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Abstract

In this paper, the pseudo-inversion of degenerate metric is considered. We extend
Szabó operators associated to algebraic covariant derivative curvature maps (tensors)
to lightlike hypersurfaces. Some examples are given with explicit determination of
their Szabó operators. Finally, we introduce the notion of lightlike Szabó hypersur-
faces and give some characterization results of locally symmetric lightlike hypersur-
faces and semi-symmetric lightlike hypersurfaces from Szabó condition.
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1 Introduction

The curvature tensor is a central concept in differential geometry. According to R. Osser-
man ([6]), one could argue that it is a central one. But the curvature tensor is in general
difficult to deal with and the problem which aims to relate algebraic properties of the Rie-
mann curvature tensor to the geometry of the manifold is in general difficult to be solved.
Many authors study the geometric consequences that followed if various natural operators
defined in terms of the curvature tensor are assumed to have constant eigenvalues on the
unit fibre bundle. Osserman has studied the spectral properties of Jacobi operator in ([6]).
This operator has been extensively studied in the Riemannian and the pseudo-Riemannian
context. In the degenerate geometry, C. Atindogbe and K. L. Duggal have studied Pseudo-
Jacobi operators and introduce the Osserman condition on lightlike hypersurfaces in ([2]).
The Szabó operator has been also studied in the Riemannian context, since it’s introduction
by Z. I. Szabo in ([12]) but with more or less interest.
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Let (M,g) be a semi-Riemannian manifold and u ∈M. An element F ∈ ⊗4T ∗
u M is said

to be an algebraic curvature map (tensor) on TuM if it satisfies the following symmetries:

F(x,y,z,w) =−F(y,x,z,w) = F(z,w,x,y)
F(x,y,z,w)+F(y,z,x,w)+F(z,x,y,w) = 0 (1.1)

We said that R ∈ ⊗5T ∗
u M is an algebraic covariant derivative curvature map (tensor) on

TuM if R satisfies the symmetries:

R (x,y,z,w;v) = R (z,w,x,y;v) =−R (y,x,z,w;v)
R (x,y,z,w;v)+R (y,z,x,w;v)+R (z,x,y,w;v) = 0 (1.2)

R (x,y,z,w;v)+R (x,y,w,v;z)+R (x,y,v,z;w) = 0

The Szabó operator SR (·) associated to an algebraic covariant derivative curvature ten-
sor R ∈ ⊗5T ∗

u M is the self-adjoint linear map on TuM characterized by the identity:

g(SR (x)y,z) = R (y,x,x,z;x). (1.3)

Since SR (cx) = c3SR (x), the natural domains of Szabó operators SR (·) are the unit pseudo-
sphere of unit spacelike or unit timelike vectors

S±u (M) := {x ∈ TuM : g(x,x) =±1} .

The tensor R ∈ ⊗5T ∗
u M is said to be a spacelike (resp. timelike) Szabó tensor on TuM

if its spectrum, Spec{SR }, is constant on the pseudo-sphere S+
u (M) (resp S−u (M)).

In semi-Riemannian geometry, the Riemann curvature tensor R is an algebraic curvature
tensor on the tangent space TuM for every point u ∈ M. Similarly, by using (1.1) and the
second Bianchi identity

∇X R(Y,Z)+∇Y R(Z,X)+∇ZR(X ,Y ) = 0 (1.4)

we see that the covariant derivative of the curvature tensor ∇R is an algebraic covariant
derivative curvature tensor on TuM.

In the geometry of lightlike hypersurfaces, the induced connection is not compatible
with the induced structure. Indeed, we have

(∇X g)(Y,Z) = B(X ,Y )η(Z)+B(X ,Z)η(Y ), ∀X ,Y ∈ Γ(T M|U). (1.5)

where the local 1−form η is defined on Γ(T M|U) by

η( · ) = ḡ(· , N), (1.6)

where g is the pseudo-Riemannian metric on the ambient space M. The covariant derivative
of the induced Riemann curvature tensors is not algebraic in general, that is (1.2) does
not hold. Therefore, in section 4 we find conditions on lightlike hypersurface to have an
algebraic covariant derivative of induced Riemann curvature tensor.

The semi-Riemannian manifold (M,g) is said to be Szabó manifold if the covariant
derivative ∇R of its associated Riemann curvature is a Szabó tensor on TuM, for any u ∈M;
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or equivalently if the eigenvalues of Szabó operator S∇R(·) on TuM are constant on the
pseudo-spheres of unit timelike and spacelike vectors S±u (M), for any u ∈ M. In section 5
and 6 we have extended this operator on lightlike hypersurfaces, spaces of signature (p,q,1)
by using non-degenerate metric g̃ associated to the degenerate metric g (see [1]). We give
some examples.

A natural condition to impose on semi-Riemannian manifold of signature (p,q) is that
its Riemann curvature tensor R be parallel, that is, have vanishing covariant differential.
Such a manifold is said to be locally symmetric. This class of manifolds contains one of
manifolds of constant curvature and can be find from Szabó condition. Szabó ([12]) showed
in the Riemannian setting (q = 0) that if S∇R(·) has constant eigenvalues on S+

u (M), for any
u ∈ M, then ∇R vanish identically. Gilkey and Stavrov ([7]) extended this result to the
Lorentzian setting (q = 1) and showed that for p,q > 2, there exists an algebraic covariant
derivative curvature tensor so that S2

∇R(·) = 0 and S∇R(·) does not vanish identically.
In this paper, we introduce in section 7, the notion of lightlike Szabó hypersurfaces of

a semi-Riemannian manifolds. We extend results of Szabó, Gilkey and Stavrov to spaces
of signature (p,q,1) (theorem 7.4 and 7.5). Also, we show that in integrable screen dis-
tributions setting, Szabó condition at a point on lightlike hypersurface sometimes reduces
to be one for the semi-Riemannian screen leaf through this point (theorem 7.6). In sec-
tion 8, We study locally symmetric lightlike hypersurfaces and semi-symmetric lightlike
hypersurfaces under Szabó condition. We prove some characterizations.

2 Preliminaries

In this section, we will give a brief review of lightlike hypersurfaces of semi-Riemannian
manifolds. A full discussion of the content of this section can be found in [4]. Note that,
except the contrary mention, in this paper, we consider semi-Riemannian manifolds (M,g)
of signature (p,q) and constant index q with 1 6 q 6 p, that is

sign(g) = {−, ...,−︸ ︷︷ ︸
q

,+, ...,+︸ ︷︷ ︸
p

}.

Also, we consider degenerate manifolds or lightlike hypersurfaces (M,g) of signature (p,q,1),
and constant index q, that is

sign(g) = {0,−, ...,−︸ ︷︷ ︸
q

,+, ...,+︸ ︷︷ ︸
p

}.

Let (M,g) be an (m + 2)-dimensional semi-Riemannian manifold of constant index q,
1 6 q < n+2 and M be a hypersurface of M. We denote the tangent space at u∈M by TuM.
Then

TuM⊥ = {Xu ∈ TuM : g(Xu,Yu) = 0, ∀Yu ∈ TuM}

and
RadTuM = TuM∩TuM⊥

Then, M is called a lightlike hypersurface of M if RadTuM 6= {0} for any u ∈ M. Thus
T M⊥ = ∩u∈MTuM⊥ becomes a one-dimensional distribution on M. We denote F (M) the
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algebra of differential functions on M and by Γ(E) the F (M)-module of differentiable
sections of a vector bundle E over M.

Definition 2.1 ([4], p.78). Let M be a lightlike hypersurface of a semi-Riemannian manifold
M. A complementary vector subbundle S(T M) to T M⊥ in T M is called a screen distribution
of M.

It is known from ([4], Proposition 2.1, p.5) that S(T M) is non-degenerate. Thus we
have the orthogonal direct sum

T M = S(T M)⊥ T M⊥, (2.1)

A lightlike hypersurface endowed with a specific screen distribution is denoted by the triple
(M,g,S(T M)). From (2.1), we observe that T M⊥ lies in the tangent bundle of the lightlike
hypersurface M. Thus a vital problem of this theory is to replace the intersecting part by a
vector subbundle of T M|M whose sections are nowhere tangent to M. Next theorem shows
that there exists a such complementary (non-orthogonal) vector bundle to T M in T M.

Theorem 2.2. ([4], p.79) Let (M,g,S(T M)) be a lightlike hypersurface of (M,g). Then
there exists a unique vector bundle tr(T M) of rank 1 over M such that for any non-zero
section ξ of T M⊥ on a coordinate neighborhood U ⊂M, there exist a unique section N of
tr(T M) on U satisfying

g(N,ξ) = 1, g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(T M)|U) (2.2)

It follows from (2.2) that tr(T M) is a lightlike vector bundle such that tr(T M)u∩TuM =
{0}, it is called the lightlike transversal bundle of M with respect to screen distribution
S(T M). Thus from (2.1) and (2.2) we have

T M|M = S(T M)⊥ (T M⊥⊕ tr(T M)) = T M⊕ tr(T M). (2.3)

Suppose M is a lightlike hypersurface of M and ∇ is the Levi-Civita connection on M. Then
according to the decomposition (2.3) we have

∇XY = ∇XY +h(X ,Y ) and ∇XV =−ANX +∇
⊥
X V, (2.4)

for any X ,Y ∈ Γ(T M) and V ∈ Γ(tr(T M)), where ∇XY and AV X belong to Γ(T M), h(X ,Y )
and ∇⊥

X V belong to Γ(tr(T M)). We note that it is easy to see that ∇ is a torsion free connec-
tion, h is a tr(T M) valued, symmetric F (M)-bilinear form on Γ(T M), AV is a F (M)-linear
operator on Γ(T M) and ∇t is a linear connection on tr(T M). h and AV are called the second
fundamental form and shape operator of the lightlike hypersurface M, respectively.

Locally suppose {ξ,N} is a normalizing pair of vector fields on U ⊂M in Theorem 2.2.
Then we define a symmetric bilinear form B and 1-form τ on U ⊂M by

B(X ,Y ) = g(h(X ,Y ),ξ) and τ(X) = g(∇⊥
X N,ξ),

for any X ,Y ∈ Γ(T M). Thus (2.4) becomes,

∇XY = ∇XY +B(X ,Y )N, and ∇X N =−ANX + τ(X)N, (2.5)
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for any X ,Y ∈ Γ(T M). Let P denote the projection morphism of T M on S(T M) with respect
to the orthogonal decomposition (2.1). We obtain

∇X PY =
∗
∇X PY +C(X ,PY )ξ and ∇X ξ =−

∗
Aξ X − τ(X)ξ, (2.6)

for any X ,Y ∈ Γ(T M), where
∗
∇X PY and

∗
AE X belong to Γ(S(T M)) and C is locally, a

Γ(T M⊥)-valued F (M)-bilinear form on Γ(T M)×Γ(S(T M)) defined by

C(X ,PY ) = g(∇X PY,N),

for any X ,Y ∈ Γ(T M). C,
∗
AE and

∗
∇ are called the local second fundamental form of

S(T M), the shape operator of S(T M) and the induced connection on S(T M), respectively.
By direct calculation, using (2.5) and (2.6) and since g(∇X ξ,ξ) = 0, we obtain

B(X ,PY ) = g(
∗
Aξ X ,PY ) and B(X ,ξ) = 0 (2.7)

C(X ,PY ) = g(ANX ,PY ) and g(ANY,N) = 0, (2.8)

for any X ,Y ∈ Γ(T M). It is important to mention that the local second fundamental form B
is independent of the choice of screen distribution ([4], Proposition 2.1, p.83).

Definition 2.3 ([4], p.107). A lightlike hyprsurface (M,g,S(T M)) of a semi-Riemannian
manifold (M,g) is said to be totally umbilical, if and only if, locally, on each U there exists
a smooth function ρ such that

B(X ,Y ) = ρg(X ,Y ), ∀X ,Y ∈ Γ(T M|U). (2.9)

Definition 2.4 ( [3]). A lightlike hypersurface (M,g,S(T M)) of a semi-Riemannian mani-
fold M is screen conformal if on any coordinate neighborhood U ⊆M and for any normal-
izing pair {ξ,N} there exists a non-vanishing smooth function ϕ on U such that

AN = ϕ
∗
Aξ . (2.10)

Denote by R and R the Riemann curvature tensors of ∇ and ∇, respectively. Recall the
following Gauss equation ([4]), for all X ,Y,Z ∈ Γ(T M), we have

R(X ,Y )Z = R(X ,Y )Z +B(X ,Z)ANY −B(Y,Z)ANX +(∇X B)(Y,Z)N
+B(Y,Z)τ(X)N− (∇Y B)(X ,Z)N−B(X ,Z)τ(Y )N, (2.11)

where

(∇X B)(Y,Z) = X .B(Y,Z)−B(∇XY,Z)−B(Y,∇X Z). (2.12)
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3 Pseudo-inversion of degenerate metrics

In this section, we recall from [1] the following results. Consider on M a normalizing pair
{E,N} satisfying the Theorem 2.2 and the one-form

η( · ) = g( · ,N).

For all X ∈ Γ(T M), X = PX +η(X)ξ and η(X) = 0 if and only if X ∈ Γ(S(T M)). Now, we
define [g by

[g : Γ(T M) −→ Γ(T ∗M)

X 7−→ X [g = g(X , · )+η(X)η( · ). (3.1)

Clearly, such a [g is an isomorphism of Γ(T M) onto Γ(T ∗M), and generalize the usual
non-degenerate theory. In the latter case, Γ(S(T M)) coincides with Γ(T M), and as a con-
sequence the 1-form η vanishes identically and the projection morphism P becomes the
identity map on Γ(T M). We let ]g denote the inverse of the isomorphism [g given by (3.1).
For X ∈ Γ(T M) (resp. ω∈ Γ(T ∗M), X [g (resp. ω]g) is called the dual 1-form of X (resp. the
dual vector field of ω) with respect to the degenerate metric g. It follows from (3.1) that if
ω is a 1-form on M, we have for X ∈ Γ(T M),

ω(X) = g(ω]g ,X)+ω(E)η(X). (3.2)

Define a (0,2)-tensor g̃ by

g̃(X ,Y ) = X [g(Y ) = g(X ,Y )+η(X)η(Y ), ∀X ,Y ∈ Γ(T M). (3.3)

Clearly, g̃ defines a non-degenerate metric on M which plays an important role in defining
the usual differential operators gradient, divergence, Laplacian with respect to degenerate
metric g on lightlike hypersurfaces, see [1]. Also, observe that g̃ coincides with g if the
latter is non-degenerate. The (0,2)-tensor g[·,·], inverse of g̃ is called the pseudo-inverse of
the degenerate metric g. With respect to the quasi orthogonal local frame field {ξ,X1, ...,Xn}
adapted to the decomposition (2.1) we have

g̃(ξ,ξ) = 1, g̃(ξ,Xi) = η(Xi) = 0

g̃(Xi,X j) = g(Xi,X j) = gi j, 1 6 i, j 6 n. (3.4)

The matrics of g̃, g[·,·] and g.g[·,·] are given by:

g̃ =


1 0 · · · 0
0
... (gi j)
0

 , g[·,·] =


1 0 · · · 0
0
... (gi j)−1

0

 (3.5)

g.g[·,·] = g[·,·].g =


0 0 · · · 0
0
... In

0

 (3.6)
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4 Algebraic covariant derivative of curvature tensors.

Contrary to non-degenerate hypersurface, the induced Riemann curvature on lightlike hy-
persurface (M,g,S(T M)) may not have an algebraic covariant derivative. For this, we have
the following.

Proposition 4.1. Let (M,g,S(T M)) be a lightlike hypersurface of a semi-Riemannian man-
ifold (M,g), R the algebraic induced Riemann curvature tensor of M. The covariant deriva-
tive curvature tensor ∇R is algebraic, if and only if the torsion-free induced connection on
M satisfies

(∇V g)(R(Z,W )X ,Y )+(∇Zg)(R(W,V )X ,Y )+(∇W g)(R(V,Z)X ,Y ) = 0, (4.1)

for all X ,Y,Z,W,V ∈ Γ(T M).

Proof. By derivation of algebraic symmetries (1.1) of R, we have the two first algebraic
symmetries in (1.2) for the tensor ∇R. The induced Riemann curvature R with respect to
the torsion-free ∇ verifies the second Bianchi identity, so for all X ,Y,Z,W,V ∈ Γ(T M),

g((∇V R)(Z,W )X ,Y )+g((∇ZR)(W,V )X ,Y )+g((∇W R)(V,Z)X ,Y ) = 0. (4.2)

Also by calculation we can check that

(∇V R)(X ,Y,Z,W ) = g((∇V R)(X ,Y )Z,W )+(∇V g)(R(X ,Y )Z,W ). (4.3)

Using (4.2), (4.3) and the first algebraic symmetry in (1.2) for ∇R , we have

(∇V R)(X ,Y,Z,W )− (∇V g)(R(Z,W )X ,Y )+(∇ZR)(X ,Y,W,V )
−(∇Zg)(R(W,V )X ,Y )+(∇W R)(X ,Y,V,Z)− (∇W g)(R(V,Z)X ,Y ) = 0

Thus, the third algebraic symmetry in (1.2) for the tensor ∇R is satisfied if and only if the
condition (4.1) holds. �

Let ∇ and ∇ be the Levi-Civita connection on (M,g) and the induced connection on
(M,g), respectively. Denote by R and R the curvature tensors of ∇ and ∇, respectively.
Since (∇V R)(X ,Y,Z,W ) = g(∇V R(X ,Y )Z,W ), using relation (4.3) and lemma 3.2 of ([9]),
we obtain, for any V,X ,Z ∈ Γ(T M), ξ ∈ Γ(T M⊥) and W ∈ Γ(S(T M))

(∇V R)(X ,ξ,Z,W ) = (∇V R)(X ,ξ,Z,W )−
{
(∇V B)(X ,Z)C(ξ,W )

+B(X ,Z)g((∇V AN)ξ,W )− (∇V B)(ξ,Z)C(X ,W )+(∇ξB)(X ,Z)C(V,W )
−(∇X B)(ξ,Z)C(V,W )+B(X ,Z)τ(ξ)C(V,W )−B(V,X)R(N,ξ,Z,W )
−B(V,Z)R(X ,ξ,N,W )−B(V,W )R(X ,ξ,Z,N)

}
(4.4)

In the following, we show that, a lightlike hypersurface of a Lorentzian space form (of
signature (p,q), q = 1) admits algebraic tensor ∇R if and only if it is totaly geodesic.

Theorem 4.2. Let (M,g,S(T M)) be a lightlike hypersurface of a Lorentzian space form
(M(c),g), with ANξ 6= 0. Then the covariant derivative ∇R of induced Riemann curvature
tensor R on M is algebraic if and only if (M,g) is totally geodesic.
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Proof. Assume that ∇R defines an algebraic covariant derivative curvature tensor. The
Riemann curvature tensor R on M is given by

R(X ,Y )Z = c{g(Y,Z)X −g(X ,Z)Y}, ∀X ,Y,Z ∈ Γ(T M). (4.5)

By direct calculation, using relations (4.4) and (4.5), we obtain, for any V,X ∈ Γ(T M),
W ∈ Γ(S(T M)) and ξ ∈ Γ(T M⊥),

(∇V R)(X ,ξ,ξ,W ) =−(∇V B)(X ,ξ)C(ξ,W ) =−B(X ,
∗
Aξ V )g(ANξ,W ). (4.6)

Also, since the tensor ∇R is algebraic, we have

(∇V R)(X ,ξ,ξ,W ) =−(∇V R)(X ,ξ,W,ξ) =−R(X ,ξ,W,
∗
Aξ V ).

Thus, by using relation (2.11), we obtain, for any V,X ∈ Γ(T M), W ∈ Γ(S(T M)) and ξ ∈
Γ(T M⊥),

(∇V R)(X ,ξ,ξ,W ) = B(X ,W )g(ANξ,
∗
Aξ V ). (4.7)

From relations (4.6) and (4.7), we get

B(X ,W )g(ANξ,
∗
Aξ V ) =−B(X ,

∗
Aξ V )g(ANξ,W ). (4.8)

By taking W =
∗
Aξ V into (4.8), we get

B(X ,
∗
Aξ V )g(ANξ,

∗
Aξ V ) = 0, ∀V,X ∈ Γ(T M). (4.9)

Since ANξ 6= 0, if g(ANξ,
∗
Aξ V ) = 0, we have

∗
Aξ V = 0,∀V ∈ Γ(T M). Now suppose that

g(ANξ,
∗
Aξ V0) 6= 0, for some V0 ∈ Γ(T M). From (4.9), we obtain

g(
∗
Aξ X ,

∗
Aξ V ) = B(X ,

∗
Aξ V ) = 0.

Then, by taking X =V , we get g(
∗
Aξ X ,

∗
Aξ X) = 0. On the other hand, any screen distribution

S(T M) of a lightlike hypersurface of Lorentzian manifold is Riemannian. Thus we have
∗
Aξ X = 0, ∀X ∈ Γ(T M), that is (M,g) is totally geodesic. Conversely, suppose that B = 0.
Then, using relation (2.11), we have ∇R = ∇R|T M, that is ∇R is algebraic. �

Lemma 4.3. Let (M,g,S(T M)) be a locally screen conformal lightlike hypersurface of a
semi-Riemannian manifold (M,g) with ambient holonomy condition

R(X ,PY )(RadT M)⊂ RadT M ∀X ,Y ∈ Γ(T M).

Then, the induced Riemann curvature R of M defines an algebraic curvature tensor.

Proof. Consider M to be locally screen conformal. Since C(X ,PY ) = ϕB(X ,PY ), from
(2.11) we have for any X ,Y,Z,W ∈ Γ(T M),

R(X ,Y,Z,PW ) = R(X ,Y,Z,PW )−B(X ,Z)C(Y,PW )+B(Y,Z)C(X ,PW )
= R(X ,Y,Z,PW )−ϕ

(
B(X ,Z)B(Y,PW )−B(Y,Z)B(X ,PW )

)
= R(X ,Y,Z,PW )−ϕA(X ,Y,Z,PW ),
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where A(X ,Y,Z,W )= B(X ,Z)B(Y,W )−B(Y,Z)B(X ,W ), ∀X ,Y,Z,W ∈Γ(T M). It is straight-
forward that A verifies the algebraic symmetries of (1.1). So, R(X ,Y,Z,PW ) has the re-
quired symmetries. On the other hand, for any X ,Y,Z ∈ Γ(T M) and ξ ∈ Γ(T M⊥), we have
R(X ,Y,Z,ξ) = −R(Y,X ,Z,ξ) = 0. Also, R(Z,ξ,X ,Y ) = R(Z,ξ,X ,PY ) = R(Z,ξ,X ,PY )−
B(Z,X)C(ξ,PY )+B(ξ,X)C(Z,PY )=−R(X ,PY,ξ,Z)= 0. This completes the proof. �

Assume that a lightlike hypersurface (M,g) is totally geodesic, from relation (2.11), we
have ∇R = ∇R|T M. Then, the covariant derivative ∇R of the induced Riemann curvature R
of M defines an algebraic covariant derivative curvature tensor. For the non-totally geodesic
setting, in virtue of Proposition 4.1 and the above lemma, the following holds.

Theorem 4.4. Let (M,g,S(T M)) be a locally screen conformal lightlike hypersurface of a
semi-Riemannian manifold (M,g), R the induced Riemann curvature tensor of M. Then the
covariant derivative ∇R defines an algebraic covariant derivative curvature tensor, if the
following conditions are satisfied
(a) R(X ,PY )ξ ∈ Γ(T M⊥) and
(b) (∇V g)(R(Z,W )X ,Y )+(∇Zg)(R(W,V )X ,Y )+(∇W g)(R(V,Z)X ,Y ) = 0,
for all X ,Y,Z,W,V ∈ Γ(T M) and ξ ∈ Γ(T M⊥).

Corollary 4.5. Let (M,g,S(T M)) be a locally screen conformal lightlike hypersurface of
a semi-Euclidean space, R the induced Riemann curvature tensor of M. Then the covariant
derivative ∇R defines an algebraic covariant derivative curvature tensor.

5 Pseudo-Szabó operators.

Let us start by intrinsic interpretation of relation (1.3) which in pseudo-Riemannian set-
ting characterizes the Szabó operator SR (·) associated to an algebraic covariant derivative
curvature map R ∈ ⊗5T ∗

u M, u ∈M. Indeed, for x ∈ S±u (M), y, w in TuM, we have,

(SR (x)y)[(w) = R (y,x,x,w;x) (5.1)

that is
SR (x)y = R (y,x,x,•;x)] (5.2)

where [ and ] are the usual natural isomorphisms between TuM and its dual T ∗
u M, for non-

degenerate metric g. For degenerate setting, let’s consider the associate non-degenerate
metric g̃ of g, defined by relation (3.3) and denote by [g and ]g the above natural isomor-
phisms for the metric g̃. Thus equivalently, relation (5.1) can be written in the form:

g̃(SR (x)y,w) = R (y,x,x,w;x) (5.3)

in which SR (x)y is well defined. This leads to the following definition.

Definition 5.1 (Pseudo-Szabó Operator). Let (M,g,S(T M)) be a lightlike hypersurface of
a semi-Riemannian manifold (M,g), u ∈ M, x ∈ S±u (M) and R ∈ ⊗5T ∗

u M an algebraic
covariant derivative curvature map on TuM. By pseudo-Szabó operator associated to R
with respect to x, we call the self-adjoint linear map SR (x) on TuM defined by

SR (x)y = R (y,x,x,•;x)]g (5.4)
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or equivalently
(SR (x)y)[g(w) = R (y,x,x,w;x) (5.5)

where [g and ]g denote the natural isomorphisms between TuM and its dual T ∗
u M, for asso-

ciate non-degenerate metric g̃ of g.

By using a covariant derivative ∇R of induced Riemann curvature tensor R on M, for
any X ∈ S±(M), Y ∈ Γ(T M), the pseudo-Szabó operator associated to ∇R with respect to
X is defined by

S∇R(X)Y = (∇X R)(Y,X ,X ,•)]g , (5.6)

or equivalently, for any X ∈ S±(M) and Y,W ∈ Γ(T M)

g̃(S∇R(X)Y,W ) = (∇X R)(Y,X ,X ,W ). (5.7)

Thus, by direct calculation we obtain, for X ∈ S±(M), Y,W ∈ Γ(T M),

g̃(S∇R(X)Y,W ) = (∇X g)(R(Y,X)X ,W )+g((∇X R)(Y,X)X ,W ) (5.8)

Note that for any X ∈ S±(M), Y ∈ Γ(T M), we have S∇R(X)Y ∈ X⊥ and S∇R(X)X = 0,
where

X⊥ = {Y ∈ Γ(T M) : g(X ,Y ) = 0} (5.9)

6 Some basic examples

Example 1. (lightlike cone Λ
n+1
0 )

Let’s consider the lightlike cone Λ
n+1
0 at the origin of Rn+2

1 endowed with the semi-Euclidean
metric g(x,y) =−x0y0 + ∑

n+1
a=1 xaya,(x = ∑

n+1
A=0 xA ∂

∂xA ). The lightlike cone Λ
n+1
0 is given by

the equation

−(x0)2 +
n+1

∑
a=1

(xa)2 = 0, x 6= 0

It is known that Λ
n+1
0 is a lightlike hypersurface of Rn+2

1 and the radical distribution is
spanned by a global vector field ξ = ∑

n+1
A=0 xA ∂

∂xA on Λ
n+1
0 . The lightlike transversal vector

bundle tr(T Λ
n+1
0 ) is spanned by the section N = 1

2(x0)2 {−x0 ∂

∂x0 + ∑
n+1
a=1 xa ∂

∂xa }, it is also

globally defined. Next, any X ∈ Γ(S(T Λ
n+1
0 )) is expressed by X = ∑

n+1
a=1 Xa ∂

∂xa , where
X1, ...,Xn+1 satisfy

n+1

∑
a=1

xaXa = 0. (6.1)

By direct calculation, for any X ∈ Γ(T Λ
n+1
0 ), we have

∇X ξ = ∇X ξ = X (6.2)

The lightlike cone Λ
n+1
0 is totally umbilical, since by direct calculation the local second

fundamental form is given by

B(X ,Y ) =−g(X ,Y ), ∀X ,Y ∈ Γ(T Λ
n+1
0 ). (6.3)
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So its algebraic induced Riemann curvature is given by, (see [4], p.114),

R(X ,Y )Z =
1

2(x0)2 {g(Y,Z)PX −g(X ,Z)PY} (6.4)

where P is the projection morphism on the screen associated to {ξ,N}. It easy to check that
∇R is an algebraic covariant derivative curvature tensor.
By taking X = η(X)ξ +(X1 ∂

∂x1 + Xn+1 ∂

∂xn+1 ) with ∑
n+1
a=1 xaXa = 0 and ξ = ∑

n+1
A=0 xA ∂

∂xA , the
spaces S±(Λn+1

0 ) and X⊥ are given by

S±(Λn+1
0 ) = {X ∈ Γ(T Λ

n+1
0 ), g(X ,X) =±1}

= {X ∈ Γ(T Λ
n+1
0 ),

n+1

∑
a=1

(Xa)2 =±1} (6.5)

and

X⊥ = {Y ∈ Γ(T Λ
n+1
0 ), g(X ,Y ) = 0}

= {Y ∈ Γ(T Λ
n+1
0 ),

n+1

∑
a=1

XaY a = 0}. (6.6)

Now let compute S∇R(X) for X ∈ S+(Λn+1
0 ). Let X ∈ S+(Λn+1

0 ), Y,W ∈ X⊥. By using (6.2),
we have

P∇XY = P∇X(PY +η(Y )ξ) = P∇X PY +P(X ·η(Y )ξ+η(Y )X).

Thus, using relations (6.3) and (6.4), we obtain

(∇X g)(R(Y,X)X ,W ) =
1

2(x0)2 [B(X ,PY )η(W )+B(X ,W )η(PY )] = 0

and

g((∇X R)(Y,X)X ,W ) = [X(
1

2(x0)2 )− 1
(x0)2 η(X)]g(PY,W ).

Therefore,

S∇R(X)Y = [
1
2

x0
η(X)

∂

∂x0 (
1

(x0)2 )− 1
(x0)2 η(X)]PY.

Since ∇R is algebraic, it is easy to see that g̃(S∇R(X)X ,W ) = (∇X R)(X ,X ,X ,W ) = 0, that
is S∇R(X)X = 0. Therefore the pseudo-Szabó operator associated to ∇R is given, for X ∈
S+(Λn+1

0 ), by

S∇R(X)Y =


−[ 2

(x0)2 η(X)]PY Y ∈ X⊥,

0 Y = X .

(6.7)

Also, we can check that for X ∈ S−(Λn+1
0 ),

S∇R(X)Y =


[ 2
(x0)2 η(X)]PY Y ∈ X⊥,

0 Y = X .

(6.8)
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The found expressions S∇R(X) verify, for any X ∈ S±(Λn+1
0 ), Y ∈ T Λ

n+1
0 = {X} ⊥ X⊥,

S∇R(X)X = 0 and

g̃(S∇R(X)Y,X) =± 2
(x0)2 η(X)g(PY,X) = 0, ie S∇R(X)Y ∈ X⊥.

Example 2.
Let M = R6 be a 6-dimensional real number space. We consider {xi}06i65 as Cartesian
coordinates on M and define with respect to the natural field of frames { ∂

∂xi } a metric g f on
M by

g f = dx0dx3 +dx1dx4 +dx2dx5 + f (x0,x1,x2)[(dx0)2 +(dx1)2 +(dx2)2

+dx0dx1 +dx0dx2 +dx1dx2]. (6.9)

where f = f (x0,x1,x2) is smooth real-valued function. It is easy to check that g f is a
semi-Riemannian metric of signature (3,3). Now let consider a hypersurface M of (M,g f )
defined by

M =
{
(x0, ...,x5) ∈ R6 : x5 = x4}

FACT 1. According to the proof of lemma 2.1 in ([8]), where authors considered the
local coordinates (x1, ...,xp,y1, ...,yp) and the local field of frames {∂x

1, ...,∂
x
p,∂

y
1, ...,∂

y
p}

and the symmetric application(tensor) ψi j(x). In this Example we take p = 3, the local
coordinates (x0, ...,x5), the local field of frames {∂x0 , ...,∂x5} and ψi j(x) = f (x0,x1,x2).
Thus, from relation

∇∂x
i
∂

x
i =

1
2 ∑

k
(ψi j/ j +ψi j/i−ψi j/k)∂

y
k

given in ([8]), we obtain that, non-vanishing components of Levi-Civita connection ∇ are
given by

∇∂ j ∂i =
1
2

5

∑
k=3

(∂ j f +∂i f −∂k−3 f )∂k, 0≤ i, j ≤ 2, (6.10)

where ∂i = ∂

∂xi . Thus, by straightforward calculation the tangent space T M is spanned by
{Ui}06i64, where U0 = ∂

∂x0 , U1 = ∂

∂x1 , U2 = ∂

∂x2 , U3 = ∂

∂x3 , U4 = ∂

∂x4 + ∂

∂x5 , and
the radical distribution T M⊥ on M of rank 1 is spanned by ξ = − ∂

∂x1 + ∂

∂x2 . It follows that
T M⊥ ⊂ T M. Then M is a 5-dimensional lightlike hypersurface of M. Also the transversal
vector bundle tr(T M) is spanned by N = − ∂

∂x4 . It follows that the corresponding screen
distribution S(T M) is spanned by {Wi}16i64, where W1 = ∂

∂x0 , W2 = ∂

∂x2 , W3 = ∂

∂x3 ,

W4 = ∂

∂x4 + ∂

∂x5 .

FACT 2. Let’s consider on M a local field of frames {E0 = ξ,Ei = Wi,N}1≤i≤4 such
that {E0 = ξ,Ei} is a local field of frames on M with respect to the decomposition (2.1). By
Gauss equation, we have ∇Eβ

Eα = Γ
γ

αβ
Eγ +BαβN, α,β,γ ∈ {0, ...,4},

where Bαβ = B(Eα,Eβ) and Γ
γ

αβ
are the coefficients of the induced connection ∇ with re-

spect to {Eα}, ie ∇Eβ
Eα = Γ

γ

αβ
Eγ. Then, by direct calculations, the only non-vanishing

components of induced connection on M are given by
∇E1E0 = ∇E0E1 = 1

2(∂2 f −∂1 f )(E3 +E4), ∇E2E0 = ∇E0E2 = 1
2(∂2 f −∂1 f )(E3 +E4),
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∇E1E1 = 1
2(∂0 f )E3 +(∂0 f − 1

2 ∂2 f )E4, ∇E2E1 = ∇E1E2 = 1
2(∂2 f )E3 + 1

2(∂0 f )E4,
∇E2E2 = (∂2 f − 1

2 ∂0 f )E3 + 1
2(∂2 f )E4.

Also the local bilinear form B is given by

B(E1,E1) = B(E1,E2) = B(E2,E2) = 1
2(∂1 f −∂2 f )

FACT 3. By direct calculations, the only non-vanishing components of the induced
Riemannian curvature tensor on M are given by :

R(E0,E1)E0 = α(E3 +E4), R(E0,E1)E1 = βE4, R(E0,E1)E2 =−βE3

R(E0,E2)E0 = α(E3 +E4), R(E0,E2)E1 = βE4, R(E0,E2)E2 =−βE3

R(E1,E2)E0 = β(E3 +E4), R(E1,E2)E1 = γE4, R(E1,E2)E2 =−γE3

Where α, β, and γ are defined by :

α =
1
2
(∂2

1 f +∂
2
2 f −2∂2∂1 f ), β =

1
2
(−∂1∂0 f +∂2∂0 f −∂

2
2 f +∂2∂1 f )

γ =
1
2

∂
2
0 f −∂2∂0 f +

1
2

∂
2
2 f (6.11)

FACT 4. Let X = ∑
4
i=0 X iEi the tangent vector field on M, by straightforward calcula-

tions we obtain :

(∇X R)(E0,X)X = [(X0X1 +X0X2)D(α)− (X1X2 +X2X2)D(β)]E3

+[(X0X1 +X0X2)D(α)− (X1X1 +X1X2)D(β)]E4

(∇X R)(E1,X)X = [−X0X0D(α)+2X0X2D(β)−X2X2D(γ)]E3

+[−X0X0D(α)+(X0X2−X0X1)D(β)+X1X2D(γ)]E4

(∇X R)(E2,X)X = [−X0X0D(α)+(X0X2−X0X1)D(β)+X1X2D(γ)]E3

[−X0X0D(α)−2X0X1D(β)−X1X1D(γ)]E4

where D is defined by D = ∑
2
i=0 X iEi = X1∂0−X0∂1 +(X0 +X2)∂2

FACT 5. On the local field of frames {E0,Ei}, the induced metric g = g|{E0,Ei} has
matrix form given by

g =


0 0 0 0 0
0 f f 1 0
0 f f 0 1
0 1 0 0 0
0 0 1 0 0

 . (6.12)

Thus, for any tangent vector field X = ∑
4
i=0 X iEi on M, the spaces S±(M) and X⊥ are given

by

S±(M) = {X ∈ Γ(T M), f (X1)2 + f (X2)2 + f X1X2 +2X1X3 +2X2X4 =±1} (6.13)
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X⊥ = {Y ∈ Γ(T M), f X1Y 1 + f X2Y 2 + f X1Y 2 + f X2Y 1 +X1Y 3 +X3Y 1

+X2Y 4 +X4Y 2 = 0}. (6.14)

(1) For the totally geodesic case ie ∂1 f = ∂2 f , the covariant derivative ∇R is algebraic. By
(6.11), we have α = β = 0. Also as per relation (5.8), for X ∈ S±(M) and W ∈ X⊥ we have

g̃(S∇R(X)Ei,W ) = g((∇X R)(Ei,X)X ,W ).

(2) For the non-totally geodesic case, let consider for example the case where

f = (x0)2(x1)2 +(x0)2(x2)2 +2(x0)2x1x2 + x1

By (6.11), we have α = β = 0. Using the local components of induced Riemann cur-
vature R given in Fact 3, we can easy check that the covariant derivative ∇R is alge-
braic. Also by calculation, using Fact 3 and the components of bilinear form B, we get
(∇X g)(R(Ei,X)X ,W ) = 0. Thus, for the both cases (1) and (2), we get as per Fact 4

(∇X R)(E1,X)X =−X2X2D(γ)E3 +X1X2D(γ)E4

(∇X R)(E2,X)X = X1X2D(γ)E3−X1X1D(γ)E4

Therefore, by using (5.8) and the above results, with respect to the local field of frame
{E0 = ξ,Ei = Wi}16i64 on M, the pseudo-Szabó operator associated to ∇R is given, for
X ∈ S±(M), by

S∇R(X) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −X2X2D(γ) X1X2D(γ) 0 0
0 X1X2D(γ) −X1X1D(γ) 0 0


By direct calculation, using found matrix of S∇R(X), we obtain, for any X ∈ S±(M), Y ∈
Γ(T M), S∇R(X)X = 0 and

g̃(S∇R(X)Y,X) = g(aE3 +bE4,
4

∑
i=0

X iEi) = aX1 +bX2 = 0, (6.15)

where a = D(γ)[−(X2)2Y 1 + X1X2Y 2] and b = D(γ)[X1X2Y 1− (X1)2Y 2]. Thus, we infer
that S∇R(X)Y ∈ X⊥.

7 Lightlike Szabó hypersurfaces

It is known by approach developed in ([4]) that, the extrinsic geometry of lightlike hyper-
surfaces depends on a choice of screen distribution, or equivalently, on the normalization.
Since the screen distribution is not uniquely determined, a well defined concept of Szabó
condition is not possible for an arbitrary lightlike hypersurface of a semi-Riemannian mani-
fold. Thus, one must look for a class of screen distributions for which the induced Riemann
curvature and associated pseudo-Szabó operator have the desired symmetries and proper-
ties. In short, we precise the following.
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Definition 7.1. A screen distribution S(T M) is said to be ∇-admissible if the covariant
derivative ∇R of its associated induced Riemann curvature R is an algebraic covariant
derivative curvature tensor.

Examples.
(1) It is obvious that on totally geodesic lightlike hypersurfaces, all screen distributions are
∇-admissible .

(2) Based on corollary 4.5, any locally screen conformal lightlike hypersurface of a semi-
Euclidean space Rn+2

q admits a ∇-admissible screen distribution. In particular, the lightlike
cone at the origin of Lorentzian space Rn+2

1 and the lightlike Monge hypersurfaces of Rn+2
q ,

all of them admit ∇-admissible screen distributions.

(3) Let (M,g) be a (proper) totally umbilical lightlike hypersurface of a semi-Euclidean
space Rn+2

q . By using the proposition 4.1, we can prove that any totally umbilical screen
distribution S(T M) is ∇-admissible.

According to above examples, one can see that, there exist classes of lightlike hypersur-
faces of semi-Riemannian manifolds which admit ∇-admissible screen distributions. Using
this information, we give the following definition.

Definition 7.2. A lightlike hypersurface (M,g) of a semi-Riemannian manifold (M,g) of
constant index is called timelike (resp. spacelike) Szabó at u ∈ M if for each ∇-admissible
screen distribution S(T M) and algebraic covariant derivative ∇R of associate induced Rie-
mann curvature R, the characteristic polynomial of S∇R(x) is independent of x ∈ S−u (M)
(resp. x ∈ S+

u (M)). Moreover, if this holds at each u ∈ M, then (M,g) is called pointwise
Szabó (or Szabó). If this holds independently of the point u ∈ M, (M,g) is called globally
Szabó.

Examples
(1) By referring to the example 2, one deducts that for a given ∇-admissible screen on the
lightlike hypersurface M, the pseudo-Szabó operator admits the characteristic polynomial
given by

fX(t) =−t5, ∀X ∈ S±(M) (7.1)

which is independent neither the points of M, neither admissible screen distributions, nor
X ∈ S±(M). Thus M is globally lightlike Szabó hypersurface of (R6,g f ).

(2) According to example 1, we see that, in adapted quasi-orthonormal basis {ξ,X ,X1, ...,Xn−1}
on the lightlike cone Λ

n+1
0 , the matrix of S∇R(X) has the form

S∇R(X) =


O2

... 0
· · · · · · · · ·

0
... − 2

(x0)2 η(X)In−1

 .

Then, the characteristic polynomial fX of S∇R(X) is given by

fX(t) = (−1)n+1t2[
2

(x0)2 η(X)+ t]n−1, ∀X ∈ S+(Λn+1
0 ), (7.2)
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this depend of unit vector field X , so the lightlike cone Λ
n+1
0 of Rn+2

1 is not lightlike Szabó
hypersurface.

By using the following lemma whose result is due in the Riemannian setting (q = 0) to
Szabó ([12]) and in the Lorentzian setting (q = 1) to Gilkey and Stavrov ([7]), we prove
that there is not non-vanishing algebraic covariant derivative ∇R of an induced Riemann
curvature tensor R on the totally geodesic lightlike Szabó hypersurface of signature (p,q,1)
with q = 0 or q = 1.

Lemma 7.3. Let ∇R be a Szabó tensor on a hypersurface (M,g,S(T M)) of signature
(p,q,1). If q = 0 or if q = 1, then for any u ∈ M, on screen vector space Su(T M), the
tensor ∇R vanishes identically.

Proof: If ∇R is a Szabó tensor associated to a ∇-admissible screen S(T M), for any
u ∈M, ∇R|Su(T M) is Szabó tensor on semi-Euclidean space Su(T M) of signature (p,q). For
case of q = 0 or q = 1, we have result in virtue of results given by Szabó ([12]) and Gilkey
and Stavrov ([7]). �
Note that the algebraic covariant derivative ∇R of the Riemann curvature R on a manifold
M is called Szabó tensor if the manifold M is pointwise Szabó.

Theorem 7.4. Let (M,g) be a totally geodesic lightlike hypersurface of a semi-Riemannian
manifold (M,g) of constant index q = 1 or 2. If (M,g) is pointwise Szabó, then the covariant
derivative ∇R of the induced Riemann curvature R, associated to any screen distribution
S(T M) vanishes identically on TuM, for any u ∈ M. Therefore the pseudo-Szabó operator
S∇R(·) vanishes on S±u (M), for all u ∈M.

Proof. Consider a screen distribution S(T M) with associate algebraic curvature R. The
manifold (M,g) being of constant index q = 1 or 2, for all u ∈M, TuM is degenerate vector
space of signature (0,+, ...,+) or (0,−,+, ...,+). Also

x ∈ S±u (M)⇐⇒ Px ∈ S±(S(TuM))

where S(TuM) is Euclidean or Lorentzian. By hypothesis, for all u ∈ M, the pseudo-Szabó
operator S∇R(·) has constant eigenvalues on S±u (M), therefore S∇R|S(TuM)

(·) has constant
eigenvalues on S±(S(TuM)). By the lemma 7.3, the tensor ∇R vanishes identically on the
screen space S(TuM), that is

(∇vR)(x,y,z,w) = 0, ∀x,y,z,w,v ∈ S(TuM).

By using algebraic tensors R and ∇R, the theorem 2.2 (see [4], p.88) and considering x =
η(x)ξ+Px with respect to the decomposition (2.1), for all x,y,z,w,v ∈ TuM, we have

(∇ξR)(x,y,z,w) = −(∇zR)(x,y,w,ξ)− (∇wR)(x,y,ξ,z)
= −R(x,y,w,∇zξ)−R(x,y,∇wξ,z)
= 0.
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Thus,

(∇vR)(x,y,z,w) = η(v)(∇ξR)(x,y,z,w)+(∇PvR)(x,y,z,w)
= η(x)(∇PvR)(ξ,Py,Pz,Pw)+η(y)(∇PvR)(Px,ξ,Pz,Pw)

η(z)(∇PvR)(Px,Py,ξ,Pw)+η(w)(∇PvR)(Px,Py,Pz,ξ)
= −η(x)R(∇Pvξ,Py,Pz,Pw)−η(y)R(Px,∇Pvξ,Pz,Pw)

−η(z)R(Px,Py,∇Pvξ,Pw)−η(w)R(Px,Py,Pz,∇Pvξ)
= 0.

where P is the projection of TuM on S(TuM). It follow that the tensor ∇R vanishes identi-
cally on TuM. �

Refering to the theorem 7.4 we see that for the signature (p,q,1) with q = 0 or q = 1,
none of totally geodesic lightlike Szabó hypersurface admits non-vanishing pseudo-Szabó
operator. This can fail in the higher signature setting. The proof of the following is the
example 2 of section 6, note that the domain S±u (M) of S∇R(·) can be extended to TuM,
since S∇R(cx) = c3S∇R(x). This result extend the theorem 1.7 of ([7]).

Theorem 7.5. Let (M,g) be a lightlike Szabó hypersurface of signature (p,q,1) with q >
2. There exists an algebraic covariant derivative tensor ∇R associated to a ∇-admissible
screen distribution S(T M) so that S2

∇R(x) = 0, for any x ∈ TuM and so that S∇R(·) does not
vanish identically on TuM.

In the following example we consider lightlike hypersurfaces of 3-dimensional semi-
Riemannian manifolds of signatures {−,+,+} and {−,−,+}. We obtain that in totally
geodesic case, the lightlike surfaces, spaces of signature (1,0,1) or (0,1,1) are Szabó,
its pseudo-Szabó operators S∇R(·) vanish identically on S±(M) and its Szabó tensors ∇R
vanish identically on T M.
Example (Lightlike surfaces)
Consider a lightlike surface (M,g,S(T M)) of a 3-dimensional semi-Riemannian manifold
(M,g). Let ∇ and ∇ be the Levi-civita connection on M and the induced connection on
M, respectively. Consider on M a local frame {E0 = ξ,E1,N} such that {E0 = ξ,E1} be
a frame on M with respect to the decomposition (2.1). Let ∇R, the covariant derivative of
the induced Riemann curvature R associated to the ∇ admissible screen S(T M). By Gauss
equation, we have

∇Eβ
Eα = Γ

γ

αβ
Eγ +BαβN, α,β,γ ∈ {0,1}

where Bαβ = B(Eα,Eβ) and Γ
γ

αβ
are the coefficients of the induced connection ∇ with re-

spect to {Eα}, ie ∇Eβ
Eα = Γ

γ

αβ
Eγ. Note that

B00 = B01 = B10 = 0. Then by straightforward calculations, we obtain :

R(E0,E1)E0 = ∇E0∇E1E0−∇E1∇E0E0−∇[E0,E1]E0

= α
0E0 +α

1E1 (7.3)

where

α
0 = E0(Γ0

01)−E1(Γ0
00)+Γ

0
00Γ

0
01 +Γ

0
01Γ

1
01 +Γ

0
10Γ

1
01−Γ

0
00Γ

0
10−Γ

1
00Γ

0
11−Γ

0
01Γ

1
10,
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α
1 = E0(Γ1

01)−E1(Γ1
00)+2Γ

1
00Γ

0
01 +Γ

1
01Γ

1
01−Γ

0
00Γ

1
01−Γ

1
00Γ

0
10−Γ

1
00Γ

1
11.

Similarly, we have
R(E0,E1)E1 = β

0E0 +β
1E1 (7.4)

where

β
0 = E0(Γ0

11)−E1(Γ0
10)+Γ

0
00Γ

0
11 +Γ

1
01Γ

0
11 +Γ

0
10Γ

1
11−2Γ

1
10Γ

0
11−Γ

0
10Γ

0
10,

β
1 = E0(Γ1

11)−E1(Γ1
10)+Γ

1
00Γ

0
11 +Γ

0
01Γ

1
10 +Γ

1
01Γ

1
11−Γ

1
01Γ

0
10−Γ

0
10Γ

1
10−Γ

1
10Γ

1
11.

Now by using (7.3) and (7.4), for any X = X0E0 +X1E1 ∈ T M, we have

R(E0,X)X = X1X0R(E0,E1)E0 +(X1)2R(E0,E1)E1

= (α0X0X1 +β
0(X1)2)E0 +(α1X0X1 +β

1(X1)2)E1. (7.5)

Similarly, we have

R(E1,X)X =−(α0(X0)2 +β
0X0X1)E0− (α1(X0)2 +β

1X0X1)E1. (7.6)

The spaces S±(M) and X⊥ are given by

S±(M) = {X = X0E0 +X1E1, (X1)2g11 =±1}

and
X⊥ = {Y = Y 0E0 +Y 1E1, X1Y 1 = 0}

Thus, since g 6= 0, for any X ∈ S±(M), we have X1 6= 0 and if W = W 0E0 +W 1E1 ∈ X⊥,
then W 1 = 0 that is W = W 0E0. Using (5.8) leads to

g̃(S∇R(X)E0,W ) = B(X ,R(E0,X)X)η(W )+B(X ,W )η(R(E0,X)X)
= B11(α1X0(X1)2 +β

1(X1)3)g̃(E0,W ).

Hence,
S∇R(X)E0 = B11(α1X0(X1)2 +β

1(X1)3)E0 (7.7)

Similarly, we can check that

S∇R(X)E1 =−B11(α1(X0)2X1 +β
1X0(X1)2)E0. (7.8)

Therefore the pseudo-Szabó operator associated to ∇R is given by

S∇R(X) =

 B11(α1X0(X1)2 +β1(X1)3) −B11(α1(X0)2X1 +β1X0(X1)2)

0 0

 (7.9)

We can check that S∇R(X)X = 0 and for any Y ∈ Γ(T M), g̃(S∇R(X)Y,X) = 0. For totally
geodesic case, that is B11 = 0, we obtain, for any X ∈ S±(M),

S∇R(X) = 0. (7.10)
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Also, for this case, since R and ∇R are algebraic tensors, by direct calculation, we get, for
any V,X ,Y,Z,W ∈ {E0,E1},

(∇V R)(X ,Y,Z,W ) = 0,

that is the Szabó tensor of M vanish identically on Γ(T M).
It is known that lightlike submanifold whose screen distribution is integrable have in-

teresting properties in degenerate geometry. From theorem 2.3 (see [4], p.89), the screen
distribution is integrable if and only if its second fundamental form C is symmetric. This is
verified for lightlike hypersurfaces with totally umbilical or totally geodesic screen distri-
bution. For this later case, the following result hold.

Theorem 7.6. Let (M,g) lightlike hypersurface of a semi-Riemannian manifold (M,g), to-
tally geodesic on a neighbourhood U ⊂M, of a u ∈M. If all ∇-admissible screen distribu-
tions are totally geodesic on U, then, (M,g) is Szabó at u if and only if the semi-Riemannian
screen leaves is Szabó at this point.

Proof. Consider a generic totally geodesic ∇-admissible screen distribution S(T M) on
U ∈ M. Let ∇R the algebraic covariant derivative of associate induced Riemann curvature

R. Let R′ and
∗
R denote the restriction of R on S(T M) and the Riemann curvature tensor

with respect to the Levi-Civita connection
∗
∇ on the screen distribution, respectively. Let

x,y,z ∈ S(TuM), by straightforward calculation using equations (2.6), we have

R′(x,y)z = R(x,y)z =
∗
R (x,y)z+[C(x,z)

∗
Aξ y−C(y,z)

∗
Aξ x]+ [∇xC(y,z)−∇yC(x,z)

+ τ(y)C(x,z)− τ(x)C(y,z)]ξ.

Thus, we get R′(x,y)z =
∗
R (x,y)z from C = 0. Also, x ∈ S+

u (M) if and only if
∗
x∈ S+

u (M∗),
with

∗
x= Px and M∗ the leaf of S(T M) through u. Moreover for any x ∈ TuM, x⊥ = (Px)⊥.

Let η(x)ξ denote the projection of x on TuM⊥. By hypothesis and theorem 2.2 (see [4],
p.88), we infer that the induced curvature tensors R is algebraic on T M|U and ∇ξR = 0. For
any y,w ∈ x⊥, we have

g̃(S∇R(Px)y,w) = (∇xR)(y,x−η(x)ξ,x−η(x)ξ,w)
= (∇xR)(y,x,x,w)− (∇xR)(y,η(x)ξ,x,w)

−(∇xR)(y,x,η(x)ξ,w)− (∇xR)(y,η(x)ξ,η(x)ξ,w)
= g̃(S∇R(x)y,w)+η(x)R(y,∇xξ,x,w)+η(x)R(y,x,∇xξ,w)
= g̃(S∇R(x)y,w).

Thus,
S∇R(

∗
x) = S∇R(x).

We infer that S
∇
∗
R
(
∗
x) is the restriction of S∇R(x) to

∗
x
⊥S(TuM)

= {y ∈ S(TuM) : g(
∗
x,y) = 0}. On

the other hand, observe that

x⊥ =
∗
x
⊥S(TuM) ⊥⊕ TuM⊥,

and we can check that S∇R(x)ξ = 0. Then, let h∗
x
(t) and fx(t) denote the characteristic

polynomials of S
∇
∗
R
(
∗
x) (

∗
x∈ S+

u (M∗)) and S∇R(x) (x ∈ S+
u (M)), respectively. We have finally

fx(t) = th∗
x
(t)
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which shows that the characteristic polynomial of S
∇
∗
R
(
∗
x) is independent of (

∗
x∈ S+

u (M∗)) if
and only if the characteristic polynomial of S∇R(x) is independent of (x ∈ S+

u (M)). Hence,
(M,g) is spacelike Szabó at a point u if and only if M∗ is spacelike Szabó at u. Similar is
the case for (x ∈ S−u (M)) and (

∗
x∈ S−u (M∗)). �

8 Symmetry properties on lightlike Szabó hypersurfaces

In this section, we give some characterizations of locally symmetric lightlike hypersurfaces
and semi-symmetric lightlike hypersurfaces under Szabó condition.
A lightlike hypersurface (M,g,S(T M)) of a semi Riemannian manifold (M,g) is said lo-
cally symmetric if and only if for any X ,Y,Z,W,V ∈ Γ(T M) and N ∈ Γ(tr(T M)) the fol-
lowing hold ([9])

g((∇V R)(X ,Y )Z,PW ) = 0 and g((∇V R)(X ,Y )Z,N) = 0. (8.1)

That is (∇V R)(X ,Y )Z = 0.
Using the lemma 3.2 of ([9]), for any V,X ,Y,Z ∈Γ(T M), W ∈Γ(S(T M)) and N ∈Γ(tr(T M)),
we have

g((∇V R)(X ,Y )Z,W ) = g((∇V R)(X ,Y )Z,W )+(∇V B)(X ,Z)C(Y,W )
+B(X ,Z)g((∇V AN)Y,W )− (∇V B)(Y,Z)C(X ,W )

−B(Y,Z)g((∇V AN)X ,W )−B(Y,Z)τ(X)C(V,W )+(∇Y B)(X ,Z)C(V,W )
−(∇X B)(Y,Z)C(V,W )+B(X ,Z)τ(Y )C(V,W )−B(V,X)R(N,Y,Z,W )

−B(V,Y )R(X ,N,Z,W )−B(V,Z)R(X ,Y,N,W ) (8.2)

and,

g((∇V R)(X ,Y )Z,N) = g((∇V R)(X ,Y )Z,N)+B(X ,Z)g((∇V (ANY ),N)
−B(Y,Z)g((∇V (ANX),N)−B(V,X)R(N,Y,Z,N)−B(V,Y )R(X ,N,Z,N) (8.3)

Referring to the lemma 7.3, it is easy to see that in the non-degenerate case, an hyper-
surface of a Lorentzian manifold is locally symmetric if and only if it is Szabó. Also for the
higher signature setting, if a non-degenerate hypersurface of a semi-Riemannian manifold
is locally symmetric then it is Szabó. Now, for the degenerate case we have the following
propositions.

Proposition 8.1. Let (M,g) be a locally symmetric semi-Riemannian manifold and (M,g)
be a totally geodesic lightlike hypersurface of M. Then (M,g,S(T M)) with a given screen
distribution S(T M) is locally symmetric. Moreover (M,g) is lightlike Szabó hypersurface.

Proof. Since (∇V R)(X ,Y )Z = 0, ∀X ,Y,Z,V ∈ Γ(T M), the relations (8.1) are verified
from (8.2) and (8.3). Since (M,g) is totally geodesic, using the relation (4.3), we see that
the tensor ∇R vanish identically on M. This complete the proof. �

Corollary 8.2. Let (M,g) be a Szabó Lorentzian manifold and (M,g) be a totally geodesic
lightlike hypersurface of M. Then (M,g,S(T M)) with a given screen distribution S(T M) is
locally symmetric. Moreover (M,g) is lightlike Szabó hypersurface.
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By using theorem 3.1 in ([9]) we have the following.

Proposition 8.3. Let (M,g) be a locally symmetric semi-Riemannian manifold and (M,g)
be a lightlike hypersurface of M such that ANξ is not a null vector field. If (M,g,S(T M))
with a given screen distribution S(T M) is locally symmetric then (M,g) is a lightlike Szabó
hypersurface.

Corollary 8.4. Let (M,g) be a Szabó Lorentzian manifold and (M,g) be a lightlike hyper-
surface of M such that ANξ is not a null vector field. If (M,g,S(T M)) with a given screen
distribution S(T M) is locally symmetric then (M,g) is a lightlike Szabó hypersurface.

In the following result, we obtain that under Szabó condition, the locally symmet-
ric lightlike hypersurfaces of semi-Riemannian manifolds of index q = 1 or 2 are totally
geodesic.

Theorem 8.5. Let (M,g,S(T M)) be a lightlike Szabó hypersurface of a semi-Riemannian
manifold (M,g) of index 1 or 2, such that ANξ is a non-null vector field and (∇V R)(X ,Y )Z ∈
Γ(S(T M)), for any V,X ,Y,Z ∈ Γ(T M). Then (M,g,S(T M)) is locally symmetric if and only
if it is totally geodesic.

Proof. Assume that (M,g) is totally geodesic. In virtue of theorem 7.4 and using
relation (4.3), we obtain g(∇V R(X ,Y )Z,PW ) = 0,∀V,X ,Y,Z,W ∈ Γ(T M). By hypothe-
sis and using relation (8.3), we obtain g(∇V R(X ,Y )Z,N) = 0,∀V,X ,Y,Z ∈ Γ(T M). Thus
(M,g,S(T M)) is locally symmetric. Conversely suppose that (M,g,S(T M)) is locally sym-
metric. By hypothesis and taking V = Y = ξ into (8.3), we obtain

B(X ,Z)g(∇ξ(ANξ),N) = 0, ∀X ,Z ∈ Γ(T M),

that is B(X ,Z)g(ANξ,ANξ) = 0. Since ANξ is non-null, we infer that B = 0. �

In what follows, we consider curvature operator on a smooth manifold defined by

R(X ,Y ) = ∇X ∇Y −∇Y ∇X −∇[X ,Y ]. (8.4)

A lightlike hypersurface (M,g,S(T M)) of a semi-Riemannian manifold (M,g) is said to be
semi-symmetric if the following condition is stisfied (see [11])

(R(V1,V2) ·R)(X ,Y,Z,W ) = 0 ∀V1,V2,X ,Y,Z,W ∈ Γ(T M) (8.5)

where R is the induced Riemann curvature on M. This is equivalent to

−R(R(V1,V2)X ,Y,Z,W )− ...−R(X ,Y,Z,R(V1,V2)W ) = 0.

In general the condition (8.5) is not equivalent to (R(V1,V2) ·R)(X ,Y )Z = 0 as in the non-
degenerate setting. Indeed, by direct calculation we have for any V1,V2,X ,Y,Z,W ∈Γ(T M),

(R(V1,V2) ·R)(X ,Y,Z,W ) = g((R(V1,V2) ·R)(X ,Y )Z,W )+(R(V1,V2).g)(R(X ,Y )Z,W ).(8.6)

It is straightforward to see that, any totally geodesic lightlike hypersurface M of a semi-
symmetric pseudo-Riemannian manifold M is semi-symmetric. This is not true in general
in the non semi-symmetric ambient space M. By using Szabó condition, the following
result hold.
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Theorem 8.6. Let (M,g) be a lightlike Szabó hypersurface of a semi-Riemannian manifold
(M,g) of index q = 1 or 2. If M is totally geodesic then (M,g,S(T M)) with a given screen
distribution S(T M) is semi-symmetric.

Proof. Assume that (M,g,S(T M)) is totally geodesic, by assumption and using Theo-
rem 7.4, we get

(∇V R)(X ,Y,Z,W ) = 0, ∀V,X ,Y,Z,W ∈ Γ(T M).

Thus, using relation (8.4), we obtain

(R(V1,V2).R)(X ,Y,Z,W ) = 0, ∀V1,V2,X ,Y,Z,W ∈ Γ(T M),

that is (M,g,S(T M)) is semi-symmetric. �
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nilpotent on null vectors, Bull. London Math. Soc. 34 (2002), 650-658.

[8] P. Gilkey, R. Ivanova,and T. Zhang, Szabó Osserman IP Pseudo-Riemannian mani-
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