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Abstract

In these Lecture Notes of a mini-course delivered in the ” Séminaire Itinérant de
Géometrie et Physique Mathématique, ” Geometry and Physics V” at the University
Cheikh Anta Diop , Dakar in May 2007, we introduce the group of symplectic dif-
feomorphisms, the main results on its algebraic structure and on some of its local and
global properties. This survey culminates with the most recent results on Hofer ge-
ometry, the definitions of the groups of symplectic and hamiltonian homeomorphisms,
and the introduction to the C0 symplectic topology.

AMS Subject Classification: 55D05; 53D35.

Keywords: C0 symplectic topology, Hofer geometry, Hofer topology, hamiltonian topol-
ogy, symplectomorphism, hamiltonian diffeomorphisms, Arnold conjecture, Floer homol-
ogy, symplectic rigidity, symplectic capacity, symplectic homeomorphisms, hamiltonian
homeomorphism

1 Preliminaries

1.1 Basic definitions

A symplectic form on a smooth manifold M is a non-degenerate closed 2-form ω. ”Non-
degenerate” means that the mapping ω̃ : T (M) → T ∗(M), X 7→ ω̃(X) where ω̃(X)(Y ) =
ω(X ,Y ) is an isomorphism. We denote the 1-form ω̃(X) by i(X)ω.

The couple (M,ω) of a smooth manifold M and a symplectic form ω is called a sym-
plectic manifold. Symplectic Geometry is the study of geometric properties of symplectic
manifolds. Three good references on symplectic geometry are [10], [32] and [19]. Sym-
plectic manifolds are even dimensional and if dim(M) = 2n, ωn is a volume-form, called
the Liouville volume. Hence M is oriented.

A smooth function f : M → R gives rise to a vector field X f uniquely defined by the
equation

i(X f )ω = d f

called the Hamiltonian vector field with hamiltonian f .
∗E-mail address: banyaga@math.psu.edu
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The support of a vector field X on a smooth manifold M, is the closure of the set
{x ∈ M|X(x) 6= 0}. The support of a function f is defined likewise: it is the closure of the
set {x ∈M| f (x) 6= 0}.

If a function f has a compact support, so does X f , hence X f generates a flow φ
f
t of M

such that (φ f
t )∗ω = ω. Indeed LX f ω = di(X f )ω + i(X f )dω = d(d f ) = 0. This shows that

(φ f
t ) preserves ω.

A symplectic diffeomorphism or a symplectomorphism of a symplectic manifold (M,ω)
is a C∞ diffeomorphism h : M → M such that h∗ω = ω. The support of a diffeomorphism
h is the closure of {x ∈ M|h(x) 6= x}. The set of all symplectomorphisms with compact
support form a group, denoted Symp(M,ω) ( with the law of composition of mappings).

Hence we see that any smooth function with compact support gives rise to a symplec-
tomorphism with compact support.

1.2 Examples

1. (R2n,ω0 = ∑
n
i dxi∧dyi) is a symplectic manifold. If f : R2n → R is a smooth function,

then
X f = ∑

i
(∂ f /∂yi)∂xi− (∂ f /∂xi)∂yi.

The flow φ
f
t is the solution of Hamilton equations. ( Symplectic Geometry started off

as the setting of Classical Mechanics).

For instance, consider the function

f (x1, ..,xn+1,y1, ..,yn+1) = 1/2∑x2
i + y2

i .

Then
X f = ∑

i
yi∂/∂xi− xi∂/∂yi.

Setting zk = xk + iyk, we see that the Hamilton equations:

ẋk = yk

ẏk =−xk

become żk =−izk. Hence the flow φ
f
t is the family of diffeomorphisms

φ
f
t (z) = z(0)e−it ,

where z = (z1, ..,zn).
This flow induces an action of the circle S1 on the sphere S2n+1. The quotient of this

action is the complex projective space CPn.

2. The torus T 2n. The symplectic form on R2n is invariant by translations and therefore
induces a symplectic form ω on T 2n = R2n/Z2n. A translation on R2n induces a symplectic
diffeomorphism of T 2n called the rotation Rθ through θ ∈ T 2n. This gives an inclusion
T 2n ⊂ Symp(T 2n,ω).
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Note that the symplectic form ω0 of R2n is exact. However the induced symplectic form
on T 2n is not exact. It is a consequence of Stoke’s theorem that on a compact symplectic
manifold (M,ω) of dimension 2n, then ωk , k = 0,1,.., n, is not exact, since ωn is a volume
form. This remark shows that the spheres S2n admit no symplectic form for any n≥ 2.

3. The cotangent space M = T ∗(N) of a smooth manifold N. The Liouville 1-form on
T ∗(N), is the 1-form λN defined as follows: let (q,θ) ∈ T ∗(N) , q ∈ N,θ ∈ T ∗

q (N) and
ξ ∈ T(q,θ)T ∗(N), then

λN(q,θ)(ξ) = θ(π∗ξ)

where π : T ∗N → N is the canonical projection. One can check that

ωN = dλN

is a symplectic form. The space T ∗(N) is the ”phase space” in Classical Mechanics. On
T ∗(N), the local coordinates (q, p),q ∈ M, p ∈ T ∗

q (N) are called respectively the position
and impulsion of a particle.

4. An oriented surface, with its volume form, is a symplectic manifold since the notions of
volume form coincides with the notion of symplectic form in dimension 2.

5. The cartesian product M1×M2 of 2 symplectic manifolds (Mi,ωi) carries the following
symplectic form ω1	ω2 = π∗1ω1−π∗2ω2, where πi are the projections of M1×M2 on each
factor. For any non zero numbers λi, one can also consider the symplectic form λ1ω1 ⊕
λ2ω2.

6. A contact form on a 2n+1 dimensional manifold N is a 1-form α such that α∧ (dα)n is
a volume form. (N×R,ω = d(etα)) is a symplectic manifold, called the symplectization
of the contact manifold (N,α).

1.3 Exercises

1. Show that the symplectic form ω = ∑i dxi∧dyi on R2n+2 induces a symplectic form on
CPn.
2. Let γ : [0,1]→ R2n be a C1 path, γ(t) = (p(t),q(t)) and H : R2n → R a smooth function.
Consider the ”action-functional”

A(γ) =
Z 1

0
(p(t).q̇(t)−H((p(t),q(t))dt

where p(t).q̇(t) is the usual dot product and q̇ = d
dt q(t). Show that critical loops of A

correspond to periodic orbits of the Hamiltonian vector field XH .
3. Show that if α is a 1-form on a smooth manifold N, then α∗λN = α where λN is the
Liouville 1-form on T ∗(N).
4. Show that a diffeomorphism h : N→N′ induces a symplectic diffeomorphism h∗ : T ∗N→
T ∗N′. In fact h∗ maps the Liouville form of N′ to the Liouville form of N.
5. Show that if θ is a closed 2-form on N, then ωθ = dλN + π∗θ is a symplectic form on
T ∗(N). Here π : T ∗N → N is the canonical projection.
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If θ is exact, show that there exists a diffeomorphism φ : T ∗(N) → T ∗(N) such that
φ∗(ωθ) = ωN .

6. Let H(M,ω) be the group generated by all φ
f
1 , and their inverses, for all smooth functions

f with compact support. This is an ”infinite dimensional ” group of symplectomorphisms.
Show that the group H(M,ω) is a normal subgroup of Symp(M,ω).

7. Let (M,ω) be a symplectic manifold and f : M→M be a smooth map such that f ∗ω = λω

for some function λ. Show that λ is a constant provided that the dimension of M is at least
4. Moreover if M is compact show that λ =±1. (Liberman).

1.4 Two basic theorems [10]

The first important theorem in symplectic geometry is the:

Darboux theorem ( see [10])

Let (M,ω) be a 2n dimensional symplectic manifold. For each point x ∈ M, there is a
local chart (U,φ) where U is an open neigborhood of x, and a diffeomorphism φ : U →R2n

such that φ∗(∑n
i dxi∧dyi) = ω|U .

This theorem says that all symplectic manifolds look alike locally. Therefore there are
no symplectic local invariants. All symplectic invariants are of a global nature.

The global equivalence of two symplectic forms is an open question on compact mani-
folds:

Given two symplectic forms ω,ω′ on a smooth manifold M, is there a diffeomorphism h :
M →M such that h∗ω′ = ω?

The answer in the case the symplectic manifold is open is given by Gromov’s h-principle.
In general this is a very difficult question for closed manifolds. For instance Taubes showed
(using Gromov-Witten invariants) that any symplectic form cohomologous to the symplec-
tic form above on CP2 is equivalent to it.

The following (weak) global equivalence theorem of symplectic structures will be use-
ful:

Moser theorem [20]

Let ωt be a smooth family of symplectic forms on a compact manifold M such that the
cohomology classes [ωt ] ∈ H2(M,R) of ωt are constant, then there exists a smooth family
of diffeomorphisms φt such that φ0 = id and φ∗t ωt = ω0.

Exercise 8 Show that if ω is a symplectic form on a smooth manifold M and if θ is a
closed 2-form on M which is C1 close to zero, then ω+θ is again a symplectic form.

Moreover if θ is exact and M is compact, show that there exists a diffeomorphism φ

such that φ∗ω = ω+θ.
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2 Introducing Symp(M,ω) and Ham(M,ω)

We will give Symp(M,ω) the C∞-compact-open topology. This is the topology of uniform
convergence over all compact subsets of h ∈ Symp(M,ω), and all its partial derivatives (in
local charts). In section 2,2, we will see that Symp(M,ω) is locally connected by smooth
arcs.

A diffeomorphism φ is said to be isotopic to the identity if there exists a smooth map
H : M× [0,1] → M such that if ht : M → M is given by ht(x) = H(x, t), then ht is a C∞

diffeomorphism , h0 = idM and h1 = φ. We say that ht is an isotopy from φ to the identity.
A symplectomorphism φ ∈ Symp(M,ω) is isotopic to the identity if in the definition

above, for all t, ht is a symplectomorphism with compact support. We will say that ht is
a symplectic isotopy (with compact support) form φ to the identity. We consider the space
Symp(M,ω)0 of symplectomorphisms which are isotopic to the identity. One shows that
this is a group, which coincides with the identity component in Symp(M,ω).

Exercise 9 Show that any symplectic diffeomorphism of (R2n,ω) is isotopic to the
identity ( through non compactly supported isotopies). (Use the ”Alexander trick”).

Exercise 10 Let (M,ω) be a compact oriented surface with orientation (symplectic)
form ω. Show that the inclusion Symp(M,ω)0 ⊂Di f f (M)0, where Di f f (M)0 is the identity
component in the group of all diffeomorphisms ( with the C∞ topology), is a homotopy
equivalence. (Use Moser theorem).

The homotopy type of Symp(M,ω) is known for all oriented compact surfaces : the
inclusions S0(3) ⊂ Di f f (S2)0 [28], T 2 ⊂ Di f f (T 2)0 [11] are homotopy equivalence and
if M is a compact surface of genus bigger than 1, then Di f f (M)0 is contractible [11].
Conclude now using exercise 10.

In higher dimensions, almost nothing is known. Let us just cite two known results:
(i) Symp(R4,ω0) is contractible (Gromov).

(ii) Symp(S2×S2,ωS2 ⊕ωS2) is homotopy equivalent to SO(3)×S0(3). (Gromov).

An isotopy ht of a manifold gives rise to a family of vector fields ḣt defined by

ḣt(x) =
dht

dt
(h−1

t (x)).

Conversely a family of vector fields Xt with compact support gives rise to an isotopy φt , via
the existence and uniqueness theorem of solutions of ODE:

dφt

dt
(x) = Xt(φt(x)), φ0(x) = x.

Exercise 11 Prove that if ht ,gt are 2 isotopies, and if ut = htgt

u̇t = ḣt +(ht)∗ġt

( Use the chain rule from Calculus).
Deduce from the formula above the formula for v̇t where vt = (ht)−1.
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Exercise 12 Let h(s,t) be a 2-parameter family of diffeomorphisms of a smooth manifold
M such that h(0,0) = 1dM. Let X(s,t),Y(s,t) be the family of vector fields defined by:

X(s,t)(x) =
d
dt

h(s,t)(h
−1
(s,t)(x));

Y(s,t)(x) =
d
ds

h(s,t)(h
−1
(s,t)(x))

Show that
∂X(s,t)/∂s = ∂Y(s,t)/∂t +[X(s,t),X(s,t)]

(Use Frobenius theorem).

If ht is a symplectic isotopy, then h∗t ω = ω. Differentiating this equation gives

Lḣt
ω = 0

where LX is the Lie derivative in direction X . By Cartan formula LX α = i(X)dα +
d(i(X)α), and the fact that dω = 0, the equation above says that

i(ḣt)ω

is a closed 1-form.

We say that ht is a hamiltonian isotopy if there exists a smooth family of smooth func-
tions Ht such that

i(ḣt)ω = dHt .

A symplectomorphism φ ∈ Symp(M,ω) is said to be a hamiltonian diffeomorphism if
there exists a hamiltonian isotopy ht such that φ = h1.

Let Ham(M,ω) denote the set of all hamiltonian diffeomorphisms of (M,ω), i.e. the
set of time one maps of hamiltonian isotopies. It follows from exercises 11 that Ham(M,ω)
is a normal subgroup of Symp(M,ω)0.

Remark. The group Ham(M,ω) contains the group H(M,ω) as a normal subgroup. We
will see that these two groups coincide.

The groups above Symp(M,ω) and Ham(M,ω) depend of course on ω. If there exists a
diffeomorphism h : (M,ω)→ (M′,ω′) between 2 symplectic manifolds such that h∗ω′ = λω

for some constant λ, then

Ih : Symp(M,ω)→ Symp(M′,ω′) φ 7→ hφh−1

is an isomorphism. The converse is a deep theorem [6].

Theorem 2.1. Let u : Symp(M,ω)0 → Symp(M′,ω′)0 or u : Ham(M,ω)0 → Ham(M′,ω′)0
be group isomorphisms. Then there exists a diffeomorphism h : M→M′ such that h∗ω′ = λω

for some constant λ and such that u = Ih.
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This theorem means that the groups Symp(M,ω) or Ham(M,ω) determine the sym-
plectic geometry. This fact is a generalization of a theorem of Filipkiewicz [12] asserting
that the group of diffeomorphisms determines the smooth structure.

The proof of this theorem uses the difficult theorem 2.3 and several ”dynamical system”
type arguments.

The following important property ( n-fold transitivity for all n) , due to Boothby ( see
[2]) is much easier to prove:

Theorem 2.2. Given two sets {x1, ..,xn} and {y1, ..,yn} of disjoint points on a connected
symplectic manifold (M,ω), there is h ∈ Ham(M,ω) such that h(xi) = yi.

Hence a connected symplectic manifold is a ”homogeneous space”

M ≈ Ham(M,ω)/Ham(M,ω)a

where Ham(M,ω)a is the isotropy subgroup of some point a. Note that two isotropy sub-
groups Ham(M,ω)a and Ham(M,ω)b are conjugate.

2.1 The flux homomorphism

Two symplectic isotopies ht ,gt with g1 = h1 = φ are said to be homotopic relatively to
ends if there exists a 2-parameter family of symplectic isotopies K(s,t) such that K0,0 = idM,
K(0,t) = ht , K(1,t) = gt and K(s,1) = φ for all s.

This is an equivalence relation among symplectic isotopies from φ to the identity. The
set of all equivalence classes [ht ] of symplectic isotopies ht in Symp(M,ω)0 is the universal
cover ˜Symp(M,ω)0 of Symp(M,ω)0.

For any symplectic isotopy (φt), we consider the 1-form

Σ(φt) =
Z 1

0
i(φ̇t)ωdt

Using exercise 12, one shows that if two symplectic isotopies ht ,gt are homotopic rela-
tively to ends, then

Σ(ht)−Σ(gt) = dθ

for some 1-form θ.

This means that we get a well defined map [ht ] 7→ [Σ(ht)]∈H1(M,R) from the universal
covering of Symp(M,ω)0 into the first de Rham cohomology group of M.

Denote the map above by :

S̃ : ˜Symp(M,ω)0 → H1(M,R)

Using exercise 11, one shows that S̃ is a group homomorphism [9], [1], [2]. To show that
this homomorphism is surjective, consider a cohomology class a ∈H1(M,R) with compact
supports, and a closed 1-form α with compact support representing a. If γ(t) is the flow of
the vector field V defined by i(V )ω = α, then S̃[γ(t)] = a.
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The homomorphism S̃ : ˜Symp(M,ω)→ H1(M,R) is called the flux homomorphism or
the Calabi homomorphism.

The group
Γ = S̃(π1(Symp(M,ω)0)))

is called the the flux group.

We get an induced surjective homomorphism

S : Symp(M,ω)0 → H1(M,R)/Γ.

Remarks

1. The commutator subgroup [Symp(M,ω)0,Symp(M,ω)0] of Symp(M,ω)0 is con-
tained in the kernel, KerS, of S since the range of S is an abelian group.

2. The groups H(M,ω) and Ham(M,ω) are contained in KerS.

3. Suppose h ∈ Symp(M,ω)0 can be written as h = h1....hN where each hi has compact
support in contractible open set, then S(hi) = 0, and hence S(h) = ∑S(hi) = 0. Let H0(M,ω)
be the group generated by symplectomorphisms with compact supports in contractible open
sets. Then H0(M,ω)⊂ KerS.

Exercise 13 Prove that H0(M,ω) = KerS.

This exercise is not easy. We refer to [2] for a proof. The statement of exercise 13 is
called the ” fragmentation property” of Ham(M,ω).

We have the following deep result [1]:

Theorem 2.3. Let (M,ω) be a connected compact symplectic manifold. Then KerS is a
simple group ( i.e. it contains no non-trivial normal subgroup).

The proof of this theorem is very delicate. It uses the Arnold-Kolmogoroff-Nash-
Moser-Sergeraert implicit function theorem in Frechet spaces [14],[27] and a generaliza-
tion of the Mather-Thurston theory relating the homology of diffeomorphism groups and
characteristic classes of foliations (see [2]).

Corollary 2.4. Let (M,ω) be a compact symplectic manifold. Then

H(M,ω) = H0(M,ω) = Ham(M,ω) = KerS = [Symp(M,ω)0,Symp(M,ω)0].

Recently Ono [23] proved the following

Theorem 2.5. The flux group Γ is discrete, i.e. Ham(M,ω) is a closed subgroup of Symp(M,ω)0
with the C∞ topology.

This is a deep theorem whose proof relies on the Floer-Novikov homology.

Exercise 14 Let (M,ω) be a symplectic manifold where ω is exact: i.e there is a 1-form
α such that ω = dα ( ex. the cotangent bundle, the symplectisation of a contact manifold).
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Show that for any φ ∈ Symp(M,ω)0, the 1-form φ∗α−α is closed and its cohomology
class [φ∗α−α] is independent of the choice of α. Show that φ 7→ [φ∗α−α] is a group
homomorphism which coincides with the flux S. In that case, the flux group is trivial.

Exercise 15. Let Lω(M) be the set of symplectic vector fields, i.e. vector fields X such
that i(X)ω is a closed form. Denote by [i(X)ω] its cohomology class. Show that Lω(M) is a
Lie algebra. Show that the map : s : Lω(M)→H1(M,R), X 7→ [i(X)ω] is a surjective Lie
algebra homomorphism and its kernel is the derived Lie algebra [Lω(M),Lω(M)], (generated
by commutators). Moreover Kers = [Lω(M),Lω(M)] is a simple Lie algebra.
This ”infinitesimal version” of theorem 2.3 was proved by Calabi [9].

2.2 The local structure of Symp(M,ω)

A submanifold L of a symplectic manifold (M,ω) is called a lagrangian submanifold if
dimL = (1/2)dimM and i∗ω = 0 where i : L→M is the inclusion.

Exercise 16 Show that the graph of a 1-form α on N is a lagrangian submanifold of
T ∗N iff α is closed. (Use exercise 3).

Exercise 17 Let h : M→M be a symplectomorphism of (M,ω). Show that its graph is a
lagrangian submanifold of (M×M,ω	ω). For instance the diagonal ∆⊂ (M×M,ω	ω)
is a lagrangian submanifold ( the graph of the identity).

The following result due to Kostant-Sternberg-Weinstein) [13] describes a neigborhood of
a lagrangian submanifold inside the ambiant manifold:

Theorem 2.6. There exists a diffeomorphism k from a neigborhood U of ∆ in M×M onto
T ∗(∆)≈ T ∗(M) such that k|∆≈M is the identity and k∗ωM = ω	ω

.
If h is a symplectomorphism C1 close enough to the identity, and its graph Γ(h) fits inside
the neighborhood U, then k(Γ(h)) is a lagrangian submanifold of T ∗(M), which is C1 close
to the diagonal; it is then the graph of a closed 1-form W (h). The correspondence

h 7→W (h)

is a smooth chart of a neighborhood U of the identity in Symp(M,ω)0, into a neighborhood
W of zero in the space Z1(M) of closed i-forms, called the Weinstein chart.

If h ∈ U, we get a ”canonical” isotopy ht = W−1(tW (h)) from h to the identity. Hence
Symp(M,ω)0 is smoothly locally contractible, and locally connected by smooth arcs.

Exercise 18 Show that S̃([ht ]) = [W (h)], where [W (h)] is the cohomology class of the
form W (h)[5].

Therefore the Weinstein chart takes a small neigborhood of the identity in Ham(M,ω) to
the space B1(M) of exact 1-forms. The space B1(M) is isomorphic to the space A = C∞

n (M)
of ”normalized functions on M. A function f is normalized if

R
M f ωn = 0 when M compact

or it has compact support when M is not compact.
(Heuristically), one says that the Lie algebra of Ham(M,ω) is the space A = C∞

n (M).
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Let h ∈U , the zeros of W (h) correspond to intersection points of the graph of h, i.e. to
the fixed points of h. From exercise 18, we deduce the following observation of Weinstein
[32]:

Theorem 2.7. A C1 small hamiltonian diffeomorphism h on compact manifold has as many
fixed points as can have a smooth function on a compact manifold.

3 Some global properties

3.1 The Arnold Conjecture

Theorem 2.7 is a particular case of a general conjecture made by Arnold in the 60’s. It says
that if h is a hamiltonian diffeomorphism of a compact symplectic manifold (M,ω) such
that its graph Γ(h) intersects the diagonal transversally, then the number of its fixed points
is no smaller than the number of critical points a smooth function is allowed to have.

Another formulation is that the number of fixed points is bounded from below by the
sum of the Betti numbers of M.

This conjecture is being solved nowadays. It has been a driving force which led to
tremendous developpement in ”Symplectic Topology”.

One first observe that the set of fixed points of a hamiltonian diffeomorphism are in
1-1 correspondence with critical points of a functional the action-functional on the infinite
dimensional space ” of contractible loops on M ( see exercise 2). Floer homology is the
homology whose chains are generated by these critical points. The main result is that Floer
Homology is isomorphic to the singular homology. The Arnold conjecture then follows.
Floer homology is a very rich and very complicated machinery. The first steps of the theory
can be read in [8], [26]. We refer to [21] for more advanced readings.

3.2 Symplectic and hamiltonian rigidities

Let (M,ω) be a compact symplectic manifold. Let Di f f (M) be the group of all C∞ dif-
feomorphisms of M endowed with the Cr topologies, 0 ≤ r ≤ ∞. We have the following
”rigidity” theorem due to Eliashberg-Gromov [16]:

Theorem 3.1. Let (M,ω) be a compact symplectic manifold. Then Symp(M,ω) is C0 closed
in Di f f (M).

This theorem says that the symplectic character of a diffeomorphism ”survives” topo-
logical limits. This is an indication that there exists a ” symplectic topology”.

Lalonde, Polterovich and McDuff [18] have also discovered a hamiltonian rigidity
phenomenon:

Theorem 3.2. Let ω and ω′ be two symplectic forms on a closed manifold M. Suppose
a loop lt in Symp(M,ω) is homotopic to a loop l′t ∈ Ham(M,ω′) through Di f f ∞(M) then
lt is homotopic to a loop l∗t in Ham(M,ω) through Symp(M,ω) regardless of the relation
between the two symplectic forms.
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This shows that being ” hamiltonian” is topological in nature.

The symplectic and hamiltonian rigidities above reveal that symplectic geometry un-
derlines a topology, one may call the C0-symplectic topology. This is a new mathematical
discipline in which almost nothing is known. We will say a few words about it at the end of
these lectures.

Eliashberg-Gromov’s theorem is an immediate consequence of the following

Theorem 3.3. Let φ j : B(1)→ (R2n,ω) be a sequence of symplectic embeddings converging
locally uniformly to a map φ : B(1) → R2n. If φ is differentiable at 0, then φ′(0) is a
symplectic map.

This is an easy consequence of the existence of symplectic capacities (Ekeland-Hofer)
[16].

Symplectic capacities [16]

Let (M,ω) be a 2n dimensional symplectic manifold. It is obvious that any symplecto-
morphism h preserve the Liouville volume Ω = ωn. Symplectic Topology emerged from
the search of invariants which distinguish ”volume preserving properties” from symplectic
properties of symplectic manifolds of dimension 2n≥ 4.

Darboux’ theorem says that near every point in (M,ω), there is a local diffeomorphism
of a small ball of radius r, centered at the origin B(0,r) in R2n into M such that φ∗(ω) =
(ω0)|φ−1(B(0,r) where ω0 = ∑dxi∧dyi.

Let us look at the largest ball that can be embedded in M, i.e. we define:

D(M,ω) = sup{πr2}

where r runs over all the radii of balls B(0,r) that can be embedded symplectically in
(M,ω). This is a symplectic invariant called the Gromov width.

Definition 3.4. Let S(2n) be the class of all 2n dimensional symplectic manifolds.
A capacity is a map c : S(2n)→ R∪∞ such that
(1) c(M,ω)≤ c(N,τ) if there exists a symplectic emdebbing φ : (M,ω)→ (N,τ).

( monotonicity)

(2) c(M,αω) = |α|c(M,ω) for all non-zero number α.
(conformality)

(3) c(B(0,1),ω0) = c(Z(1),ω0) = π

where
Z(r) = {x1, ..,xn,y1, ...yn)|x2

1 + y2
1 ≤ r2]

If n= 1, then c(M,ω) = |
R

M ω| is a capacity. If n ≥ 2, the condition (3) excludes this
example.

In [16] one can find the proof of the following theorem of Gromov:

Theorem 3.5. The Gromov width is a symplectic capacity.
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The existence of a symplectic capacity implies immediately the following famous Gro-
mov non-sqeezing theorem:

Theorem 3.6. If there is a symplectic embedding from Z(r) ⊂ R2n into the ball B(0,R),
then r ≤ R.

This theorem has been popularized as ” the Gromov camel”.

The proof of Theorem 3.2 uses Floer homology and the notion of ” hamiltonian fibra-
tions”, i.e. fibrations with Ham(M,ω) as structural groups. A classical construction , called
the ”clutching” associates to a loop in Ham(M,ω) a hamitonian fibration over S2. The flux
homomorphism appears as the ” boundary homomorphism” in the Wang exact sequence of
the associated hamiltonian fibration over S2 [18].

4 Metrics on Symp(M,ω) and Ham(M,ω)

A Finsler structure on a smooth manifold Z is a norm in each tangent space TzZ which varies
smoothly with z ∈ Z. ( In general these norms may not come from a scalar product: hence
this may not be a riemannian structure). We may define the length of a curve z : [a,b]→ Z
as:

length(z) =
Z b

a
norm(ż(t))dt.

We saw that the Lie algebra of Ham(M,ω) is the space A of smooth normalized func-
tions on M. Hence any norm ||.|| which is invariant by Ham(M,ω) defines a Finsler struc-
ture on Ham(M,ω). For any smooth path φt ∈ Ham(M,ω), and any such norm ||, || on A,
we define the length as

length(φt) =
Z 1

0
||Ft ||dt

where Ft is the family of functions such that i
φ̇t

ω = dHt .

One defines the ”distance” between two hamiltonian diffeomorphisms φ,ψ as

d(φ,ψ) = in f (length( ft))

where the infimum is taken over all hamiltonian paths { ft} with f0 = id and f1 = ψφ−1.

It is easy to verify that the function d is a pseudo-distance: it satisfies the properties of
a distance but may be degenerate: d(φ,ψ) = 0 may not imply that φ = ψ.

The choice of the metric ||, || on A is very important. For instance if we take the Lp

norm
||H||p = (

Z
M
|H|p(ω)n)1/p

p≥ 1 then the corresponding pseudo metric is degenerate[26].

However, the L∞-norm

||H||∞ = osc(H) = maxH−minH
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gives a non-degenerate function, i.e. a genuine metric, called the Hofer metric.

For φ ∈ Ham(M,ω), choose a hamiltonian isotopy Φ = (φt) from φ to the identity.
Hofer defined the length of this isotopy

lH(Φ) =
Z 1

0
osc(Ft)dt

where i(φ̇t) = dFt .

Exercise 19 The length function satisfies :
(i) lH(Φ)≥ 0
(ii) lH(Φ.Φ′)≤ lH(Φ)+ lH(Φ′) where (Φ.Φ′)(t) = (φtφ

′
t),

(iii) lH(Φ) = lH(Φ−1)
(iv) lH(h.Φ.h−1) = lH(Φ) for all sympectomorphism h.
(Hint : use exercise 11).

Consider
ν(φ) = in f (lH(Φ))

where the infimum is taken over all hamiltonian isotopies from φ to the identity.

Theorem 4.1. The function ν(φ) is a bi-invariant metric on Ham(M,ω).

Therefore the function d(φ,ψ) = ν(φ.ψ−1) on Ham(M,ω) is a bi-invariant distance.
We call ν(φ) = ||φ|| the Hofer norm of φ and d(φ,ψ) the Hofer distance from φ to ψ.

In Theorem 4.1, only the non-degeneracy is difficult to prove. We give below an outline
of its proof. The other properties come straight form exercise 19.

This theorem was proved first by Hofer for M = R2n with its natural symplectic form,
using infinite dimensional variational methods [15], then got improved by Viterbo using
generating functions [30] and Polterovich using Gromov’s J-holomorphic curves [25], and
has been proved in its full generality by Lalonde-McDuff using J-holomorphic curves [17].

Definition 4.2. The displacement energy e(A) of a bounded subset A of M is defined as
follows:

e(A) = in f{||φ||,φ ∈ Ham(M,ω),φ(A)∩A = /0}

We have the following fact due to Eliashberg-Polterovich) [24]

Theorem 4.3. For any non-empty open set A, e(A) is strictly positive.

The connection between the displacement energy and symplectic capacities is given by
this result of Hofer, Lalonde-Mc Duff ( see [16]):

Theorem 4.4.
sup{c(U)|U open and φ(U)∩U = /0} ≤ ||φ||.
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4.1 Hofer geometry

This is the geometry of Ham(M,ω) equipped with the Hofer metric. The Hofer topology
is the topology induced by the Hofer distance. This geometry and topology are not well
understood.

For instance the following question does not have a complete answer: Let (Ham(M,ω),Cr)
and (Ham(M,ω),H) be the group Ham(M,ω) endowed respectively with the Cr topology
and the Hofer topology H, is the identity map

(Ham(M,ω),Cr)→ (Ham(M,ω),H)

continuous?
Clearly the answer is yes if r ≥ 1. When < π2(M),ω >= 0, Ostrover [24] constructed

an example of a sequence in Ham(M,ω) converging C0 to the identity, but whose Hofer
norm goes to infinity. Therefore the map above is not continuous in this case. This example
also proves the following

Theorem 4.5. [29], [24] Let (M,ω) be a compact symplectic manifold satisfying < π2(M),ω >=
0, then the diameter of (Ham(M,ω,H) is infinite.

4.2 Generalization to Symp(M,ω)

A natural question is to try to extend the Hofer metric from the group Ham(M,ω) to the
whole group Symp(M,ω)0. There are at least two ways to obtain a bi-invariant metric on
Symp(M,ω) using the Hofer metric ||.|| on Ham(M,ω).

1. Choose a positive number K and for φ ∈ Symp(M,ω) define ||φ||K to be min(||φ||,K)
if φ ∈ Ham(M,ω), and ||φ||K = K otherwise (Han).

2. Fix a positive real number a and define for all φ∈ Symp(M,ω), ||φ||a = sup{||φ f φ−1 f−1||
where f ∈ Ham(M,ω), || f || ≤ a}. (Lalonde-Polterovich).

However, these metrics don’t restrict to the Hofer norm on Ham(M,ω). Moreover
Ham(M,ω) has a finite diameter in the restriction of these metrics to Ham(M,ω).

The question of extending the Hofer metric was studied in [4]. For instance one ob-
serves that the Hofer metric on Ham(T 2n,ω) extends to the whole Symp(T 2n,ω). They
prove the following result [4]:

Theorem 4.6. Let (M,ω) be a symplectic manifold such that the homomorphism S admits
a continuous homomorphic right inverse, then the Hofer distance extends to a distance on
Symp(M,ω)0 which is right invariant but not left invariant.

It is not easy to characterize symplectic manifolds satisfying the conditions of theorem
15.

In the rest of this paragraph, we show how to use the Hofer metric to get a ”Hofer-like
” metric on the group Symp(M,ω)0.

An intrinsic topology on the space symp(ω,M) of symplectic vector fields

Let (M,ω) be a compact symplectic manifold. The ”Lie algebra” of Symp(M,ω) is the
space sym(M,ω) of symplectic vector fields, i.e the set of vector fields X such that iX ω is a
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closed form. We give a norm |.| on symp(M,ω) this way. First we fix a riemannian metric
g, and a basis B = {h1, ..,hk} of harmonic 1-forms.

On the set Harm1(M,g) of harmonic 1-forms, we put the following ”Euclidean” norm.
If H ∈ Harm1(M,g) and H = ∑λihi, define

|H|B =: ∑ |λi|.

Given X ∈ sym(M,ω), we consider the Hodge decomposition of iX ω [31] : there is a
unique harmonic 1-form HX and a unique function uX such that

iX ω = HX +duX

Now we define a norm ||.||gB on the space symp(M,ω) by:

||X ||gB = |HX |B +osc(uX)

It is easy to see that this is indeed a norm.

The metric topology on symp(M,ω) defined by ||.|gB is independent of the choice of the
riemannian metric g and of the basis B of harmonic 1-forms:

Theorem 4.7. For all riemannian metric g and all basis B of harmonic 1-forms, the norms
||.|gB are all equivalent.

In the sequel, we will fix one riemannian metric g and one basis B of harmonic 1-forms
and simply denote by ||.|| the norm ||.|gB .

The norm ||.|| is not invariant by Symp(M,ω). Hence it does not define a Finsler metric
on Symp(M,ω). But we still can define the length of a symplectic isotopy Φ = φt .

Consider the Hodge decomposition of the closed 1-form i(φ̇t)ω:

i(φ̇t)ω = HΦ
t +duΦ

t .

Define now the ”length” of Φ to be

length(Φ) =
Z 1

0
(|HΦ

t |+osc(uΦ
t ))dt =

Z 1

0
||φ̇t)||dt

Given φ ∈ Symp(M,ω)0, we let

e0(φ) = in f (length(Φ))

where the infimum is taken over all symplectic isotopies Φ from φ to the identity.

We have the following generalization of the Hofer metric [3]:

Theorem 4.8. The function φ 7→ e(φ)= ((e0(φ)+e0(φ−1))/2 defines a metric on Symp(M,ω)
whose restriction to Ham(M,ω) is bounded from above by the Hofer metric, i.e.

e(φ≤ ||φ||.

Moreover Ham(M,ω) with the induced topology is a closed subgroup.

Unlike the Hofer distance, the distance d(φ,ψ) = e(φ.(ψ−1)) is not bi-invariant.
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5 The C0 symplectic topology

The C0 symplectic topology is the topology underlying Symplectic Geometry, which man-
ifests itself in various rigidity properties ( ex. Eliashberg-Gromov symplectic rigidity,
Lalonde-Mc Duff-Polterovich hamiltonian rigidity,...).

According to Oh-Muller ([22]) the automorphism group of the C0 topology is the group

Sympeo(M,ω) =: Symp(M,ω)

which is the closure of Symp(M,ω) in the group Homeo(M) of homeomorphisms of M
endowed with the C0 topology.

The C0 topology on Homeo(M) coincides with the metric topology coming from the
metric

d(g,h) = max(supx∈Md0(g(x),h(x)),supx∈Md0(g−1(x),h−1(x))

where d0 is a distance on M induced by some riemannian metric.

On the space PHomeo(M) of continuous paths γ : [0,1] → Homeo(M), one has the
distance

d(γ,µ) = supt∈[0,1]d(γ(t),µ(t))

Consider the space PHam(M) of all isotopies ΦH = [t 7→ Φt
H ] where Φt

H is the family
of hamiltonian diffeomorphisms obtained by integration of the family of vector fields XH

for a smooth family H(x, t) of real functions on M.

Definition 5.1. The hamiltonian topology [22] on PHam(M) is the metric topology defined
by the distance

dham(ΦH ,ΦH ′) = ||H−H ′||+d(ΦH ,ΦH ′)

where ||H−H ′||=
R 1

0 osc(H−H ′)dt.

Let Hameo(M,ω) denote the space of all homeomorphisms h such that there exists a
continuous path λ ∈ PHomeo(M) such that λ(1) = h and there exists a Cauchy sequence
(for the dham norm) of hamiltonian isotopies ΦHn , which C0 converges to λ ( in the d metric).
The following is the first important theorem in the C0 symplectic topology [22]:

Theorem 5.2. The set Hameo(M,ω) is a topological group. It is a normal subgroup of
Sympeo(M,ω). If H1(M,R) 6= 0, then Hameo(M,ω) is strictly contained in Sympeo(M,ω).

This group is the topological analogue of the group Ham(M,ω).

On the space Iso(M,ω) of symplectic isotopies of (M,ω) we define a distance D0 as
follows: if Φ = (φt) and Ψ = (ψt) are symplectic isotopies:

D0(Φ,Ψ) = |||φ̇t − ψ̇t |||=:
Z 1

0
(|HΦ

t −HΨ
t |+osc(uΦt −uΨt ))dt.

Denote by Φ−1 = (φ−1
t ) and by Ψ−1 = (ψ−1

t ) the inverse isotopies.
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We define a distance D by:

D(Φ,Ψ) = (D0(Φ,Ψ)+D0(Φ−1,Ψ−1))/2

Following [22], we define the symplectic distance on Iso(M,ω) by:

dsymp(Φ,Ψ) = d(Φ,Ψ)+D(Φ,Ψ).

One obtains the following generalization of the group Hameo(M,ω) [7]:

Theorem 5.3. Let (M,ω) be a compact symplectic manifold. The set SSympeo(M,ω) of
all homeomorphisms of M such that there exists a path λ ∈ PHomeo(M) with λ(1) = h and
such that there exists a Cauchy sequence ( for the distance dsymp) of symplectic isotopies
Φn , which converges in the C0 topology ( induced by the metric d) to λ, is a subgroup
of Sympeo(M,ω), which contains Hameo(M,ω) as a normal subgroup. It is arcwise con-
nected and is contained in the identity component of Sympeo(M,ω). Moreover its commu-
tator subgroup [SSympeo(M,ω),SSympeo(M,ω)] is contained in Hameo(M,ω).

The group SSympeo(M,ω) is called the group of strong symplectic homeomorphisms.
This group is probably strictly smaller than Sympeo(M,ω): its topology is more involved,
combining the C0 topology and the Hofer topology.

The groups just mentioned above Sympeo(M,ω), Hameo(M,ω), SSympeo(M,ω) are
largely unknown. They will be the focus of intense research in the next future.

Final remark

We observed that most of the results surveyed in these lectures concern compact man-
ifolds. In fact it is hard to deal with non compact manifolds and non compactly supported
diffeomorphisms. The topologies are bad, and the one-to-one relation between isotopies
and family of smooth vector fields breaks down.
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