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Abstract

In this paper, we attempt to construct a class of Armendariz-Like properties. We
investigate the transfer of the Armendariz-Like properties to trivial ring extensions to
localization and direct product of rings, and then generate new families of rings with
zero-divisors subject to some given Armendariz-like properties. The article includes a
brief discussion of the scope and precision of our results.
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1 Introduction

Throughout this paper, all rings are associative with identity elements, and all modules are
unital. It is suitable to use ”local” to refer to (not necessarily Noetherian) ring with a unique
maximal ideal. A subring of a ring need not have the same unit.

Let R be a ring. The content C( f ) of a polynomial f ∈R[x] is the ideal of R generated by
all coefficients of f . One of its properties is that C(.) is semi-multiplicative, that is C( f g)⊆
C( f )C(g), and a polynomial f ∈ R[x] is said to be Gaussian over R if C( f g) = C( f )C(g),
for every polynomial g ∈ R[x]. A polynomial f ∈ R[x] is Gaussian provided C( f ) is locally
principal by [9, Remark 1.1]. A ring R is said to be a Gaussian ring if C( f g) = C( f )C(g)
for any polynomials f ,g with coefficients in R. A domain is Gaussian if and only if it is a
Prüfer domain. See for instance [2, 5, 6, 8, 9].

Definition 1.1. (Armendariz-like properties).
1) A ring R is called a reduced ring if it has no non-zero nilpotent elements.
2) A ring R is called an Armendariz ring if whenever the product of two polynomials

f (x) = ∑
n
i=0 aixi and g(x) = ∑

m
i=0 bixi ∈ R[x] satisfies f g = 0, we have C( f )C(g) = 0 (that

is aib j = 0 for every i and j).
3) A ring R is called a nilArmendariz ring if whenever the product of two polynomials

f (x) = ∑
n
i=0 aixi and g(x) = ∑

m
i=0 bixi ∈ R[x] satisfies f g ∈ nil(R)[x], we have C( f )C(g) ∈

nil(R) (that is aib j ∈ nil(R) for every i and j).
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4) A ring R is called a weakArmendariz ring if whenever the product of two polynomials
f (x) = ∑

n
i=0 aixi and g(x) = ∑

m
i=0 bixi ∈ R[x] satisfies f g = 0, we have C( f )C(g) ∈ nil(R),

(that is aib j ∈ nil(R) for every i and j).

In [16], Rege and Chhawchharia (1997), introduced the notion of an Armendariz ring.
E. Armendariz proved in [3] that a reduced ring satisfies this condition. Armendariz rings
are thus a generalization of reduced rings. It is easy to see that subring of Armendariz
rings are also Armendariz. E. Armendariz [3, Lemma 1] noted that any reduced ring is an
Armendariz ring. Also, D. D. Anderson and V. Camillo [2], show that a ring R is Gaussian
if and only if every homomorphic image of R is Armendariz. See for instance [2, 3, 14, 16].

In [1], Ramon Antoine (2008), introduced nilArmendariz rings. Armendariz ring is
nilArmendariz [1, Proposition 2.7]. It is easy to see that subring of nilArmendariz ring is
also nilArmendariz. In [15], Lui and Zhao (2006), introduced weakArmendariz rings as
a generalization of Armendariz. It is clear that subring of weakArmendariz ring is also
weakArmendariz. Obviously, nilArmendariz rings are weakArmendariz rings. The fol-
lowing diagram of implications summarizes the relations between them (See for instance
[1, 15]):

Reduced ⇒ Armendariz ⇒ nilArmendariz ⇒ weakArmendariz.

In [1], it is proved that each one of above conditions implies the following next one .
Also there are examples given to show that in general, the implications cannot be reversed.
There is non-reduced Armendariz ring by [16, Proposition 2.1]. There is a non-Armendariz
nilArmendariz ring by [1, Examples 4.9]. But, we do not know so far any example of a
weakArmendariz ring that is not nilArmendariz. Recall that a ring R is semicommutative
if for each a,b ∈ R, ab = 0 implies aRb = 0. Semicommutative ring is nilArmendariz
[15, Proposition 3.3]. Thus weakArmendariz rings and nilArmendariz rings are a common
generalization of semicommutative rings and Armendariz rings.

Let A be a ring, E be an A-module and R := A ∝ E be the set of pairs (a,e) with pairwise
addition and multiplication given by (a,e)(b, f ) = (ab,a f +be). R is called the trivial ring
extension of A by E (also called the idealization of E over A). Considerable work has been
concerned with trivial ring extension. Part of it has been summarized in Glaz’s book [7],
and Huckaba’s book (where R is called the idealization of E by A) [?]. See for instance
[7, 11, 12].

The aim of this paper is to present a class of Armendariz-like properties. We investigate
the transfer of the Armendariz-Like properties to trivial ring extensions, to localization and
to direct product of rings. Our results generate new and original examples which enrich the
current literature with new families of Armendariz-Like properties with zero-divisors.

2 Main Results

This section develops a result of the transfer of the Armendariz-Like properties of trivial
ring extensions. And so we will construct a new class of Armendariz-Like properties.

Theorem 2.1. Let A be a ring, E be a nonzero A-module, and let R := A ∝ E. Then:
1) R is a weakArmendariz ring if and only if so is A.
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2) R is a nilArmendariz ring if and only if so is A.
3) Assume that (A,M) is a local ring and E an A-module such that ME = 0. Then, R is

an Armendariz ring if and only if so is A.
4) If R is a semicommutative ring, then so is A.
5) R is never a reduced ring.

Proof. 1) If R is a weakArmendariz ring, then so is A since A is a subring of R. Conversely,
assume that A is a weakArmendariz ring. Let f = ∑

n
i=0(ai,ei)xi and g = ∑

m
i=0(bi, fi)xi

be two polynomials in R[x] such that f g = 0, where n and m are positive integers. Set
fA := ∑

n
i=0 aixi and gA := ∑

m
i=0 bixi be two polynomials of A[x]. We have fAgA = 0 since

f g = 0. Hence CA( fA)CA(gA)∈ nil(A) since A is a weakArmendariz ring. But, C( f )C(g) =
(CA( fA)CA(gA),c), where c ∈ E. Therefore, C( f )C(g) ∈ nil(R) (since (a,c) ∈ nil(R) if and
only if a ∈ nil(A)).

2) If R is a nilArmendariz ring, then so is A since A is a subring of R. Conversely,
assume that A is a nilArmendariz ring. Let f = ∑

n
i=0(ai,ei)xi and g = ∑

m
i=0(bi, fi)xi be

two polynomials in R[x] such that f g ∈ nil(R)[x], where n and m are positive integers. Set
fA := ∑

n
i=0 aixi and gA := ∑

m
i=0 bixi be two polynomials of A[x]. We have fAgA ∈ nil(A)[x]

since f g ∈ nil(R)[x]. Hence CA( fA)CA(gA) ∈ nil(A) since A is a nilArmendariz ring. But,
C( f )C(g) = (CA( fA)CA(gA),c), where c ∈ E. Therefore, C( f )C(g) ∈ nil(R) (since (a,c) ∈
nil(R) if and only if a ∈ nil(A)).

3) By [4, Theorem 2.1].
4) If R is a semicommutative ring, then so is A since A is a subring of R.
5) R is never a reduced ring since 0 6= (0 ∝ E)⊆ nil(R).

The following example shows that weak(nil)Armendariz rings may not be semicommu-
tative rings and shows that in general, the implication of Theorem 2.1(4) cannot be reversed.

Recall that a ring R is called reversible if ab = 0 implies ba = 0 for a,b ∈ R. Reversible
rings are semicommutatives by [15, Lemma 1.4].

Example 2.2. Let H be the Hamilton quaternions over the real number field, A := H ∝ H
and set R := A ∝ A. Then:

1) A is semicommutative (since it is reversible by [13, Example 1.7]).
2) A is not reduced by Theorem 2.1(5).
3) R is not semicommutative by [13, Example 1.7].

R is nilArmendariz by Theorem 2.1(2).

The following example shows that weak(nil)Armendariz rings may not be Armendariz
rings, and shows that Armendariz rings may not be reduced rings.

Also, it shows that the trivial ring extension of an Armendariz ring by itself is not always
an Armendariz ring.

Example 2.3. Let K be a field, A := K ∝ K , and let R := A ∝ A. Then :
1) A is an Armendariz ring.
2) A is not a reduced ring.
3) R is not an Armendariz ring.
4) R is a nilArmendariz ring.
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Proof. 1) A is a Gaussian ring by [9, Remark 1.1]. In particular, A is an Armendariz ring.
2) Hold by direct application of Theorem 2.1.
3) Our aim is to show that R is not an Armendariz ring. Let f = ((0,1),(0,0)) +

((0,0),(1,0))x and g = ((0,1),(0,0))+((0,0),(−1,0))x be a two polynomials in R[x]. We
easily check that f g = 0 and C( f )C(g)= [R((0,1),(0,0))+R((0,0),(1,0))][R((0,1),(0,0))+
R((0,0),(−1,0))] 6= 0.

4) Hold by direct application of Theorem 2.1.

Now, we study the relationship between an idempotent elements and Armendariz-like
properties.

Theorem 2.4. Let R be a ring and e an idempotent central element of R. Then:
1) R is a reduced ring if and only if so are eR and (1− e)R.
2) R is an Armendariz ring if and only if so are eR and (1− e)R.
3) R is a nilArmendariz ring if and only if so are eR and (1− e)R.
4) R is a weakArmendariz ring if and only if so are eR and (1− e)R.

Proof. 1) It is easy to see that eR and (1− e)R are subrings of R, hence if R is a reduced
ring, then so are eR and (1− e)R. Conversely, assume that eR and (1− e)R are reduced
rings and let x ∈ R such that xn = 0. Hence, (ex)n = 0 and ((1− e)x)n = 0, thus (ex) = 0
and ((1−e)x) = 0 since eR and (1−e)R are reduced rings and so x = 0. This means that R
is a reduced ring.

2) , 3) and 4). In [10], it is proved 2). The same is proved for 4) in [15], and also true
for a nilArmendariz rings.

Now, we study the localization of Armendariz-Like properties.

Theorem 2.5. Let R be a ring. Then:
1) a) Assume that R is a weakArmendariz ring and S is a multiplicative subset of R.

Then S−1R is a weakArmendariz ring.
b) A ring R is a weakArmendariz if and only if so is RM for each maximal ideal M of R.
2) a) Assume that R is a nilArmendariz ring and S is a multiplicative subset of R. Then

S−1R is a nilArmendariz ring.
b) A ring R is a nilArmendariz if and only if so is RM for each maximal ideal M of R.
3) a) Assume that R is an Armendariz ring and S is a multiplicative subset of R. Then

S−1R is an Armendariz ring.
b) A ring R is an Armendariz ring if and only if so is RM for each maximal ideal M of

R.
4) Assume that R is a ring and S is a multiplicative subset of R which is contained in

R\Z(R). Then R is a reduced ring if and only if so is S−1R.
5) Assume that R is a ring and S is a multiplicative subset of R which is contained in

R\Z(R). Then R is a semicommutative ring if and only if so is S−1R.

Proof. 1) a) Without loss of generality, we may consider the polynomials of the form S−1 f
and S−1g , where f = ∑

n
i=0 aixi and g = ∑

m
i=0 bixi ∈ R[x], such that S−1 f S−1g = 0. Hence
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there exists t ∈ S such that t f g = 0 and so tCR( f )CR(g) = CR(t f )CR(g) ∈ nil(R) since R is
a weakArmendariz ring. Then we have :

CS−1R(S−1 f )CS−1R(S−1g) = S−1(CR( f ))S−1(CR(g))
= S−1(CR( f )CR(g))
= S−1(tCR( f )CR(g)) ∈ nil(S−1R)

Therefore, S−1R is a weakArmendariz ring.
b) If R is a weakArmendariz ring, then so is RM for each maximal ideal M of R by (a).

Conversely, assume that RM is a weakArmendariz ring for each maximal ideal M and let
f ,g ∈ R[x] such that f g = 0. Then C( f g)M = 0 and so [C( f )C(g)]M = (C( f )MC(g)M) ∈
nil(RM) for each maximal ideal M since RM is a weakArmendariz ring. Therefore, C( f )C(g)∈
nil(R).

2) a) Without loss of generality, we may consider the polynomials of the from S−1 f
and S−1g where f = ∑

n
i=0 aixi and g = ∑

m
i=0 bixi ∈ R[x], such that S−1 f S−1g ∈ nil(S−1R)[x].

Hence there exists t ∈ S such that t f g ∈ nil(R)[x] and so, tCR( f )CR(g) = CR(t f )CR(g) ∈
nil(R) since R is a nilArmendariz ring. Then we have :

CS−1R(S−1 f )CS−1R(S−1g) = S−1(CR( f ))S−1(CR(g))
= S−1(CR( f )CR(g))
= S−1(tCR( f )CR(g)) ∈ nil(S−1R)

Therefore, S−1R is a nilArmendariz ring.
b) If R is nilArmendariz ring, then so is RM for each maximal ideal M of R by a).

Conversely, assume that RM is a nilArmendariz ring. For each maximal M and let f ,g∈R[x]
such that f g ∈ nil(R)[x]. Then C( f g)M ∈ nil(RM) and so [C( f )C(g)]M = (C( f )MC(g)M) ∈
nil(RM) for each maximal ideal M since RM is a nilArmendariz ring. Therefore, C( f )C(g)∈
nil(R).

3) a) By [4, Theorem 2.8.(1)].
b) By [4, Theorem 2.8.(2)].
4) Assume that R is a reduced ring and let (a/t) ∈ S−1R such that (a/t)n = 0. Hence,

(an/tn) = 0 and so there exists t́ ∈ S such that ant́ = 0; thus an = 0, since S ⊆ R\Z(R) and
so a = 0 since R is a reduced ring. Then (a/t) = 0 which means that S−1R is reduced.

Conversely, assume that S−1R is a reduced ring and let x ∈ R such that xn = 0. Hence,
xn = (x/1)n = 0 and then x/1 = 0 since S−1R is a reduced ring, which means that x = 0.
Hence, R is a reduced ring.

5) Assume that R is a semicommutative ring and let a/t and á/t́ ∈ S−1R such that (a/t)
(á/t́) = 0. Thus aá/tt́ = 0 and so there exists ´́t ∈ S such that aá´́t = 0. Hence, aá = 0
(since ´́t ∈ S ⊆ R\Z(R)) and so aRá = 0 (since R is a semicommutative ring). Therefore,
(a/t)S−1R(á/t́) = 0 and so S−1R is a semicommutative ring.

Conversely, assume that S−1R is a semicommutative ring and let x,y ∈ R such that
xy = 0. Hence, (xy/1) = (x/1)(y/1) = 0 and so (x/1)S−1R(y/1) = 0 since S−1R is a semi-
commutative ring. Therefore, xRy = 0 and then R is a semicommutative ring.

By Theorem 2.5 and since each domain is Armendariz, we have:
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Corollary 2.6. A local domain is an Armendariz ring. In particular, it is a weak(nil)Armendariz
ring.

Corollary 2.7. Let R be a ring. Then:
1) R[x] is a weakArmendariz ring if and only if so is R[x,x−1].
2) R[x] is a nilArmendariz ring if and only if so is R[x,x−1].
3) R[x] is an Armendariz ring if and only if so is R[x,x−1].

Proof. Let S := {1,x,x2, ...} be a multiplicatively closed subset of R[x]. Since R[x,x−1] =
S−1R[x], the result follows easily from Theorem 2.5.

Corollary 2.8. Let R be a semicommutative ring. Then:
1) R is a weakArmendariz ring if and only if so is R[x] (if and only if so is R[x,x−1]).
2) R is a nilArmendariz ring if and only if so is R[x] (if and only if so is R[x,x−1]).
3) R is an Armendariz ring if and only if so is R[x] (if and only if so is R[x,x−1]).

Proof. 1) R is a weakArmendariz if and only if so is R[x] by [15, Theorem 3.8]. On the
other hand, R[x] is a weakArmendariz if and only if so is R[x,x−1] by Corollary 2.8. Hence,
we obtain the desired result.

2) Argue as 1).
3) R is an Armendariz ring if and only if so is R[x] by [2, Theorem 2]. On the other

hand, R[x] is an Armendariz if and only if so is R[x,x−1] by Corollary 2.8. Hence, we obtain
the desired result.

Now, we will construct a wide class of rings satisfying the Armendariz-Like properties.
For this, we study the transfer of this property to direct product of rings.

Theorem 2.9. Let (Ri)i=1,2,...,n be a family of rings and let R := ∏
n
i=1 Ri. Then:

1) R is a weakArmendariz ring if and only if so is Ri for each i = 1, . . . ,n.
2) R is a nilArmendariz ring if and only if so is Ri for each i = 1, . . . ,n.
3) R is a semicommutative ring if and only if so is Ri for each i = 1, . . . ,n.
4) R is an Armendariz ring if and only if so is Ri for each i = 1, . . . ,n.
5) R is a reduced ring if and only if so is Ri for each i = 1, . . . ,n.

Proof. We will prove the result for i = 1,2, and the Theorem will be established by induc-
tion on n.

1) Assume that (R1×R2) is a weakArmendariz ring. We show that R1 is a weakArmen-
dariz ring (it is the same for R2). Let f = ∑

n
i=0 aixi and g = ∑

m
i=0 bixi be two polynomials in

R1[x] such that f g = 0, where n and m are positive integers. Set f1 = ∑
n
i=0(ai,0)xi and g1 =

∑
m
i=0(bi,0)xi ∈ (R1×R2)[x]. We have f1g1 =( f g,0)= (0,0). Hence CR1×R2( f1)CR1×R2(g1)∈

nil(R1 × R2) since (R1 × R2) is a weakArmendariz ring. But CR1×R2( f1)CR1×R2(g1) =
(CR1( f )CR1(g),0). Therefore, CR1( f )CR1(g) ∈ nil(R1) and this shows that R1 is a weakAr-
mendariz ring.

Conversely, assume that R1 and R2 are weakArmendariz rings. Let f = ∑
n
i=0(ai,ei)xi

and g = ∑
m
i=0(bi, fi)xi ∈ (R1 × R2)[x] such that f g = 0, where n and m are positive in-

tegers. Set f1 := ∑
n
i=0 aixi ∈ R1[x], f2 := ∑

n
i=0 eixi ∈ R2[x], g1 := ∑

m
i=0 bixi ∈ R1[x] and

g2 := ∑
m
i=0 fixi ∈ R2[x]. We have 0 = f g = ( f1g1, f2g2) which implies that f1g1 = 0 and

f2g2 = 0. Hence CR1( f1)CR1(g1)∈ nil(R1) and CR2( f2)CR2(g2)∈ nil(R2) since R1 and R2 are
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a weakArmendariz rings. But, CR1×R2( f )CR1×R2(g) = (CR1( f1)CR1(g1),CR2( f2)CR2(g2)).
Therefore, CR1×R2( f )CR1×R2(g) ∈ nil(R1×R2).

2) The same proved for nilArmendariz ring.
3) Assume that (R1×R2) is a semicommutative ring. We show that R1 is a semicom-

mutative ring (it is the same for R2). Let a,b ∈ R1 such that ab = 0. We have (a,0)(b,0) =
(ab,0) = 0 and so (a,0)(x,y)(b,0) = 0 for each (x,y) ∈ R1×R2 (since, R1×R2 is a semi-
commutative ring). Therefore, axb = 0 for each x ∈ R1 and this shows that R1 is a semi-
commutative ring.

Conversely, assume that R1 and R2 are a semicommutative rings. Let (x1,y1) and
(x2,y2) ∈ R1×R2 such that (x1,y1)(x2,y2) = 0, which means that x1x2 = 0 and y1y2 = 0.
Therefore, for each a ∈ R1 and b ∈ R2, x1ax1 = 0 and y1by2 = 0 (since R1 and R2 are a
semicommutative rings), which means that (x1,y1)(a,b)(x2,y2) = 0, as desired.

4) By [4, Theorem 2.5].
5) Assume that R1×R2 is a reduced ring. We show that R1 is a reduced ring (it is the

same for R2). Let x∈R1 such that xn = 0. We have (x,0)n = (xn,0) = (0,0) and so (x,0) = 0
since (R1×R2) is a reduced ring. Hence, R1 is a reduced ring.

Conversely, assume that R1 and R2 are a reduced rings. We show that (R1 ×R2) is a
reduced ring. Let (x,y) ∈ (R1 ×R2) such that (x,y)n = 0. Hence, (x,y)n = (xn,yn) = 0
which means that x = 0 and y = 0 since R1 and R2 are a reduced rings. Therefore, (R1×R2)
is a reduced ring as desired.

Acknowledgements. The authors thank the referee for his/her careful reading of this work.
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