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Abstract

We characterize boundedness and compactness of the Toeplitz operator Tµ, on the
Bergman space L1

a(∆), where the symbols, µ, are complex Borel measures on the unit
disk of the complex plane, ∆. The case of Toeplitz operators whose symbols are anti-
analytic integrable functions is settled. Our results are related to the reproducing kernel
thesis. We also study the case of symbols which are positive measures and the case
of radial symbols. Moreover, we give a characterization of compactness for general
bounded operators on L1

a.
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1 Introduction and Statement of results.

Let ∆ denote the unit disk of C, and let λ denote the Lebesgue area measure on ∆ normalized
so that λ(∆) = 1. For 0 < p≤∞, the Bergman space Lp

a is the closed subspace of Lp(∆,dλ)
consisting of analytic functions on the unit disk ∆. When p = 2, there exists an orthogonal
projector P, called the Bergman projector, from the Hilbert space L2(∆,dλ) onto its closed
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subspace L2
a. The Bergman projection Pg of g ∈ L2(∆,dλ) is given by

(Pg)(w) = 〈g,Kw〉=
Z

∆

g(z)
(1− zw)2 dλ(z),

where w ∈ ∆, and Kw(z) = 1
(1−zw)2 is the Bergman kernel. The kernel

kw(z) =
1−|w|2

(1− zw)2

is called the normalized Bergman kernel and 〈 , 〉 is the usual inner product in L2. Given a
complex Borel measure µ on ∆, the Bergman projection Pµ of µ is defined by

(Pµ)(w) =
Z

∆

dµ(z)
(1− zw)2 , w ∈ ∆.

The Toeplitz operator Tµ is densely defined on Lp
a by

(Tµh)(w) =
Z

∆

h(z)
(1−wz)2 dµ(z),

for h ∈ L∞
a (the space of bounded analytic functions in ∆) and w ∈ ∆, that is

Tµh = P(hµ).

Note that the previous formula makes sense and defines a function analytic on ∆, and
that the operator Tµ is in general unbounded on Lp

a . For µ = f dλ with f ∈ L1(∆,dλ), we
write Tµ = Tf .

For c > 0, we let

K̃(c)
ζ

(z) =
1+ c

(1− zζ̄)2+c

and

k̃(c)
ζ

(z) =
K̃(c)

ζ
(z)

‖K̃c
ζ
‖1

=
(1−|ζ|2)c

(1− zζ̄)2+c
.

The study of boundedness and compactness of Toeplitz operators has generated many
works over this last decade. See [15] and the references therein. Results are most often
described in terms of the boundary behaviour of the so called Berezin transform. We recall
that, for a bounded operator A on Lp

a , the Berezin transform of A is the function Ã, defined
by

Ã(z) := 〈Akz,kz〉 .

When p = 1, a new phenomenon appears. For example, in [16], K. Zhu showed that a
Toeplitz operator T f̄ associated to an antianalytic symbol f̄ is bounded on L1

a if and only if
f ∈ L∞∩LB, where LB is the logarithmic Bloch space defined below. At the same time, for
p > 1, it is well known that Tf is bounded on Lp

a if and only if f is bounded. So the study
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of Tµ on L1
a deserves a particular attention. The study of Toeplitz operators on L1

a has been
considered amongst others in [12, 13].

In [12], the authors introduced a technical condition in the study of Tµ on L1
a. To be pre-

cise, they associate to every complex Borel measure µ on ∆ the locally integrable function
R(µ) defined on ∆ by

R(µ)(w) := (1−|w|2)
Z

∆

dµ(z)
(z−w)(1− zw̄)2 .

They say that µ satisfies condition (R) if the measure |R(µ)(w)|dλ(w) is a Carleson measure
for Bergman spaces. See section 2 for the definition of a Carleson measure. We simply say
that f ∈ L1 satisfies condition (R) when the measure dµ = f dλ satisfies condition (R). We
denote by B∞ the Bloch space in ∆, that is the space of analytic functions g on ∆ such that

sup
z∈∆

(1−|z|2)|g′(z)|< ∞.

The space B∞ is a Banach space under the norm

||g||B∞ = |g(0)|+ sup
z∈∆

(1−|z|2)|g′(z)|.

Next, the logarithmic Bloch space LB is the subspace of the Bloch space consisting of
analytic functions g on ∆ which satisfy the estimate

||g||LB := |g(0)|+ sup
z∈∆

(1−|z|2)|g′(z)|log(
2

1−|z|2
) < ∞.

In [12], Z. Wu, R. Zhao and N. Zorboska proved the following theorem:

Theorem 1.1. Suppose that µ satisfies condition (R). Then the following two assertions are
equivalent:

(1) Tµ is bounded on L1
a;

(2) P(µ̄) belongs to the logarithmic Bloch space LB.

Moreover, there exists a constant C such that for every complex Borel measure µ satisfying
condition (R), the following estimate holds:

||P(µ)||LB ≤C(||Tµ̄||+Carl(R(µ)),

where Carl(R(µ)) denotes the Carleson constant of the Carleson measure R(µ).

The technical condition (R) is important in their argument. In the same paper [12], Z.
Wu, R. Zhao and N. Zorboska also proved the following theorem:

Theorem 1.2. Suppose that the complex Borel measure µ on ∆ is such that the measure
|R(µ̄)|dλ is a vanishing Carleson measure for Bergman spaces. Then the following two
assertions are equivalent:

(1) Tµ is compact on L1
a;
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(2) P(µ̄) belongs to the subspace LB0 of LB consisting of those analytic functions g which
satisfy the estimate

lim
|z|→1

(1−|z|2)|g′(z)|log(
2

1−|z|2
) = 0

See section 2 for the definition of a vanishing Carleson measure.
In [13], T. Yu obtained an interesting result on compactness of a general operator A on a

certain weighted Bergman space A1(ψ). To state Yu’s result, we need to recall briefly some
definitions.

Let φ be a positive and continuous function on (0,1) with

lim
r→1

φ(r) = 0.

The positive continuous function φ will be called normal if there exist 0 < a < b and r0 < 1
such that

φ(r)
(1− r2)a ↘ 0 and

φ(r)
(1− r2)b ↗ ∞ (r0 ≤ r → 1−). (1.1)

The pair of functions {φ,ψ} is called a normal pair if φ is normal, ψ is positive, contin-
uous and integrable on (0,1), and if for some b satisfying (1.1), there exists c > b−1 such
that

φ(r)ψ(r) = (1− r2)c, 0≤ r < 1. (1.2)

Let {φ,ψ} be a normal pair and H(∆) denote the space of analytic functions on the unit disk
∆. For f ∈ H(∆), we define

‖ f‖φ = sup
z∈∆

| f (z)|φ(|z|) = sup
0≤r<1

M∞( f ,r)φ(r),

‖ f‖ψ =
Z

∆

| f (z)|ψ(|z|)dν(z) = 2
Z 1

0
rM1( f ,r)ψ(r)dr

where

M∞( f ,r) = max
|z|=r

| f (z)| and M1( f ,r) =
Z 1

0
| f (reiθ)|dθ.

We define the following spaces of analytic functions.

A∞(φ) = { f ∈ H(∆) : ‖ f‖φ < ∞},
A0(φ) = { f ∈ H(∆) : lim

r→1−
M∞( f ,r)φ(r) = 0},

A1(ψ) = { f ∈ H(∆) : ‖ f‖ψ < ∞}.

Clearly A0(φ) ⊂ A∞(φ) so we may use the norm ‖ f‖φ on A0(φ). These three spaces are
all norm linear spaces with the indicated norms. If L1(ψ) denotes the Banach space of
measurable functions f on ∆ such that ‖ f‖ψ =

R
∆
| f |dλψ < ∞, where dλψ(z) = ψ(|z|)dλ(z)

then A1(ψ) is the closed subspace of L1(ψ) consisting of all analytic functions. Also, A∞(φ)
is a Banach space and A0(φ) is a closed subspace of A∞(φ). Using the following pairing
between A1(ψ) and A∞(φ),

[ f ,g] =
Z

∆

f (z)g(z)(1−|z|2)c dλ(z), (1.3)
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A. L. Shields and D.L. Williams [9] showed that (A0(φ))∗ � A1(ψ) and (A1(ψ))∗ � A∞(φ).
T. Yu [13] proved the following theorem:

Theorem 1.3. Suppose that A is a bounded operator on A1(ψ). Let A∗ be the adjoint
of A with respect to the pairing in (1.3), Kw the reproducing kernel of A2(ψ) and kw its
normalization in A1(ψ). Then the following two assertions are equivalent:

(1) A is compact on A1(ψ) and A0(φ) is an invariant subspace of A∗;

(2) ‖Akw‖ψ → 0 as w→ ∂∆.

T. Yu [13] also exhibited a compact operator A on A1(ψ) such that ‖Akw‖ψ does not
tend to zero as w→ ∂∆. Although Yu’s Theorem does not give a complete characterization
of compact operators on L1

a, an application to a Toeplitz operator Tf with bounded symbol
f gives that

Tf is compact on L1
a ⇐⇒

(
||Tf k̃

(c)
z ||1 → 0 as |z| → 1.

)
In this paper, our results are related to such reproducing kernel thesis. We recall that F.

Nazarov proved that the reproducing kernel thesis is not valid for p = 2, i.e. the following
two assertions are not equivalent for general f ∈ L2(∆,dλ):

(1) Tf is bounded on L2
a;

(2) supζ∈∆ ||Tf kζ||2 < ∞.

In [1], a set of symbols was constructed for which the above condition (2) is necessary and
sufficient. Our main result for boundedness of operators on L1

a is the following.

Theorem 1.4. Let A be a linear operator defined on L∞
a with values in the space of analytic

functions on ∆ and let c > 0. Then the implication (1) ⇒ (2) holds for the following two
assertions.

(1) A extends to a bounded operator on L1
a;

(2) the following estimate holds:

sup
ζ∈∆

||Ak̃(c)
ζ
||1 < ∞.

The converse (2)⇒ (1) also holds in the following two cases.

(a) The operator A satisfies the following property:Z
∆

(Ak̃(c)
ζ

)(z)g(ζ)dλ(ζ) = CAg(z)

for some absolute constant C and for all z ∈ ∆ and g in the dense subspace Pc(D) of
L1

a.

(b) A = Tµ where µ is a complex Borel measure on ∆.
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Moreover, in such cases, if C1 = sup
ζ∈∆

||Ak̃(c)
ζ
||1, there exists a constant C such that

||A|| ≤CC1.

Here, Pc(D) denote the space of weighted Bergman projections of functions in D(∆),
the space of C ∞ functions with compact support in ∆.

Note that Theorem 1.4 gives a complete solution of the boundedness problem for Toeplitz
operators with complex measures symbols without referring to the technical condition (R)
in Theorem 1.1. Our general result for compact operators on L1

a is the following:

Theorem 1.5. Let A be a bounded operator on L1
a and C > 0. The following two assertions

are equivalent:

(1) The operator A is compact on L1
a;

(2) For every ε > 0, there exists R ∈ (0,1) such thatZ
R≤|z|<1

|(Ak̃(c)
ζ

)(z)|dλ(z) < ε

for every ζ ∈ ∆.

We extend the results of T. Yu and Z. Wu et al. by proving the following characterization
of compact Toeplitz operators Tµ whose symbols µ are such that µ̄ satisfies a ”uniform”
condition (R).

Theorem 1.6. Let c > 0. Suppose that the complex measure µ is such that Kzµ̄ satisfies
condition (R) for every z ∈ ∆ with the following uniform condition:

∀r ∈ (0,1), sup
z∈r∆

Carl(R(Kzµ̄)) < ∞

(in particular if |µ| is a Carleson measure for Bergman spaces.) Suppose further that Tµ is
bounded on L1

a. Then Tµ is compact on L1
a if and only if ‖Tµk̃(c)

ζ
‖1 → 0 as ζ→ ∂∆.

In Theorem 1.6, Carl(R(Kzµ̄)) denotes the Carleson constant of the Carleson measure
|R(Kzµ̄)|dλ.

As it might not be seen at first sight, we would like to point out that our conditions in
Theorem 1.6 are weaker in comparison to the conditions in Theorem 1.2. For example, if
µ is a Carleson measure which is not a vanishing Carleson measure, our result still gives a
compactness criterion for Tµ. We also study boundedness and compactness on L1

a of Toeplitz
operators associated with positive measures. In this case again, there is a difference with
the case p > 1. We show that the Carleson measure property is no longer sufficient to
characterize bounded Toeplitz operators with positive measures. This contradicts what is
stated in [15, Exercise 6, Chap 7].

The paper is organized as follows. In section 2 we give the proof of Theorem 1.4
and we deduce a characterization of bounded Toeplitz operators whose symbols are anti-
analytic functions on ∆. In section 3 we prove Theorem 1.5 and Theorem 1.6 and we
deduce a characterization of compact Toeplitz operators with symbols that are anti-analytic
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functions. We also study the case of symbols which are positive Borel measures on ∆. In
the final section, we study the case of radial symbols and we prove that for such symbols
whose associated Toeplitz operator is bounded on L1

a, the conclusion of Theorem 1.6 is true
with no extra assumption on the symbol.

2 Bounded Toeplitz operators on L1
a

2.1 Preliminary results.

In this subsection, we recall some definitions and we established some results that will be
used later in this paper.

Definition 2.1. Let p∈ (0,∞). A positive Borel measure µ on ∆ is called a Carleson measure
for the Bergman space Lp

a , or simply a Carleson measure, if there exists a constant C > 0
such that Z

∆

| f (z)|pdµ(z)≤C
Z

∆

| f (z)|pdλ(z) (2.1)

for all f ∈ Lp
a .

The infimum of all constants C which satisfy (2.1) is called the Carleson measure con-
stant of µ and will be denoted by Carl(µ).

Definition 2.2. Let p ∈ (0,∞). A positive Borel measure µ on ∆ is called a vanishing
Carleson measure for the Bergman space Lp

a , or simply a vanishing Carleson measure, if
for any sequence { fn} in Lp

a with || fn||p ≤ 1 and such that fn(z)−→ 0 uniformly on compact
subsets of ∆, we have

lim
n→∞

Z
∆

| fn(z)|pdµ(z) = 0.

We recall that the Bergman distance β on ∆ is given by

β(z,w) = log
(

1+ |ϕz(w)|
1−|ϕz(w)|

)
(z,w ∈ ∆).

For r > 0 and z ∈ ∆, the set

D(z,r) := {w ∈ ∆ : β(z,w) < r}

is the Bergman ball centered at z with radius r, see [14] for more about the Bergman metric.
The next theorem recalls a characterization of Carleson measures for Bergman spaces.

Theorem 2.3. (cf. e.g. [14, Theorem 2.25]) Let µ be a positive Borel measure on ∆. The
following four assertions are equivalent:

(1) For some p ∈ (0,∞), µ is a Carleson measure for the Bergman space Lp
a .

(2) There exists a positive constant C such thatZ
∆

(1−|z|2)2

|1−wz|4
dµ(w)≤C

for all z ∈ ∆.
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(3) There exists a positive constant C such thatZ
D(z,r)

dµ(w)≤C(1−|z|2)2

for all z ∈ ∆.

(4) For all p ∈ (0,∞), µ is a Carleson measure for the Bergman space Lp
a .

Moreover, the Carleson measure constant Carl(µ) of µ is smaller than the constant C of
assertion (2).

We recall the following Lemma for future reference (cf. Forelli-Rudin [3] or [5], Theo-
rem 1.7):

Lemma 2.4. For all −1 < α < ∞ and all real β, let

Iα,β(z) :=
Z

∆

(1−|w|2)α

|1− zw̄|2+α+β
dλ(w) (z ∈ ∆).

Then

(1) if β < 0, the function Iα,β is bounded;

(2) if β = 0, there exists a constant C = Cα,β such that for every z ∈ ∆, the following
estimate holds:

1
C

log(
2

1−|z|2
)≤ Iα,β ≤Clog(

2
1−|z|2

);

(3) if β > 0, there exists a constant C = Cα,β such that for every z ∈ ∆, the following
estimate holds:

1
C

1
(1−|z|2)β

≤ Iα,β ≤C
1

(1−|z|2)β
.

Lemma 2.5. If µ is a complex measure on ∆ such that |µ| is a Carleson measure for
Bergman spaces, then µ satisfies condition (R).

Proof. We fix r > 0. The question is to prove that if |µ| is a Carleson measure for
Bergman spaces, then

sup
z∈∆

1
λ(D(z,r))

Z
D(z,r)

|R(µ)(w)|dλ(w) < ∞.

Applying Fubini’s theorem we obtain

1
λ(D(z,r))

Z
D(z,r)

|R(µ)(w)|dλ(w)≤Z
∆

1
λ(D(z,r))

(Z
D(z,r)

1−|w|2

|u−w||1−uw|2
dλ(w)

)
d|µ|(u).
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Thus,

1
λ(D(z,r))

Z
D(z,r)

|R(µ)(w)|dλ(w)≤

C
Z

∆

1−|z|2

λ(D(z,r))|1−uz|2

(Z
D(z,r)

1
|u−w|

dλ(w)
)

d|µ|(u), (2.2)

since 1− |w|2 ≈ 1− |z|2 and |1− uw| ≈ |1− uz| for w ∈ D(z,r) and u ∈ ∆. By making a
change of variable w = ϕz(w′) we get

λ(D(z,r))−1
Z

D(z,r)

1
|u−w|

dλ(w) =
(1−|z|2)2

λ(D(z,r))

Z
D(0,r)

dλ(w′)
|u−ϕz(w′)||1−w′z|4

≤ C
|1−uz|

Z
D(0,r)

1
|w′−ϕz(u)|

dλ(w′)

≤ C′

|1−uz|
.

Here the first inequality is gotten from the fact that

λ(D(z,r)≈ (1−|z|2)2, |1−w′z̄| ≥ 1−|w|

and the function w 7→ 1− |w| is bounded below by a positive constant on the set D(0,r).
This together with equation (2.2) shows that there exists a constant C depending on r only
such that

λ(D(z,r))−1
Z

D(z,r)
|R(µ)(w)|dλ(w)≤C(1−|z|2)

Z
∆

1
|1−uz|3

d|µ|(u). (2.3)

Since |µ| is a Carleson measure for Bergman spaces, we haveZ
∆

1
|1−uz|3

d|µ|(u)≤Carl(µ)
Z

∆

1
|1−uz|3

dλ(u)≤C′Carl(µ)(1−|z|2)−1.

The latter inequality comes from an application of assertion (3). of Lemma 2.4. The con-
clusion follows. �

The existence of a lattice in the unit disk will be useful in our argument.

Theorem 2.6. (cf. e.g. Theorem 2.23 of [14]) For every r ∈ (0,1], there exist a positive
integer N and a sequence {ak} of points in ∆ with the following properties:

(1) ∆ = ∪kD(ak,r);

(2) the balls D(ak,
r
4) are mutually disjoint;

(3) each point z ∈ ∆ belongs to at most N of the balls D(ak,4r).

Such a sequence {ak} is called an r−lattice.
From now on, c will denote a positive number. It is shown e.g. in [5], Lemma 1.17, that

there exists a unique linear operator D on H(∆) with the following properties.
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• D is continuous on H(∆) with respect to the topology of uniform convergence on
compact sets of C contained in ∆;

• Dz[(1− zw̄)−2] = (1− zw̄)−(2+c) for every w ∈ ∆;

• D is invertible on H(∆).

We shall use the following Lemma.

Lemma 2.7. For every h ∈ L1
a, the function Dh is given by

Dh(z) =
Z

∆

h(w)
(1− zw̄)2+c dλ(w) (z ∈ ∆).

Moreover, there exists a constant C such thatZ
∆

(1−|z|2)cDh(z)g(z)dλ(z) = C
Z

∆

h(z)g(z)dλ(z),

for all h ∈ L1
a and g ∈ L∞

a .

Proof. The first assertion is proved in page 19 of [5], while the second assertion is
proved in page 20 of [5] for g ∈ L∞

a and either h or (1−|z|2)ch(z) bounded. We give here a
different proof.

We first prove the lemma for all h ∈ L2
a and g ∈ L∞

a . Let {ak} be a r−lattice as described
in Theorem 2.6. By the atomic decomposition theorem (cf. e.g. Theorem 2.30 of [14]), for
every h ∈ L2

a, there exists a sequence {ck} of complex numbers belonging to the sequence
space l2 such that

h(z) =
∞

∑
k=1

ck
1−|ak|2

(1− zak)2 (z ∈ ∆),

where the series converges in the norm topology of L2
a. This series converges uniformly

on compact sets of C contained in ∆ to its sum h(z). Next, the series ∑
∞
k=1 ck

1−|ak|2
(1−zak)2+c

converges in the norm topology of the weighted Bergman space L2
a((1−|z|2)2cdλ(z)), and

thus it converges uniformly on compact sets of C contained in ∆ to its sum.
We recall that Dz[(1− zw̄)−2] = (1− zw̄)−(2+c) for every w ∈ ∆. Thus the partial sums

N

∑
k=1

ck(1−|ak|2)Dz[
1

(1− zak)2 ] = Dz[
N

∑
k=1

ck
1−|ak|2

(1− zak)2 ]

converges uniformly on compact sets of C contained in ∆ to the analytic function

∞

∑
k=1

ck
1−|ak|2

(1− zak)2+c

as N → ∞. Since D is continuous in H(∆), we conclude that

Dh(z) =
∞

∑
k=1

ck
1−|ak|2

(1− zak)2+c . (2.4)
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Hence
Dh(z) = ∑

∞
k=1 ck(1−|ak|2)

R
∆

1
(1−wak)2(1−zw̄)2+c dλ(w)

=
R

∆
{∑

∞
k=1 ck

1−|ak|2
(1−wak)2 } 1

(1−zw̄)2+c dλ(w)

=
R

∆

h(w)
(1−zw̄)2+c dλ(w).

Next the convergence in L2
a((1− |z|2)2cdλ(z)) of the series in the right hand side of (2.4)

implies thatZ
∆

(1−|z|2)cDh(z)g(z)dλ(z) =
∞

∑
k=1

ck(1−|ak|2)
Z

∆

(1−|z|2)c

(1− z̄ak)2+c g(z)dλ(z).

Also, there exists a constant C such that for every g ∈ L∞
a and for every positive integer k,Z

∆

(1−|z|2)c

(1− z̄ak)2+c g(z)dλ(z) = Cg(ak) = C
Z

∆

g(w)
(1−akw̄)2 dλ(w).

This implies,Z
∆

(1−|z|2)cDh(z)g(z)dλ(z) = C
∞

∑
k=1

ck(1−|ak|2)
Z

∆

g(w)
(1− w̄ak)2 dλ(w)

= C
Z

∆

{
∞

∑
k=1

ck
1−|ak|2

(1− w̄ak)2 }g(w)dλ(w)

= C
Z

∆

h̄(w)g(w)dλ(w).

We next consider the general case when h ∈ L1
a. The announced conclusions follow from

the density of L2
a in L1

a and from the existence of a constant C such thatZ
∆

(1−|z|2)c|Dh(z)|dλ(z)≤C
Z

∆

|h(z)|dλ(z)

for all analytic functions h on ∆. For the latter result, cf. Theorem 2.19 of [14]. This finishes
the proof of the lemma. �

For c > 0, we denote by Pc the orthogonal projector from L2((1−|z|2)cdλ(z)) unto the
weighted Bergman space L2

a((1−|z|2)cdλ(z)). Then Pc is a weighted Bergman projector in
∆ and for every φ ∈ L2((1−|z|2)cdλ(z)), we have that

Pcφ(z) = (1+ c)
Z

∆

(1−|ζ|2)c

(1− zζ̄)2+c
φ(ζ)dλ(ζ).

We denote by D(∆) the space of C ∞ functions with compact support in ∆. We shall
need the following lemma.

Lemma 2.8. The space Pc(D(∆)) is a dense subspace of L1
a.

Proof. It is easy to check that Pc(D(∆)) ⊂ L∞
a ⊂ L1

a. Since the dual space of L1
a with

respect to the usual duality pairing 〈,〉 in L2(∆,dλ) is the Bloch space B∞, it suffices to show
that every h ∈ B∞ such thatZ

∆

Pcφ(z)h̄(z)dλ(z) = 0 ∀φ ∈D(∆)
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vanishes identically. An application of Fubini’s Theorem and Lemma 2.7 gives

0 =
Z

∆

Pcφ(z)h̄(z)dλ(z) =
Z

∆

(Z
∆

(1−|ζ|2)c

(1− zζ̄)2+c
φ(ζ)dλ(ζ)

)
h̄(z)dλ(z)

=
Z

∆

φ(ζ)Dh(ζ)(1−|ζ|2)cdλ(ζ).

It is easy to conclude that Dh ≡ 0 on ∆. Using the invertibility of D on H(∆), we obtain
that h≡ 0 on ∆. �

The following three lemmas are proved in [14].

Lemma 2.9. Suppose p > 0, c > 0 and α >−1. Let dλα(z) = (1−|z|2)αdλ(z). There exist
constants A and B such that

A
Z

∆

| f (z)|pdλα(z) ≤
Z

∆

|(1 − |z|2)cDc f (z)|pdλα(z) ≤ B
Z

∆

| f (z)|pdλα(z) (2.5)

for all holomorphic functions f in ∆.

Lemma 2.10. Suppose p > 0 and α >−1. For F ∈ Lp
a(dλα), we have

|F(z)| ≤
||F ||p,α

(1−|z|2)(2+α)/p
(2.6)

for all z ∈ ∆.

Lemma 2.11 (Theorem 3.9 in [14]). For any z and w in ∆ we have

β(z,w) = sup{| f (z)− f (w)| : f ∈ B∞; || f ||B∞ ≤ 1}.

2.2 Proof of Theorem 1.4

Suppose (1) holds. Then
||Ak̃(c)

ζ
||1 ≤ ||A||||k̃(c)

ζ
||1

and since

||k̃(c)
ζ
||1 =

Z
∆

(1−|ζ|2)c

|1−w.ζ̄|2+c
dλ(w)

is bounded in ζ by Lemma 2.4, this gives (2).
Suppose that (2) is satisfied.
Case (a): By our assumption on A, we haveZ

∆

|Ag(z)|dλ(z) ≤ C−1
Z

∆

(Z
∆

|Ak̃(c)
ζ

(z)||g(ζ)|dλ(ζ)
)

dλ(z)

= C−1
Z

∆

(Z
∆

|Ak̃(c)
ζ

(z)|dλ(z)
)
|g(ζ)|dλ(ζ)

= C−1 sup
ζ∈∆

||Ak̃(c)
ζ
||1||g||1.
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This shows the implication (2) =⇒ (1) for the case (a).
Case (b): Let µ be a complex Borel measure on ∆. From case (a), it is enough to prove

that if z ∈ ∆ and g in the dense subspace Pc(D(∆)) of L1
a, thenZ

∆

(Tµk̃(c)
ζ

)(z)g(ζ)dλ(ζ) =
1

1+ c
Tµg(z). (2.7)

Let h ∈ L1
a(∆,dλ(ζ)) and g = Pcφ with φ ∈D(∆). ThenZ

∆

h̄(ζ)g(ζ)(1−|ζ|2)cdλ(ζ) =
Z

∆

h̄(ζ)φ(ζ))(1−|ζ|2)cdλ(ζ). (2.8)

Fix z ∈ ∆ and take

hz(ζ) := (TµK̃(c)
ζ

)(z) = (1+ c)
Z

∆

1
(1−wz̄)2(1−ζw̄)2+c dµ(w).

It is clear that the function hz is analytic and for every ζ ∈ ∆, and the function z 7→ hz(ζ) is
antianalytic. By the mean value property, there exists a constant Cz such that

|hz(ζ)| ≤Cz||TµK̃(c)
ζ
||1

and hence Z
∆

|hz(ζ)|(1−|ζ|2)cdλ(ζ)≤Cz sup
ζ∈∆

||Tµk̃(c)
ζ
||1 < ∞.

In the latter inequality, we applied assertion (2).
For every φ in the space D(∆), we have

Z
∆

(Z
∆

(1−|ζ|2)c

|1−wζ̄|2+c
|φ(ζ)|dλ(ζ)

)
d|µ|(w)
|1− zw̄|2

≤ C(φ)
(1−|z|2)2

Z
∆

d|µ|(w) < ∞

for every z ∈ ∆. By identity (2.8) and Fubini’s Theorem, we obtain that for every g = Pcφ in
the dense subspace Pc(D(∆)) of L1

a and for every z ∈ ∆,Z
∆

(Tµk̃(c)
ζ

)(z)g(ζ)dλ(ζ) =
Z

∆

(Tµk̃(c)
ζ

)(z)φ(ζ)dλ(ζ)

=
Z

∆

(Z
∆

1
(1− zw̄)2

(1−|ζ|2)c

(1−wζ̄)2+c
dµ(w)

)
φ(ζ)dλ(ζ)

=
Z

∆

(Z
∆

(1−|ζ|2)c

(1−wζ̄)2+c
φ(ζ)dλ(ζ)

)
1

(1− zw̄)2 dµ(w)

=
1

1+ c

Z
∆

g(w)
(1− zw̄)2 dµ(w) =

1
1+ c

Tµg(z).

This proves identity (2.7) and so the implication (2)⇒ (1) is proved for case (b). �
One would like to know whether (2) =⇒ (1) for general operators A in the above The-

orem. The next lemma shows that our necessary condition, when A = Tµ, in Theorem 1.4 is
remarkably strong.
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Lemma 2.12. Let c > 0 and µ a complex Borel measure in ∆. Then there exists a constant
C such that ∣∣∣∣Z

∆

(1−|a|2)c

(1−aw)2+c
dµ(w)

(1−wz)2+c

∣∣∣∣≤ C
(1−|z|2)2+c ‖Tµk̃(c)

a ‖1 (2.9)

for all a,z ∈ ∆.

Proof. Let a ∈ ∆. For z ∈ ∆, we have by (2.6), (2.5) that∣∣∣∣Z
∆

(1−|a|2)c

(1−aw)2+c
dµ(w)

(1−wz)2+c

∣∣∣∣ ≤ 1
(1−|z|2)2+c

Z
∆

∣∣∣∣Z
∆

(1−|a|2)c

(1−aw)2+c
dµ(w)

(1−wζ)2+c

∣∣∣∣dλc(ζ)

≤ B
(1−|z|2)2+c

Z
∆

∣∣∣∣Z
∆

(1−|a|2)c

(1−aw)2+c
dµ(w)

(1−wζ)2

∣∣∣∣dλ(ζ)

=
B

(1−|z|2)2+c ‖Tµk̃(c)
a ‖1. �

If we take a = z in (2.9), we easily find that for any a ∈ ∆,∣∣∣∣Z
∆

(1−|a|2)2+2c

|1−aw|4+2c dµ(w)
∣∣∣∣≤C sup

a∈∆

‖Tµk̃(c)
a ‖1.

Hence for positive measures, this clearly shows that our necessary condition implies that
µ must be a Carleson measure. The following result shows that the converse of this is not
true and gives several characterizations of boundedness of Toeplitz operators with positive
measures.

Theorem 2.13. Let µ be a positive measure in the unit disk ∆. The following propositions
are equivalent:

(i) Tµ is bounded on L1
a.

(ii) For every strictly positive c, there is a constant A such that

sup
a∈∆

‖Tµk̃(c)
a ‖1 ≤ A.

(iii) There is a constant A such that

sup
a∈∆

‖Tµk̃(1)
a ‖1 ≤ A.

(iv) µ is a Carleson measure for Bergman spaces and P(µ) ∈ LB.

We remark that (i)⇔ (iv) has already appeared in Wang and Liu [11] but we obtain this
result independently and our proof is different from theirs.

Proof. It is clear that (i) ⇒ (ii) and (ii) ⇒ (iii). We will show that (iii) ⇒ (iv) and
(iv)⇒ (i).

(iii)⇒ (iv) : From the observation after Lemma 2.12, (iii) implies that µ is a Carleson
measure. In this case, we have the following lemma.
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Lemma 2.14. Let µ be a positive measure in the unit disk ∆. Suppose that µ is a Carleson
measure for Bergman spaces. Then the following operator

Sµ(h)(z) = (1−|z|2)
Z

∆

h(z)−h(ζ)

(1− zζ)3
dµ(ζ)

is bounded from B∞ to L∞.

Proof of Lemma 2.14
Using the Carleson condition, Lemma 2.11, and a change of variable ζ = ϕz(w), we

have

|Sµ(h)(z)| ≤ (1−|z|2)
Z

∆

|h(z)−h(ζ)|
|1− zζ|3

dµ(ζ)

≤ Carl(µ)(1−|z|2)
Z

∆

|h(z)−h(ζ)|
|1− zζ|3

dλ(ζ)

≤ Carl(µ)(1−|z|2)||h||B∞

Z
∆

β(z,ζ)

|1− zζ|3
dλ(ζ)

= Carl(µ)||h||B∞

Z
∆

β(w,0)
|1− zw|

dλ(w)

≤ C||h||B∞ . �

We are now ready to prove the second part of (iv). For h ∈ B∞ and z ∈ ∆, we have〈
Tµk̃1

z ,h
〉

=
Z

∆

Tµk̃1
z (w)h(w)dλ(w)

=
Z

∆

(Z
∆

(1−|z|2)
(1− zζ)3

dµ(ζ)

(1−wζ)2

)
h(w)dλ(w)

= (1−|z|2)
Z

∆

1
(1− zζ)3

(Z
∆

h(w)dλ(w)
(1−wζ)2

)
dµ(ζ)

= (1−|z|2)Qµ(h)(z)

where Qµ(h)(z) =
R

∆

h(ζ)
(1−zζ)3 dµ(ζ). It is then easy to obtain the identity,

(1−|z|2)h(z)Qµ(1)(z) =
〈
Tµk̃1

z ,h
〉
+Sµ(h)(z), (2.10)

for z ∈ ∆ and h ∈ B∞. So that using Lemma 2.14 we get

(1−|z|2)|h(z)Qµ(1)(z)| ≤ C||h||B∞ (2.11)

for z ∈ ∆ and h ∈ B∞. Taking the supremum over all h ∈ B∞ with ||h||B∞ ≤ 1 and h(0) = 0,
and applying Lemma 2.11, we obtain that

(1−|z|2)|Qµ(1)(z)| log
2

1−|z|2
≤ C (2.12)
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for all z ∈ ∆. On the other hand, observe that

2Qµ(1)(z) = 2P(µ)(z)+ zP(µ)′(z) (2.13)

and that, since µ is a Carleson measure, then ||P(µ)||B∞ ≤CCarl(µ) and hence

(1−|z|2)|P(µ)(z)| log
2

1−|z|2
≤ CCarl(µ). (2.14)

Therefore, by (2.12), (2.13) and (2.14) we have

sup
z∈∆

(1−|z|2)|P(µ)′(z)| log
2

1−|z|2
< ∞.

So P(µ) ∈ LB.
(iv) =⇒ (i):
We may use Lemma 2.5 and Theorem 1.1 as well to conclude. However we include here

a direct proof since all the ingredients are contained in the previous implication. Indeed, for
g ∈ L∞

a and h ∈ B∞, we have〈
Tµg,h

〉
=

Z
∆

Tµg(w)h(w)dλ(w)

= C
Z

∆

g(w)(1−|w|2)Qµ(h)(w)dλ(w).

It is then enough to show that (1− |w|2)Qµ(h)(w) is bounded whenever h ∈ B∞. Observe
that

(1−|w|2)Qµ(h)(w) = (1−|w|2)h(w)Qµ(1)(w)−Sµ(h)(w).

Using the fact |h(w)| ≤ C||h||B∞ log 2
1−|w|2 , the result follows by applying Lemma 2.14,

(2.14) and (2.13). �

Remark 2.15. In contrast to what is stated in Exercise 6 of Chapter 7 in [15], the property
P(µ) ∈ LB is not superfluous in assertion iv) of the above Theorem. In fact, if this were the
case, every Carleson measure µ for Bergman spaces would satisfy P(µ) ∈ LB. In particular,
for every bounded non-negative function f on ∆, we would have P( f ) ∈ LB. This would
imply that for every bounded function f on ∆, we have P( f )∈ LB (to get this property, write
the real part and the imaginary part of f as the differences of their positive and negative
parts). We are led to the false conclusion that the Bloch space B∞ is contained in LB.

We next state the following characterization of bounded Toeplitz operators with antian-
alytic symbols.

Theorem 2.16. Let f ∈ L1
a. The following three assertions are equivalent:

(1) T f̄ is bounded on L1
a;

(2) For all c > 0,
sup
z∈∆

||T f̄ k̃
(c)
z ||1 < ∞;
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(3) f belongs to L∞
a ∩LB.

Proof. The equivalence (1) ⇔ (2) is given by Theorem 1.4, since f̄ dλ is a complex
Borel measure on ∆. The equivalence (1)⇔ (3) was proved by K. Zhu [16]. �

In the proof of Theorem 1.6, we shall need the following lemma.

Lemma 2.17. Suppose that µ is a complex Borel measure on ∆ such that Tµ is bounded on
L1

a. Then for every z ∈ ∆, the Toeplitz operator TKzµ is bounded on the Bloch space B∞.
We suppose further that the measure Kzµ̄ satisfies condition (R) for every z ∈ ∆ with the

following uniform condition:

∀r ∈ (0,1), sup
z∈r∆

Carl(R(Kzµ̄)) < ∞

(this is the case when |µ| is a Carleson measure for Bergman spaces). Then for every
r ∈ (0,1), there exists a constant C = C(r) such that

sup
z∈r∆

||P(Kzµ̄)||LB ≤C(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄))),

where ||Tµ|| denotes the norm operator of Tµ on L1
a and Carl(R(Kzµ̄)) denotes the Carleson

constant of the Carleson measure |R(Kzµ̄)|dλ.

Proof. By the duality between B∞ and L1
a with respect to the usual pairing in L2(∆,dλ),

if Tµ is bounded on L1
a, the adjoint operator of Tµ is Tµ̄ and is bounded on B∞. It is easy to

check that for every g ∈ B∞ and for every z ∈ ∆, the function Kzg belongs to B∞ and there
exists a constant C(z) such that ||Kzg||B∞ ≤C(z)||g||B∞ . Hence, for all g ∈ B∞ and h ∈ L2

a we
have, for z ∈ ∆, that

|〈TKzµ̄g,h〉| = |〈Kzg,Tµh〉| ≤ ‖Kzg‖B∞‖Tµh‖1

≤ C(z)||g||B∞ ||Tµ||||h||1.

For every r ∈ (0,1), there exists a constant C(r) such that

sup
z∈r∆

||Kzg||B∞ ≤C(r)||g||B∞ .

Hence for all g ∈ B∞ and h ∈ L2
a we have, for z ∈ r∆, that

|〈TKzµ̄g,h〉| ≤ C(r)‖g‖B∞ ||Tµ||‖h‖1.

If we denote by ||TKzµ̄||′ the operator norm of TKzµ̄ on B∞, we obtain

||TKzµ̄||′ ≤C(r)||Tµ||.

Since the measure Kzµ̄ satisfies condition (R) for every z ∈ ∆, the conclusion follows from
the inequality

||P(Kzµ̄)||LB ≤C(||TKzµ̄||′+Carl(Kzµ̄))

which is given by Theorem 1.1. �
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3 Compactness of Toeplitz operators

In this section, we give a general criterion of compactness on L1
a and a proof of Theorem

1.6. We obtain as corollaries a compactness characterization of Toeplitz operators with
positive measures or with antianalytic symbols. The following theorem will be useful; for
its proof, the reader can consult [3, page 74].

Theorem 3.1. Let F denote a bounded subset of L1(∆,dλ). The following two assertions
are equivalent:

(1) The closure F in L1(∆,dλ) is compact in L1(∆,dλ);

(2) (a) For all ε > 0 and R ∈ (0,1), there exists δ ∈ (0,1−R) such thatZ
|z|<R

|φ(z+h)−φ(z)|dλ(z) < ε

for all φ ∈ F and all h ∈ C such that |h|< δ, and

(b) For every ε > 0, there exists R ∈ (0,1) such thatZ
R≤|z|<1

|φ(z)|dλ(z) < ε

for every φ ∈ F .

3.1 Proof of Theorem 1.5

Let F := {Ag : g ∈ L1
a, ||g||1 ≤ 1}. Since A is bounded on L1

a, the set F is a bounded subset
of L1

a and hence a bounded subset of L1(∆,dλ). Moreover, the compactness of F in L1
a is

equivalent to the compactness of F in L1(∆,dλ). According to Theorem 3.1, it suffices to
show that the following two properties are equivalent:

(1) For every ε > 0, there exists R ∈ (0,1) such thatZ
R≤|z|<1

|(Ak̃(c)
ζ

)(z)|dλ(z) < ε,

for all ζ ∈ ∆.

(2) (a) For all ε > 0 and R ∈ (0,1), there exists δ ∈ (0,1−R) such thatZ
|z|<R

|φ(z+h)−φ(z)|dλ(z) < ε

for all φ ∈ F and all h ∈ C such that |h|< δ and
(b) For every ε > 0, there exists R ∈ (0,1) such that

R
R≤|z|<1 |φ(z)|dλ(z) < ε for every

φ ∈ F .
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The implication (2)⇒ (1) is obtained by taking φ = Ak̃(c)
ζ

in part (b) of assertion (2).
We next prove the implication (1)⇒ (2). We first point out that part (a) of assertion (2) is
valid for every bounded subset F of L1

a. In fact, the closed subdisk ω = {z ∈ ∆ : |z| ≤ 1+R
2 }

is a compact subset of ∆ and hence on this set, the Bergman distance β on ∆ is equivalent
to the Euclidean distance. On the other hand, it is well known (cf. e.g. [2], Proposition 5.5,
page 67) that, if φ analytic on ∆, and z,ζ ∈ ∆ such that β(z,ζ) < δ, for some δ ∈ (0,1), then

|φ(z)−φ(ζ)| ≤Cδ

Z
β(z,w)<1

|φ(w)| dλ(w)
(1−|w|2)2 .

We recall that the measure dλ(w)
(1−|w|2)2 is invariant under automorphisms of ∆. On ω, there exist

two constants A and B such that A|z− ζ| ≤ β(z,ζ) ≤ B|z− ζ| for all z,ζ ∈ ω. We suppose
that δ < A(1−R)

2 . Now, for all h ∈ C such that |h| < δ

A and all z ∈ C such that |z| < R, it is
easy to check that z and z + h both lie in ω. Moreover, if φ is analytic on ∆ then for every
h ∈ C such that |h|< δ

B and every z such that |z|< R, we have

|φ(z+h)−φ(z)| ≤C(R)δ||φ||1.

We set C = sup
φ∈F

||φ||1. Then

Z
|z|<R

|φ(z+h)−φ(z)|dλ(z)≤CC(R)δR2.

Part (a) of assertion (2) follows when we take δ < ε

CC(R)R2 .

We next prove that assertion (1) implies part (b) of assertion (2). Let φ = Ag ∈ F . By
the atomic decomposition theorem (cf. e.g. Theorem 2.30 of [14]), for every g ∈ L1

a, there
exists a sequence {ck} of complex numbers belonging to the sequence space l1 such that

g(z) =
∞

∑
k=1

ckk̃(c)
ak (z) (z ∈ ∆).

This series converges to g in the norm topology of L1
a. Moreover, there exists a constant C

such that for every g ∈ L1
a, we have

∞

∑
k=1

|ck| ≤C||g||1.

Here, the sequence {ak} is again an r−lattice as in Theorem 2.6. Since A is bounded on L1
a,

we get Z
R≤|z|<1

|Ag(ζ)|dλ(ζ) =
Z

R≤|z|<1
|A(

∞

∑
k=1

ckk̃(c)
ak )(ζ)|dλ(ζ)

=
Z

R≤|z|<1
|

∞

∑
k=1

ckA(k̃(c)
ak )(ζ)|dλ(ζ)

≤
Z

R≤|z|<1

∞

∑
k=1

|ck||A(k̃(c)
ak )(ζ)|dλ(ζ)

=
∞

∑
k=1

|ck|
Z

R≤|z|<1
|A(k̃(c)

ak )(ζ)|dλ(ζ).
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Assertion (1) implies thatZ
R≤|z|<1

|Ag(ζ)|dλ(ζ)≤ ε

∞

∑
k=1

|ck| ≤Cε||g||1 ≤Cε,

because ||g||1 ≤ 1. �
To prove Theorem 1.6 We will make use of the following well known formula for

functions in L2
a(∆) (for example, see [10], Lemma 2.2), which we state below.

Lemma 3.2. If F and G are in L2
a(∆) then

〈F,G〉 = 3
Z

∆

(1−|z|2)2F(z)G(z)dλ(z)+(1/2)
Z

∆

(1−|z|2)2F ′(z)G′(z)dλ(z)

+ (1/3)
Z

∆

(1−|z|2)3F ′(z)G′(z)dλ(z).

3.2 Proof of Theorem 1.6

Let r ∈ (0,1). Let c > 0 and ξ ∈ ∆.
First step. We will first prove that for fixed r,

A(ξ,r) :=
Z
|z|<r

|Tµk̃(c)
ξ

(z)|dλ(z)−→ 0 as |ξ| −→ 1. (3.1)

We have

A(ξ,r) =
Z
|z|<r

∣∣∣∣∣
Z

∆

Kw(z)(1−|ξ|2)c

(1−ξw)2+c
dµ(w)

∣∣∣∣∣ dλ(z). (3.2)

We first study the inner integral. We observe thatZ
∆

Kw(z)

(1−ξw)2+c
dµ(w) =

1
1+ c

〈TµKz, K̃
(c)
ξ
〉,

where K̃(c)
ξ

(w) = 1+c
(1−ξw)2+c . Lemma 3.2 implies

〈TµKz, K̃
(c)
ξ
〉= J1 + J2 + J3

where

J1 =
3

1+ c

Z
∆

(1−|w|2)2TµKz(w)K̃(c)
ξ

(w)dλ(w)

J2 =
1

2(1+ c)

Z
∆

(1−|w|2)2(TµKz)′(w)(K̃(c)
ξ

)′(w)dλ(w)

J3 =
1

3(1+ c)

Z
∆

(1−|w|2)3(TµKz)′(w)(K̃(c)
ξ

)′(w)dλ(w).

Now, since Tµ is bounded on L1
a, Lemma 2.17 implies that there exists a constant C(r)

such that
sup
|z|<r

||P(Kzµ̄)||LB ≤C(r)(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄))). (3.3)
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Estimates of J1. We have

|J1| ≤ 3
Z

∆

(1−|w|2)2|P(Kzµ̄)(w)| 1

|1−ξw|2+c
dλ(w)

≤ 3{
Z

∆

(1−|w|2)2|P(Kzµ̄)(w)−P(Kzµ̄)(0)| 1
|1− ξ̄w|2+c

dλ(w)

+|P(Kzµ̄)(0)|
Z

∆

(1−|w|2)2

|1− ξ̄w|2+c
dλ(w)}

≤ C‖P(Kzµ̄)‖B∞

{Z
∆

(1−|w|2)2β(0,w)

|1−ξw|2+c
dλ(w)+

Z
∆

(1−|w|2)2

|1− ξ̄w|2+c
dλ(w)

}
.

It is easy to check that for every ν > 0, there exists a constant C(ν) such that

β(0,w)≤C(ν)(1−|w|2)−ν, w ∈ ∆.

Hence,

|J1| ≤C(ν)||P(Kzµ̄)||B∞

Z
∆

(1−|w|2)2−ν

|1− ξ̄w|2+c
dλ(w).

Since ||g||B∞ ≤ ||g||LB
log2 for every g ∈ B∞, we obtain by (3.3) that

|J1| ≤ C′(ν)||P(Kzµ̄)||LB

Z
∆

(1−|w|2)2−ν

|1− ξ̄w|2+c
dλ(w)

≤ C(r,ν)(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄)))
Z

∆

(1−|w|2)2−ν

|1− ξ̄w|2+c
dλ(w).

Applying Lemma 2.4, we have the following conclusion for |J1|:

(1) If c < 2, we take ν such that ν < 2− c and get

|J1| ≤C(r,ν)(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄)));

1. If c = 2, we take ν ∈ (0,1) and get

|J1| ≤C(r,ν)(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄)))
1

(1−|ξ|2)ν
;

(3) If c > 2, we take ν ∈ (0,1) and get

|J1| ≤C(r,ν)(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄)))
1

(1−|ξ|2)c−2+ν
.
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Estimates for J2 and J3. Also, using (3.3) we have

2|J2| ≤ 1
1+ c

Z
∆

(1−|w|2)2|(P(Kzµ̄)′(w))||(K̃c
ξ
)′(w)|dλ(w)

≤ (2+ c)
Z

∆

|(P(Kzµ̄)′(w))| log
(

2
1−|w|2

)
1

log( 2
1−|w|2 )

(1−|w|2)2

|1− ξ̄w|3+c
dλ(w)

≤ (2+ c)‖P(Kzµ̄)‖LB

Z
∆

1
log( 2

1−|w|2 )
(1−|w|2)
|1−ξw|3+c

dλ(w)

≤ (2+ c)C(r)(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄)))
Z

∆

1
log( 2

1−|w|2 )
1−|w|2

|1−ξw|3+c
dλ(w).

Given ε > 0, there exists s ∈ (0,1) such that 1
ε

< log( 2
1−|w|2 ) whenever s < |w|< 1. We

fix such an s. ThenZ
∆

1
log( 2

1−|w|2 )
1−|w|2

|1−ξw|3+c
dλ(w) =

{Z
s∆

+
Z

∆\s∆

}
1

log( 2
1−|w|2 )

1−|w|2

|1−ξw|3+c
dλ(w)

≤ Cs +
Cε

(1−|ξ|2)c

with Cs = (log2)−1(1− s)−3−c. This implies,

|J2| ≤
1
2
(2+ c)C(r)(||Tµ||+ sup

z∈r∆

Carl(R(Kzµ̄))){Cs +
Cε

(1−|ξ|2)c }.

In a similar manner, we obtain

|J3| ≤
1
3
(2+ c)C(r)(||Tµ||+ sup

z∈r∆

Carl(R(Kzµ̄))){Cs +
Cε

(1−|ξ|2)c }.

Conclusion. Since
A(ξ,r)≤ (|J1|+ |J2|+ |J3|)(1−|ξ|)c,

given ε > 0, we can fix s ∈ (0,1) such that

(1) if c < 2, then for ν positive such that ν < 2− c, we have

A(ξ,r)≤C(c,r,ν)(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄)))[1+Cs +
Cε

(1−|ξ|2)c ](1−|ξ|)c;

(2) if c = 2, then for ν ∈ (0,1), we have

A(ξ,r)≤C(c,r,ν)(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄)))[
1

(1−|ξ|2)ν
+Cs +

Cε

(1−|ξ|2)c

]
(1−|ξ|)c;
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(3) if c > 2, then for ν ∈ (0,1), we have

A(ξ,r)≤C(c,r,ν)(||Tµ||+ sup
z∈r∆

Carl(R(Kzµ̄)))[
1

(1−|ξ|2)c−2+ν
+Cs +

Cε

(1−|ξ|2)c

]
(1−|ξ|)c.

Combining these estimates we have A(ξ,r)−→ 0 when |ξ| → 1−. This gives (3.1).

Second step. Now, take ψ(r) = 1, φ(r) = (1− r2)c, c > 0. Then by Theorem 1.3, it
suffices to prove that A0(φ) is an invariant subspace of the adjoint operator T ?

µ of Tµ with
respect to the duality pairing [, ] defined in (1.3). We just suppose Tµ is bounded on L1

a. Then
T ?

µ is bounded on A∞(φ). Since the weighted Bergman kernel K̃(c)
ξ

(z) = 1+c
(1−ξ̄z)2+c reproduces

A∞(ϕ)−functions in the sense that for every h ∈ A∞(φ),

h(ξ) = [h, K̃(c)
ξ

], (ξ ∈ ∆).

We have that, for every h ∈ A∞(φ) and for every ξ ∈ ∆,

T ?
µ h(ξ) = [T ?

µ h, K̃(c)
ξ

] = [h,TµK̃(c)
ξ

]

= (1+ c)
R

∆

(R
∆

Kw(z)
(1−ξ̄w)2+c dµ(w)

)
h(z)(1−|z|2)cdλ(z).

We need to show that T ?
µ h ∈ A0(φ) if h ∈ A0(ϕ). We fix ε > 0 arbitrary. There exists r =

r(ε) ∈ (0,1) such that

(1−|z|2)c|h(z)|< ε whenever r < |z|< 1. (3.4)

We write
1

1+ c
T ?

µ h(ξ)(1−|ξ|2)c = I + II

where

I =
Z

r≤|z|<1

(Z
∆

Kw(z)(1−|ξ|2)c

(1−ξw)2+c
dµ(w)

)
h(z)(1−|z|2)c dλ(z)

=
Z

r≤|z|<1
Tµk̃c

ξ
(z)h(z)(1−|z|2)c dλ(z)

and

II =
Z
|z|<r

(Z
∆

Kw(z)(1−|ξ|2)c

(1−ξw)2+c
dµ(w)

)
h(z)(1−|z|2)c dλ(z). (3.5)

Concerning I, we deduce from (3.4) that

|I| ≤
Z

r≤|z|<1
|Tµk̃c

ξ
(z)||h(z)|(1−|z|2)c dλ(z)≤Cε, (3.6)

with C = supξ∈∆ ‖Tµk̃c
ξ
‖1 < ∞, since Tµ is bounded on L1

a.
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Now for II, we observe that

|II| ≤ A(ξ,r)||h||A∞(φ)

Combining these estimates when |ξ| → 1−, with (3.6) and (3.1) easily implies the de-
sired conclusion. �

Remark 3.3. If supξ∈∆ ‖Tµk̃c
ξ
‖1 < ∞, it follows from the proof of Theorem 1.6, that the

following two assertions are equivalent.

1. A0(φ) is an invariant subspace of the adjoint operator T ?
µ of Tµ with respect to the

duality pairing [, ] defined in (1.3).

2. For fixed r ∈ (0,1), the following estimate holds.

A(ξ,r) :=
Z
|z|<r

|Tµk̃(c)
ξ

(z)|dλ(z)−→ 0 as |ξ| −→ 1.

Corollary 3.4. Let µ be a positive measure on ∆ such that the Toeplitz operator Tµ is
bounded on L1

a and let c > 0. The following assertions are equivalent:

(1) The Toeplitz operator Tµ is compact on L1
a;

(2) ‖Tf k̃
(1)
ζ
‖1 → 0 as ζ→ ∂∆;

(3) For every ε > 0, there exists R ∈ (0,1) such thatZ
R≤|z|<1

|(Tµk̃(c)
ζ

)(z)|dλ(z) < ε

for every ζ ∈ ∆.

Proof. The Toeplitz operator Tµ is bounded on L1
a. It follows from observation after

Lemma 2.12 that µ is a Carleson measure for Bergman spaces. Thus, the proof of the
equivalence (1)⇔ (2) follows from a direct application of Theorem 1.6. The equivalence
(1)⇔ (3) is a direct application of Theorem 1.5. �

Corollary 3.5. Let f ∈ L1
a be such that Tf is a bounded operator on L1

a . Then the following
assertions are equivalent:

(1) The Toeplitz operator Tf is compact on L1
a;

(2) ‖Tf k̃
(c)
ξ
‖1 → 0 as ξ→ ∂∆ for every c > 0;

(3) For every c > 0 and for every ε > 0, there exists R ∈ (0,1) such thatZ
R≤|z|<1

|(T f̄ k̃
(c)
ζ

)(z)|dλ(z) < ε

for every ζ ∈ ∆.

(4) ‖Tf k̃
(1)
ξ
‖1 → 0 as ξ→ ∂∆;
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(5) f vanishes identically.

Let us mention that, using duality, property (1) is equivalent to the property ” f is a
compact multiplier of B∞”. The latter was shown in [7] to be equivalent to property (5).

Proof. The proof goes along the following implications: (1)⇔ (2)⇒ (4)⇒ (5)⇒ (2)
and (1) ⇔ (3). From Theorem 2.16, Tf bounded on L1

a implies that f is bounded. Hence
we can apply Theorem 1.6, thus we have (1)⇔ (2). Theorem 1.5 gives (1)⇔ (3). Taking
c = 1, we have (2)⇒ (4). Suppose (4) holds, using (2.9) and Lemma 2.7, we have, taking
z = 0, that

(1−|a|2)|D f (a)| −→ 0 as |a| −→ 1. (3.7)

On the other hand, observing that in this case D = I + 1
2 z ∂

∂z (where I is the identity), we
have for some absolute constant C and for all a,z ∈ ∆∣∣∣∣ f (a)

(1− za)4

∣∣∣∣≤C
∣∣∣∣D{ f

(1− z ·)3

}
(a)
∣∣∣∣+C

∣∣∣∣ D f (a)
(1− za)3

∣∣∣∣ . (3.8)

Multiplying (3.8) by (1−|a|2)(1−|z|2)3 and then using again (2.9), Lemma 2.7 and (3.7),
we have, taking z = a, that | f (a)| −→ 0 as |a| tends to 1. Hence (5) holds. The implication
(5)⇒ (2) is obvious. This finishes the proof of the Corollary. �

Remark 3.6. For f ∈ L1
a, let us compare Theorem 1.2 and Corollary 3.5. Looking at the

hypotheses of Theorem 1.2, it follows from an application of Cauchy’s integral formula
that

R( f )(w) =− 1
w
{ f (0)(1−|w|2)− f (w)}.

The property ”|R( f )|dλ is a vanishing Carleson measure for Bergman spaces” is actually
equivalent to the property ” f vanishes identically”. So for Toeplitz operators with antiana-
lytic symbols, Theorem 1.2 does not bring new information while Corollary 3.5 does. This
shows again that we have improved Theorem 1.2.

4 The case of radial symbols

In this section, we are interested in the case of Toeplitz operators associated with radial
symbols f (w) = f (|w|). We get the following proposition:

Proposition 4.1. Let f be an integrable radial function on ∆. Then R( f ) is given by

R( f )(w) =
2w̄(2−|w|2)

1−|w|2
Z 1

|w|
f (r)rdr− 2(1−|w|2)

w

Z |w|

0
f (r)rdr.

Moreover, the associated Toeplitz operator Tf is bounded (respectively compact) on L1
a if

|R( f )|dλ is a Carleson measure (resp. a vanishing Carleson measure) for Bergman spaces.

Proof. In this case, the Bergman projection P f of f is constant and identically equal toR
∆

f (ρ)ρdρ. So the second assertion is a consequence of Theorem 1.1 (resp. Theorem 1.2).
We give the proof of the announced expression of R( f ). First,

R( f )(w) = 1−|w|2
π

R
∆

f (r)
(reiθ−w)(1−reiθw̄)2 rdrdθ

= 1−|w|2
πi

R 1
0 f (r){

R
|z|=r

1
(z−w)z(1−zw̄)2 dz}rdr.
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Next, since 1
(z−w)z = − 1

w(1
z −

1
z−w) and since the function z 7→ 1

(1−zw̄)2 is analytic on ∆, an
application of the Cauchy integral formula givesR

|z|=r
1

(z−w)z(1−zw̄)2 dz =− 1
w{

R
|z|=r

1
z

1
(1−zw̄)2 dz−

R
|z|=r

1
z−w

1
(1−zw̄)2 dz}

=

{
−2πi

w {1− 1
(1−|w|2)2 } = 2πiw̄(2−|w|2)

(1−|w|2)2 if |w|< r
−2πi

w if |w|> r
.

Finally, we obtain

R( f )(w) =
2w̄(2−|w|2)

1−|w|2
Z 1

|w|
f (r)rdr− 2(1−|w|2)

w

Z |w|

0
f (r)rdr.

�
For radial symbols f , we also give the following expressions of Tf k̃

(c)
z and Tf g, where

c > 0, z ∈ ∆ and g ∈ L∞
a .

Lemma 4.2. Let f be an integrable radial function on ∆. Then

Tf g(ζ) = 2
Z 1

0
f (ρ){g(ζρ

2)+ζρ
2g′(ζρ

2)}ρdρ (ζ ∈ ∆),

for every g ∈ L∞
a . In particular, for all c > 0 and z ∈ ∆, we have

Tf k̃
(c)
z (ζ) = 2(1−|z|2)c

Z 1

0
f (ρ){ 1

(1−ζρ2z̄)2+c +
2+ c

(1−ζρ2z̄)3+c }ρdρ (ζ ∈ ∆).

Proof. We start with the formula,

Tf g(ζ) =
1
π

Z 1

0
f (ρ)(

Z 2π

0

g(ρeiφ)
(1−ζρe−iφ)2 dφ)ρdρ.

We denote by I(r,ζ) the inner integral. Then

I(r,ζ) =
1
i

Z
|w|=ρ

g(w)

(1− ζρ2

w )2

dw
w

=
1
i

Z
|w|=ρ

wg(w)
(w−ζρ2)2 dw

= 2π[wg(w)]′|w=ζρ2 = 2π{g(ζρ
2)+ζρ

2g′(ζρ
2)}.

For the latest but one equality, we applied the Cauchy integral to the analytic function
wg(w) with the observation that |ζρ2| < ρ. The desired conclusion for Tf g(ζ) follows at
once. We deduce the expression of Tf k̃

(c)
z (ζ) as the particular case where g = k̃(c)

z (ζ). �
Theorem 1.4 can be expressed in the following explicit form for radial symbols.

Corollary 4.3. Let f be an integrable radial function on ∆ and let c > 0. Then the following
two properties are equivalent:

1. The Toeplitz operator Tf is bounded on L1
a;



Toeplitz Operators on L1
a 27

2. The following estimate holds:

sup
z∈∆

(1−|z|2)c
Z

∆

|
Z 1

0
f (ρ){ 1

(1−ζρ2z̄)2+c +
2+ c

(1−ζρ2z̄)3+c }ρdρ|dλ(ζ) < ∞.

We also characterise compactness with radial symbols.

Theorem 4.4. Let f be an integrable radial function on ∆ and let c > 0. Then the following
two properties are equivalent:

(1) The Toeplitz operator Tf is compact on L1
a;

(2) The following estimate holds:

lim
z→∂∆

(1−|z|2)c
Z

∆

|
Z 1

0
f (ρ){ 1

(1−ζρ2z̄)2+c +
2+ c

(1−ζρ2z̄)3+c }ρdρ|dλ(ζ) = 0.

Proof. From Remark 3.3 and Theorem 1.3, we observe that all we have to show is that
for fixed r ∈ (0,1),

A(ξ,r)→ 0 as ξ→ ∂∆,

where A(ξ,r) is given by (3.2), that is

A(ξ,r) =
Z
|z|<r

∣∣∣∣∣
Z

∆

f (w)Kw(z)(1−|ξ|2)c

(1−ξw)2+c
λ(w)

∣∣∣∣∣ dλ(z).

We study the inner integral when f is radial.Z
∆

f (w)Kw(z)(1−|ξ|2)c

(1−ξw)2+c
dλ(w) =

(1−|ξ|2)c

2π

Z 1

0
f (ρ)

(Z 2π

0

1
(1− zρeiθ)2

1
(1−ξρe−iθ)2+c dθ

)
ρdρ.

We call I(ρ) the integral with respect to dθ. Then

I(ρ) =
∞

∑
m=0

(m+1)Γ(m+2+ c)
Γ(2+ c)Γ(m+1)

(z̄ζρ
2)m.

This implies,

|I(ρ)| ≤
∞

∑
m=0

(m+1)Γ(m+2+ c)
Γ(2+ c)Γ(m+1)

|z̄ζρ
2|m

≤
∞

∑
m=0

(m+1)Γ(m+2+ c)
Γ(2+ c)Γ(m+1)

|z|m

= 1+
∞

∑
m=1

(m+1)Γ(m+2+ c)
Γ(2+ c)mΓ(m)

|z|m

≤ 1+2
∞

∑
m=1

Γ(m+2+ c)
Γ(2+ c)Γ(m)

|z|m

= 1+2|z|
∞

∑
n=0

Γ(n+3+ c)
Γ(2+ c)Γ(n+1)

|z|n = 1+
2|z|

(1−|z|)3+c
Γ(3+ c)
Γ(2+ c)

.
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So there exists a constant C(r) such that

A(ξ,r) ≤ C(r)(1−|ξ|2)c
Z 1

0
| f (ρ)|ρdρ

≤ C′(r)(1−|ξ|2)c.

This shows that A(ξ,r)→ 0 as ξ→ ∂∆. �
Acknowledgements: The first author wishes to appreciate the International Program for

Mathematical Sciences (IPMS) of the International Science Program (ISP) of the University
of Uppsala (Sweden) for its financial support. The third author was supported by the Centre
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