Our next
example shows how one might be able to give an explicit definition of the adjoint without
a Hilbert space. There are two possibilities a reflexive or non-reflexive Banach space. We
first consider the reflexive case. (We assume the field is R.)

Example 2.2. Let B = Lp[0,1] and let A : B → B , where A is defined by

Au(x) =
Z 1

0
K(x,y)u(y)dy, u ∈ Lp[0,1].

In this case, we assume that K is Lebesgue integrable on [0,1]× [0,1] = I× I and that
1
p + 1

q = 1. (Weaker conditions are possible.)
If p > 2, then Lp[0,1]⊂ Lq[0,1] and for 1 < p < 2, Lq[0,1]⊂ Lp[0,1].
In the first case, A∗ is already defined on Lp[0,1] and we need to know if A∗u ∈ Lp[0,1],

for all u ∈ Lp[0,1].

‖A∗u‖p
p =

Z 1

0
|A∗u(x)|pdx =

Z 1

0

∣∣∣∣Z 1

0
K(x,y)u(y)dy

∣∣∣∣p

dx.

Lemma 2.3. If
R 1

0 ‖K(x, ·)‖p
q dx < ∞, there exists a constant m such that

‖A∗u‖p 6 m‖u‖p for u ∈ Lp[0,1].

Proof. As a function of y, K(x,y) ∈ Lq[0,1], so that K(x,y)u(y) ∈ L1[0,1]. By Hölder’s
inequality, we have:

‖A∗u‖p
p 6

Z 1

0

∣∣∣∣Z 1

0
K(x,y)u(y)dy

∣∣∣∣p

dx 6
Z 1

0

[
‖K(x, ·)‖q‖u‖p

]p
dx

= ‖u‖p
p

Z 1

0
‖K(x, ·)‖p

q dx.

Since the last integral is finite, we are done. �

In the second case, when 1 < p < 2 and Lq[0,1] ⊂ Lp[0,1], we assume that K is a
continuous function on I× I. It now follows that D(A∗) = Lq[0,1] is dense in Lp[0,1].

Lemma 2.4. The operator A∗ has a unique extension to a bounded linear operator on
Lp[0,1].

Proof. First note that, since K is continuous on a compact set, it is uniformly bounded, so
that

sup
I×I

|K(x,y)| 6 m < ∞.

Now,

‖A∗u‖p
p =

Z 1

0

∣∣∣∣Z 1

0
K(x,y)u(y)dy

∣∣∣∣p

dx 6
Z 1

0

[Z 1

0
|K(x,y)| |u(y)|dy

]p

dx.

In this case, we also have that u ∈ Lp[0,1] implies that u ∈ L1[0,1], so that ‖A∗u‖p
p 6

mp ‖u‖p
1 . �
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In our next example shows that even in the non-reflexive case it is still possible to define
an adjoint without using a Hilbert space.

Example 2.5. In this example, we take B = L1[0,1], let K ∈ L1[I× I]∩L∞[I× I] and define
A : L1[0,1]→ L1[0,1] by

Au(x) =
Z 1

0
K(x,y)u(y)dy.

Since the adjoint A∗ : L∞[0,1] → L∞[0,1], if u ∈ L1[0,1] and v∗ ∈ L∞[0,1], from Fubini’s
Theorem, we have:

〈Au,v∗〉=
Z 1

0

[Z 1

0
K(x,y)u(y)dy

]
v∗(x)dx

=
Z 1

0

[Z 1

0
K(x,y)v∗(x)dx

]
u(y)dy =〈u,A∗v∗〉 .

Since
‖A∗v∗‖

∞
6 essup

I×I
|K(x,y)|‖v∗‖

∞
< ∞,

we see that A∗ is the standard adjoint mapping of L∞[0,1]→ L∞[0,1].
Since L1[0,1]∩L∞[0,1] is dense, A∗u ∈ L1[0,1] for all u ∈ L1[0,1]∩L∞[0,1]. The exten-

sion of A∗ to a bounded linear operator on L1[0,1] follows from

|A∗u(x)| 6 essup
I×I

|K(x,y)|
Z 1

0
|u(y)|dy.

Remark 2.6. It should be noted that, in the examples no symmetry properties were imposed
on the kernel, so in each case the adjoint is distinct.

2.3 Banach Space Adjoint

The purpose of this section is to prove that, all bounded linear operators on one of the
classical Banach spaces has an adjoint. The first result appeared in Gill et al [GBZS] and
generalizes the well-known result of von Neumann [VN] for bounded operators on Hilbert
spaces. For convenience, we provide a proof. (We delay the proof of (1) and (3) until after
Theorem 2.9.)

Theorem 2.7. If A is a bounded linear operator on B , then A has a well-defined adjoint A∗

defined on B such that:

1. the operator A∗A≥ 0 (m-accretive),

2. (A∗A)∗ = A∗A (selfadjoint), and

3. I +A∗A has a bounded inverse.

Proof. If J : H −→H ′
is the standard conjugate isomorphism between a HIlbert space and

its dual, so that < u,J(u) > = (u,u)2 = ‖u‖2
2, let Ji : Hi →H ′

i , (i = 1,2). Then A1 = A|H1
:

H1 → H2, and A′1 : H ′
2 → H ′

1 .



The Polar Decomposition in Banach Spaces 109

It follows that A′1J2 : H2 → H ′
1 and J−1

1 A′1J2 : H2 → H1 ⊂ B so that, if we define
A∗ = [J−1

1 A′1J2]B , then A∗ : B → B (i.e., A∗ ∈ L[B]).
To prove (2), we have that for x ∈H1,

(A∗A)∗x = ({J−1
1 [{[J−1

1 A′1J2]|BA}1]′J2}|B)x
= ({J−1

1 [{A′1[J2A1J−1
1 ]|B}]J2}|B)x

= A∗Ax.

It follows that the same result holds on B. �

The operator A∗A is selfadjoint on B . By the Theorem of Lax [L], it is natural to expect
that the same is true on H2. However, in general, this need not be the case. To obtain
a simple counterexample, recall that, in standard notation, the simplest class of bounded
linear operators on B is B⊗B ′, in the sense that:

B⊗B ′ : B → B, by Au = (b⊗ lb′(·))u =
〈
b′,u

〉
b.

Thus, if lb′(·) ∈ B ′\H ′
2 , then J2{J−1

1 [(A1)′]J2|B(u)} is not in H ′
2 , so that A∗A is not defined

as an operator on all of H2 and thus cannot have a bounded extension.
The following example shows explicitly that an extension is not possible for one of the

standard Banach-Hilbert space couples.

Example 2.8. Let `1 → `2 be the natural embedding, and let en be the natural unit ba-
sis. Put T (e1) = e1 and T (en) = e1 + en for n > 1. This operator has a natural exten-
sion to a bounded linear operator in `1. Put xn = n−1(e1 + · · ·+ en). Then ‖xn‖2 → 0,
‖T (xn)− e1‖2 → 0 but T (0) , e1. Thus, T cannot be extended to a closed operator on `2. It
follows that `2 is not the correct Hilbert space for the extension of bounded linear operators
or for the construction of adjoints for bounded linear operators on `1.

We now recall that B ′ ⊂ H2 for each of our classical Banach spaces so that the above
discussion and example does not apply for H2.

Theorem 2.9. Let A be a bounded linear operator on B , then A has a bounded extension
to L[H2], with ‖A‖H2

≤ k‖A‖B (for some positive k).

Proof. If T = A∗A, then 〈T x,J2(y)〉 = (T x,y)H2
is well defined for all x, y ∈ B , and

(T x,y)H2
= (x,Ty)H2

. Thus, we can now apply Lax’s Theorem to see that ‖T‖H2
= ‖A‖2

H2
≤

k2 ‖A‖2
B . �

We can now finish our proof of Theorem 2.7.
To prove (1), let x ∈ B , then (A∗Ax,x)H2

≥ 0 for all x ∈ B . Hence 〈A∗Ax, f s
x 〉 ≥ 0, so

that A∗A is accretive. (Since its bounded, its m-accretive.) The proof of (3), that I +A∗A is
invertible, follows the same lines as in von Neumann’s theorem.

Remark 2.10. Theorem 2.9 tells us that L[B]⊂ L[H2] as a continuous embedding. (It can
be shown that, if B has the approximation property, the embedding is dense.)

The algebra L[B] also has a ∗-operation that makes it much closer to L[H2] then ex-
pected. However, in general ‖A∗A‖B , ‖A‖2

B . Furthermore, if A , B, B∗ then, unless(
B

∣∣H1

)′ (A
∣∣H1

)′ = (
AB

∣∣H1

)′
, we have (AB)∗ , B∗A∗.

Thus, L[B] is a not a ∗-algebra in the traditional sense.
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3 Closed Linear Operators on B

We now consider the case that A ∈ C [B], the closed densely defined linear operators on B .
By definition, A is of Baire class one if it can be approximated by a sequence, {An}, of
bounded linear operators. In this case, it is natural to define A∗ = s− limA∗n (see below).
In case B is a Hilbert space, every A ∈ C [B] is of Baire class one. However, it turns out
that, if B is not a Hilbert space, there may be operators A ∈ C [B] that are not of Baire class
one, so that it is not reasonable to expect Theorem 2.7 to hold for all of C [B]. In order to
understand the problem, we need the following:

Definition 3.1. A Banach space B is said to be:

1. quasi-reflexive if dim
{

B ′′/B
}

< ∞, and

2. nonquasi-reflexive if dim
{

B ′′/B
}

= ∞.

An important result by Vinokurov, Petunin and Pliczko [VPP] shows that, for every
nonquasi-reflexive Banach space B (for example, C[0;1] or L1[Rn], n∈N), there is a closed
densely defined linear operator A, which is not of Baire class one. It can even be arranged
so that A−1 is a bounded linear injective operator (with a dense range). This means, in
particular, that there does not exist a sequence of bounded linear operators An ∈ L[B] such
that, for x ∈ D(A), Anx → Ax, as n→ ∞ for each A ∈ C [B].

Recall that an m-dissipative linear operator is the generator of a C0-contraction semi-
group and Ran(λI −A) = B for every λ > 0 (see Pazy [PZ]). Furthermore, the Yosida
approximator [YS], Aλ = λAR(λ,A), is a bounded linear operator which converges strongly
to A on D(A). The following result shows that every operator of Baire class one has an
adjoint.

Theorem 3.2. Let A ∈ C [B]. The operator A is in the first Baire class if and only if it has
an adjoint A∗.

Proof. Let H1 ⊂B ⊂H2 and suppose that A has an adjoint A∗ ∈C [B]. Let T = [A∗A]1/2, T̄ =
[AA∗]1/2 (the negatives of each generate C0-contraction semigroups). Since T is nonnega-
tive, it follows that I +αT has a bounded inverse S(α) = (I + αT )−1, for α > 0. It is also
easy to see that AS(α) is bounded and, on D(A), AS(α) = S̄(α)A = (I +αT̄ )−1A (see Kato
[K], pages 335 and 481). Using this result, we have:

lim
α→0+

AS(α)x = lim
α→0+

S̄(α)Ax = Ax, for x ∈ D(A).

It follows that A is in the first Baire class.
To prove the converse, suppose that A is in the first Baire class. Thus, there is a sequence

of bounded linear operators {An} such that, for x ∈D(A), Anx→ Ax as n→ ∞ . Since each
An is bounded, by Theorem 2.1, each An has an adjoint A∗n and both can be extended to
bounded linear operators Ān, Ā∗n on H2 (by Theorem 2.3). Furthermore, we have

∥∥Ān
∥∥

H2
≤

k‖An‖B and
∥∥Ā∗n

∥∥
H2
≤ k‖A∗n‖B . It follows that the sequence {Ānx} converges for each

x ∈ D(A). If we define Ā as the closure in H2 of limn→∞Ānx for x ∈ D(A), then Ā ∈ C [H2].
Since Ā is a closed densely defined linear operator, its H2 adjoint, Ā∗, is densely defined

and Ā = Ā∗∗ (see Rudin [RU], Theorem 13.12, page 335). From this, we see that Ā∗ is a
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closed densely defined linear operator on H2. Since Ā restricted to B is A, Ā∗ restricted to
B defines A∗. �

As noted above, if B is a quasi-reflexive separable Banach space, there is at least one
closed densely defined linear operator that is not of the first Baire class. However, to our
knowledge, it has not been shown that every operator A∈C [B] is of the first Baire class even
when B is reflexive. From a theoretical point of view, the following theorems hold for all
operators of first Baire class. However, unless an operator is the generator of a semigroup,
there is no known way to find the particular sequence of bounded linear operators that
may be used to approximate it. Since the operators of interest for applications are (for
the most part) generators of C0-contraction semigroups, in what follows, we restrict our
consideration to C0 generators.

Theorem 3.3. If A generates a C0-contraction semigroup and B is one of the classical
Banach spaces, then:

1. A has a closed densely defined extension Ā to H2, which is also the generator of a
C0-contraction semigroup.

2. ρ(Ā) = ρ(A) and σ(Ā) = σ(A).

3. The adjoint of Ā, Ā∗, restricted to B , is the adjoint A∗ of A, that is:

- the operator A∗A > 0,

- (A∗A)∗ = A∗A and

- I +A∗A has a bounded inverse.

Proof. Part I
Let T (t) be the semigroup generated by A. By Theorem 2.9, as a bounded linear operator,
T (t) has a bounded extension T̄ (t) to H2.

We prove that T̄ (t) is a C0-semigroup. (The fact that it is a contraction semigroup will
follow later.) It is clear that T̄ (t) has the semigroup property. To prove that it is strongly
continuous, use the fact that B is dense in H2 so that, for each u ∈ H2, there is a sequence
{un} in B converging to u. We then have:

lim
t→0

‖T̄ (t)u−u‖2 6 lim
t→0

{‖T̄ (t)u− T̄ (t)un‖2 +‖T̄ (t)un−un‖2}+‖un−u‖2

6 k‖u−un‖2 + lim
t→0

‖T̄ (t)un−un‖2 +‖un−u‖2

= (k +1)‖u−un‖2 + lim
t→0

‖T (t)un−un‖2 = (k +1)‖u−un‖2 ,

where we have used the fact that T̄ (t)un = T (t)un for un ∈ B , and k is the constant in
Theorem 2.9. It is clear that we can make the last term on the right as small as we like by
choosing n large enough, so that T̄ (t) is a C0-semigroup.

To prove (1), note that, if Ā is the extension of A, and λI− Ā has an inverse, then λI−A
also has one, so ρ(Ā)⊂ ρ(A) and Ran(λI−A)B ⊂ Ran(λI− Ā)H2

⊂ Ran(λI−A)H2
for any

λ ∈ C. For the other direction, note that, since A generates a C0-contraction semigroup,
ρ(A) , /0. Thus, if λ ∈ ρ(A), then (λI−A)−1 is a continuous mapping from Ran(λI−A)
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onto D(A) and Ran(λI−A) is dense in B . Let u ∈D(Ā), so that (u, Āu) ∈ Ĝ(A), the closure
of the graph of A in H2. Thus, there exists a sequence {un} ⊂ D(A) such that ‖u−un‖G =
‖u−un‖H2

+
∥∥Āu− Āun

∥∥
H2
→ 0 as n → ∞. Since Āun = Aun, it follows that (λI− Ā)u =

limn→∞(λI−A)un. However, by the boundedness of (λI−A)−1 on Ran(λI−A), we have
that, for some δ > 0,∥∥(λI− Ā)u

∥∥
H2

= lim
n→∞

‖(λI−A)un‖H2
≥ lim

n→∞
δ‖un‖H2

= δ‖u‖H2
.

It follows that λI− Ā has a bounded inverse and, since D(A)⊂D(Ā) implies that Ran(λI−
A) ⊂ Ran(λI − Ā), we see that Ran(λI − Ā) is dense in H2 so that λ ∈ ρ(Ā) and hence
ρ(A)⊂ ρ(Ā). It follows that ρ(A) = ρ(Ā) and necessarily, σ(A) = σ(Ā).

Since A generates a C0-contraction semigroup, it is m-dissipative. From the Lumer-
Phillips Theorem (see Pazy [PZ]), we have that Ran(λI−A) = B for λ > 0. It follows that
Ā is m-dissipative and Ran(λI− Ā) = H2. Thus, T̄ (t) is a C0-contraction semigroup.

We now observe that the same proof applies to T̄ ∗(t), so that Ā∗ is also the generator of
a C0-contraction semigroup on H2.

Clearly Ā∗ is the adjoint of Ā so that, from von Neumann’s Theorem, Ā∗Ā has the
expected properties. By a result of Kato [K] (see page 276), D̄ = D(Ā∗Ā) is a core for Ā
(i.e., the set of elements {u, Āu} is dense in the graph, G[Ā], of Ā for u ∈ D̄). From here,
we see that the restriction A∗ of Ā∗ to B is the generator of a C0-contraction semigroup and
D = D(A∗A) is a core for A. The proof of (3) for A∗A now follows. �

Theorem 3.4. Let A ∈ C [B] be the generator of a C0-contraction semigroup. Then there
exist an m-accretive operator T and a partial isometry W such that A = WT and D(A) =
D(T ).

Proof. The fact that B ′ ⊂ H2 ensures that A∗A is a closed selfadjoint operator on B by
Theorem 3.3. Furthermore, both A and A∗ have closed densely defined extensions Ā and
Ā∗ to H2. Thus, the operator T̂ = [Ā∗Ā]1/2 is a well-defined m-accretive selfadjoint linear
operator on H2, Ā = W̄ T̄ for some partial isometry W̄ defined on H2, and D(Ā) = D(T̄ ).
Our proof is complete when we notice that the restriction of Ā to B is A and T̄ 2 restricted
to B is A∗A, so that the restriction of W̄ to B is well-defined and must be a partial isometry.
The equality of the domains is obvious. �

3.0.1 The Adjoint is not Unique

In this section, we show that, for a given operator A defined on a fixed Banach space B , two
different Hilbert space riggings can produce two different adjoints for A.

Let us return to the two pair of Hibert spaces H1
0 [0,1]⊂C[0,1]⊂ L2[0,1] and H1[0,1]⊂

C[0,1]⊂H2[0,1] of Example 1.6.
Let A =

[
− d2

dx2

]
be defined on C[0,1], with domain

Dc(A) =
{

u′′ ∈ C[0,1] |u(0) = u(1) = 0
}

.

It is easy to see that A extends to a selfadjoint operator on L2[0,1], with domain

D2(A) =
{

u′′ ∈ L2[0,1]
∣∣u(0) = u(1) = 0 and, u′ is absolutely continuous

}
.
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To begin, we first compute the adjoint A∗, of A directly as an operator on C[0,1]. Since
C∗[0,1] = BV [0,1], the functions of bounded variation on [0,1], it follows from

〈Au,v〉=−
Z 1

0
u′′(x)v(x)dx,

that

〈u,A∗v〉=−
Z 1

0
u(x)v′′(x)dx

and
Dc(A∗) =

{
u′′ ∈ BV [0,1] |u(0) = u(1) = 0

}
.

Note that Dc(A)⊂Dc(A∗) (proper). Thus, if we restrict A∗ to Dc(A), it becomes a selfadjoint
operator on C[0,1], without the rigging.

We now investigate the adjoint obtained from use of the first rigging, H1
0 [0,1]⊂C[0,1]⊂

L2[0,1] (see Barbu [B], pg. 4). In this case, J1 =
[
− d2

dx2

]
and J2 = I2, the identity operator

on L2[0,1], so that
A∗1 = J−1

1 A′1J2,= I2.

In the second rigging, H1[0,1] ⊂ C[0,1] ⊂ H2[0,1], constructed in Example 1.6, we
have

A∗2 = J−1
1 A′1J2.

In this case,

J1(v) = ∑
∞

n=1 t−1
n (en,v)2( ·, en)2, J2(v) = ∑

∞

n=1 tnF̄n(v)Fn( ·)

and
(en,v)2 = ∑

∞

k=1 tkF̄k(v)Fk(en) =tnF̄n(v),

so that J1(v) = ∑
∞
n=1 F̄n(v)( ·, en)2. However,

( · ,en)2 = ∑
∞

k=1 tkF̄k(en)Fk( ·) =tnFn( ·), so that J1 = J2.

It follows that J2(A∗2u) = J2(Au), so that A∗2 = A =
[
− d2

dx2

]
, with the same domains.

It follows that the natural adjoint obtained on C[0,1] coincides with the canonical ad-
joint for this space. On the other hand, we also see that different riggings give distinct
adjoints. (It is clear that the requirements of von Neumann’s Theorem are satisfied by both
adjoints.)

Definition 3.5. The operator A∗ constructed using the adjoint canonical pair is called the
canonical adjoint.

With the adjoint canonical pair fixed, we see that the canonical adjoint is unique.

Remark 3.6. We note that the non-uniqueness result is always compatible with a selfadjoint
linear operator, even on a Hilbert space. However, on a Hilbert space, it will never appear
as a possible adjoint because of the restrictive definition.
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3.1 Closed Operators on Lp[Rn]

In this section, we present a few examples of well-known linear operators on Lp[Rn], 1 <
n < ∞. In each case, the adjoint can be computed without actually using the canonical
Hilbert space pair.

3.1.1 The Hilbert and Riesz Transforms

In one dimension, the Hilbert transform can be defined on L2[R] via its Fourier transform:

Ĥ( f ) =−isgnx f̂ .

It can also be defined directly as principal-value integral:

(H f )(x) = lim
ε→0

1
π

Z
|x−y|>ε

f (y)
x− y

dy.

For a proof of the following results see Grafakos [GRA], chapter 4.

Theorem 3.7. The Hilbert transform on L2[R] satisfies:

1. H is an isometry, ‖H( f )‖2 = ‖ f‖2 and H∗ =−H.

2. For f ∈ Lp[R], 1 < p < ∞, there exists a constant Cp > 0 such that,

‖H( f )‖p ≤Cp‖ f‖p. (3.1)

The next result is technically obvious, but conceptually non-trivial.

Corollary 3.8. The adjoint of H, H∗ defines a bounded linear operator on Lp[R] for 1 <
p < ∞, and H∗ satisfies equation (3.1) for the same constant Cp.

The Riesz transform, R, is the n-dimensional analogue of the Hilbert transform and its
jth component is defined for f ∈ Lp[Rn], 1 < p < ∞, by:

R j( f ) = cn lim
ε→0

Z
|y−x|>ε

y j− x j

|y−x|n+1 f (y)dy, cn =
Γ

(N+1
2

)
π(n+1)/2 .

Definition 3.9. Let Ω be defined on the unit sphere Sn−1 in
Rn.

1. The function Ω(x) is said to be homogeneous of degree n if Ω(tx) = tnΩ(x).

2. The function Ω(x) is said to have the cancellation property ifZ
Sn−1

Ω(y)dσ(y) = 0, where dσ is the induced Euclidean measure on Sn−1.

3. The function Ω(x) is said to have the Dini-type condition if

sup
|x−y|6δ

|x|=|y|=1

|Ω(x)−Ω(y)| 6 ω(δ)⇒
Z 1

0

ω(δ)dδ

δ
< ∞.
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A proof of the following theorem can be found in Stein [STE] (see pg., 39).

Theorem 3.10. Suppose that Ω is homogeneous of degree 0, satisfying both the cancellation
property and the Dini-type condition. If f ∈ Lp[Rn], 1 < p < ∞ and

Tε( f )(x) =
Z
|y−x|>ε

Ω(y−x)
|y−x|n

f (y)dy.

Then

1. There exists a constant Ap, independent of both f and ε such that

‖Tε( f )‖p 6 Ap‖ f‖p.

2. Furthermore, lim
ε→0

Tε( f ) = T ( f ) exists in the Lp norm and

‖T ( f )‖p 6 Ap‖ f‖p. (3.2)

Treating T ( f ) as a special case of the Henstock-Kurzweil integral, we can write it as

T ( f )(x) =
Z
Rn

Ω(y−x)
|y−x|n

f (y)dy.

For g ∈ Lq, 1
p + 1

q = 1, we have 〈T ( f ),g〉 = 〈 f ,T ∗(g)〉. Using Fubini’s Theorem for the
Henstock-Kurzweil integral (see [HS]), we have that

Corollary 3.11. The adjoint of T, T ∗ =−T , is defined on Lp and satisfies equation (3.2)

It is easy to see that the Riesz transform is a special case of the above Theorem and
Corollary.

Another closely related integral operator is the Riesz potential, Iα( f )(x)= (−∆)−α/2 f (x), 0 <
α < n, is defined on Lp[Rn], 1 < p < ∞, by (see Stein [STE], pg., 117):

Iα( f )(x) = γ
−1(α)

Z
Rn

f (y)dy
|x−y|n−α

, and γ(α) = 2α
π

n
2

Γ(α

2 )
Γ(n−α

2 )
.

Since the kernel is symmetric, application of Fubini’s Theorem shows that the adjoint I∗α =
Iα, is also defined on Lp[Rn]. Since (−∆)−1 is not bounded, we cannot obtain Lp bounds for
Iα( f )(x). However, if 1/q = 1/p−α/n, we have the following (see Stein [STE], pg., 119)

Theorem 3.12. If f ∈ Lp[Rn] and 0 < α < n, 1 < p < q < ∞, 1/q = 1/p−α/n, then
the integral defining Iα( f ) converges absolutely for almost all x. Furthermore, there is a
constant Ap,q, such that

‖Iα( f )‖q 6 Ap,q‖ f‖p. (3.3)
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Remark 3.13. In physics, the interesting operator is not (−∆)−α/2, but (−∆)1/2. In quan-
tum mechanics, it appears as the absolute value operator of the physical momentum, p, |p|=
~
√
−∆. (It also appears as the photon propagator in quantum field theory (see Schweber

[SCH]). )
In [STE2], Stein shows that, if ψ ∈ C∞

0 [R3], then:

√
−∆φ(x) = lim

ε→0

Z
|y|>ε

φ(x+y)−φ(x)
|y|4

dy. (3.4)

If we look closely at the power of the term in the denominator of equation (3.4), we see that,
at the point of singularity, it appears to (effectively) diverge like the standard Coulomb
potential (see Schiff [SC], page 80). However, this is physical guessing (and could miss the
mark). In [GMZ], the following representation was discovered (for ψ ∈ C∞

0 [R3]):

√
−∆ψ(x) =

−π

π3 +2

Z
R3

ψ(y)
|x−y|3

[
1

|x−y|
−4πδ(x−y)

]
dy. (3.5)

3.1.2 Differential Operators

We begin with the following useful result (see Kato [K], pg. 168).

Theorem 3.14. Let T be a densely defined linear operator on a reflexive Banach space B .
Then, the following holds:

1. The adjoint of T, T ∗ is a closed linear operator.

2. The operator T has a closed extension if and only if D(T ∗) is dense in B∗. In this
case, the closure T̄ = T ∗∗.

3. If T is closable, then (T̄ )∗ = T ∗.

From the above result, we see that, for any closed densely defined linear operator A
defined on Lp[Rn], 1 < p < ∞, for which the domain of A∗, D(A∗)⊂ Lq[Rn],1/p+1/q = 1,
is dense in Lp[Rn], also has a closed densely defined extension to Lp[Rn].

Example 3.15. Let A be a second order differential operator on Lp[Rn], of the form

A =
n

∑
i, j=1

ai j(x)
∂2

∂xi∂x j
+

n

∑
i, j=1

bi j(x)x j
∂

∂xi
,

where a(x) = [[ai j(x)]] and b(x) = [[bi j(x)]] are matrix-valued functions in C∞
c [Rn ×Rn]

(infinitely differentiable functions with compact support). We also assume that, for all
x ∈ Rn det [[ai j(x)]] > ε and the imaginary part of the eigenvalues of b(x) are bounded
above by −ε, for some ε > 0. Note, since we don’t require a or b to be symmetric, A , A∗.

It is well-known thatC∞
c [Rn] is dense in Lp[Rn]∩Lq[Rn] for all p,q∈ [1,∞)∩N. Further-

more, since A∗ is invariant on C∞
c [Rn], A∗ : Lp[Rn]→ Lp[Rn]. It now follows from Theorem

3.14, that A∗ has a closed densely defined extension to Lp[Rn].

We see from this example, that both [(−∆)−α/2]∗ and [(−∆)1/2]∗ have closed densely
defined extensions to Lp[Rn].
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3.2 Operators on B

In this section, we look at the general theory of operators on B and relate it to other studies.

Definition 3.16. Let S be bounded, let A be closed and densely defined, and let U, V be
subspaces of B:

1. A is said to be naturally self-adjoint if D(A) = D(A∗) and A = A∗.

2. A is said to be normal if AA∗ = A∗A.

3. S is unitary if SS∗ = S∗S = I.

4. The subspace U is ⊥ to V if, for each v ∈ V and ∀u ∈ U, 〈v, f s
u〉 = 0 and, for each

u ∈U and ∀v ∈ V , 〈u, f s
v 〉= 0.

The last definition is transparent since, for example,

〈v, f s
u〉= 0⇔ 〈v,J2(u)〉= (v,u)2 = 0 ∀v ∈ V .

For later reference, we note that orthogonal subspaces in H2 induce orthogonal subspaces
in B .

With respect to our definition of natural selfadjointness, the following related definition
is due to Palmer [PL], where the operator is called symmetric. This is essentially the same
as a Hermitian operator as defined by Lumer [LU].

Definition 3.17. A closed densely defined linear operator A on B is called self-conjugate
if both iA and −iA are dissipative.

Theorem 3.18. (Vidav-Palmer) A linear operator A, defined on B , is self-conjugate if and
only if iA and −iA are generators of isometric semigroups.

Theorem 3.19. The operator A, defined on B , is self-conjugate if and only if it is naturally
self-adjoint.

Proof. Let Ā and Ā∗ be the closed densely defined extensions of A and A∗ to H2. On H2, Ā
is naturally self-adjoint if and only if iĀ generates a unitary group, if and only if it is self-
conjugate. Thus, both definitions coincide on H2. It follows that the restrictions coincide
on B . �

Theorem 3.20. (Gram-Schmidt) If B has a basis {ϕi, 1 6 i < ∞}, then there is an or-
thonormal basis {ψi, 1 6 i < ∞} for B with a corresponding set of orthonormal duality
maps { f s

i , 1 6 i < ∞} (i.e., 〈ψi, f s
i 〉= δi j).

Proof. Since each ϕi is in H2, we can construct an orthogonal set of vectors {φi, 1 6 i < ∞}
in H2 by the standard Gram-Schmidt process. Set ψi = φi

/
‖φi‖B and f̂ s

i = J(ψi)
/
‖ψi‖

2
H on

the subspace Mi =< ψi >. For each i, let M⊥
i be the subspace spanned by {ψ j, i , j}. Now

use the Hahn-Banach Theorem to extend f̂ s
i to f s

i , defined on all of B , with f s
i = 0 on M⊥

i
(see [RS], pg. 77 Corollary 3). From here, it is easy to check that {{ψi}, { f s

i }, 1 6 i < ∞}
is a biorthonormal basis for B . �
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We close this section with the following observation about the use of KS2. Let A be
any closed densely defined positive linear operator on B with a discrete positive spectrum
{λi}. In this case, −A generates a C0-contraction semigroup, so that it can be extended to

H2 with the same properties. If we compute the ratio 〈Aψ, f s
ψ〉

〈ψ, f s
ψ〉 in B , it will be “close” to the

value of
(Āψ,ψ)H2
(ψ,ψ)H2

in H2. On the other hand, note that we can use the min-max theorem on

H2 to compute the eigenvalues and eigenfunctions of A via Ā exactly on H2. Thus, in this
sense, the min-max theorem holds on B .

4 Extension of the Poincaré inequality

4.1 Introduction

While studying the eigenvalue problem for Laplace’s equation, Poincaré [PO] derived the
following inequalityZ

U
| f (x)|2 dx 6M

Z
U
|D f (x)|2 dx, for all f ∈ C∞

0 (U), (4.1)

where U is a bounded domain in Rn. Friedrichs [FR] extended this inequality and used it in
the development of existence theory for general linear elliptic differential equations.

This theorem also arises in probability theory, in the following form:

Theorem 4.1. Let U be a domain of Rn with a C1 boundary ∂U and, for each f ∈ Lp[Rn],
let f̄U denote the average of f over U, f̄U = ∫̄U f (y)dy. If W 1,p(U) is the set of all locally
integrable functions mapping U into R with a first order weak derivative, D f ∈ Lp[U ], then
there is a constant M, depending only on n, p and U, such that∥∥ f − f̄U

∥∥
Lp[U ] 6M ‖D f‖Lp[U ] .

A proof of Theorem 3.1 can be found in Evans [EV].
Let A be any closed densely defined linear operator of Baire class one on a separable

Banach space B , or any closed densely defined linear operator in case B is a Hilbert space.
Let T = −[A∗A]1/2 and recall that T is a (closed selfadjoint) m-dissipative generator of an
analytic contraction semigroup S(t) and A =−WT , where W is a partial isometry (see Kato
[K], Yosida [YS], Pazy [PZ] or Vrabie [VR]).

The following result shows, under what conditions, the Poincaré inequality has an ex-
tension.

Theorem 4.2. If there exists an α = α(t) > 0 such that, for all

u ∈ D(A), ‖S(t)u−u‖B ≥ α(t)‖u‖B .

Then there exists a λ > 0 such that

λ‖u‖B 6 ‖Au‖H , for all u ∈ D(A).



The Polar Decomposition in Banach Spaces 119

Proof. First observe thatZ t

0
T S(s)udt =

Z t

0

d
ds

S(s)uds = S(t)u−u.

Now choose α(t) so that ‖S(t)u−u‖B ≥ α(t)‖u‖B . It follows that

α(t)‖u‖B ≤
Z t

0
‖S(t)Tu‖B dt 6 t ‖Tu‖B = t ‖Au‖B .

Thus, we have that α(t)
t ‖u‖B 6 ‖Au‖B . It follows that α(t)

t has a least upper bound, λ. �

The following example shows that the theorem is not true if we relax the condition on
α(t).

Example 4.3. Let B = L2[0,1] and let Au(x) = xu(x) for all u(x) ∈ B . In this case, if λ

exists then

λ
2

Z 1

0
u2(x)dx 6

Z 1

0
x2u2(x)dx.

Let E = (0,ε) and let u(x) = IE(x), where IE(x) is the indicator function for E. We then
have

λ
2

Z 1

0
u2(x)dx = λ

2
ε, and

Z 1

0
x2u2(x)dx =

ε3

3
.

This leads to a contradiction for fixed λ, if ε is small enough.

Before discussing operational conditions that ensure the existence of a least upper
bound λ, we need a definition.

Definition 4.4. A strongly continuous semigroup T(t) is said to be

1. uniformly strongly stable if there is an ω0 > 0 such that

lim
t→∞

etω0 ‖T (t)u‖B = 0, for all u ∈ B,

uniformly exponentially stable if there are strictly positive constants M, ω such that

‖T (t)‖B ≤Me−tω

and uniformly stable if
lim
t→∞

‖T (t)‖B = 0.

Proofs of the next two theorems can be found in Engel and Nagel ( [EN], pg. 296) and
Pazy ([PZ], pg. 118) respectively.

Theorem 4.5. For a strongly continuous semigroup T (t), the following are equivalent.

1. T (t) is uniformly strongly stable.

2. T (t) is uniformly stable.

3. T (t) is uniformly exponentially stable.
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Theorem 4.6. Let A be the generator of an analytic semigroup T (t) and let σ(A) be the
spectrum of A. If

σ = sup{Reλ : λ ∈ σ(A)}< 0,

then T (t) is uniformly exponentially stable.

Pazy ([PZ], pg. 117), gives an instructive example to show that we cannot drop the
analytic requirement on A.

Theorem 4.7. Let A be a closed densely defined linear operator on B . Then the following
conditions are sufficient for the existence of a λ > 0 such that λ‖u‖B ≤ ‖Au‖B for all
u ∈ D(A).

1. There is a r > 0, r , 1 such that ‖S(r)u‖B 6 r‖u‖B .

2. The operator T = [A∗A]1/2 is strongly accretive, δ‖u‖2 6 (Tu, fu), for some δ > 0
and fu is a duallity map for u.

3. If B is a Hilbert space and A is strongly accretive, δ‖u‖2
B 6 (Au,u)B , for δ > 0.

Proof. To prove (1), note that

|‖u‖B −‖S(r)u‖|B 6 ‖S(r)u−u‖B 6 r‖Tu‖B = r‖Au‖B .

Thus, if 0 < r < 1, we have

(1− r)‖u‖B 6 r‖Au‖B , ⇒ λ =
1− r

r

and, in the contrary case, we have

(r−1)‖u‖B 6 r‖Au‖B , ⇒ λ =
r−1

r
.

The proof of (2) is easy since

δ‖u‖2
B = (Tu, fu)B ≤ ‖Tu‖B ‖u‖B = ‖Au‖B ‖u‖B .

For the proof of (3), we note that

δ‖u‖2
B 6 (Au,u)B 6 ‖Au‖B ‖u‖B , ⇒ δ‖u‖B 6 ‖Au‖B ,

so we set λ = δ.
�

Remark 4.8. The first condition (1) is imposed directly on the semigroup, and is satisfied
for all uniformly exponentially stable semigroups. In this case, note that A need not be a
generator. The second condition (2) is weaker. It only implies that −[A∗A]1/2 = −T is the
generator of an analytic semigroup, so that A need not be a generator.

It can be shown that condition (3) implies that −A is the generator of an analytic semi-
group.
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5 Extension Of The Spectral Theorem

5.1 Introduction

For any selfadjoint operator in C [H ], the following theorem is well-known. A proof can be
found in [DS], pages 1192-99 (see also Reed and Simon [RS], page 263).

Theorem 5.1. Let A ∈ C [H ] be a selfadjoint operator, with spectrum σ(A)⊂ R, then there
exists a unique regular countably additive projection-valued (= spectral) measure E(Ω)
mapping the Borel sets, B[R], over R into H such that, for each x ∈ D(A), we have:

1. D(A) also satisfies

D(A) =
{

x ∈H
∣∣ Z

σ(A)
λ

2 (E(dλ)x,x)H < ∞

}
and

2.

Ax = lim
n→∞

Z n

−n
λE(dλ)x, for x ∈ D(A).

3. If g(·) is a complex-valued Borel function defined (a.e) on R, then g(A) ∈ C [H ] and,
for x ∈ D(g(A)) = Dg(A),

g(A)x = lim
n→∞

Z n

−n
g(λ)E(dλ)x,

where

Dg(A) =
{

x ∈H
∣∣ Z

σ(A)
|g(λ)|2 (E(dλ)x,x)H < ∞

}
and g(A∗) = ḡ(A).

It is an exercise to show that E(Ω)x is of bounded variation. (For Ω = (−∞,λ], E(λ)x
is called a spectral function and {E(λ)} is called a spectral family.)

Theorem 4.1 initiated the general study of operators that have a spectral representa-
tion (or functional calculus). This research has moved in many directions. The Rellich-
Titchmarsh-Kato line is concerned with applications to problems in physics and applied
mathematics. In this direction, one is interested in concrete detailed information about the
spectrum of various specific operators subject to different constraints (see Rellich [RL],
Titchmarsh [TI] and Kato [K]). Another line of study follows more closely the approach
developed by Stone and von Neumann (independently extending the bounded case by
HIlbert). In this direction one seeks to extend Theorem 4.1 to a larger class of operators
via operator theory and functional analysis (see Dunford and Schwartz [DS] and Yosida
[YS]). The notes starting on page 2089 (in [DS]) are especially helpful in understanding
the history (and the many other approaches).
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5.2 Background

Dunford and Schwartz define a spectral operator as one that has a spectral family similar
to that defined in Theorem 4.1 for selfadjoint operators. (A spectral operator is an operator
with countably additive spectral measure on the Borel sets of the complex plane.) Strauss
and Trunk [STT] define a bounded linear operator A, on a Hilbert space H , to be spectral-
izable if there exists a non-constant polynomial p such that the operator p(A) is a scalar
spectral operator (has a representation as in Theorem 4.1 (2)). Another interesting line of
attack is represented in the book of Colojoară and Foiaş [CF], where they study the class of
generalized spectral operators. Here, one is not opposed to allowing the spectral resolution
to exist in a generalized sense, so as to include operators with spectral singularities.

The following theorem was proven by Helffer and Sjöstrand [HSJ] (see Proposition
7.2):

Theorem 5.2. Let g ∈ C ∞
0 [R] and let ĝ ∈ C ∞

0 [C] be an extension of g, with ∂ĝ
∂ẑ = 0 on R. If

A is a selfadjoint operator on H , then

g(A) =−1
π

"
C

∂ĝ
∂z̄

(z−A)−1 dxdy.

This defines a functional calculus. Davies [DA] showed that the above formula can be
used to define a functional calculus on Banach spaces for a closed densely defined linear
operator A, provided ρ(A)∩R= /0. In this program the objective is to construct a functional
calculus pre-supposing that the operator of concern has a reasonable resolvent.

5.3 Problem

The basic problem that causes additional difficulty is the fact that many bounded linear
operators (on H2) are of the form A = B + N, where B is normal and N is nilpotent (i.e.,
there is a k ∈N, such that Nk+1 = 0, Nk , 0). In this case, A does not have a representation
with a standard spectral measure. On the other hand, R = [N∗N]1/2 is a selfadjoint operator,
and there is a unique partial isometry W such that N = WR. If E( ·) is the spectral measure
associated with R, then WE(Ω)x is not a spectral measure, but it is a measure of bounded
variation. Thus, we just might be able to find an easier solution to the problem if we are
willing to drop our requirement that the spectral representation be with respect to a spectral
measure in the normal sense.

We begin by noting that, in either of the Strauss and Trunk [STT], Helffer and Sjöstrand
[HSJ] or Davies [DA] cases, the operator A is in Baire class one. Thus, Theorem 3.3 shows
that A has an adjoint and Theorem 3.4 shows that A =WR, where W is a partial isometry and
R is a nonnegative selfadjoint linear operator. Before presenting our solution for the Hilbert
space case, we need a few results about vector-valued functions of bounded variation.

Recall that a vector-valued function e(λ) defined on a subset of R to H is of bounded
variation if

V (e,R) = sup
P

∥∥∥∥∥ n

∑
i=1

[e(bi)− e(ai)]

∥∥∥∥∥ ,
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where the supremum is over all partitions P of non-overlapping intervals (ai,bi) in R (see
Hille and Phillips [HP] or Diestel and Uhl [DU]).

The next result is proved in Hille and Phillips [HP] (see page 63).

Theorem 5.3. Let a(λ) be a vector-valued function from R to H of bounded variation. If
h(λ) is a continuous complex-valued function on (a,b)⊂ R, then the following holds:

1. The integral
R b

a h(λ)da(λ) exists in the H norm.

2. If T is any operator in L[H ], then T a(λ) is of bounded variation and

T
Z b

a
h(λ)da(λ) =

Z b

a
h(λ)dT a(λ).

5.4 Scalar case

Theorem 5.4. If A ∈ C [B] is an operator of Baire class one, then there exists a unique
vector-valued function ex(λ) of bounded variation such that, for each x ∈ D(A), we have:

1. D(A) also satisfies

D(A) =
{

x ∈ B |
Z

σ(A)
λ

2 〈dex(λ), f s
x 〉B < ∞

}
and

2.
Ax = lim

n→∞

Z n

−n
λdex(λ), for all x ∈ D(A).

3. If g(·) is a complex-valued Borel function defined (a.e) on R, then g(A) ∈ C [B]. Fur-
thermore,

Dg(A) =
{

x ∈ B |
Z

σ(A)
|g(λ)|2 〈dex(λ), f s

x 〉B < ∞

}
and

4.
g(A)x = lim

n→∞

Z n

−n
g(λ)dex(λ), for all x ∈ Dg(A).

Proof. By Theorem 3.4, A =WR, where W is the unique partial isometry and R = [A∗A]1/2.
Let R̄ be the extension of R to H2. From Theorem 5.1 (2), we see that there is a unique
spectral measure Ē(Ω) such that for each x ∈ D(R̄):

R̄x = lim
n→∞

Z n

0
λdĒ(dλ)x. (5.1)

If we set āx(λ) = Ē(λ)x, then āx(λ) is a vector-valued function of bounded variation. Fur-
thermore, if W̄ is the extension of W, W̄ āx(λ) is of bounded variation, with Var(W̄ āx,R)≤
Var(āx,R). If we set ēx(λ) = W̄ āx(λ), by Theorem 5.3, for each interval (a,b),{

W̄
Z b

a
λdāx(λ)

}
=

Z b

a
λdēx(λ).
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Since Āx = W̄ R̄x and the restriction of Ā to B is A, we have, for all x ∈ D(A),

Ax = lim
n→∞

Z n

−n
λdex(λ). (5.2)

This proves (2). The proof of (1) follows from (1) in Theorem 5.1 and the definition of f s
x .

The proofs of (3) and (4) are direct adaptations of the Hilbert space case (see [RS]). �

5.5 General Case

In this section, we assume that, for each i, 1 ≤ i ≤ n, n ∈ N, Bi = B is a fixed separable
Banach space. We set B = ×n

i=1Bi, and represent a vector x ∈ B by xt = [x1, x2, · · · , xn].
An operator A = [Ai j] ∈C[B] is defined whenever Ai j : B → B , is in C [B].

If B ′ ⊂ H2 and Ai j is of Baire class one, then by Theorem 5.4, there exists a unique
vector-valued function ei j

x (λ) of bounded variation such that, for each x ∈ D(Ai j), we have:

1. D(Ai j) also satisfies

D(Ai j) =
{

x ∈ B |
Z

σ(Ai j)
λ

2 〈
dei j

x (λ), f s
x
〉

B < ∞

}
and

2.

Ai jx = lim
n→∞

Z n

−n
λdei j

x (λ), for all x ∈ D(Ai j).

3. If g(·) is a complex-valued Borel function defined (a.e) on R, then g(Ai j) ∈ C [B].
Furthermore,

Dg(Ai j) =
{

x ∈ B |
Z

σ(Ai j)
|g(λ)|2

〈
dei j

x (λ), f s
x
〉

B < ∞

}
and

4.

g(Ai j)x = lim
n→∞

Z n

−n
g(λ)dei j

x (λ), for all x ∈ Dg(Ai j).

If we let dE(λ) = [dei j(λ)], then we can represent A and g(A) by:

Ax = lim
n→∞

Z n

−n
λdE(λ)x, for all x ∈ D(A)

and

g(A)x = lim
n→∞

Z n

−n
g(λ)dE(λ)x, for all x ∈ D(A).
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6 Schatten Classes

In this section, we show how our approach allows us to provide a natural definition for the
Schatten class of operators on B .

Let K(B) be the class of compact operators on B and let F(B) be the set of operators
of finite rank. Recall that, for separable Banach spaces, K(B) is an ideal that need not be
the maximal ideal in L[B]. IfM(B) is the set of weakly compact operators and N(B) is the
set of operators that map weakly convergent sequences into strongly convergent sequences,
it is known that both are closed two-sided ideals in the operator norm, and, in general,
F(B) ⊂ K(B) ⊂M(B) and F(B) ⊂ K(B) ⊂ N(B) (see Dunford and Schwartz [DS], pg.
553). For reflexive Banach spaces K(B) = N(B) and M(B)=L[B]. For the space of con-
tinuous functions C[Ω], on a compact Hausdorff space Ω, Grothendieck [GR] has shown
thatM(B)=N(B). On the other hand, it is shown in Dunford and Schwartz [DS] that, for a
positive measure space, (Ω,Σ,µ), on L1 (Ω,Σ,µ) , M(B)⊂ N(B).

In this section, we assume that B has the approximation property (i.e., every compact
operator can be approximated by operators of finite rank). Let H1 and H2 be the canonical
adjoint pair for B , so that H1 ⊂ B ⊂ H2, as continuous dense embeddings. Let A be a
compact operator on B and let Ā be its extension to H2. For each compact operator Ā on
H2, there exists an orthonormal set of functions {ϕ̄n |n > 1} such that

Ā = ∑
∞

n=1 µn(Ā)(· , ϕ̄n)2Ū ϕ̄n,

where the µn are the eigenvalues of [Ā∗Ā]1/2 =
∣∣Ā∣∣, counted by multiplicity and in decreasing

order, and Ū is the partial isometry associated with the polar decomposition of Ā = Ū
∣∣Ā∣∣.

Without loss, we can assume that the set of functions {ϕ̄n |n > 1} is contained in B and
{ϕn |n > 1} is the normalized version in B . If Sp[H2] is the Schatten Class of order p in
L[H2], it is well-known that, if Ā ∈ Sp[H2], its norm can be represented as:

∥∥Ā
∥∥

p =
{
∑

∞

n=1

(
Ā∗Āϕ̄n, ϕ̄n

)
2

p/2
}1/p

=
{
∑

∞

n=1

∣∣µn(Ā)
∣∣p}1/p

.

Definition 6.1. We define the Schatten Class of order p in L[B] by:

Sp[B] = Sp[H2]∩L[B] |B

Since Ā is the extension of A ∈ Sp[B], we can represent A on B as

A = ∑
∞

n=1 µn(A)〈· , f s
n〉Uϕn,

where f s
n is the Steadman duality map obtained from the Hahn-Banach extension of J2(ϕn)

/
‖ϕn‖2

2

and U is the restriction of Ū . The corresponding norm of A on Sp[B] is defined by:

‖A‖
p
=

{
∑

∞

n=1 〈A
∗Aϕn, f s

n〉
p/2

}1/p
.

Theorem 6.2. Let A ∈ Sp[B], then ‖A‖
p
=

∥∥Ā
∥∥

p
.
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Proof. It is clear that {ϕn |n > 1} is a set of eigenfunctions for A∗A on B . Furthermore,
by Lax’s Theorem A∗A is selfadjoint and the point spectrum of A∗A is unchanged by its
extension to H2. It follows that A∗Aϕn =

∣∣µn(Ā)
∣∣2

ϕn,

〈A∗Aϕn, f s
n〉=

|µn|2

‖ϕn‖2
2

〈ϕn, f s
n〉=

|µn|2

‖ϕn‖2
2

(ϕn,ϕn)2 = |µn|2

and

‖A‖
p
=

{
∑

∞

n=1 〈A
∗Aϕn, f s

n〉
p/2

}1/p
=

{
∑

∞

n=1 |µn|p
}1/p =

∥∥Ā
∥∥

p
.

�

Lemma 6.3. If B has the approximation property, the embedding of L[B] in L[H2] is both
continuous and dense.

Proof. From Theorem 2.9, we see that the embedding is continuous. Since B has the
approximation property, the finite rank operators F(B) on B are dense in the finite rank
operators F(H2) on H2. It follows that, for each p, Sp[B] is dense in Sp[H2]. In particular,
S1[B] is dense in S1[H2] and, since S1[H2]∗ = L[H2], we see that S1[B]∗ = L[B] must be
dense in L[H2]. �

It is clear that much of the theory of operator ideals on Hilbert spaces extend to separable
Banach spaces in a straightforward way. We state a few of the more important results to
give a sense of the power provided by the existence of adjoints. The first result extends
theorems due to Weyl [WY], Horn [HO], Lalesco [LE] and Lidskii [LI]. (The methods of
proof for Hilbert spaces carry over without difficulty.)

Theorem 6.4. Let A ∈ K(B), the set of compact operators on B , and let {λn} be the
eigenvalues of A counted up to algebraic multiplicity. If Φ is a mapping on [0,∞] which is
nonnegative and monotone increasing, then we have:

1. (Weyl)

∑
N
n=1 Φ(|λn(A)|) 6∑

N
n=1 Φ(µn(A))

and

2. (Horn)

∑
N
n=1 Φ(|λn(A1A2)|) 6∑

N
n=1 Φ(µn(A1)µn(A2)).

In case A ∈ S1(B), we have:

3. (Lalesco)

∑
N
n=1 |λn(A)| 6∑

N
n=1 µn(A)

and

4. (Lidskii)

∑
N
n=1 λn(A) = Tr(A).
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6.1 Discussion

In a Hilbert space H , the Schatten classes Sp(H ) are the only ideals inK(H ), and S1(H ) is
minimal. In a Banach space, this is far from true. A complete history of the subject can be
found in the recent book by Pietsch [PI1] (see also Retherford [RE], for a nice review). We
limit this discussion to a few major topics in the subject. First, Grothendieck [GR] defined
an important class of nuclear operators as follows:

Definition 6.5. If A ∈ F(B) (the operators of finite rank), define the ideal N1(B) by:

N1(B) = {A ∈ F(B) | N1(A) < ∞} ,

where

N1(A) = glb
{
∑

m
n=1 ‖ fn‖‖φn‖

∣∣ fn ∈ B ′, φn ∈ B, A = ∑
m
n=1 φn 〈· , fn〉

}
and the greatest lower bound is over all possible representations for A.

Grothendieck has shown that N1(B) is the completion of the finite rank operators.
N1(B) is a Banach space with norm N1(·), and is a two-sided ideal in K(B). It is easy
to show that:

Corollary 6.6. M(B),N(B) and N1(B) are two-sided *ideals.

In order to compensate for the (apparent) lack of an adjoint for Banach spaces, Pietsch
[PI2], [PI3] defined a number of classes of operator ideals for a given B . Of particular
importance for our discussion is the class Cp(B), defined by

Cp(B) =
{

A ∈ K(B)
∣∣Cp(A) = ∑

∞

i=1 [si(A)]p < ∞
}

,

where the singular numbers sn(A) are defined by:

sn(A) = inf{‖A−K‖B | rank of K 6 n} .

Pietsch has shown that, C1(B) ⊂ N1(B), while Johnson et al [JKMR] have shown that for
each A ∈ C1(B), ∑

∞
n=1 |λn(A)| < ∞. On the other hand, Grothendieck [GO] has provided

an example of an operator A in N1(L∞[0,1]) with ∑
∞
n=1 |λn(A)| = ∞ (see Simon [SI], pg.

118). Thus, it follows that, in general, the containment is strict. It is known that, if C1(B) =
N1(B), then B is isomorphic to a Hilbert space (see Johnson et al). It is clear from the
above discussion, that:

Corollary 6.7. Cp(B) is a two-sided *ideal in K(B), and S1(B)⊂ N1(B).

For a given separable Banach space, it is not clear how the spaces Cp(B) of Pietsch re-
late to our Schatten Classes Sp(B) (clearly Sp(B)⊆ Cp(B)). Thus, the interesting question
is that of the equality of Sp(B) and Cp(B).
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7 Conclusion

In this paper, we have refined and extended the work in [GBZS] and [GZ3] to develop a
reasonably complete view of the theory of adjoints for bounded linear operators on separa-
ble Banach spaces. We have further identified the obstacles to a similar program for closed
densely defined linear operators. A major result in this case is that all operators of Baire
class one have an adjoint. (This corrects an error in [GZ3].) As applications, we first used
the polar decomposition property to extend the Poincaré inequality. Then, the polar decom-
position property, along with a few results for vector measures and vector-valued functions
allowed us to extend the spectral theorem to all operators of Baire class one on a Banach
space and closed densely defined linear operator on a separable Hilbert space. We were also
able to extend the spectral theorem to all linear operators of Baire class one on separable
Banach spaces. Finally, we showed how the polar decomposition property allowed us to
provide a natural Banach space version of the Schatten class of compact operators.

acknowledgements
We would like to thank an anonymous referee for providing us with Example 4.3, which

showed that our original version of Theorem 4.2 was incorrect and for making a number of
important observations and corrections that have improve our presentation.

We thank Professor Anatolij Pliczko for pointing out an error in our proof in [GZ3],
that all closed densely defined linear operators on B have an adjoint.

During the course of the development of this work, we have benefited from important
critical remarks from Professors Jerome Goldstein and Ioan I. Vrabie. They also identified
a few errors in an earlier draft, which have led to an improvement.

References

[AL] A. Alexiewicz, Linear functionals on Denjoy-integrable functions, Colloq. Math. 1 (1948),
289-293.

[B] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer
Monographs in Mathematics, New York, (2010).
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Math. 12 (1890) 211-294.

[PZ] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations
Applied Mathematical Sciences, 44, Springer New York, (1983).

[RE] J. R. Retherford, Applications of Banach ideals of operators, Bull. Amer. Math. Soc. 81
(1975), 978-1012.

[RL] F. Rellich, Störungsterie der Spektralzerlegung V., Math. Ann. 118 (1940), 462-484.

[RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis,
Academic Press, New York, (1972).

[RU] W. Rudin, Functional Analysis, McGraw-Hill Press, New York, (1973).

[SC] L. Schiff, Quantum Mechanics, International Series in Pure and Applied Math., McGraw-Hill,
New York, (1955).

[SCH] S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Harper & Row, New
York, (1961).

[SI] B. Simon, Trace Ideals and their Applications, London Mathematical Society Lecture Notes
Series 35, Cambridge University Press, New York, (1979).

[SO] M. H. Stone, Linear Transformations in Hilbert Space , Math. Surveys 15, Amer. Math. Soc.
Colloq. Publ. 15, Providence, RI, (1932).

[ST] V. Steadman, Theory of operators on Banach spaces, Ph.D thesis, Howard University, 1988.



The Polar Decomposition in Banach Spaces 131

[STE] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Uni-
versity Press, Princeton, NJ, (1970).

[STE2] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc.,
67 (1961), 102-104.

[STT] V. A. Strauss and C. Trunk, Spectralizable Operators, Integr. Equ. Oper. Theory 61 (2008),
413-422.

[TI] E. C. Titchmarsh, Some theorems on perturbation theory V., J. Analyse. Math. Soc. 4
(1954/56), 187-208.
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