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Abstract

Transversal generalized complex structures provide a framework unifying both
transversely holomorphic foliations and generalized complex geometry. In this paper,
we give characterizations of transversal generalized complex structures. Moreover, a
natural extension of the basic Dolbeault cohomology is obtained.
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1 Introduction

The notion of a generalized complex structure was introduced by Hitchin [H03]. It en-
compasses both complex structures and symplectic structures [G04]. On the other hand,
complex structures are closely related to transversely holomorphic foliations. Transversely
holomorphic foliations have attracted considerable interest since the late seventies. In fact,
Girbau, Haefliger and Sundararaman [GHS83] improved the deformation result of trans-
versely holomorphic foliations stated by Duchamp and Kalka [DK79]. The existence of
a versal space for deformations of transversely holomorphic foliations with a fixed un-
derlying smooth foliation was proved by El Kacimi and Nicolau [ElKB89] in two cases,
namely, the case of Hermitian foliations and that of a transversely holomorphic foliation of
complex codimension one which admits a transverse projectable connection. Before that,
transversely holomorphic foliations were studied by Gòmez-Mont in [G-M80]. In [G92],
Girbau proves the existence of a versal space for deformations of transversely holomorphic
foliations with a fixed underlying smooth foliation and a connection invariant along the
leaves. Furthermore, the Bott class for transversely holomorphic foliation was studied in
[A03, A00].
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In this paper, we study the concept of a transversal generalized complex structures
which encompasses generalized complex structures, contact structures as well as trans-
versely holomorphic foliations. Recall that a transversal generalized complex structure on
a smooth (2n + d)-dimensional manifold M is given by a smooth foliation F of codimen-
sion 2n which is locally defined by submersions into a model manifold N, endowed with
a generalized complex structure, such that the transitions maps preserve the generalized
complex structure on the overlap charts [V07]. Our main purpose is to give characteriza-
tion theorems for transversely generalized complex structures. The deformation theory for
such geometric structures will be studied elsewhere.

The paper is organized as follows. In Sections 2, we recall the basic concepts in gener-
alized complex geometry. In Section 3, we recall known fact about courant algebroids and
their automorphisms. Section 4 is devoted to characterizations of transversal generalized
complex structures. We provide various examples of transversal generalized complex man-
ifolds in Section 5. Finally, Section 6 is devoted to the decomposition of the space of basic
induced by a transversal generalized complex structure.

2 Generalized complex structures

Let N be a smooth finite-dimensional manifold. The space of local sections of the vector
bundle T N⊕T ∗N → N is endowed with two natural R-bilinear operations:

• the symmetric bilinear form 〈·, ·〉 defined by:

〈X +α,Y +β〉=
1
2

(α(Y )+β(X)) , (2.1)

• and the Courant bracket given by:

[[X +α,Y +β]] = [X ,Y ]+LX β−LY α− 1
2

d(ιX β− ιY α), (2.2)

where X +α and Y +β are smooth sections of T N⊕T ∗N.

An almost generalized complex structure on the smooth manifold N is a bundle auto-
morphism I : T N⊕T ∗N → T N⊕T ∗N such that I 2 =−Id and I ∗+I = 0. It can be written
in the matrix form:

I =
(

J π]

θ[ −J∗

)
(2.3)

where J : T N → T N is a (1,1)-tensor field, π a bi-vector field on N, θ a 2-form on N and
one has:

ιπ]αβ = π(α,β) and ιY (θ[(X)) = θ(X ,Y ),

for all 1-forms α, β and for all vector fields X , Y . For simplicity, we will use the notation
I = (J,π,θ) instead of the matrix notation. The fact that I 2 = −Id is equivalent to the
following identities:

J2 +π
]
θ

[ =−Id, Jπ
] = π

]J∗, θ
[J = J∗θ[. (2.4)
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Definition 2.1. An almost generalized complex structure I is integrable if it satisfies the
torsion-free condition NI = 0, where

NI (e1,e2) = [[I e1,I e2]]− [[e1,e2]]− I ([[I e1,e2]]+ [[e1,I e2]]), (2.5)

for all e1,e2 sections of the vector bundle T N⊕T ∗N → N. In this case, I is simply called
a generalized complex structure.

Example 2.2. (Complex structures) If J is a complex structure on M then the following
tensor I defines a generalized complex structure:

I =
(

J 0
0 −J∗

)
,

Example 2.3. (Symplectic structures) Let ω be a symplectic form on M. Set

I =
(

0 π]

ω[ 0

)
,

where π =−ω−1. Then I is a generalized complex structure.

Notice that both the Courant bracket and the symmetric R-bilinear operation 〈·, ·〉 can
be extended to the complexified bundle (T N⊕T ∗N)⊗C by linearity. By a Dirac structure
of (T N ⊕T ∗N)⊗C, we mean a vector sub-bundle L of (T N ⊕T ∗N)⊗C having complex
rank d = dimN and such that, for all e1,e2 ∈ Γ(L),

〈e1,e2〉= 0 and [[e1, e2]] ∈ Γ(L).

Proposition 2.4. [G04] A generalized complex structure I on N is equivalent to a Dirac
structure L of (T N⊕T ∗N)⊗C such that

L∩L = {0}.

Here, L is exactly the
√
−1-eigenbundle of the tensor I . The proof of this theorem can be

found in [G04].

3 Courant algebroids and automorphisms

Definition 3.1. [LWX97, U02] A Courant algebroid over a manifold N consists of a vector
bundle E → N equipped with an R-bilinear bracket [[·, ·]] on Γ(E), a non-degenerate sym-
metric bilinear form 〈·, ·〉 on E and a bundle morphism ρ : E → T N, called the anchor map
that satisfy:

(i) [[e1, [[e2,e3]]]] = [[[[e1,e2]],e3]]+ [[e2, [[e1,e3]]]]

(ii) [[e1, f e2]] = f [[e1,e2]]+ (ρ(e1) f )e2

(iii) ρ(e1)〈e2,e3〉= 〈[[e1,e2]],e3〉+ 〈e2, [[e1,e3]]〉
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(iv) [[e,e]] = D〈e,e〉

for any e1,e2,e3 ∈ Γ(E) and f ∈C∞(M), where D : C∞(M)→ Γ(E) is defined by

D f =
1
2

ρ
∗(d f ).

We identify E with its dual E∗ using the non-degenerate symmetric bilinear form 〈·, ·〉.

The basic example of a Courant algebroid is E(M) = T M⊕T ∗M whose anchor map is
the canonical projection ρ : E(M)→ T M. This model is an exact Courant algebroid since
the following sequence is exact

0 → T ∗M
ρ∗−→ E

ρ−→ T M −→ 0.

Let B be a 2-form on M. Recall that a B-field transformation of the Courant algebroid E(M)
is a bundle automorphism denoted by AB and defined as follows:

AB(X +α) = X +(α+ ιX B),

for all X ∈ X and α ∈ Ω1(M). Furthermore, given any diffeomorphism of ψ : M → M, one
can define an automorphism of E(M) by setting:

ψ∗⊕ (ψ−1)∗ : (X ,Y ) 7→ (ψ∗X , (ψ−1)∗α).

Given a bundle map Φ over the diffeomorphism ψ represented by the diagram:

T M⊕T ∗M Φ−→ T M⊕T ∗M
↓ ↓
M

ψ−→ M

we say that Φ is an automorphism of the Courant algebroid E(M) over ψ : M → M if there
exists a 2-form B on M such that

Φ = (ψ∗⊕ (ψ−1)∗)◦AB.

Define
Φ∗I = Φ

−1 ◦ I ◦Φ.

The group of automorphisms of E(M) acts naturally on the space of generalized complex
structures on M. Two generalized complex structures I and I ′ are said to be isomorphic is
there exists an automorphism Φ such that I ′ = Φ∗I .

4 Transversal generalized complex structures

Let M be a smooth (2n+d)-dimensional manifold equipped with a foliation F of codimen-
sion 2n which is defined by a foliated cocycle (Ui, fi,N,γi j), where (Ui)i∈I is an open cover
of M, fi : Ui → N submersions, and γi j : f j(Ui ∩U j) → fi(Ui ∩U j) local diffeomorphisms
such that fi = γi j ◦ f j on Ui∩U j.
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Definition 4.1. [V07] A transversal generalized complex structure on the foliated manifold
(M,F ) is given by a generalized complex structure on (N,IN) which is preserved by the
γi j, in the sense that (

(γi j)∗⊕ (γ−1)i j
)

IN = IN .

As pointed out by I. Vaisman, one may consider a more general definition of a transver-
sal generalized complex structure, where the model manifold N is endowed with a closed
2-form B and γi j together with the B-field transformation preserves the structure, that is the
following maps Φi j preserve the generalized complex structure IN :

Φi j =
(
(γi j)∗⊕ (γ−1)i j

)
◦AB.

Then the collection ( f ∗i B) would give a Cech 1-cocycle with values in the space closed
2-forms on N.

Let E ′ → N be a smooth vector bundle and f : M → N a submersion. Recall that the
pull-back of E ′ at x is defined as follows:

f ∗(E ′)x = {(X + f ∗α)x | ( f∗X +α) f (x) ∈ E ′
f (x)}.

It determines a well-defined smooth vector bundle over M, denoted by f ∗(E ′). Similarly,
one can define the pull-back of complex vector bundles.

Definition 4.2. Under the above notations, a vector bundle E → (M,F ) is said to be an
F -foliated bundle if the restriction of E to any simple open subset Ui of M is a pull-back of
a bundle on N, i.e. E|Ui

= f ∗i (GUi
) and γ∗i j(GUi

) = GUj
.

A subbundle E of E(M) (resp. E(M)⊗C) is integrable if its space of sections is closed
under the Courant bracket.

We have the following characterization of transversal generalized structures:

Theorem 4.3. A transversal generalized complex structure on a foliated manifold (M,F )
is determined by a maximal isotropic F -foliated subbundle E of (T M⊕T ∗M)⊗C → M
which satisfies the following properties:

(a) E ∩E = (T F ×{0})⊗C;

(b) E is integrable,

where T F is the tangent bundle of the foliation. In other words, a transversal generalized
complex structure on (M,F ) is given by an F -foliated Dirac structure E ⊂ (T M⊕T ∗M)⊗
C that satisfies (a). Conversely, any F -foliated Dirac structure E that satisfies the above
condition (a) gives rise to a transversal generalized complex structure.

Proof: Consider a transversal generalized complex structure on the foliated manifold (M,F ).
Let (Ui, fi,N,IN ,γi j) be a foliated cocycle defining F and satisfying the conditions of Def-
inition 4.2. Denote by GN the

√
−1-eigenbundle of the associated generalized complex

structure IN . On each Ui, one gets a foliated isotropic subbundle

Ei = {(X , f ∗i α) | (( fi)∗X ,α) ∈ GN|Ui
}.
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Gluing together the Ei’s, we obtain an F foliated vector bundle which is maximal isotropic,
integrable, and satisfies condition (a).

Conversely, given an F -foliated subbundle E of E(M)⊗C. Let (Ui, fi,N,γi j), be a fo-
liated cocycle defining F . Since E is foliated, we can assume that there are vector bundles
Gi → N, for which E|Ui = f ∗i (Gi). The fact that every Gi defines a generalized complex
structure Ji on N follows from the properties of E. Moreover, on each non-empty intersec-
tion Ui ∩U j, one has γ∗i j(Gi) = G j. Hence, we can put together the Gi’s in order to get a
well-defined generalized complex structure GN on N which is, by construction, preserved
by the γi j. There follows the result.

Recall that the real index r of a maximal isotropic subspace L is the dimension of the
intersection of L with its complex conjugate. A transversal generalized complex structure
is a maximal isotropic subbundle of (T M⊕T ∗M)⊗C whose real index r is not necessarily
zero, unlike the case of generalized complex structures. We have the following proposition:

Proposition 4.4. There is a one-to-one correspondence between transversal generalized
complex structure on (M,F ) and generalized complex structures on the normal bundle
ν(F ) = T M/T F which are invariant along the leaves of F .

Proof: At any point x ∈ M, there is a foliated chart (U,x1, . . . ,xd ,y1, . . . ,y2n) such that the
leaf through x is defined by

y1 = 0, . . . , y2n = 0.

The transversal generalized complex structure on M determines a (1,1)-tensor J, a bivector
field π and a basic 2-form θ defined on the transversal manifold given by x1 = 0, . . . ,xd = 0
that satisfy conditions 2.4. Using (J,π,θ), one can construct a generalized complex struc-
ture on the normal bundle ν which is invariant along the leaves of U . Starting from a foliated
atlas, one can patch together the tensors to get a well-defined generalized complex structure
on ν which is invariant along the leaves of F .

Conversely, any generalized complex structure on ν induces a transversal generalized
complex structure on a foliated chart (U,x1, . . . ,xd ,y1, . . . ,y2n). Since the generalized com-
plex structure is constant along the leaves, there is a well-defined transversal generalized
complex structure on M.

5 Examples

Example 1: Generalized complex structures.
When the leaves of F are just points, one recovers the notion of a generalized complex

structure on M from Theorem 4.3 since, in this case, E ∩E = {0}. Compare also the defi-
nition of a generalized complex structure on M with Proposition 4.4.
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Example 2: Trivial bundles.
Given a generalized complex manifold N and a smooth manifold M, the product mani-

fold M = B×N has a canonical transversal generalized structure. The leaves of the associ-
ated foliations are the sets B×{x}.

Example 3: Suspensions.
Let B be a compact manifold, π1(B) its fundamental group and B̃ its universal covering

space. Consider a compact generalized complex manifold (N,JN ) and the group Diff(N,JN )
of diffeomorphisms of N which preserve JN . Given a group homomorphism

ρ : π1(B)→ Diff(N,JN ),

one gets an action of π1(B) on B̃×N given by

γ · (b̃,x) = (γ · b̃, ρ(γ) · x).

The quotient space Q has a transversal generalized complex structure induced by that of the
product B̃×N. Precisely, the leaves of Q are exactly the images under the projection map
p of B̃×{x}, x ∈ N. They are transversal to the fibers of the fibration Q → B, which can be
identified with N.

Example 4: Coisotropic A-branes.
Coisotropic A-branes were introduced and studied by Kapustin and Orlov (see [KO03]).

Recall that a coisotropic A-brane is a triple (N,L,∇), where N is a submanifold of some
symplectic manifold (M,ω), L a line bundle over N, and ∇ a unitary connection on L such
that

• N is a coisotropic submanifold of M, i.e. ω|N has a constant rank and

OrthωT N ⊂ T N,

where OrthωT N is given by:

OrthωT N = {v ∈ T M | ω(u,v) = 0, ∀u ∈ T N}.

• The curvature 2-form R of ∇ annihilates the tangent bundle T F to the foliation on N
determined by ker(ω).

• The basic skew-symmetric 2-form σ induced by ω|N and the 2-form R determine
a (1,1)-tensor J = σ−1R which is a complex structure on the normal bundle N =
T N/T F .

Therefore, every coisotropic A-brane naturally carries a transversely holomorphic foliation.
Moreover, R + iσ defines a holomorphic symplectic form on the normal bundle. Clearly,
transversely holomorphic foliations are special cases of transverse generalized complex
structures where the transverse model N is a complex manifold.
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Example 5: Generalized contact structures.
Generalized contact structures are odd-dimensional analogues of generalized complex

structures. They include contact structure and normal almost contact structures. They were
studied in [IW, PW]. We refer to these works for more details. A generalized contact struc-
ture on a smooth (2n + 1)-dimensional manifold M is called regular if the foliation on M
given by the maximum integral curves of its Reeb vector field is a regular foliation. Any
regular generalized contact manifold is a circle bundle over a generalized complex mani-
fold. In particular, any regular generalized contact structure defines a transverse generalized
complex structure.

6 Basic cohomology

Definition 6.1. A function f on a foliated manifold (M,F ) is said to be basic if f is constant
along the leaves of F . Moreover, a k-form ω is basic if ιX ω = 0 and LX ω = 0 for all vector
field X tangent to F . A vector field X is projectable if [X ,Y ] is tangent to F for any vector
field Y tangent to F . We denote by Xb(M) the space of projectable vector fields and Ω1

b the
space of basic 1-forms on M. We say that a smooth section e = X +α of E(M)⊗C→ M is
basic if α is basic and X projectable.

We denote A0
b and A1

b the space of basic functions on M and basic sections of E(M)⊗C,
respectively. In fact, the space A1

b is a A0
b -module. Observe that Properties (i) and (iii) in

Definition 3.1 imply

[A1
b ,A1

b ]⊂ A1
b .

The basic Clifford algebra acts naturally on basic k-differential forms as follows:

(X +α) ·β = ιX β+α∧β,

for any basic section X +α ∈ A1(M) and for any β ∈ Ω1
b(M).

Notice that the notion of a transversal generalized complex structure can be formulated
using pure spinors. Recall that given a nonzero spinor ρ ∈ Ω∗(M), its nullspace is

Eρ = {(X +α) ∈ E(M)⊗C | (X +α) ·ρ = 0}.

The nullspace Eρ is always isotropic since

0 = (X +α) · ((X +α) ·ρ) = 〈X +α, X +α〉ρ,

for every X +α ∈ Γ(Eρ).

Definition 6.2. A spinor ρ is called a pure spinor if its nullspace Eρ is maximal isotropic.

We know that there is a one-to-one correspondence between pure spinors and maximal
isotropic subbundles of (T M ⊕ T ∗M)⊗C. Therefore, a transversal generalized complex
structure on (M,F ) is given by a basic pure spinor ρ for which Eρ∩Eρ can be completely
determined by the tangent bundle T F of the foliation F . Consider the morphism

φ : Λ
n+d−kE → Λ

∗T ∗M⊗C
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defined by
φ(s) = s ·ρ, ∀s ∈ Λ

n+d−kE, ∀k =−n, . . . ,n+d.

where m = 2n+d is the dimension of M. Set

Uk = φ(Λn+d−kE),

and denote by Γ(Uk
b ) the subspace of basic forms of Γ(Uk). One gets the following:

Remark 6.3. A transversal generalized complex structure I on (M,F ) gives rise to a Z-
grading of the basic differential forms:

Ω
•
b(M) = Γ(U−n

b )⊕·· ·⊕Γ(Un+d
b ).

Theorem 6.4. Given a transversely generalized complex structure on (M,F ), the basic de
Rham operator db maps Γ(Uk

b ) into Γ(Uk−1
b )⊕Γ(Uk+1

b ). It induces two operators via the
natural projections:

∂b : Γ(Uk
b )→ Γ(Uk−1

b ) and ∂b : Γ(Uk
b )→ Γ(Uk+1

b ).

The fact that the basic de Rham operator sends Γ(Uk
b ) into Γ(Uk−1

b )⊕Γ(Uk+1
b ) comes from

the integrability condition of the transversal generalized complex structure. The proof is
similar to that of generalized complex structures given in [G04]. It is left to the reader. One
has:

∂
2
b = ∂b ◦∂b +∂b ◦∂b = ∂

2
b = 0.

Example.
Now, we will focus on the case transversely symplectic structures coming from contact

forms. Given a contact 1-form η on a (2n+1)-dimensional manifold M, the foliation F is
generated by its corresponding Reeb vector field ξ. Recall that a 1-form η on M is said to
be a contact structure if η∧ (dη)n 6= 0 at every point. The classical Darboux theorem states
that, around every point of M, there are canonical coordinates (t, p1, . . . , pn,q1, . . . , qn)
such that

η = dt−
n

∑
i=1

pidqi.

Consider the isomorphism of C∞(M)-module [ : X(M)→ Ω1(M) defined by

[(X) = ιX dη+η(X)η,

for any vector field X . Define the bivector field π by setting:

π(α,β) =−dη([−1(α), [−1(β)).

In the canonical coordinates (t, p1, . . . , pn,q1, . . . , qn), one has:

π =
n

∑
i=1

∂

∂pi
∧

(
∂

∂qi
+ pi

∂

∂t

)
.

The transversal generalized contact structure on M is determined by the complex bundle:

E ≡ {X −
√
−1 ιX dη | X ∈ T M⊗C}
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which corresponds to the pure spinor ρ = eidη and

Γ(Un+d−k
b ) = {eidηe

π

2i α | α ∈ Ω
k
b(M)},

where for any complex bivector B, one has

eB
α = α+ ιBα+

1
2

ι
2
Bα+ . . . .

One has a similar formula for 2-forms:

eω
α = α+ω∧α+

1
2

ω∧ω∧α+ · · · ,

for any differential form α. Now, we consider the Koszul-Brylinski operator [CLM96]:

δπ : Ω
k
b(M)→ Ω

k−1
b (M)

given by
δπ = [ιπ,db] = ιπ ◦db−db ◦ ιπ.

Similarly to the symplectic case [C05], one has

−2i∂
(

eidηe
π

2i α

)
= eidηe

π

2i (δπα) ∂

(
eidηe

π

2i α

)
= eidηe

π

2i (dbα),

for any basic form α.
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