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Abstract
This paper is concerned with the boundary-value problem for the steady incom-

pressible Navier-Stokes equations with damping. Two cases are considered here:
1) the Dirichlet’s boundary condition; 2) the nonhomogeneous boundary condition.
we obtain the existence and uniqueness of the weak solutions for the steady incom-
pressible Navier-Stokes equations with damping using different methods for the above
cases.
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1 Introduction

The boundary-value problem for the steady incompressible flows is written as
−γ4u+u · 5u+5p = f , x ∈Ω

5 ·u = 0, x ∈Ω
u = φ, x ∈ ∂Ω
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Here u, p stand for the velocity field and the pressure of the flows respectively, f is the
external force, Ω is a bounded open domain of Rn, n is the dimension of the space, γ > 0 is
the constant.

Many mathematical studies have been made for the above boundary value problem. In
the early 1930, F. K. G. Odqvist and Leray (see [7]) proved the existence of the solutions
with restrictions on the Reynolds numbers. G. P. Galdi [4] also proved the existence of the
solutions on the domains with many connected bifurcations.

Youdovich (1967) firstly obtained the uniqueness of the solutions for the steady-state
Navier-Stokes problem in a bounded domain in [12]. R. Teman in [11] also had some re-
searches. Especially, Galdi in [4] obtained existence, uniqueness and regularity of solutions
for the steady Navier-Stokes equations in bounded domain, unbounded domain and exte-
rior domain for spatial dimension n=2, 3, 4, respectively. Struwe (1995) have shown the
existence of regular solutions in dimension n ≥ 5 without restrictions on the size of the data
in [10].

Damping is very common in nature, which rises from the motion of flows and can
describe many physical phenomena, such as porous media flow, drag, or friction effects, and
some dissipative mechanisms. The boundary-value problem for the steady incompressible
Navier-Stokes equations with damping can be written as

(∗1)


−γ4u+u · 5u+α|u|β−1u+5p = f , x ∈Ω, (1.1)

5 ·u = 0, x ∈Ω, (1.2)
u = φ, x ∈ ∂Ω, (1.3)

where α > 0 and β ≥ 1 are both positive constants.
Cai and Jiu in [3] studied the Cauchy problem of Navier-Stokes equations with damp-

ing and obtained the existence of the global strong solutions for β ≥ 7
2 and existence and

uniqueness of the strong solutions for 7
2 ≤ β ≤ 5. In the present paper, we broaden the cor-

responding results of existence and uniqueness of the weak solutions in W1,2(Ω) for steady
Navier-Stokes equations to Navier-Stokes equations with damping.

Before ending this section, we introduce some notations of function spaces. let Ω be an
arbitrary domain in Rn, n ≥ 1. If ‖φ‖r := (

∫
Ω
| φ(x) |r dx)

1
r <∞,1 ≤ r <∞, we say φ ∈ Lr(Ω),

under the norm defined above, Lr(Ω) be a Banach space. If r = ∞, we define ‖φ‖∞ =
ess sup|φ| < ∞. Let C∞0,σ(Ω) denotes the set of all C∞ real vector-valued functions φ =
(φ1, ...,φn) with compact support in Ω such that divφ = 0. Then the function space Lr

σ(Ω),
0 < r <∞, is defined as the closure of C∞0,σ(Ω) with respect to ‖ · ‖r. H1,r

0,σ is the closure of
C∞0,σ(Ω) with the norm ‖φ‖H1,r = ‖φ‖r + ‖∇φ‖r. Helmholtz decomposition can be defined as

Lr = Lr
σ ⊕Gr, 1 < r < ∞, where Gr = {∇p ∈ Lr; p ∈ Lr

loc(Ω)}, P : Lr(Ω)→ Lr
σ(Ω) denotes

Helmholtz Projector decomposition. We define Wk,p(Ω) as the usual Sobolev space with
the norm ‖ · ‖k,p and Wk,p

0,σ(Ω) is the closure of C∞0,σ(Ω) with respect to ‖ · ‖k,p. If p = 2, we

usually write Hk(Ω) =Wk,2(Ω). Let Ŵk,p(Ω) be the homogeneous Sobolev space such that
|u|k,p = (

∫
Ω

∑
|α|=k
|∂αu|pdx)

1
p <∞, Ŵk,p

0 (Ω) is the closure of C∞0 (Ω) with the norm |u|k,p.

The rest of the paper is organized as follows. In Section 2, we give the definition of the
weak solutions and the main results of this paper. In Section 3, we obtain the existence and
uniqueness of the weak solutions in H1

0(Ω)∩ Lβ+1(Ω) to equations (∗1) for homogeneous
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problem (φ = 0). In Section 4, we prove the weak solutions in Ŵ1,2(Ω) to equation (∗1) for
nonhomogeneous problem exists and is unique.

2 Main results

Before stating the main results, we firstly give the definition of the weak solutions to (1.1)-
(1.3).

Definition 2.1. LetΩ be a bounded domain in Rn, n≥ 2. If there exists u :Ω→Rn satisfying
(i)

u ∈ Ŵ1,2(Ω)∩Lβ+1(Ω);

(ii)
5 ·u = 0;

(iii) u satisfies the boundary condition (1.3) in the sense of trace; If φ = 0, then u ∈ Ŵ1,2
0 (Ω).

(iv) For ∀ϕ ∈ C∞0,σ, we have

γ(5u,5ϕ)+ (u · 5u,ϕ)+ (α|u|β−1u,ϕ) = ( f ,ϕ), (2.1)

then u is a weak solution to (1.1)-(1.3) in H1
0(Ω)∩Lβ+1(Ω).

Remark. If Ω is a bounded domain, we have Ŵ1,q
0 (Ω) = W1,q

0 (Ω); Furthermore, if
Ω is locally Lipschitz, then Ŵ1,q(Ω) and W1,q(Ω) is homeomorphic. If φ = 0, we obtain
u ∈ W1,2

0 (Ω) in (i) identically. If φ , 0 and Ω is locally Lipschitz, we identically have
u ∈W1,2(Ω) in (i).

Theorem 2.2. Let Ω be a bounded domain in Rn (n ≥ 2), f ∈ Ŵ−1,2
0 (Ω) is an given exterior

function. If φ= 0 and 1≤ β < 11, then there exists at least a weak solution to BVP (1.1)-(1.3)
satisfying

γ|u|1,2+α‖u‖
β+1
β+1 ≤ c‖ f ‖H−1 , (2.2)

‖p‖2 ≤ c(| f |−1,2+ |u|1,2+ |u|21,2+ ‖u‖β+1). (2.3)

Theorem 2.3. Let Ω be a bounded domain in R3 and locally Lipschitz, φ = 0, f ∈ Ŵ−1,2
0 (Ω).

If γ is big enough and 5
3 ≤ β ≤ 5, then the weak solution to BVP (1.1)-(1.3) is unique.

Theorem 2.4. Suppose that φ = curl ζ and ζ ∈ H2(Ω), ∂iζ ∈ L6(Ω), ζ ∈ L∞(Ω). If 1 ≤ β ≤ 5,
then there exists at least a weak solution u ∈ H2(Ω) to BVP (1.1)-(1.3).

Theorem 2.5. Let Ω be a bounded domain in R3 and locally Lipschitz, f ∈W−1,2(Ω). If γ
is big enough and 5

3 ≤ β ≤ 5, then the weak solution to BVP (1.1)-(1.3) is unique.
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3 Existence and Uniqueness with Homogeneous Boundary Data

§3.1. Existence of weak solutions

In this part , we consider the existence of the weak solutions for problem (1.1)-(1.3) with
Dirichlet’s boundary condition, here Ω is a bounded domain in R3. The following Lemma
will be needed later, of which proof is referred to [9].

Lemma 3.1. LetΩ be a bounded locally Lipschitzian domain in Rn, n ≥ 2, Ω0 ⊆Ω, Ω0 , ∅.
If for any F ∈W−1,q

′

(Ω), υ ∈W1,q
0,σ(Ω),

[F,υ] =< F,υ >= 0,

where
1 < q <∞,q

′

=
q

q−1
,

then there exists a unique P ∈ Lq
′

(Ω) satisfying

[F,υ] =< F,υ >=
∫
Ω

Pdivυdx

and
∫
Ω

Pdx = 0.

Lemma 3.2. Let Ω be an arbitrary domain in Rn, n = 2,3, and let f ∈W−1,2
0 (Ω

′

), for any

bounded domain Ω
′

, with Ω′ ⊂ Ω. Then a vector field V ∈ W1,2
loc (Ω) satisfies (2.1) for all

ϕ ∈C∞0,σ(Ω) if and only if there is P ∈ L2
loc(Ω) satisfying the identity

γ(5V,5ψ)+ (V · 5V,ψ)+ (α|V |β−1V,ψ) = (P,5 ·ψ)+ < f ,ψ > (3.1)

for all ψ ∈C∞0 (Ω) . If, moreover, Ω is bounded and lipschitzian and

f ∈ Ŵ−1,2
0 (Ω),V ∈ Ŵ1,2(Ω),

then

P ∈ L2(Ω) with
∫
Ω

Pdx = 0,

and (3.1) holds for all ψ ∈ Ŵ1,2
0 (Ω).

Proof. Clearly, (3.1) implies (2.1). Thus assume that Ω is locally lipschitzian, the
functional

F(ψ) := γ(5V,5ψ)+ (V · 5V,ψ)+ (α|V |β−1V,ψ)− < f ,ψ > (3.2)

is linear and bounded in ψ ∈W1,2
0 (Ω) and vanishes when ψ ∈ Ŵ1,2

0,σ(Ω). By virtue of Corollary
3.5.1 in [4] and Lemma 3.1, there exists P ∈ L2(Ω) such that

F(ψ) = (P,5 ·ψ), (3.3)
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for all ψ ∈ Ŵ1,2
0 (Ω)(= W1,2

0 (Ω)), thus satisfying (3.1). If Ω is an arbitrary domain, we
use Corollary 3.5.2 in [4] to deduce the existence of P ∈ L2

loc(Ω) satisfying (3.3) for all
ψ ∈C∞0 (Ω). The proof is complete.

Lemma 3.3. Let F be a continuous function of Rm, m ≥ 1, into itself such that some k > 0

F(ξ) · ξ > 0

for all ξ ∈ Rm with |ξ| = k. Then there exists ξ0 ∈ R
m with | ξ0 |≤ k such that F(ξ0) = 0.

Proof. The proof of this Lemma is referred to [4].

Proof of Theorem 2.2. We employ the Galerkin method to prove the theorem and it is
divided into the following three steps.

Step 1. Approximate Solutions
Since W1,2

0,σ(Ω) is separable and C∞0,σ(Ω) is dense in W1,2
0,σ(Ω), there exists a sequence

{ψk} ⊂C∞0,σ(Ω) be the basis of W1,2
0,σ(Ω) and

(ψk,ψk′ ) = δkk′ =

{
1,k = k

′

,

0,k , k
′

.

For each m ∈ N, we define the approximate solutions um as follows:

um =

m∑
k=1

ξkmψk, (3.4)

and
γ(5um,5ψk)+ (um · 5um,ψk)+ (α|um|

β−1um,ψk) = ( f ,ψk). (3.5)

the equations (3.5) form a nonlinear differential system for the coefficients ξkm, k = 1,2, ...m.
Since um ∈C∞0,σ(Ω) , by virtue of Lemma 8.2.1 in [4], we have

m∑
k=1

(um · 5um, ξkmψk) = (um · 5um,um) = 0, (3.6)

and

|

m∑
k=1

( f , ξkmψk)| ≤ | f |−1,2|um|1,2. (3.7)

Multiplying ξkm on both sides of (3.5), k = 1,2, ...m and summing over the resulting equa-
tions, due to (3.6) and (3.7), we obtain

γ‖5um‖
2
2+α‖um‖

β+1
β+1 = ( f ,um) ≤ ‖ f ‖H−1‖5um‖2, (3.8)

and
γ|um|1,2+α‖um‖

β+1
β+1 ≤ c‖ f ‖H−1 . (3.9)
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Step 2. Existence of Approximate Solutions
Let

[F(um,um)] := γ(5um,5um)+α(|um|
β−1um,um)− ( f ,um),

Correspondingly, one has

[F(um,um)] ≥ γ‖5um‖
2
2+α‖um‖

β+1
β+1−‖ f ‖H−1‖5um‖2

= (γ‖5um‖2−‖ f ‖H−1)‖5um‖2+α‖um‖
β+1
β+1

when ‖ 5 um‖2 = |um|1,2 = K,K > 1
γ‖ f ‖H−1 , by Lemma 3.3, there exist the approximate

solutions to (3.5) for m ∈ N. Since {um} are uniformly bounded by (3.9), there exist a
subsequence of {um}( without loss of generality, we denote them by {um}) and a field
u ∈W1,2

0,σ(Ω)∩Lβ+1(Ω) such that

um ⇀ u, in W1,2
0,σ(Ω)(= H1

0(Ω))∩Lβ+1(Ω) (3.10)

It follows from Sobolev embedding theorem that

um→ u, in L6−ε (3.11)

where ε > 0 is some constant. Now we consider the convergence of the four terms in (3.5).
For the first term on the left, as m→∞, one has

(5um,5ψk)→ (5u,5ψk). (3.12)

For the second term in (3.5), we have

|(um · 5um,ψk)− (u · 5u,ψk)|

≤ |(um−u) · 5um,ψk|+ |(u · 5(um−u),ψk)|

= I(1)
m + I(2)

m ,

furthermore,

I(1)
m ≤ ‖ψk‖6‖‖5um‖2‖um−u‖3
≤ c‖ψk‖H1 |um|1,2‖um−u‖3,

by (3.11), we obtain
lim

m→∞
I(1)
m = 0;

and for I(2)
m we have

I(2)
m ≤ |(u · 5ψk, (um−u))|

≤ ‖u‖6‖5ψk‖2‖um−u‖3
≤C‖5ψk‖2‖um−u‖3,

therefore,
lim

m→∞
I(2)
m = 0,
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we obtain
|(um · 5um,ψk)− (u · 5u,ψk)| → 0, m→∞ (3.13)

For the third term on the left in (3.5), we have

|(|um|
β−1um,ψk)− (|u|β−1u,ψk)|

= |(|um|
β−1um,ψk)− (|um|

β−1u,ψk)+ (|um|
β−1u,ψk)− (|u|β−1u,ψk)|

≤ |(|um|
β−1(um−u),ψk)|+ |((|um|

β−1− |u|β−1)u,ψk)|

= I(3)
m + I(4)

m .

It follows from Hölder inequality and Sobolev embedding theorem that

I(3)
m ≤Csup|ψk|‖|um|

β−1‖ 6
5
‖um−u‖6

≤Csup|ψk| · ‖um‖
β−1
β+1‖um−u‖L6−ε ,

which satisfies the equality β−1
β+1 +

1
6−ε = 1, i.e., β = 11−2ε. When 1 ≤ β < 11, one has

I(3)
m → 0, m→∞.

After a complicated computation, we deduce that

I(4)
m = |((|um|

β−1− |u|β−1)u,ψk)|

≤C|(|u|β−1(um−u),ψk)|

≤C‖um−u‖L6−ε‖u‖β−1
β+1‖ψk‖Lr

where 1
6−ε +

β−1
β+1 +

1
r = 1, let r =∞, one has 1

6−ε =
2
β+1 , i.e., β = 11− 2ε. When 1 ≤ β < 11,

one has
I(4)
m → 0, m→∞.

Therefore,
lim

m→∞
|(|um|

β−1um,ψk)− (|u|β−1u,ψk)| = 0. (3.14)

By (3.12), (3.13) and (3.14), it follows that the field u (belongs to H1
0(Ω) ) satisfies the

equation
γ(5u,5ψk)+ (u · 5u,ψk)+ (α|u|β−1u,ψk) = ( f ,ψk) (3.15)

for all k = 1,2, . . .. However, any ϕ ∈ H1(Ω) can be approximated by linear combinations
of ψk through suitable coefficients. Since every term in (3.15) defines a bounded linear
functional in ψk ∈ H1(Ω), we may conclude from (3.15) that the field u satisfies (1.4) for all
∀ϕ ∈ H1(Ω). Existence is then established.

By (3.9), we also obtain

γ|u|1,2+α|u|
β+1
β+1 ≤C‖ f ‖H−1 ,

we have proved (2.2).
Step 3. Existence of pressure field
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Assuming Ω is locally lipschitzian, from Lemma 3.2 follows the existence of a pressure
field p ∈ L2(Ω) satisfying (3.1) and ∫

Ω

pdx = 0. (3.16)

Consider the problem 
5 ·Ψ = p,
Ψ ∈W1,2

0 (Ω),
‖Ψ‖1,2 ≤C‖p‖2.

(3.17)

Since P is in L2(Ω) and satisfies (3.16), Problem (3.17) is solvable by virtue of Theorem
3.3.1 in [4]. By the inequality |(u · 5v,w)| ≤ c|u|1,2|v|1,2|w|1,2 (see Lemma 8.1.1 in [4]), let
ψ = Ψ in (3.1), after a straight computation, we obtain

‖p‖22 ≤C(| f |−1,2+ |u|1,2+ ‖u‖β+1+ |u|1,2)‖p‖2,

where C =C(n,Ω), which shows (2.3). Theorem 2.2 is therefore proved.

§3.2. Uniqueness of weak solutions

Proof of Theorem 2.3. Assume that under the same data, there exist two weak solutions
u1, u2 of the equations satisfying

γ(5u1,5ϕ)+ (u1 · 5u1,ϕ)+ (α|u1|
β−1u1,ϕ) = ( f ,ϕ),

and
γ(5u2,5ϕ)+ (u2 · 5u2,ϕ)+ (α|u2|

β−1u2,ϕ) = ( f ,ϕ).

Then we have

γ(5(u1−u2),5ϕ)+ (u1 · 5u1−u2 · 5u2,ϕ)+ (α|u1|
β−1u1−α|u2|

β−1u2,ϕ) = 0.

Let ϕ = u1−u2, we obtain

γ(5(u1−u2),5(u1−u2))+ ((u1−u2) · 5u1,u1−u2)+ (α|u1|
β−1u1−α|u2|

β−1u2,u1−u2) = 0.

Furthermore, we have

γ‖5 (u1−u2)‖22+ ((u1−u2) · 5u1,u1−u2)

+(α|u1|
β−1(u1−u2), (u1−u2))+α((|u1|

β−1− |u2|
β−1)u2,u1−u2) = 0.

Therefore,

γ‖5 (u1−u2)‖22 = −((u1−u2) · 5u1,u1−u2)

−(α|u1|
β−1(u1−u2), (u1−u2))

−α((|u1|
β−1− |u2|

β−1)u2,u1−u2). (3.18)
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For the first term on the right in (3.18),

| − ((u1−u2) · 5u1,u1−u2)|

≤ ‖5u1‖2 · ‖u1−u2‖
2
4

≤
c1

γ
‖ f ‖H−1‖u1−u2‖

2
6

≤
c1

γ
‖ f ‖H−1‖5 (u1−u2)‖22. (3.19)

For the second term on the right in (3.18),

| − (α|u1|
β−1(u1−u2), (u1−u2))|

= |α|u1|
β−1|u1−u2|

2|

≤ α‖|u1|
β−1‖ 3

2
‖|u1−u2|

2‖3

≤ α‖|u1|‖
β−1
3(β−1)

2

‖u1−u2‖
2
6

≤ cα‖u1‖
β−1
β+1‖5 (u1−u2)‖22

≤ c2α‖ f ‖H−1‖5 (u1−u2)‖22 (3.20)

For the above estimate, we have used 1 ≤ 3(β−1)
2 ≤ β+ 1, i.e., 5

3 ≤ β ≤ 5. For the third term
on the right in (3.18), after a tedious computation we obtain

−α((|u1|
β−1− |u2|

β−1)u2,u1−u2)

≤ c3αβ‖ f ‖H−1‖5 (u1−u2)‖22 (3.21)

Here we also have used 1 ≤ 3(β−1)
2 ≤ β+ 1, i.e., 5

3 ≤ β ≤ 5. Substituting (3.19), (3.20) and
(3.21) into (3.18), we obtain

γ‖5 (u1−u2)‖22− (
c1

γ
‖ f ‖H−1 + c2α‖ f ‖H−1 + c3αβ‖ f ‖H−1)‖5 (u1−u2)‖22 ≤ 0.

When γ is big enough, one has u1 = u2, a.e.. The Proof of Theorem 2.3 is complete.

4 Existence and Uniqueness with Nonhomogeneous Boundary
Data

§4.1. Existence of weak solutions

In this part, we consider the existence of the weak solutions for problem (1.1)-(1.3) with
nonhomogeneous boundary condition (φ , 0). Here we assume that Ω ∈ C2 is a bounded
open domain in R3, f ∈ H−1 is a given exterior function. For the given boundary function
φ, let

φ = curl ζ, (4.1)

where
ζ ∈ H2(Ω), ∂iζ ∈ L6(Ω), ζ ∈ L∞(Ω). (4.2)
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In R3, curl is the rotation operator. When n = 3, curl is a linear differential operator and
div(curl ζ) ≡ 0.

Proof of Theorem 2.4. The proof is divided into the following three steps.

Step 1. Transform nonhomogeneous problem into homogeneous problem.
Assume that ψ is any vector field in H1(Ω) and satisfying

ψ ∈ H1(Ω),divψ = 0,ψ = φ(x ∈ ∂Ω) (4.3)

Let û = u−ψ, substitute u = û+ψ into (1.1) , one has

−γ4 û+ û5 û+ û5ψ+ψ5 û+α(|̂u+ψ|β−1)(̂u+ψ)+∇p = f̂ , (4.4)

where f̂ := f +γ4ψ−ψ5ψ. Since f +γ5ψ ∈ H−1,ψ5ψ ∈ H−1, we have f̂ ∈ H−1. Taking
inner product between (4.4) and v over Ω, where v ∈C∞0,σ, we can obtain

γ(5û,5v)+ (̂u5 û,v)+ (̂u5ψ,v)+ (ψ5 û,v)+ (α|(̂u+ψ)|β−1(̂u+ψ),v) = ( f̂ ,v).

We transform (∗1) into the following systems

(∗2)


γ(5û,5v)+ (̂u5 û,v)+ (̂u5ψ,v)

+(ψ5 û,v)+ (α|(̂u+ψ)|β−1(̂u+ψ),v) = ( f̂ ,v), x ∈ Ω,
∇ · û = 0, x ∈ Ω,

û = 0, x ∈ ∂Ω,

Therefore solving nonhomogeneous problem (1.1)-(1.3) is equivalent to solving the homo-
geneous problem (∗2), the approaches to solving (∗2) are same to those in Section 3.

Step 2. The weak solutions to homogeneous problem (∗2).
By Lemma 3.3, we define

[F (̂u, û)] := γ(5û,5û)+ (̂u5 û, û)+ (̂u5ψ, û)+ (ψ5 û, û)

+(α|̂u+ψ|β−1(̂u+ψ), û)− ( f̂ , û)

= γ‖5 û‖22+ (̂u5ψ, û)+ (α|̂u+ψ|β−1(̂u+ψ), û)− ( f̂ , û).

We hope

[F (̂u, û)] ≥ γ‖5 û‖22−
γ

2
‖5 û‖22− cα‖5 û‖2−‖ f̂ ‖H−1‖5 û‖2

=
γ

2
‖5 û‖22− cα‖5 û‖2−‖ f̂ ‖H−1‖5 û‖2

= (
γ

2
‖5 û‖2− cα−‖ f̂ ‖H−1)‖5 û‖2 > 0,

if only there exists a constant K, such that K >
2(cα+‖ f̂ ‖H−1 )

γ . So when

‖5 û‖2 ≤ K, (4.5)
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by Lemma 3.3, the nonhomogeneous problem (1.1)-(1.3) is solvable. Now we begin to
prove (4.5). Taking inner product between (4.4) and û, we can obtain

γ(5û,5û)+ (̂u5 û, û)+ (̂u5ψ, û)+ (ψ5 û, û)+ (α|̂u+ψ|β−1(̂u+ψ), û) = ( f̂ , û),

therefore, we have

γ‖5 û‖22+ (̂u5ψ, û)+ (α|̂u+ψ|β−1(̂u+ψ), û) = ( f̂ , û) ≤ ‖ f̂ ‖H1‖5 û‖2.

If
|(̂u5ψ, û)|+ |(α|̂u+ψ|β−1(̂u+ψ), û)| < c‖ f̂ ‖H1‖5 û‖2, (4.6)

we can obtain that ‖5 û‖2 is uniformly bounded, and (4.5) holds.

Step 3. Control the two terms on the left in (4.6) by ‖5 û‖2.

(1). For the first term on the left in (4.6), we need the following lemma.

Lemma 4.1. For ∀ γ > 0, there exists a function ψ = ψ(γ) satisfying

ψ ∈ H1(Ω),divψ = 0,ψ = φ, x ∈ ∂ Ω

such that

|(v5ψ,v)| ≤ |v|1,2, ∀v ∈ H1
0(Ω). (4.7)

To prove Lemma 4.1, we need the following two lemmas.

Lemma 4.2. Let ρ(x) = d(x,∂Ω) denote the distance between x and ∂Ω. For ∀ ε > 0, there
exists a function θε ∈C2(Ω) satisfying

(∗3)


θε(x) = 1, ρ(x) ≤ δ(ε), δ(ε) = exp(−1

ε )
θε(x) = 0, ρ(x) ≥ 2δ(ε),

|Dkθε(x)| ≤ ε
ρ(x) , ρ(x) ≤ 2δ(ε),k = 1,2...,n

Proof. The proof of this Lemma is referred to [11].
We introduce a function λ→ ξε(λ) satisfying

ξε(λ) =


1, λ < δ(ε)2

ε log( δ(ε)λ ), δ(ε)2 < λ < δ(ε)
0, λ > δ(ε)

and let χε(x) = ξε(ρ(x)).

Lemma 4.3. There exists a positive constant c1 depending only Ω such that

‖
1
ρ

v‖L2(Ω) < c1‖v‖H1
0 (Ω), ∀v ∈ H1

0(Ω). (4.8)
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Proof. In term of the finite covering theorem and local coordinates near the boundary,
we transform the given problem into the same problem on Ω = {x = (xn, x

′

), xn > 0, x
′

=

(x1, ...; xn−1) ∈ Rn−1}. For this case, ρ(x) = χn, we only prove∫
Ω

v(x)2

x2
n

dx ≤ c1

∫
Ω

|Dnv(x)|2dx, ∀v ∈C∞0 (Ω). (4.9)

First, we consider the Hardy inequality in R1:∫ +∞
0
|
v(s)

s
|2ds ≤ 2

∫ +∞
0
|v
′

(s)|2ds,∀v ∈C∞0 (0,+∞). (4.10)

We assume that s = eσ, t = eτ and

v(s)
s
=

1
s

∫ s

0
w(t)dt, v

′

= w,

therefore we obtain ∫ +∞
0

|v(s)|2

|s|2
dx =

∫ +∞
−∞

e−σ(
∫ eσ

0
w(t)dt)2dσ

=

∫ +∞
−∞

(
∫ +∞
−∞

Y(σ−τ)e−(σ−τ)/2w(eτ)eτ/2dτ)2dσ,

here, Y denote Heaviside function and when σ > 0, Y(σ) = 1; when σ < 0, Y(σ) = 0. Using
convolution inequality, we can obtain

(
∫ +∞
−∞

Y(σ)e−σ/2dσ)2 ·

∫ +∞
−∞

|w(eτ)|2eτdτ = 4
∫ +∞

0
|w(t)|2dt.

So we have proved (4.9). Consequently, (4.8) holds. The proof of the Lemma 4.3 is com-
plete.

Proof of Lemma 4.1. Let ψ = φ, when x ∈ (ρ(x) < δ(ε)), using (4.1) and (4.2), we can
deduce that (4.3) is solvable (for more details, please see [11]). Since

ψ j(x) = 0, (ρ(x) > 2δ(ε))

and
|ψ j(x)| ≤ c2(

ε

ρ(x)
|ζ(x)|+ |Dζ(x)|), (ρ(x) ≤ 2δ(ε)) (4.11)

here |Dζ(x)| = (
n∑

i, j=1
|Diζ j(x)|2)1/2, furthermore, we assume that for ∀ j ∈N, ζ j ∈ L∞(Ω), then

|ψ j(x)| ≤ c3(
ε

ρ(x)
+ |Dρ(x)|), (ρ(x) ≤ 2δ(ε)).

So we have
|v jψ j|L2 ≤ c4{ε|

vi

ρ
|L2 + (

∫
ρ≤2δ(ε)

v2
i |Dζ |

2dx)1/2} (4.12)
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Using Hölder inequality, we can deduce

(
∫
ρ≤2δ(ε)

v2
i |Dζ |

2dx)1/2 ≤ µ(ε)|vi|L3 ,

where 1/3 = 1/2− 1/6, µ(ε) = (
∫
ρ(x)≤2δ(ε) |Dζ(x)|6dx)1/6. Since Diζ j ∈ L6(Ω), 1 ≤ i, j ≤ 3,

one has µ(ε)→ 0 (ε → 0). When n ≥ 3, |u|Ln/(n−2)(Ω) ≤ c(Ω)‖u‖H1
0 (Ω), by Lemma 4.3 and

(4.12), we can deduce

|viψ j|L2(Ω) ≤ c5(ε |v|1,2+µ(ε)|v|L3) ≤ c6(ε +µ(ε))|v|1,2, 1 ≤ i, j ≤ n. (4.13)

Now we investigate (4.7). Since for ∀v ∈C∞0,σ, we have

(v · 5ψ,v) = −(v · 5v,ψ),

|(v · 5v,ψ)| ≤ |v|1,2(
n∑

i, j=1

|viψ j|) ≤ c7(ε +µ(ε))|v|21,2 (4.14)

If ε is small enough such that c7(ε + µ(ε)) ≤ γ
2 , then for ∀v ∈ C∞0,σ(Ω), (4.7) holds. Since

C∞0,σ(Ω) is dense in H1
0(Ω), (4.7) also holds for ∀v ∈ H1

0(Ω). The proof of the Lemma 4.1.
is complete. So we obtain |(̂u5ψ, û)| ≤ γ

2 ‖5 û‖22 =
γ
2 |̂u|

2
1,2.

(2). For the second term on the left in (4.6), we have

|(α|̂u+ψ|β−1(̂u+ψ), û)| ≤ α‖|̂u+ψ|β‖ β+1
β
‖̂u‖β+1

≤ c1α‖|̂u+ψ|‖
β
β+1‖̂u‖6

≤ c1α(‖̂u‖β+1+ ‖ψ‖β+1)β‖̂u‖6
≤ c1α(‖̂u‖6+ c2‖ψ‖6)β‖̂u‖6
≤ cα‖̂u‖6 ≤ cα‖5 û‖2,

here we have used β+1 ≤ 6, then 1 ≤ β ≤ 5.

By (1) and (2), if
γ

2
‖5 û‖22+ cα‖5 û‖2 ≤ c‖ f̂ ‖H−1‖5 û‖2,

that is γ
2 ‖5 û‖22 ≤ c(‖ f̂ ‖H−1‖−α)‖5 û‖2, i.e., ‖5 û‖2 ≤ 2c(‖ f̂ ‖H−1‖−α)/γ. According to the

theory in Section 3, the equations (∗2) is solvable. The proof of Theorem 2.4 is complete.

§4.2. Uniqueness of weak solutions

In this part, we consider the uniqueness of the weak solutions for problem (1.1)-(1.3) with
nonhomogeneous boundary condition (φ , 0) in a bounded domain Ω.

Proof of Theorem 2.5. Assume that u0 and u1 are the two weak solutions of the equations
(∗1), let û0 = u0−φ, û1 = u1−φ, û = û0− û1, then we have

γ(5û0,5v)+ (̂u0 · 5û0,v)+ (̂u0 · 5φ,v)+ (φ · 5û0,v)+α(|̂u0+φ|
β−1(̂u0+φ),v) = ( f̂ ,v).
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γ(5û1,5v)+ (̂u1 · 5û1,v)+ (̂u1 · 5φ,v)+ (φ · 5û1,v)+α(|̂u1+φ|
β−1(̂u1+φ),v) = ( f̂ ,v).

for ∀v ∈C∞0,σ and f̂ = f +γ4φ−φ∇φ. Let v = û = û0− û1, we obtain

γ|̂u|21,2+ (̂u · 5û0, û)+b(̂u,φ, û)+α(|̂u0+φ|
β−1(̂u0+φ)− | û1+φ |

β−1 (̂u1+φ), û) = 0,

that is

γ|̂u|21,2 = −b(̂u, û0, û)−b(̂u,φ, û)−α(|̂u0+φ|
β−1(̂u0+φ)− |̂u1+φ|

β−1(̂u1+φ), û),

where b(u,v,w) = (u · 5v,w). By Lemma 4.1, one has

γ|̂u|21,2 ≤ c(n)|̂u0|1,2 |̂u|1,2+
γ

2
|̂u|1,2+ J1. (4.15)

Let J1 = α(|̂u0+φ|
β−1(̂u0+φ)− |̂u1+φ|

β−1(̂u1+φ), û), we deduce that

J1 = α(|̂u0+φ|
β−1(̂u0+φ)− |̂u1+φ|

β−1(̂u1+φ), û)

= α(|̂u0+φ|
β−1(̂u0+φ)− |̂u0+φ|

β−1(̂u1+φ)

+|̂u0+φ|
β−1(̂u1+φ)− |̂u1+φ|

β−1(̂u1+φ), û)

= α(|̂u0+φ|
β−1 · û, û)+α((|̂u0+φ|

β−1− |̂u1+φ|
β−1)(̂u1+φ), û)

= J2+ J3.

Now we begin to estimate J2 and J3 respectively.

J2 ≤ α‖|̂u0+φ|
β−1

2 |̂u0− û1|‖
2
2

≤ ‖(̂u0+φ)
β−1

2 ‖23‖̂u‖
2
6

≤ ‖(̂u0+φ)‖β−1
3(β−1)

2

|̂u|21,2

≤ c(‖̂u0‖ 3(β−1)
2
+ ‖φ‖ 3(β−1)

2
)β−1 |̂u|21,2

≤ c(‖̂u0‖6+ ‖φ‖ 3(β−1)
2

)β−1 |̂u|21,2

≤ c(
‖ f̂ ‖H−1 +α

γ
+ ‖φ‖6)β−1 |̂u|1,21,2,

where 3(β−1)
2 ≤ 6, we obtain 1 ≤ β ≤ 5. After a tedious computation , we have

J3 = α((|̂u0+φ|
β−1− |̂u1+φ|

β−1)(̂u1+φ), û)

≤ cαβ‖|̂u0+φ|
β−1+ |̂u1+φ|

β−1‖ 3
2
‖̂u2‖3+α‖(̂u0+φ)β−1‖ 3

2
‖̂u‖26

≤ cαβ(‖̂u0‖
β−1
3(β−1)

2

+ ‖φ‖
β−1
3(β−1)

2

+ ‖̂u1‖
β−1
3(β−1)

2

)‖̂u‖26

+α(‖̂u0‖
β−1
3(β−1)

2

+ ‖φ‖
β−1
3(β−1)

2

)‖̂u‖26

= cαβ(‖̂u0‖
β−1
3(β−1)

2

+ ‖̂u1‖
β−1
3(β−1)

2

+ ‖φ‖
β−1
3(β−1)

2

)|̂u|21,2,
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where we have used 1 ≤ 3(β−1)
2 ≤ 6, i.e., 5

3 ≤ β ≤ 5. Substituting the above results into (4.15),
we can obtain

γ|̂u|21,2 ≤ c(n)|̂u0|1,2 |̂u|21,2+
γ

2
|̂u|21,2+ c(

‖ f̂ ‖H−1 +α

γ
+ ‖φ‖

β−1
6 )|̂u|21,2

+cαβ(
‖ f̂ ‖H−1 +α

γ
+ ‖φ‖

β−1
6 )|̂u|21,2.

Furthermore, we deduce that

(
γ

2
− c(n)|̂u0|1,2− c(

‖ f̂ ‖H−1 +α

γ
+ ‖φ‖

β−1
6 )− cαβ(

‖ f̂ ‖H−1 +α

γ
+ ‖φ‖

β−1
6 ))|̂u|21,2 ≤ 0,

when γ is big enough, we have û = 0,a.e.. The proof of Theorem 2.5 is complete.
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