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Abstract

We consider the existence of a periodic solution to the first-order nonlinear prob-
lem

H\
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=
|

—a(t)x(t) +q(t,x(t)), a.e.on (0,T),

where the nonlinear term ¢ is Carathéodory with respect to L'[0,T]. The coefficient
function a is such that the differential equation is non-invertible. The technique used
to establish our existence result is Mahwin’s coincidence degree theory.
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1 Introduction

Let T > 0 be fixed. We consider existence of solutions to the first-order the nonlinear
periodic equation
X' (t) = —a(t)x(t) +q(t,x(t)), a.e.on (0,T),

x(0) =x(T). (-

In recent years, there have been several papers written on the existence, uniqueness, stability
and positivity of solutions for periodic equations of forms similar to equation (1.1); see for
example [1, 2, 3,4,5,6,7,8,9, 11, 12, 13, 14] and references therein.

In the above mentioned works, the non-linear term is assumed to be continuous in all
variables. We relax this condition by assuming that ¢ is Carathéodory with respect to
L'[0,T]. The map q: [0,T] x R" — R satisfies Carathéodory conditions with respect to
L'[0, T] if the following conditions hold.

(i) For each z € R", the mapping ¢ — ¢(t,z) is Lebesgue measurable.
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(il) For almost every ¢ € [0, T], the mapping z — ¢(t,z) is continuous on R”.

(iii) For each p > 0, there exists o, € L'([0,T],R) such that for almost every ¢ € [0,7]
and for all z such that |z| < p, we have |¢(z,z)| < ap(t).

Throughout the paper we assume that the function a € L'[0, T satisfies eloal)ds — 1,
As such, equation (1.1) is not invertible and we say that the system is at resonance. To
show the existence of a solution of (1.1) we rewrite the differential equation in the form
Lx = Nx and employ Mawhin’s coincidence theory; see [10]. We give some concepts from
coincidence theory in Section 2 that are central in our proof, as well as define the spaces
and projectors P and Q employed. We state and prove our main result in Section 3.

2 Coincidence Theory

Let X and Z be normed spaces. A linear mapping L : dom L C X — Z is called a Fredholm
mapping if the following two conditions hold:

(1) kerL has a finite dimension, and
(i) ImL is closed and has finite codimension.

If L is a Fredholm mapping, its (Fredhom) index is the integer, Ind L, given by Ind L =
dimker L — codim Im L.

For a Fredholm map of index zero, L : dom L C X — Z, there exist continuous projec-
tors P: X — X and Q : Z — Z such that

ImP=kerL, kerQ=ImL,X =kerL&kerP,Z=ImL®Im Q,

and the mapping
L|dom Lkerp : dom LNkerP — Im L

is invertible. The inverse of L|qom 1rkerp iS denoted by
Kp:Im L — dom LNkerP.

The generalized inverse of L, denoted by Kpp : Z — dom LNkerP, is defined by Kpp =
Kp(I— Q).

If L is a Fredholm mapping of index zero, then for every isomorphism J : Im Q — kerL,
the mapping JQ 4 Kpg : Z — dom L is an isomorphism and, for every x € dom L,

(JQ+Kpp) 'x=(L+J'P)x.

Definition 2.1. Let L : dom L C X — Z be a Fredholm mapping, £ be a metric space,
and N : E — Z. We say that N is L-compact on E if QN : E — Z and KpgN : E — X are
compact on E. In addition, we say that N is L-completely continuous if it is L-compact on
every bounded E C X.

As noted in the abstract, we formulate the periodic equation (1.1) as Lx = Nx, where L
and N are defined below. We employ the following theorem due to Mawhin [10] to show
the existence of a solution.
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Theorem 2.2. Let Q C X be open and bounded. Let L be a Fredholm mapping of index
zero and let N be L-compact on Q. Assume that the following conditions are satisfied:

(i) Lx # ANx for every (x,A) € ((dom L\ kerL) NoQ) x (0,1);
(ii) Nx & Im L for every x € ker LN 0Q);

(iii) degg (JQN|kermaQ,Q NkerL, O) # 0, with Q : Z — Z a continuous projector, such
thatkerQ =Im L and J : Im Q — kerL is an isomorphism.

Then the equation Lx = Nx has at least one solution in dom LN Q.

Let AC[0, T] denote the space of absolutely continuous functions on the interval [0, T].
Define Z = L'[0, T with norm || - ||; and let

X ={x:[0,T] > R:x€AC[0,T] and x' +a(t)x € L'[0,T]}

(s)ds

with norm [|x|| = max,c(o 7| )x(t)eféa . Define the mapping L : dom L C X — Z by
Lx(t) =X'(t) +a(t)x(r), t€]0,T],

where
dom L= {xe X :x(0) =x(T)}.

Define N : X — Z by
Nx(r) = q(t,x(1)), 1€ (0.7

Let Q:Z — Z be given by
T r t
Qg(t) = —/0 g(r)eloa)ds gy g~ hoals)ds, (2.1)

Note that for all 7 € [0,T],

T ; ;
Os0) = %/ Qg(r)eh )4 gr e loa(s)ds
0
— % /Tg (u)el5a)ds gy /Te Jya(s)ds yfyals)ds g,. .~ Jials)ds
0 0
1T ,
= ?/o g(r)efoa(s)dsdre‘foa(s)ds:Qg(t).

Hence Q : Z — Z is a continuous projector.
Lemma 2.3. The mapping L : dom L C X — Z is a Fredholm mapping of index zero.

Proof. Note
kerL = {x €domL:x(t) =ce” Joals)ds ¢ ¢ ]R} =R.

Thus dimkerL = 1.
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Let g € Z and let
! t t
x(r) = x(O)e*fO“(s)ds +/ g(r)e” Jra(s)ds g,
0
Then x' (1) = —a(r)x(r) 4+ g(t) a.e.on [0, T]. Furthermore, suppose that g satisfies
T r
/ g(r)elo®®ds qr — g
0
Then,
T r
x(T) = x(O)eifoTa(s)dS +/ g(r)elo?9) 4 gr — x(0),
0
and hence, g € Im L. That is,
T ,
{g €Z: / g(r)elod®)ds gy — 0} ClmL. (2.2)
0

Now let g € Im L. Then there exists an x € dom L such that Lx(r) = g() for a.e.

t €10,T]. That is,
x(t)+a(t)x(t) =g(t) ae.on|0,T].

It is easy to see that x satisfies

Since x € X, then x(0) = x(T') and so,
T r
/ g(r)efoa(s)dsdr =0.
0

Thus .
ImLC {g eZ: / g(r)efora(S)dsdr _ 0} .
0

From (2.2) and (2.3) we have that

T r
ImL= {gEZ / g(r)efoa(x)dsdrzo}.
0

The projector defined by (2.1) is continuous and linear. Also,

T r
kerQ = {g €Z: / g(r)efoa(‘v)d‘vdr = 0} =ImL.
0

(2.3)

Since Q(g — Qg) = Qg — Q*g =0forall g € Z, then g — Qg € kerQ = Im L. Hence Z =
ImL+ImQ. Letg€Im LNIm Q. Since g € Im Q, then g = Qg and since g € Im L =kerQ,
then Qg = 0. Consequently, g = 0. We have Im LNIm Q = {0} and so, Z=1Im L& Im Q.
Hence, dimkerL = 1 = dimIm Q = codim Im L. Since L is linear, then L is a Fredholm

map of index 0 and the proof is complete.
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We need to define the second projector P. Let P: X — X be given by
Px(t) = x(0)e ™ foals)ds, (2.4)

Since Px(0) = x(0) then it follows trivially that P?x(¢) = Px(t), ¢ € [0,T]. Note that ker P =
{x € X : x(0) =0} and that Im P = kerL. Since kerP = {x € X : x(0) = 0}, an argument
similar to the one showing Z = Im L& Im Q, implies that X = ker P & ker L.

Define Kp : Im L C Z — dom LNkerP by

t . )
Kpg(l‘) = /0 g(r)efoa(s)dsdre*foa(s)ds'

Then .
/ g(r)ej;)ra(s)ds dre—f(;a(s)ds ef(;a(s)ds
0

K = max
Iyl = max

t

< max/

t€[0,T]J0
<|1gllT-

Note that, if x € dom LNkerP then KpLx(t) = x(¢), and if g € Im L then LKpg(t) = g(t).
Consequently, Kp = (L|gom Lkerp)_l.
Consider the map QN : X — Z defined by

2.5

g(r)efJa(S)ds dr

ONx(t) = ;/OTq(r’x(r))efora(s)dsdre—féu(s)ds’ re0,T).
We define the generalized inverse of L by
KpoNx(t) = /O t (Nx(r) — ONx(r)) 006 ds g o= fials)ds
= /0tq(r,x(r))efga(s)dsd,»e—féa(S)ds

T T t
_% / (1, x(1))elia)ds g o= fials)ds.
0

We end this section by showing that N is L-completely continuous. To do so, we first
define the quantity

M = max e~ Joa(s)ds,
t€[0,T]

Lemma 2.4. The mapping N : X — Z given by Nu(t) = q(t,u(t)) is L-completely continu-
ous.

Proof. Let E C X be a bounded set and let p be such that ||x|| < p for all x € E. Since ¢
satisfies Carathéodory conditions, there exists an o, € L'[0,T] such that for a.e. 7 € [0, 7]
and for all z such that |z| < p we have |¢(,z)| < 0 (¢). Then,

T r 1
|QNX([)’ < 7{/ |q(r7x(r))‘ef0a(s)ds dreffoa(s)ds
0

M T
m/o‘ Ocp(r)dr

Lol
7 Helit

IN

IN
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Hence, ON(E) is uniformly bounded.

It is clear that the functions QNx are equicontinuous on E. By the Arzela-Ascoli Theo-
rem, ON(E) is relatively compact. Furthermore, it can be shown that KpoN(E) is relatively
compact. As such, the mapping N : X — Z is L-completely continuous and the proof is
complete.

3 Main Result

In this section we state and prove our main result. We will assume that the following
conditions hold.

(H,) There exists a constant ¢; > 0 such that for all x € dom L\ kerL satisfying |x(r)| >
c1,t € [0,T], we have
ONx(t) #0.

(H>) There exist 3,8 € L'[0,T], such that for all x € R and for all # € [0, T],

|q(z,2)| < B(e)[x[+ ().

(H3) There exists a constant B > 0 such that for all ¢, € R with |c;| > B, either

T . .
6‘2/ q (r, cze_joa(s)ds) el )ds gr <
0

or
T .
CZ/ q (l’, Czeff(;a(s)ds) efora(s)dx dr> 0.
0

Theorem 3.1. Assume that conditions (Hy) - (Hz) hold. Then the nonlinear periodic prob-
lem (2.2) has at least one solution provided that ||B|| < 7—

(I+M)T*

Proof. Let Q:Z — Z and P : X — X be defined as in (2.1) and (2.4), respectively. We
first construct a bounded open set € that satisfies Theorem 2.2. With this goal in mind, we
define the set Q; by

Q) ={xedom L\kerL: Lx = uNx for some u € (0,1)}.
Let x € Q; and write x as x = Px+ (I — P)x. Then
[lell < ([ Peel] 4 [ (7 = P)x]. 3.1

Since x € Q then (I — P)x € dom LNker P = Im Kp. Note that Nx = llle elmL,uc
(0,1). We obtain from the inequality (2.5) that

(1 = P)x|| = [|[KpL(I — P)x|| < [[L(I = P)x||T = |[Lx[|T < [|[Nx]|T. (3.2)
From (H,) we have that || Nx|| < ||B]|||x|| + ||8]|, and so by (3.1) and (3.2), we obtain,

el < [1Peelf =+ [BITINI T + 18] 7 (3.3)
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Now, Px(t) = x(0)e~ hal9)ds_ o,
[[Px[| = [x(0)]- (3.4)
Since x € Q| and kerQ = Im L, then
ONx(t) =0, forallse [0,T].
By (H)) there exists 7y € [0,T] such that |x(tp)| < c;. Also, since
X (1) +a(t)x(t) = q(t,x(1))

then,
7 1o .
x(()) = x(to)efooa(S)ds _/ q(r7x(r))ef0a(s)ds dr.
0
We obtain that, t
¥ 0 "
Ix(0)] < Cle]o()a(s)ds_'_/ ]q(r,x(r))]ejoa(s)dsdr
0

< 1M + |Nx||MT 3.5)
<M+ ||Bll[|x[[MT +[|8]|MT.

From (3.2), (3.4), and (3.5) we get that

Il < exM + [[BI[llx|MT + |[S||MT + S| + [[Bl |/ T-

That is,
a1+ |9 T(1+M)
— IBIIT (1 + M)
Since [|B]| < m the set Q, is bounded.
Define

Q ={xekerL: NxeImL}

and let x € Q,. Since x € kerL, then there exists a constant ¢ such that
)C(l’) _ Cefféa(s)ds'

Since Nu € Im L = ker Q, then
T ; i
/ q (r, ce” ]otl(s)ds> ejoa(s)ds dr —0.
0

By (H3), we have that |c¢| < B and so ||x|| = |¢| < B. The set Q, is bounded.
Before we define the set 3, we must state our isomorphism, J : Im Q — kerL. Let

J <C€7 Joal(s) ds) _ cefjga(s)ds.
If the first part of (H3) is satisfied, then define

Q3 = {xeckerL: —AJ 'x+ (1 —A)QNx =0}.
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Let x € Q3. Since x € kerL, then there exists ¢, such that
x(t) = cre Joals)ds
Assume that |c;| > B > 0. Since x € Q3, we have
A x = (1-))ONx

from which we obtain,
1 /T , .
Aer = (1— 7»)?/ q (r, cre” fo“(s)ds> eloals)ds g,
0
IfA=1,thenc, =0. If A € (0,1) then

T r r
Aes = (1— k)c—z/ q (r, cze_JOa(s)ds> elo@)ds gp < 0,
T Jo

That is, C% < 0. If L = 0, we obtain from the above equation that ¢; = 0. Consequently, if
A € [0,1] we obtain a contradiction and hence |c;| < B. Thus, Q3 is bounded.

Let Q be an open and bounded set such that U?:lﬁi C Q. Then the assumptions (i) and
(i1) of Theorem 2.2 are satisfied. By Lemma 2.3, L: dom L C X — Z is a Fredholm mapping
of index zero. By Lemma 2.4, the mapping N : X — Z is L-completely continuous. We only
need to verify that condition (iii) of Theorem 2.2 is satisfied.

We apply the invariance under a homotopy property of the Brower degree. Let

H(x,u) = £uldx + (1 — u)JONx.
If x € ker LN 0, then

degg (JQN|kermaQ,QﬁkerL,0) = degy (H(-,O),QﬂkerL,O)
= degy (H(-,1),QNkerL,0)
= degg (£1d,QNkerL,0)
# 0.

All the assumptions of Theorem 2.2 are fulfilled and the proof is complete.
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