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1. Introduction

1.1. Automorphisms and birational transformations

Let X be a quasi-projective variety of dimension d, defined over the field of complex num-

bers. Let Aut(X) denote its group of (regular) automorphisms and Bir(X) its group of

birational transformations. A good example is provided by the affine space AdC of dimen-

sion d>2: Its group of automorphisms is “infinite-dimensional” and contains elements

with a rich dynamical behavior (see [34], [3]); its group of birational transformations is

the Cremona group Crd(C), and is known to be much larger than Aut(AdC).

We present two new arguments that can be combined to study finitely generated

groups acting by automorphisms or birational transformations. They lead to new con-

straints on groups of birational transformations, in any dimension.
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The first argument is based on p-adic analysis and may be viewed as an extension of

two classical strategies from a linear to a non-linear context. The first strategy appeared

in the proof of the theorem of Skolem, Mahler, and Lech, which says that the zeros

of a linear recurrence sequence occur along a finite union of arithmetic progressions.

This method plays now a central role in arithmetic dynamics (see [6], [7], [55]). The

second strategy has been developed by Bass, Milnor, and Serre when they obtained

rigidity results for finite-dimensional linear representations of SLn(Z) as a corollary of

the congruence subgroup property (see [2], [62]). Here, we combine these strategies for

non-linear actions of finitely generated groups of birational transformations.

Our second argument makes use of isoperimetric inequalities from geometric group

theory and of the Lang–Weil estimates from diophantine geometry. We now list the main

results that follow from the combination of those arguments.

1.2. Actions of SLn(Z)

Consider the group SLn(Z) of n×n matrices with integer entries and determinant 1. Let

Γ be a finite-index subgroup of SLn(Z); it acts by linear projective transformations on

the projective space Pn−1
C , and the kernel of the homomorphism Γ!PGLn(C) contains

at most two elements. The following result shows that Γ does not act faithfully on any

smaller variety.

Theorem A. Let Γ be a finite-index subgroup of SLn(Z). Let X be an irreducible,

complex, quasi-projective variety. If Γ embeds into Aut(X), then dimC(X)>n−1. If

dimC(X)=n−1, then there is an isomorphism τ :X!Pn−1
C which conjugates the action

of Γ on X to a linear projective action on Pn−1
C .

Let k and k′ be fields of characteristic zero. Every field of characteristic zero which

is generated by finitely many elements embeds into C. Since finite-index subgroups of

SLn(Z) are finitely generated, Theorem A implies: (1) the group SLn(Z) embeds into

Aut(Adk) if and only if d>n; (2) if Aut(Adk) embeds into Aut(Ad′k′) (as abstract groups),

then d6d′. Previous proofs of assertion (2) assumed k to be equal to C (see [27], [45]).

1.3. Lattices in simple Lie groups

Theorem A may be extended in two directions, replacing SLn(Z) by more general lattices,

and looking at actions by birational transformations instead of automorphisms. Let S

be an absolutely almost simple linear algebraic group which is defined over Q; fix an

embedding of S in GLn (over Q). The Q-rank of S is the maximal dimension of a

Zariski-closed subgroup of S that is diagonalizable over Q; the R-rank of S is the maximal
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dimension of a Zariski-closed subgroup that is diagonalizable over R. The subgroup S(Z)

is a lattice in S(R); it is cocompact if and only if the Q-rank of S vanishes (see [8]).

Theorem B. Let X be an irreducible complex projective variety. Let S⊂GLn be a

linear algebraic group, over the field of rational numbers Q. Assume that S is absolutely

almost simple, and that the lattice S(Z) is not cocompact in S(R). If a finite-index

subgroup of S(Z) embeds into Bir(X), then

dimC(X)> rankR(S).

If dim(X)=rankR(S)>2, then SR is R-isogeneous to SLdim(X)+1,R.

As a corollary, the Cremona group Crd(k) does not embed into Crd′(k
′) if k and k′

have characteristic zero and d>d′.

Remark 1.1. If rankR(S)>2, every lattice Γ of S(R) is almost simple: Its normal

subgroups are finite and central, or cofinite (see §4.2 and 8.1). Thus, the assumption “Γ

embeds into Bir(X)” can be replaced by “there is a homomorphism from Γ to Bir(X)

with infinite image”. Using the Margulis arithmeticity theorem, one can replace S by

any simple real Lie group H with rankR(H)>2, and S(Z) by any non-uniform lattice of

H in the statement of Theorem B.

Remark 1.2. The statement of Theorem B concerns non-uniform lattices, because

the proof makes use of the congruence subgroup property, and the congruence kernel

is known to be finite for all those lattices. There are also uniform lattices for which

this property is known and the same proof applies (for instance for all lattices in Q-

anisotropic spin groups for quadratic forms in m>5 variables with real rank >2; see [43],

[64]).

Remark 1.3. The main theorems of [11], [19] extend Theorem B to all types of

lattices (including cocompact lattices) in simple real Lie groups, but assume that the

action is by regular automorphisms on a compact Kähler manifold. When X is compact,

Aut(X) is a complex Lie group: It may have infinitely many connected components,

but its dimension is finite. The techniques of [11], [19] do not apply to arbitrary quasi-

projective varieties (for instance to X=AdC) and to groups of birational transformations.

See [17], [13], [26] for groups of birational transformations of surfaces.

Example 1.4. There is a lattice in SO1,9(R) which acts faithfully on a rational surface

by regular automorphisms: This is due to Coble (see [16, §3.4]). A similar phenomenon

holds for general Enriques surfaces (see [23]). Thus, lattices in simple Lie groups of large

dimension may act faithfully on small-dimensional varieties.
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1.4. Finite fields and Hrushovski’s theorem

Let Γ be a finite-index subgroup of S(Z), where S is as in Theorem B. To prove Theo-

rems A and B, we first change the field of definition, replacing C by the field of p-adic

numbers Qp for some large prime number p; indeed, since the ring generated by the coef-

ficients of the formulae defining the variety X and the generators of the group Γ⊂Bir(X)

is finitely generated, we may embed this ring in Zp for some large prime p.

Then, we prove that there exists a finite extension K of Qp and a p-adic polydisk

in X(K) which is invariant under the action of a finite-index subgroup Γ′ of Γ, and on

which Γ′ acts by Tate analytic diffeomorphisms. Those polydisks correspond to periodic

orbits for the action of Γ on X(F), where F is the residue field of the non-archimedean

field K. Thus, an important step toward Theorem B is the existence of pairs (m,Γ′),

where m is in X(F), Γ′ is a finite-index subgroup of Γ, and all elements of Γ′ are well

defined at m and fix m (no element of Γ′ has an indeterminacy at m). For cyclic groups of

transformations, this follows from a theorem of Hrushovski (see [41]). Here, we combine

the Lang–Weil estimates with isoperimetric inequalities from geometric group theory:

The existence of the pair (m,Γ′) is obtained for groups with Kazhdan property (T) in

Theorems 7.10 and 7.13; the argument applies also to other types of groups (see §7.2.5).

Once such invariant polydisks are constructed, several corollaries easily follow (see

§7.4.2). For instance, we get the following result.

Theorem C. If a discrete group Λ with Kazhdan property (T) acts faithfully by

birational transformations on a complex projective variety X, the group Λ is residually

finite and contains a torsion-free, finite-index subgroup.

1.5. The p-adic method

When an invariant p-adic polydisk is constructed, a theorem of Bell and Poonen provides

a tool to extend the action of every element γ in our group into a Tate analytic action

of the additive group Zp. When Γ has finite index in S(Z), as in Theorem B, and

rankR(S)>2, this may be combined with the congruence subgroup property: We prove

that the action of the lattice extends to an action of a finite-index subgroup of the p-adic

group S(Zp) by Tate analytic transformations (Theorem 2.11). Thus, starting with a

countable group of birational transformations, we end up with an analytic action of a

p-adic Lie group to which Lie theory may be applied. This is how Theorems A and B are

proven; our strategy applies also to actions of other discrete groups, such as the mapping

class group of a closed surface of genus g, or the group of outer automorphisms of a free

group (see §6 and §[1]). Let us state a sample result.
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Given a group Γ, let ma(Γ) be the smallest dimension of a complex irreducible variety

on which some finite-index subgroup of Γ acts faithfully by automorphisms. Let Mod(g)

be the mapping class group of a closed orientable surface of genus g. It is known that

ma(Mod(g))66g−6 for all g>2 (see §6.1), and that ma(Mod(1))=1 (because a finite-

index subgroup of GL2(Z) embeds into PGL2(C)).

Theorem D. If Mod(g) acts faithfully on a complex variety X by automorphisms,

then dim(X)>2g−1. Thus, 2g−16ma(Mod(g))66g−6 for every g>2.

1.6. Margulis super-rigidity and Zimmer program

Let Γ be a lattice in a simple real Lie group S, with rankR(S)>2. According to the

Margulis super-rigidity theorem, unbounded linear representations of the discrete group

Γ “come from” linear algebraic representations of the group S itself. As a byproduct,

the smallest dimension of a faithful linear representation of Γ coincides with the smallest

dimension of a faithful linear representation of S (see [51]).

The Zimmer program asks for an extension of this type of rigidity results to non-

linear actions of Γ, for instance to actions of Γ by diffeomorphisms on compact manifolds

(see [67], [68], and the recent survey [32]). Theorems A and B are instances of Zimmer

program in the context of algebraic geometry.

When Γ=SLn(Z) or Γ=Sp2n(Z), Bass, Milnor, and Serre obtained a super-rigidity

theorem from their solution of the congruence subgroup problem (see [2, §16] and [62]).

Our proofs of Theorems A and B may be considered as extensions of their argument to

the context of non-linear actions by algebraic transformations.

1.7. Notation

To specify the field (or ring) of definition K of an algebraic variety (or scheme) X, we

use the notation XK . If K ′ is an extension of K, X(K ′) is the set of K ′-points of X.

The group of automorphisms (resp. birational transformations) of X which are defined

over K ′ is denoted Aut(XK′) (resp. Bir(XK′)).
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2. Tate analytic diffeomorphisms of the p-adic polydisk

In this section, we introduce the group of Tate analytic diffeomorphisms of the unit

polydisk U=Zdp, describe its topology, and study its finite-dimensional subgroups. The

main result of this section is Theorem 2.11.

2.1. Tate analytic diffeomorphisms

2.1.1. The Tate algebra (see [59, §6])

Let p be a prime number. Let K be a field of characteristic zero which is complete with

respect to an absolute value | · | satisfying |p|=1/p; such an absolute value is automatically

ultrametric (see [44, Examples 2 and 3 in §I.2]). Good examples to keep in mind are

the fields of p-adic numbers Qp and its finite extensions. Let R be the valuation ring

of K, i.e. the subset of K defined by R={x∈K :|x|61}; in the vector space Kd, the unit

polydisk is the subset Rd.

Fix a positive integer d, and consider the ring R[x]=R[x1, ...,xd] of polynomial

functions in d variables with coefficients in R. For f in R[x], define the norm ‖f‖ to be

the supremum of the absolute values of the coefficients of f :

‖f‖= sup
I
|aI |, (2.1)

where f=
∑
I=(i1,...,id) aIx

I . By definition, the Tate algebra R〈x〉 is the completion of

R[x] with respect to the norm ‖ · ‖. The Tate algebra coincides with the set of formal

power series f=
∑
I aIx

I , I∈Zd+, converging (absolutely) on the closed unit polydisk Rd.

Moreover, the absolute convergence is equivalent to |aI |!0 as ‖I‖!∞.

For f and g in R〈x〉 and c in R+, the notation f∈pcR〈x〉 means ‖f‖6|p|c and

f ≡ g (mod pc) (2.2)

means ‖f−g‖6|p|c; we then extend such notation componentwise to (R〈x〉)m for all

m>1. For instance, with d=2, the polynomial mapping f(x)=(x1+p,x2+px1x2) satis-

fies f≡id (mod p), where id(x)=x is the identity.



algebraic actions and p-adic analysis 245

2.1.2. Tate diffeomorphisms

Denote by U the unit polydisk of dimension d, that is U=Rd. For x and y in U , the

distance dist(x, y) is defined by dist(x, y)=maxi |xi−yi|, where the xi’s and yi’s are the

coordinates of x and y in Rd. The non-archimedean triangle inequality implies that

|h(y)|61 for every h in R〈x〉 and y∈U . Consequently, every element g in R〈x〉d deter-

mines a Tate analytic map g:U!U .

If g=(g1, ..., gd) is an element of R〈x〉d, the norm ‖g‖ is defined as the maximum of

the norms ‖gi‖ (see equation (2.1)); one has

‖g‖6 1 and dist(g(x), g(y))6 ‖g‖ dist(x, y), (2.3)

so that g is 1-Lipschitz.

For indeterminates x=(x1, ...,xd) and y=(y1, ...,ym), the composition

R〈y〉×R〈x〉m−!R〈x〉

is well defined, and hence coordinatewise we obtain

R〈y〉n×R〈x〉m−!R〈x〉n.

In particular, with m=n=d, we get a semigroup R〈x〉d. The group of (Tate) analytic

diffeomorphisms of U is the group of invertible elements in this semigroup; we denote it

by Diffan(U). Elements of Diffan(U) are transformations f :U!U given by

f(x) = (f1, ..., fd)(x),

where each fi is in R〈x〉 and f has an inverse f−1:U!U that is also defined by power

series in the Tate algebra. The distance between two Tate analytic diffeomorphisms

f and g is defined as ‖f−g‖; by the following lemma, this endows Diffan(U) with the

structure of a topological group.

Lemma 2.1. Let f , g, and h be elements of R〈x〉d. Then,

(1) ‖g�f‖6‖g‖;
(2) if f is an element of Diffan(U), then ‖g�f‖=‖g‖;
(3) ‖g�(id +h)−g‖6‖h‖;
(4) ‖f−1−id‖=‖f−id‖ if f is a Tate analytic diffeomorphism.

Proof. Let s∈R and c>0 satisfy |p|c=|s|=‖g‖. Then (1/s)g is an element of R〈x〉d.
It follows that (1/s)g�f is an element of R〈x〉d too, and that ‖g�f‖6|p|c. This proves
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assertion (1). The second assertion follows because g=(g�f)�f−1. To prove assertion (3),

write h=(h1, h2, ..., hd), where each hi satisfies ‖hi‖6‖h‖. Then g�(id +h) takes the form

g�(id +h) = g+A1(h)+
∑
i>2

Ai(h)

where each Ai is a homogeneous polynomial in (x1, ...,xd) of degree i with coefficients

in R. Assertion (3) follows. For assertion (4), assume that f is an analytic diffeomorphism

and apply assertion (2): ‖f−1−id‖=‖id−f‖.

This lemma easily implies the following proposition (see [18] for details).

Proposition 2.2. For every real number c>0, the subgroup of all elements f∈
Diffan(U) with f≡id (mod pc) is a normal subgroup of Diffan(U).

Lemma 2.3. Let f be an element of Diffan(U). If f(x)≡id (mod pc), with c>1, and

pN divides l, then the l-th iterate of f satisfies f l(x)≡id (mod pc+N ). In particular, if

f≡id (mod p), then fp
`≡id (mod p`).

Proof. Write f(x)=x+sr(x), where r is in R〈x〉d and s∈R satisfies |s|6|p|c. Then,

f �f(x) = x+sr(x)+sr(x+sr(x)) = x+2sr(x)+s2u2(x)

for some u2∈R〈x〉d. After k iterations, one gets

fk(x) = x+ksr(x)+s2uk(x),

with uk∈R〈x〉d. Taking k=p, we obtain

fp(x) = x+psr(x)+s2up(x)≡x (mod pc+1),

because c>1. Then, fp
2

(x)≡x (mod pc+2) and fp
N

(x)≡x (mod pc+N ).

2.2. From cyclic groups to p-adic flows

2.2.1. From cyclic groups to R-flows

The following theorem is due to Bell and to Poonen (see [55], as well as [6, Lemma 4.2]

and [7, Theorem 3.3]).

Theorem 2.4. Let f be an element of R〈x〉d with f≡id (mod pc) for some real

number c>1/(p−1). Then, f is a Tate diffeomorphism of U=Rd and there exists a

unique Tate analytic map Φ:U×R!U such that

(1) Φ(x, n)=fn(x) for all n∈Z;
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(2) Φ(x, t+s)=Φ(Φ(x, s), t) for all t, s∈R;

(3) Φ: t∈R 7!Φ( · , t) is a continuous homomorphism from the abelian group (R,+)

to the group of Tate diffeomorphisms Diffan(U);

(4) Φ(x, t)≡x (mod pc−1/(p−1)) for all t∈R.

We shall refer to this theorem as the “Bell–Poonen theorem”, or “Bell–Poonen ex-

tension theorem”. An analytic map Φ:U×R!U which defines an action of the group

(R,+) will be called an R-flow , or simply a flow . See below, in §2.2.2, how it is viewed

as the flow of an analytic vector field. A flow Φ will be considered either as an analytic

action Φ:U×R!U of the abelian group (R,+), or as a morphism

Φ: t∈R 7−!Φt = Φ(·, t)∈Diffan(U);

we use the same vocabulary (and the same letter Φ) for the two maps. The Bell–Poonen

theorem implies that every element f of R〈x〉d with f≡id (mod p2) is included in an

analytic R-flow.

Corollary 2.5. Let f be an element of R〈x〉d with f≡id (mod pc) for some real

number c>1/(p−1). Then, f is a Tate diffeomorphism of U=Rd and, if f has finite

order in Diffan(U), then f=id.

To prove it, assume that f has order k>1 and apply the Bell–Poonen theorem. For

every x∈U , the analytic curve t 7!Φ(x, t)−x vanishes on the infinite set Zk; hence, it

vanishes identically, f(x)=Φ(x, 1)=x for all x∈U , and f=id.

Remark 2.6. Theorem 2.4 is not stated as such in [55]. Poonen constructs a Tate

analytic map Φ:U×R!U which satisfies property (1) for n>0; his proof implies also

Properties (3) and (4). We now deduce property (1) for n∈Z. We already know that the

relation Φ(x, n+1)=f �Φ(x, n) holds for every integer n>0. Thus, for every x in U , the

two Tate analytic functions t 7!Φ(x, t+1) and t 7!f �Φ(x, t) coincide on Z+, and hence

on R, by the isolated zero principle. This implies Φ(x, t+1)=f �Φ(x, t) in R〈x, t〉d. Take

t=−1 to deduce that f is an analytic diffeomorphism of U and f−1=Φ( · ,−1). Then, by

induction, one gets Φ(x, n)=fn(x) for all n∈Z. Property (2) follows from (1) for s and

t in Z, and then for all values of s and t in R by the isolated zero principle.

2.2.2. Flows and Tate analytic vector fields

Consider the Lie algebra Θ(U) of vector fields X=
∑d
i=1 ui(x)∂i, where each ui is an

element of the Tate algebra R〈x〉. The Lie bracket with a vector field Y=
∑
i vi(x)∂i is

given by

[X,Y] =

d∑
j=1

wj(x)∂j , with wj =

d∑
i=1

(
ui
∂vj
∂xi
−vi

∂uj
∂xi

)
.
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Lemma 2.7. Let Φ:U×R!U be an element of R〈x, t〉d that defines an analytic

flow. Then, X=(∂Φ/∂t)|t=0 is an analytic vector field. It is preserved by Φt: for all

t∈R, (Φt)∗X=X. Moreover, X(x0)=0 if and only if Φt(x0)=x0 for all t∈R.

The analyticity and Φt-invariance are easily obtained. Let us show that X(x0)=0 if

and only if x0 is a fixed point of Φt for all t. Indeed, if X vanishes at x0, then X vanishes

along the curve Φ(x0, t), t∈R, because X is Φt-invariant. Thus, ∂tΦ(x0, t)=0 for all t,

and the result follows.

Corollary 2.8. If f is an element of Diffan(U) with f≡id (mod pc) for some

c>1/(p−1), then f is given by the flow Φf , at time t=1, of a unique analytic vector

field Xf . The zeros of Xf are the fixed points of f .

Two such diffeomorphisms f and g commute if and only if [Xf ,Xg]=0.

Proof. The first assertion follows directly from Lemma 2.7 and the Bell–Poonen

theorem (Theorem 2.4). Let us prove the second assertion. If Xf commute with Xg,

then Φf and Φg commute too, meaning that Φf (Φg(x, t), s)=Φg(Φf (x, s), t) for every

pair (s, t)∈R×R. Taking (s, t)=(1, 1), we obtain f �g=g�f . If f and g commute, then

Φf (Φg(x, n),m)=fm�gn=Φg(Φf (x,m), n) for every pair (m,n) of integers, and the prin-

ciple of isolated zeros implies that the flows Φf and Φg commute; hence, [Xf ,Xg]=0.

2.3. A pro-p structure

Recall that a pro-p group is a topological group G which is a compact Hausdorff space,

with a basis of neighborhoods of the neutral element 1G generated by subgroups having

a (finite) power of p as index. In such a group, the index of every open normal subgroup

is a power of p. We refer to [28] for a good introduction to pro-p groups.

In this subsection, we assume that K is a finite extension of Qp. The residue

field, i.e. the quotient of R by its maximal ideal mK={x∈K :|x|<1}, is a finite field of

characteristic p. It has q elements, with q being a power of p, and the number of elements

of the ring R/mk
K is a power of p for every k. We also fix an element π that generates

the ideal mK .

2.3.1. Action modulo mk
K

Recall that U denotes the polydisk Rd. Let f be an element of Diffan(U). Its reduction

modulo mk
K is a polynomial transformation with coefficients āI in the finite ring R/mk

K ;

it determines a permutation of the finite set (R/mk
K)d. Thus, for each k>1, reduction
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modulo mk
K provides a homomorphism θk: Diffan(U)!Perm((R/mk

K)d) into the group

of permutations of the finite set (R/mk
K)d.

Another way to look at the same action is as follows. Each element of Diffan(U)

acts isometrically on U with respect to the distance dist(x, y) (see §2.1.2); in particular,

for every radius r, Diffan(U) acts by permutations on the set of balls of U of radius r.

Since the set of balls of radius |π|−k is in bijection with the set (R/mk
K)d, the action of

Diffan(U) on this set of balls may be identified with its action on (R/mk
K)d after reduction

modulo mk
K .

As a consequence, we have that an element f of Diffan(U) is the identity if and only

if dist(f(x), x)6|π|k for all x and all k, and this is true if and only if its image in the

group of permutations of (R/mk
K)d is trivial for all k.

2.3.2. A pro-p completion

Given a positive integer r, define Diffan(U)r as the subgroup of Diffan(U) whose elements

are equal to the identity modulo pr. For r=1, we set

D= Diffan(U)1 = {f ∈Diffan(U) : f ≡ id (mod p)}. (2.4)

By definition, f is an element of D if it can be written f=id +ph, where h is in R〈x〉d.
Thus, D acts trivially on (R/pR)d (here, pR=m`

K with |π`|=1/p for some `).

Now we show that the image θ`m(D) in Perm((R/pmR)d) is a finite p-group. Indeed,

by Lemma 2.3, for any f∈D, we have fp
m−1≡id (mod pm). Thus, fp

m−1

acts trivially on

(R/pmR)d. It follows that the order of every element in θ`m(D) is a power of p. Since

θ`m(D) is a finite group, Sylow’s theorem implies that θ`m(D) is a p-group.

We endow the finite groups Perm((R/pmR)d) with the discrete topology, and we

denote by D̂ the inverse limit of the p-groups θ`m(D)⊂Perm((R/pmR)d); D̂ is a pro-

p group: It is the closure of the image of D in
∏
m Perm((R/pmR)d) by the diagonal

embedding (θ`m)m>1. We denote by T the topology of D̂ (resp. the induced topology on

D); the kernels of the homomorphisms θ`m form a basis of neighborhoods of the identity

for this topology.

Since the action on (R/pmR)d is the action on the set of balls of radius p−m in U ,

the Tate topology is finer than the topology T : The identity map f 7!f is a continuous

homomorphism with respect to the Tate topology on the source, and the topology T on

the target; we shall denote this continuous injective homomorphism by

D3 f 7−! f̂ ∈ D̂.
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Remark 2.9. Fix a prime p and consider the field K=Qp, with valuation ring R=Zp.

Assume that the dimension d is 2. The sequence of polynomial automorphisms of the

affine plane defined by hn(x, y)=(x, y+p(x+x2+x3+...+xn)) determines a sequence of

elements of D. No subsequence of {hn}n converges in the Tate topology, but in the

compact group D̂ one can extract a converging subsequence. A better example is provided

by the sequence gn(x, y)=(x, y+sn(x)) with sn(x)=xn(xp
n−pn−1−1). This sequence

converges towards the identity in D̂, because sn vanishes on Z/pnZ, but does not converge

in D for the Tate topology.

2.4. Extension theorem

2.4.1. Analytic groups (see [47, §IV], or [28], [60] and [10, Chapter III])

Let G be a topological group. We say that G is a p-adic analytic group if there is a

structure of p-adic analytic manifold on G which is compatible with the topology of G

and the group structure. The group law G×G3(x, y) 7!xy−1 is p-adic analytic (see [28,

Chapter 8]). If such a structure exists, it is unique (see [28, Chapter 9]). The dimension

dim(G) is the dimension of G as a p-adic manifold.

If G is a compact, p-adic analytic group, then G contains a finite-index, open, normal

subgroup G0 which is a (uniform) pro-p group. Moreover, G0 embeds continuously in

GLd(Zp) for some d (see [28, Chapters 7 and 8]).

Let g be an element of the pro-p group G. The homomorphism ϕ:m∈Z 7!gm∈G
extends automatically to the pro-p completion of Z, i.e. to a continuous homomorphism

of pro-p groups

�ϕ: Zp−!G.

For simplicity, we denote �ϕ(t) by gt for t in Zp (see [28, Proposition 1.28], for embeddings

of Zp into pro-p groups).

Lemma 2.10. Let G be a p-adic analytic pro-p group of dimension s=dim(G). Let

Γ be a dense subgroup of G. There exist an integer r>s and elements γ1, ..., γr in Γ such

that the map π: Zrp!G, π(t1, ..., tr)=(γ1)t1 ... (γr)
tr , satisfies the following properties:

(1) π is a surjective, p-adic analytic map;

(2) the restriction of π to {(ti)i :tj=0 if j>s} is a local diffeomorphism onto its

image;

(3) as l runs over the set of positive integers, the sets π((plZp)
r) form a basis of

neighborhoods of the neutral element in G.

Proof. Let g be the Lie algebra of G; as a finite-dimensional Qp-vector space, g

coincides with the tangent space of G at the neutral element 1G. There are finite-
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index open subgroups H of G for which the exponential map defines a p-adic analytic

diffeomorphism from a neighborhood of the origin in g(Zp) onto the group H itself (see

the notion of standard subgroups in [10], [28]). Let H be such a subgroup.

Since Γ is dense in G, its intersection with H is dense in H. Each αi∈Γ∩H corre-

sponds to a tangent vector νi∈g such that exp(tνi)=αti for t∈Zp. Since Γ is dense in

H, the subspace of g generated by all the νi is equal to g. Thus, one can find elements

α1, ..., αs of Γ, with s=dim(G), such that the νi generate g. Then, the map π: Zdp!H

defined by

π(t1, ..., ts) = exp(t1ν1) ... exp(tsνs) =αt11 ... αtss

is analytic and, by the p-adic inverse function theorem, it determines a local analytic

diffeomorphism from a neighborhood of zero in g to a neighborhood V of 1G. The group

G can then be covered by a finite number of translates hjV , j=1, ... , s′. Since Γ is dense,

one can find elements βj in Γ with β−1
j hj∈V . The lemma follows if one sets r=s+s′,

γi=αi for 16i6s, and γi=βi−s for s+16i6r.

2.4.2. Actions by Tate analytic diffeomorphisms.

Let G be a compact p-adic analytic group. Let Γ be a finitely generated subgroup of G.

We say that G is a virtual pro-p completion of Γ if there exists a finite-index subgroup Γ0

of Γ such that (1) the closure of Γ0 in G is an open pro-p subgroup G0 of G, and (2) G0

coincides with the pro-p completion of Γ0. Note that, by compactness of G, the group

G0 has finite index in G. A good example to keep in mind is Γ=SLn(Z) in G=SLn(Zp)

(see §4.2.3 below).

We now study homomorphisms from Γ to the group Diffan(U). Thus, in this para-

graph, the same prime number p plays two roles, since it appears in the definition of the

pro-p structure of G, and of the Tate topology on Diffan(U).

Theorem 2.11. Let p be an odd prime, and let G be a compact, p-adic analytic

group. Let Γ be a finitely generated subgroup of G. Assume that G is a virtual pro-p

completion of Γ.

Let Φ: Γ!Diffan(U)1 be a homomorphism into the group of Tate analytic diffeomor-

phisms of U which are equal to the identity modulo p. Then, there exists a finite-index

subgroup Γ0 of Γ for which Φ|Γ0
extends to the closure G0=�Γ0⊂G as a continuous

homomorphism

Φ̄:G0−!Diffan(U)1

such that the action G0×U!U given by (g, x) 7!Φ̄(g)(x) is analytic.
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Denote Diffan(U)1 by D, as in equation (2.4). Recall from §2.3.2 that D embeds

continuously into the pro-p group D̂. Let Γ0 be a finite-index subgroup of Γ whose

closure G0 in G is the pro-p completion of Γ0. We obtain:

(1) The homomorphism Γ0!D̂ extends uniquely into a continuous homomorphism

Φ̂ from G0=�Γ0 to D̂.

Then, the following property is automatically satisfied:

(2) Let f be an element of D. By the Bell–Poonen extension theorem (Theorem 2.4),

the homomorphism t∈Z 7!f t extends to a continuous morphism Zp!D via a Tate ana-

lytic flow. If f̂ denotes the image of f in D̂, then n 7!(f̂)n is a homomorphism from Z to

the pro-p group D̂; as such, it extends canonically to the pro-p completion Zp, giving rise

to a homomorphism t∈Zp 7!(f̂)t∈D̂. These two extensions are compatible: (̂f t)=(f̂)t

for all t in Zp.

Thus, given any 1-parameter subgroup Z of Γ, we already know how to extend Φ: Z⊂
Γ!D into Φ̄: Zp⊂G0!D in a way that is compatible with the extension Φ̂:G0!D̂.

For simplicity, we now denote Γ0 by Γ and G0 and G.

Lemma 2.12. Let (αn)n be a sequence of elements of Γ that converges towards 1G

in G. Then (Φ(αn))n converges towards the identity in Diffan(U).

Proof. Write αn=π(t1(n), ..., tr(n))=(γ1)t1(n) ... (γr)
tr(n), where π and the γi are

given by Lemma 2.10 and the ti(n) are in Zp. Since αn converges towards 1G, we may

assume, by Lemma 2.10, that each (ti(n)) converges towards zero in Zp as n goes to ∞.

By the Bell–Poonen theorem (Theorem 2.4), each fi :=Φ(γi) gives rise to a flow t 7!f ti ,
t∈Zp; moreover, ‖f ti−id‖6pm if |t|<pm (apply Lemma 2.3 and the last assertion in the

Bell–Poonen theorem). Thus, the lemma follows from Lemma 2.1 and the equality

Φ(αn) = f
t1(n)
1 ... f tr(n)

r . (2.5)

To prove this equality, one only needs to check it in the group D̂, because D embeds

into D̂. But, in D̂, the equality holds trivially because the homomorphism Γ0!D̂ extends

to G0 continuously (apply properties (1) and (2) above).

Lemma 2.13. If (αm)m>1 is a sequence of elements of Γ that converges towards an

element α∞ of G, then (Φ(αm))m converges to an element of Diffan(U) which depends

only on α∞.

Proof. Since (αm)m converges, αm�α
−1
m′ converges towards the neutral element 1G

as m and m′ go to ∞. Consequently, Lemma 2.12 shows that the sequence (Φ(αm))m is

a Cauchy sequence in Diffan(U), and hence a convergent sequence.(1) The limit depends

(1) Write Φ(αm�α−1
m′ )=id+εm,m′ , where εm,m′ is equivalent to the constant map zero in R〈x〉d

modulo |p|k(m,m′), with k(m,m′) that goes to ∞ as m and m′ do. Then, apply Lemma 2.1.
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only on α∞, not on the sequence (αm)m (if another sequence (α′m)m converges toward

α∞, consider the sequence α1, α
′
1, α2, α

′
2, ... ).

We can now prove Theorem 2.11. Lemmas 2.12 and 2.13 show that Φ extends, in a

unique way, to a continuous homomorphism Φ̄:G!D. Moreover, this extension coincides

with Bell–Poonen extensions Zp!D along 1-parameter subgroups of G generated by

elements of Γ. According to Lemma 2.10, one can find s elements γ1, ..., γs of Γ, with

s=dim(G), such that the map

(t1, ..., ts) 7−!π(t1, ..., td) = γt11 ... γtss

determines an analytic diffeomorphism from a neighborhood of zero in Zsp to a neighbor-

hood of the identity in G. By the Bell–Poonen theorem, the map

Zsp×U 3 (t1, ..., ts, x) 7−!Φ(γ1)t1 �...�Φ(γs)
ts(x)

is analytic. Thus, the action of G on U determined by Φ̄ is analytic. This concludes the

proof of Theorem 2.11.

3. Good models, p-adic integers, and invariant polydisks

Start with an irreducible complex variety X of dimension d, a finitely generated group

Γ, and a homomorphism %: Γ!Bir(X). First, we explain how to replace the field C, or

any algebraically closed field k of characteristic zero, by the ring of p-adic integers Zp,

for some prime p, the variety X by a variety XZp which is defined over Zp, and the

homomorphism % by a homomorphism into Bir(XZp).

In a second step, we look for a polydisk U'Zdp in XZp(Qp) which is invariant under

the action of Γ in order to apply the Bell–Poonen extension theorem (Theorem 2.4)

on U . This is easy when %(Γ) is contained in Aut(X), but much harder when Γ acts by

birational transformations; §7 addresses this problem.

3.1. From complex to p-adic coefficients: good models

Let k be an algebraically closed field of characteristic zero. Let X=Xk be a quasi-projec-

tive variety defined over k, for instance X=Ad, the affine space. Let Γ be a subgroup of

Bir(Xk) with a finite, symmetric set of generators S={γ1, ..., γs}.
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3.1.1. From complex to p-adic coefficients

Fix an embedding of X into a projective space PNk and write

X =Z(a)\Z(b),

where a and b are two homogeneous ideals in k[x0, ...,xN ] and Z(a) denotes the zero-set

of the ideal a. Choose generators (Fi)
a
i=1 and (Gj)

b
j=1 for a and b, respectively.

Let C be a finitely generated Q-algebra containing the set B of all coefficients of the

Fi, the Gj , and the polynomial formulas defining the generators γk∈S; more precisely,

each γk is defined by ratios of regular functions on affine open subsets Vl=X\Wl, and one

includes the coefficients of the formulas for these regular functions and for the defining

equations of the Zariski closed subsets Wl. One can view X and Γ as defined over

Spec(C).

Lemma 3.1. (See [48, §4 and §5] and [6, Lemma 3.1]) Let L be a finitely generated

extension of Q and B be a finite subset of L. The set of primes p for which there exists

an embedding of L into Qp that maps B into Zp has positive density among the set of

all primes.

By positive density , we mean that there exist ε>0 and N0>0 such that, among the

first N primes, the proportion of primes p that satisfy the statement is bounded from

below by ε if N>N0.

Apply this lemma to the fraction field L=Frac(C) and the set B of coefficients. This

provides an odd prime p and an embedding ι:L!Qp with ι(B)⊂Zp. Applying ι to the

coefficients of the formulas that define X and the elements of Γ, we obtain what will be

called a “model of the pair (X,Γ) over Zp”; in particular, Γ embeds into Bir(XZp), or in

Aut(XZp) if Γ is initially a subgroup of Aut(Xk). The following paragraphs clarify this

idea.

3.1.2. Good models

Let R be an integral domain. Let XR and YR be separated and reduced schemes of finite

type defined over R. Assume, moreover, that the morphism XR!Spec(R) is dominant

on every irreducible component of XR. Let U and V be two dense open subsets of XR.

Two morphisms of R-schemes f :U!YR and g:V!YR are equivalent if they coincide on

some dense open subset W of U∩V ; rational maps f :XR99KYR are equivalence classes

for this relation ([38, §7.1]). For any rational map f , there is a maximal open subset

Dom(f)⊂XR on which f induces a morphism: if a morphism V!YR is in the equivalence
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class of f , then V is contained in Dom(f). This open subset Dom(f) is the domain of

definition of f ([38, §7.2]); its complement is the indeterminacy locus Ind(f).

A rational map f is birational if there is a rational map g:YR99KXR such that

g�f=Id and f �g=Id. The group of birational transformations f :XR99KXR is denoted

Bir(XR); the group of regular automorphisms is denoted Aut(XR). Consider a birational

map f :X99KY and denote by g the inverse map f−1. The domains of definition Dom(f)

and Dom(g) are dense open subsets of X and Y , respectively, for the Zariski topology.

Then, set UR,f=(f |Dom(f))
−1(Dom(g)). As f is birational, UR,f is open and dense in X.

The restriction of f to this open subset is an open immersion of UR,f into Y ; indeed,

f(UR,f ) is the open set (g|Dom(g))
−1(UR,f ) and g is a morphism on f(UR,f ) such that

g�f=Id. Moreover, UR,f is the largest open subset of X on which f is locally, for the

Zariski topology, an open immersion. In what follows, we denote by BR,f the complement

of UR,f in XR: this nowhere dense Zariski closed subset is the set of bad points; on its

complement, f is an open immersion.

For y∈Spec(R), denote by Xy the reduced fiber of XR above y. If Xy∩BR,f is

nowhere dense in Xy, then f induces a birational transformation fy:Xy99KXy; we have

Ind(fy)⊂Xy∩BR,f , and this inclusion may be strict.

If η is the generic point of Spec(R), we can always restrict f to Xη. This map

f 7!fη determines an isomorphism of groups i: Bir(XR)!Bir(Xη). More precisely, the

following holds: let K be the fraction field of the integral domain R; let XR be a separated

and reduced scheme over R; assume that XR is of finite type over R, and that the

morphism XR!Spec(R) is dominant on every irreducible component of XR; then, the

map i: Bir(XR)!Bir(XK) is bijective. Indeed, i is injective because XR is of finite type

over R and the map XR!Spec(R) is dominant on every irreducible component of XR.

It is surjective, because fη can be defined on a dense affine open subset

U = Spec(R[x1, ..., xm]/I)

of XR by polynomial functions Gi with coefficients in K. There is an element d of R

such that the functions dGi have coefficients in R; then, fη extends as a morphism on

Spec(R[1/d, x1, ..., xm]/I)). (See [18, §9.1] for details.)

Let k be an algebraically closed field of characteristic zero. Let Xk be an irreducible

variety which is defined over k. Let Γ be a subgroup of Bir(Xk) (resp. Aut(Xk)). Let R

be a subring of k. We say that the pair (X,Γ) is defined over R if there is a separated,

reduced, irreducible scheme XR over R for which the structure morphism XR!Spec(R)

is dominant, and an embedding Γ!Bir(XR) (resp. in Aut(XR)) such that both Xk and

Γ are obtained from XR by base change: Xk=XR×Spec(R)Spec(k) and similarly for all

elements f∈Γ.



256 s. cantat and j. xie

Let p be a prime number. A model for the pair (X,Γ) over the ring Zp is given by

the following data. First, a ring R⊂k on which X and Γ are defined, and an embedding

ι:R!Zp. Then, an irreducible scheme XZp over Zp and an embedding %: Γ!Bir(XZp)

(resp. in Aut(XZp)) such that

(i) XZp'XR×Spec(R)Spec(Zp) is the base change of XR and %(f) is the base change

of f∈Bir(XR) for every f in Γ.

A good model for the pair (X,Γ) over the ring Zp is a model such that

(ii) the special fiber XFp of XZp!Spec(Zp) is absolutely reduced and irreducible

and its dimension is

dimFp(XFp) = dimQp
(XZp×Spec(R)Spec(Qp));

(iii) for all f∈Γ, the special fiber XFp is not contained in BZp,%(f).

If K is a finite extension of Qp and OK is its valuation ring, one can also introduce

the notion of good models over OK . The following is proven in the appendix.

Proposition 3.2. Let X be an irreducible complex projective variety, and Γ be

a finitely generated subgroup of Bir(X) (resp. of Aut(X)). Then, there exist infinitely

many primes p>3 such that the pair (X,Γ) has a good model over Zp.

3.2. From birational transformations to local analytic diffeomorphisms

3.2.1. Automorphisms and invariant polydisks

Now, for simplicity, assume that X is the affine space Ad. Let p be an odd prime number,

and let Γ be a subgroup of Aut(AdZp); all elements of Γ are polynomial automorphisms of

the affine space defined by formulas with coefficients in Zp. Reduction modulo p provides

a homomorphism from Γ to the group Aut(AdFp): every automorphism f∈Γ determines

an automorphism f̄ of the affine space with coefficients in Fp. One can also reduce

modulo p2, p3, ... .

If R0 is a finite ring, then Ad(R0) and GLd(R0) are both finite. Therefore, the

automorphisms f∈Γ with f(m)=m (mod p2) and dfm=Id (mod p) for all points m in

Ad(Zp) form a finite-index subgroup Γ0 of Γ. Every element of Γ0 can be written

f(x) = p2A0+(Id +pB1)(x)+
∑
k>2

Ak(x),

where A0 is a point with coordinates in Zp, B1 is a d×d matrix with coefficients in Zp,

and
∑
k>2Ak(x) is a finite sum of higher-degree homogeneous terms with coefficients in

Zp. Rescaling, one gets

p−1f(px) = pA0+(Id +pB1)(x)+
∑
k>2

pk−1Ak(x).
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Thus, the Bell–Poonen extension theorem (Theorem 2.4) applies to p−1f(px), because

p>3.

A similar argument applies to automorphism groups Γ of any quasi-projective variety

X of dimension d. One first replaces Qp by a finite extension K to assure the existence of

at least one point m in X(R/mK) (with R the valuation ring of K). Then, the stabilizer

of m modulo mK is a finite-index subgroup, because X(R/mK) is a finite set; this group

fixes a polydisk in X(K) and the Bell–Poonen theorem can be applied to a smaller,

finite-index subgroup. This provides the following statement, the proof of which is given

in [7] (Propositions 4.4 and 2.2), when the group Γ is cyclic. Propositions 3.2 and 3.4

are inspired by [7] and also imply this statement.

Proposition 3.3. (see [7]) Let XZp be a quasi-projective variety defined over Zp,

and let Γ be a subgroup of Aut(XZp). Then, there exist a finite extension K of Qp, a

finite-index subgroup Γ0 of Γ, and an analytic diffeomorphism ϕ from the unit polydisk

U=Rd⊂Kd to an open subset V of X(K) such that V is Γ0-invariant and the action of

Γ0 on V is conjugate, via ϕ, to a subgroup of Diffan(U)1.

Combining this result with Proposition 3.2, we get: If a finitely generated group Γ

admits a faithful action by automorphisms on some irreducible d-dimensional complex

variety, there are a finite-index subgroup Γ0 in Γ, a prime p, and a finite extension K of

Qp such that Γ0 admits a faithful action by Tate analytic diffeomorphisms on a polydisk

U⊂Kd. This will be used as a first step in the proofs of Theorems A and D.

3.2.2. Birational transformations and invariant polydisks

Let us now deal with invariant polydisks for groups of birational transformations. Let

XZp be a projective variety defined over Zp and let Γ be a subgroup of Bir(XZp) with a

finite symmetric set of generators S. Let XFp be the special fiber of XZp . We assume

that the special fiber is not contained in BZp,s for any s∈S; this implies that XFp

is not contained in BZp,g for every g∈Γ. By restriction, we obtain a homomorphism

Γ!Bir(XFp). These assumptions are satisfied by good models.

Let K be a finite extension of Qp, OK be the valuation ring of K, and F be the

residue field of OK ; by definition, F=OK/mK , where mK is the maximal ideal of OK .

Denote by | · |p the p-adic norm on K, normalized by |p|p=1/p. Set

XOK =XZp×Spec(Zp)Spec(OK).

The generic fiber

XZp×Spec(Zp)Spec(K)
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is denoted by XK , and the special fiber is

XF =XZp×Spec(Zp)Spec(F).

Denote by r:XK(K)!XF(F)=X(F) the reduction map. Let x be a smooth point in

X(F) and V be the open subset of XK(K) consisting of points z satisfying r(z)=x.

Proposition 3.4. (See also [7, Proposition 2.2]) There exists an analytic diffeo-

morphism ϕ from the unit polydisk U=OdK to the open subset V of XK(K) such that,

for every f∈Bir(XOK ) with x /∈BOK ,f and f(x)=x, the set V is f -invariant and the

action of f on V is conjugate, via ϕ, to a Tate analytic diffeomorphism on U . Thus, if

Γ⊂Bir(XZp) satisfies

(i) x is not contained in any of the sets BOK ,f (for f∈Γ),

(ii) f(x)=x (for every f∈Γ),

then V is Γ-invariant and ϕ conjugates the action of Γ on V to a group of analytic

diffeormorphisms of the polydisk U .

Thus, once a good model has been constructed, the existence of an invariant polydisk

on which the action is analytic is equivalent to the existence of a smooth fixed point

x∈XF(F) in the complement of the bad loci BOK ,f , f in Γ. Periodic orbits correspond

to polydisks which are invariant by finite-index subgroups. This will be used to prove

Theorems B and C.

We shall prove this proposition in the appendix. Note that Propositions 3.4 and 3.2,

together with rescaling argument of §3.2.1, provide a proof of Proposition 3.3.

4. Regular actions of SLn(Z) on quasi-projective varieties

In this section, we prove the first assertion of Theorem A together with one of its corol-

laries. Thus, our goal is the following statement.

Theorem 4.1. Let n>2 be an integer. Let Γ be a finite-index subgroup of SLn(Z).

If Γ embeds into the group of automorphisms of a complex quasi-projective variety X,

then dim(X)>n−1; if X is a complex affine space, then dim(X)>n.

4.1. Dimension 1

When dimC(X)=1, the group of automorphisms of X is isomorphic to PGL2(C), if X is

the projective line, and is virtually solvable, otherwise. On the other hand, every finite-

index subgroup of SLn(Z) contains a non-abelian free group if n>2 (see [39, Chapter 1]).

Theorems A and 4.1 follow from these remarks when n=2 or dim(X)=1. In what follows,

we assume dimC(X)>2 and n>3.
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4.2. Congruence subgroups of SLn(Z); see [2], [62]

4.2.1. Normal subgroups

Let Γ be a finite-index subgroup of SLn(Z). For n>3, the group Γ is a lattice in the

higher-rank almost simple Lie group SLn(R). For such a lattice, every normal subgroup

is either finite and central, or cofinite. In particular, the derived subgroup [Γ,Γ] has

finite index in Γ.

4.2.2. Strong approximation

For any n>2 and m>1, denote by Γm and Γ∗m the following subgroups of SLn(Z):

Γm = {B ∈SLn(Z) :B≡ Id (mod m)},

Γ∗m = {B ∈SLn(Z) : there exists a∈Z such that B≡ a Id (mod m)}.

By definition, Γm is the principal congruence subgroup of level m.

Let p be a prime number. The closure of Γm in SLn(Zp) is the finite-index, open

subgroup of matrices which are equal to Id modulo m; thus, if m=pur with r∧p=1,

the closure of Γm in SLn(Qp) coincides with the open subgroup of matrices M∈SLn(Zp)

which are equal to Id modulo pu.

The strong approximation theorem states that the image of SLn(Z) is dense in the

product
∏
p SLn(Zp) (product over all prime numbers). If Γ has finite index in SLn(Z),

its closure in
∏
p SLn(Zp) is a finite-index subgroup; it contains almost all SLn(Zp).

4.2.3. Congruence subgroup property

A deep property that we shall use is the congruence subgroup property, which holds

for n>3. It asserts that every finite-index subgroup Γ of SLn(Z) contains a principal

congruence subgroup Γm; if Γ is normal, there exists a unique integer m with Γm⊂Γ⊂Γ∗m.

We shall come back to this property in §8.1 for more general algebraic groups (the

congruence subgroup property is not known in full generality for cocompact lattices).

Another way to state the congruence subgroup and strong approximation properties

is to say that the profinite completion of SLn(Z) coincides with the product
∏
p SLn(Zp).

If Γ has finite index in SLn(Z), its profinite completion is a product
∏
q Gq⊂

∏
q SLn(Zq),

where each Gq has finite index in SLn(Zq), and Gq=SLn(Zq) for almost all primes q.

Remark 4.2. Fix n>3. For every prime number q, the group SLn(Zq) is a perfect

group, because it is generated by the elementary matrices eij(r), r∈Zq, and every ele-

mentary matrix is a commutator. Thus, every homomorphism from SLn(Zq) to a p-group
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is trivial, because every p-group is nilpotent. Thus, the pro-p completion of SLn(Zq) is

trivial.

Before stating the following lemma, recall that the concept of virtual pro-p comple-

tion is introduced in §2.4.2.

Lemma 4.3. Let n be an integer >3. Let Γ be a finite-index subgroup of SLn(Z).

Let Γm be a principal congruence subgroup contained in Γ. If p divides the integer m,

the pro-p completion of Γm coincides with its closure in SLn(Zp). Therefore, SLn(Zp) is

a virtual pro-p completion of its subgroup Γ.

Proof. Fix a positive integer m such that Γ contains Γm and p divides m. The

profinite completion of Γm coincides with the product
∏
q Gq, where Gq is the closure of

Γm in SLn(Zq). If m=pur with p∧r=1, then Gp is the open, pro-p subgroup of SLn(Zp)

defined by Gp={B∈SLn(Zp):B≡Id (mod pu)}. If q does not divide m, Gq is equal to

SLn(Zq). If q 6=p and q divides m, then the group Gq is an open subgroup of the pro-q

group {B∈SLn(Zq):B≡Id (mod q)}. Thus, if q 6=p, then the pro-p completion of Gq is

trivial; and the pro-p completion of Γm coincides with its closure Gp in SLn(Zp).

4.3. Extension, algebraic groups, and Lie algebras

Given an analytic diffeomorphism f of the unit polydisk U , its jacobian determinant

is an analytic function which is defined by Jac(f)(x)=det(dfx), where dfx denotes the

differential of f at x. One says that the jacobian determinant of f is identically equal

to 1 if Jac(f) is the constant function 1. In the following theorem, p is an odd prime,

and K and R are as in §2.1.1.

Theorem 4.4. Let n>3 be an integer. Let Γ be a finite-index subgroup of SLn(Z).

Let U be the unit polydisk Rd, for some d>1. Let Φ: Γ!Diffan(U) be a homomorphism

such that f(x)≡x (mod p) for all f in Φ(Γ). If the image of Φ is infinite, then n−16d.

If, moreover, the jacobian determinant is identically equal to 1 for all f in Φ(Γ), then

n6d.

Remark 4.5. All proper subalgebras of sln(Qp) have codimension >n−1, and there

are two conjugacy classes of algebraic subgroups of codimension n−1 in SLn,Qp
for n>3.

The stabilizer of a point in the projective space Pn−1(Qp), and the stabilizer of a hy-

perplane in that space (see [9, Chapter 5] and §8.2 below). These conjugacy classes are

exchanged by the outer automorphism θ:A 7! tA−1. When n=2, θ is an inner automor-

phism and there is only one conjugacy class.
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Proof. According to Lemma 4.3 and Theorem 2.11, SLn(Zp) is a virtual pro-p com-

pletion of Γ, and there is a principal congruence subgroup Γm⊂Γ such that Φ extends as

an analytic homomorphism Φ̄:G!Diffan(U)1 from the group Γm to its pro-p completion

G=�Γm⊂SLn(Zp). The differential dΦ̄Id provides a homomorphism of Lie algebras

dΦ̄Id: sln(Qp)−!Θ(U),

where Θ(U) is the algebra of analytic vector fields on U . If the image of Φ is infinite, its

kernel is a finite central subgroup of Γ (see §4.2); hence, there are infinite-order elements

in Φ(Γ). The vector field corresponding to such an element does not vanish identically;

thus, dΦ̄Id is a non-trivial homomorphism. Since sln(Qp) is a simple Lie algebra, dΦ̄Id is

an embedding. Pick w in sln(Qp)\{0}. Since dΦ̄Id is an embedding, there is a point o in

U such that dΦ̄Id(w)(o) 6=0. The subset of elements v∈sln(Qp) such that dΦ̄Id(v)(o)=0

constitutes a proper subalgebra pΦ of sln(Qp) of codimension at most d. Thus, d>n−1

by Remark 4.5.

Let us now assume that d=n−1. Consider the parabolic subgroup P0 of SLn which

is defined as the stabilizer of the point m0=[1:0:0 ...:0] in the projective space Pn−1.

Assume, first, that pΦ coincides with the Lie algebra p0 of P0. The quotient of sln by p0

can be identified with the tangent space Tm0
Pn−1 of Pn−1 at m0, and to the tangent space

of U at the fixed point o. The group P0 contains the diagonal matrices with diagonal

coefficients a11=a and aii=b for 26i6n, where a and b satisfy the relation abn−1=1,

and those diagonal matrices act by multiplication by b/a on Tm0Pn−1. Thus, there are

elements g in G fixing the point o in U and acting by non-trivial scalar multiplications

on the tangent space T0U ; such elements have jacobian determinant 6=1. Since Γ is dense

in G, and both Φ and Jac are continuous, there are elements f in Γ with Jac(f) 6=1.

This concludes the proof of the theorem when pΦ=p0, or more generally when pΦ is

conjugate to p0. If pΦ is not conjugate to p0, we replace Φ by Φ�θ and apply Remark 4.5

to conclude (note that the outer automorphism θ preserves Γm and induces an analytic

automorphism of G).

4.4. Embeddings of SLn(Z) in Aut(X) or Aut(Ad
C)

We may now prove Theorem 4.1. According to §4.1, we assume n>3. Let d be the

dimension of X and Ψ: Γ!Aut(X) be a homomorphism with infinite image.

According to §3.1 and Proposition 3.3, one can find a prime p>3, a model of (X,Γ)

over a finite extension K of Qp, a finite-index subgroup Γ′ of Γ, and a polydisk U'Rd in

X(K) such that U is invariant under the action of Γ′ and the action of Γ′ on U is given

by a homomorphism Φ: Γ′!Diffan(U)1. Theorem 4.4 implies dim(X)>n−1.
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Assume now that X is the affine space AdC. If f is an automorphism of AdC, its

jacobian determinant Jac(f) is constant because Jac(f) is a polynomial function on

Ad(C) that does not vanish. Thus, Jac(·) provides a homomorphism from Γ to (C∗, ·);
since the derived group [Γ,Γ] has finite index in Γ (see §4.2.1), one may assume that

Jac(Φ(γ))=1 for all γ∈Γ′. Then, Theorem 4.4 implies that d>n.

5. Actions of SLn(Z) in dimension n−1

In this paragraph, we pursue the study of algebraic actions of finite-index subgroups

of SLn(Z) on quasi-projective varieties X of dimension d, and complete the proof of

Theorem A. The notation and main properties are the same as in §4, but with two

differences: we study both regular and birational actions, and we add a constraint on

the dimension of X, which corresponds to the limit case in the inequality d>n−1 of

Theorem 4.1. Thus,

(i) Γ is a finite-index subgroup of SLn(Z);

(ii) XC is a complex, irreducible, quasi-projective variety of dimension d=n−1;

(iii) Γ embeds into Aut(XC) (resp. in Bir(XC));

(iv) there is a finite extension K of Qp, and a model of (X,Γ) over the valuation

ring R of K, together with a polydisk U in X(K) which is Γ invariant, and on which

Γ acts by analytic diffeomorphisms, as in Proposition 3.3: this gives a homomorphism

Φ: Γ!Diffan(U)1.

Theorem 5.1. Under the above four hypotheses (i)–(iv), there exists an isomor-

phism τ :X!PdC (resp. a birational map τ :X99KPdC), from X to the projective space

of dimension d=n−1 and a homomorphism %: Γ!PGLn(C) such that τ �γ=%(γ)�τ for

every γ in Γ.

Theorem A follows from Theorem 4.1, Proposition 3.3, and Theorem 5.1.

Remark 5.2. When Γ acts by birational transformations on X, the existence of a Γ-

invariant polydisk U in X(K) on which Γ acts by analytic diffeomorphisms (in particular,

U does not contain any indeterminacy point of Γ) may look as a strong hypothesis. We

shall obtain such polydisks in §7.3

5.1. Extension

We apply Lemma 4.3 and Theorem 2.11 to the analytic action of Γ on U . Thus, there

exists a principal congruence subgroup Γm⊂Γ such that the homomorphism Φ from Γm
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to Diffan(U)1 extends as an analytic homomorphism Φ̄ from the p-adic analytic group

G=�Γm⊂SLn(Zp) to Diffan(U)1.

5.2. Stabilizer of the origin in U

Let P0 be the subgroup of SLn(Qp) which fixes the point m0=[1: 0: ... : 0] in the projective

space Pn−1(Qp); it is a maximal parabolic subgroup of SLn(Qp). We denote by p0 its

Lie algebra, as in the proof of Theorem 4.4.

Lemma 5.3. There are an element A in SLn(Z) and a point o′ in U with the follow-

ing property. For the homomorphism Φ̄�cA:G!Diffan(U)1, where cA is either the con-

jugacy cA(M)=AMA−1, or its composition with the outer automorphism θ:M 7! tM−1,

the stabilizer P ′⊂G of the point o′ coincides with P0∩G.

Let P⊂G be the stabilizer of the origin o∈U . Since d=n−1, the Lie algebra p of

P has codimension n−1 in g=sln(Qp), and is therefore maximal. Let P̃ be the Zariski

closure of P in SLn(Qp). Then, P̃∩G coincides with P , and P̃ is conjugate to P0 or

to θ(P0) in SLn(Qp) (see Remark 4.5). For simplicity, we assume that P̃ is conjugate

to P0; if P̃ is conjugate to θ(P0), one only needs to replace the action of SLn(Qp) on

the projective space by the dual action on the space of hyperplanes in Pn−1(Qp), or to

compose Φ̄ with θ.

To prove the lemma, we make the following remarks.

(1) There is a point [a] in Pn−1(Qp) such that P̃ is the stabilizer of [a] in SLn(Qp).

One can write [a]=[a1 : ... :an] with ai in Zp for all 16i6n and at least one |ai| equal

to 1.

(2) There is a matrix B in G such that [B(a)] is in Pn−1(Z). Indeed, G is the

congruence subgroup of SLn(Zp) defined as the group of matricesM withM≡Id (modm);

if one picks an element [a′]=[a′1 : ... :a′n] of Pn−1(Z) with entries a′i≡ai modulo a large

power of m, then there is an element B of G that maps [a] to [a′]. The stabilizer of the

point o′ :=Φ(B)(0) in the group G is equal to BPB−1 and coincides with the stabilizer

of a point [a′]∈Pn−1(Z).

(3) Then, there exists A in SLn(Z) such that A[a′]=[1:0:...:0]. Composing Φ with

the conjugation cA, the stabilizer of o′ is now equal to P0∩G.

(4) Being a principal congruence subgroup, Γm is normal in SLn(Z); it is there-

fore invariant under the conjugacy cA:M 7!AMA−1 (and under the automorphism θ).

Thus, the homomorphism Φ�cA (resp. Φ̄�cA) determines a new homomorphism from Γm
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(resp. G) to Diffan(U)1 which preserves the polydisk U and for which the stabilizer of o′

concides with P0∩Γm (resp. with P0∩G).

Let us now apply Lemma 5.3 to rigidify slightly the situation. We conjugate the

action of Γm on U by the translation x 7!x+o′; then we compose the embedding of Γm in

Aut(X) by the automorphism cA of Γm given by Lemma 5.3 to assume that the stabilizer

of the origin in G is the intersection of G with the parabolic subgroup P0. Thus, the

embedding Γm!Aut(X) and the coordinates of U have been modified.

5.3. Local normal form

Consider the subgroup T of G consisting of all matrices(
1 0

t Idn−1

)
,

where Idn−1 is the identity matrix of size (n−1)×(n−1) and t is a “vertical” vector of

size n−1 with entries t2, ..., tn in Zp that are equal to zero modulo m. By construction,

T is contained in G=�Γm. The intersection T∩P0 is the trivial subgroup {Idn}.
The group T is an abelian subgroup of G of dimension d=n−1 that acts locally

freely near the origin of U (if not, this would contradict the maximality of P0). There

are local coordinates z=(z2, ..., zn) on U near the origin o such that T acts by

Φ(t)(z) = (z2+t2, ..., zn+tn);

in these coordinates, the action of the group G is locally conjugate to the linear projective

action of G around the point m0=[1:0: ... :0] in Pn−1(K) (see the proof of Theorem 4.4).

Note that the local coordinate zi may be transcendental; it is not obvious, a priori, that

zi extends as an algebraic (or rational) function on the quasi-projective variety X. We

shall prove that this is indeed the case in the next subsection (see Lemma 5.5).

5.4. Invariant (algebraic) functions

Our goal, in this subsection, is to prove Lemma 5.5. Consider the 1-parameter unipotent

subgroup E12 of P whose elements have the form

e12(s) =

(
1 s

0 Idn−1

)
,

with s=(s, 0, ..., 0), s in Zp, and s≡0 modulo m. Let α12=e12(s), s∈Z\{0}, be a non-

trivial element of E12∩Γm. By construction, the analytic diffeomorphism Φ(α12) of U
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transforms the local coordinate z2 into z2/(1+sz2), and the set {z2=0} is, locally, the

set of fixed points of Φ(α12). Since Φ(α12) is the restriction to U of a birational trans-

formation of X, the hypersurface {z2=0} is the intersection of an algebraic hypersurface

of X with a neighborhood of zero in U .

Let α21=e21(t) be a non-trivial element of T∩Γm corresponding to the vector t=

(t, 0, ..., 0) (with t 6=0 and t≡0 modulo m). Then Φ(α21)` acts on U and transports the

hypersurface {z2=0} to the hypersurface {z2=t`}. Since {z2=0} is algebraic and Φ(α21)

is in Aut(X) (resp. in Bir(X) when the action is by birational transformations), the

hypersurfaces {z2=t`} are all algebraic.

Denote by T2 the subgroup of T whose elements are defined by vectors of type

t=(0, t3, ..., tn). The action of Φ̄(T2) on U preserves the local coordinate z2 and is locally

free on each level set {z2=cst}. Thus, every non-trivial element of T2∩Γm fixes infinitely

many algebraic hypersurfaces in X, whose local equations are z2=`t, `∈Z; moreover, the

orbits of T2∩Γ are Zariski dense in these hypersurfaces.

Lemma 5.4. Let X be an irreducible quasi-projective variety, defined over an alge-

braically closed field �K of characteristic zero. Let A be a group of birational transfor-

mations of X. If A preserves infinitely many hypersurfaces of X, then A preserves a

non-constant rational function ϕ∈�K(X), meaning that ϕ�a=ϕ for every a∈A.

This lemma corresponds to Theorem B of [12]: Theorem B is stated for a single

transformation g but applies to groups of birational transformations, as one easily checks.

Let us apply it to the group T2. From the Stein factorization theorem, we may assume

that the general fibers of the function τ2 :=ϕ are irreducible hypersurfaces of X. Since

the action of T2 on the hypersurfaces {z2=t`} is locally free, these hypersurfaces coincide

locally with the fibers of τ2. Thus, there is a complete curve Y
�K and a rational function

τ2:X
�K 99KY

�K , both defined over the algebraic closure of K, such that

• τ2 is invariant under the action of T2∩Γ, meaning that τ2�β=τ2 for every β∈T2∩Γ;

• the general hypersurface {τ2=cst} is irreducible;

• the local analytic coordinate z2 is, locally, a function of τ2: there is an analytic

1-variable function φ2 such that z2=φ2�τ2 on U .

The transformation Φ(α12) transforms z2 into z2/(1+sz2) for some s 6=0. Thus,

it permutes the level sets of the algebraic function τ2. We deduce that the birational

transformation α12 of X induces an infinite order automorphism of Y
�K fixing the point

τ2({z2=0}). This implies that Y
�K is a projective line: there is an isomorphism from Y

�K

to P1
�K

that maps the point τ2({t2=0}) to the point [0:1]. We now fix an affine coordinate

z on P1
�K

for which this point is z=0.

The iterates Φ(α12)` of Φ(α12) transform the coordinate z2 into z2/(1+`sz2). Thus, if
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`=pn, one sees that the sequences of hypersurfaces Φ(α+`
12 )({z2=c}) and Φ(α−`12 )({z2=c})

converge to the fixed hypersurface {z2=0} as n goes to ∞, for every c∈K with small

absolute value. This implies that the automorphism of P1
�K

induced by α12 is a parabolic

transformation, acting by

z 7−! z

1+s′z
(5.1)

for some s′. Changing the affine coordinate z of P1
�K

into εz with ε=s′/s (hence the

function τ2 into ετ2 and φ2(x) into φ2(x/ε)), one may assume that s′=s. Then, both τ2

and z2 satisfy the same transformation rule under Φ(α12):

τ2�Φ(α12) =
τ2

1+sτ2
and z2�Φ(α12) =

z2

1+sz2
. (5.2)

We deduce that the function φ2 commutes with the linear projective transformation

z 7!z/(1+sz):

φ2

(
z

1+`sz

)
=

φ2(z)

1+`sφ2(z)
for all `∈Z. (5.3)

By construction, φ2 is analytic (in a neighborhood of zero) and maps zero to zero. Chang-

ing φ2(z) into φ2(z/(1+uz)) for a well-chosen u 6=0, one may assume that φ2(x0)=x0 for

some x0 6=0. If one applies the functional equation (5.3) with `≡0 modulo sufficiently

large powers of p, then the sequence x`=x0/(1+`sx0) stays in the domain of definition

of φ2 and φ2(x`)=x` for all `; thus, φ2 is the identity: φ2(z)=z. In particular, the local

coordinate z2 extends to a global rational function τ2 on X.

If one applies the same strategy for i=2, 3, ... n, one gets d=n−1 rational functions

τi on X. These functions are local coordinates near the origin of U . And, from §5.3, we

know that these coordinates provide a local conjugacy from the action of G on U to the

linear projective action of G near [1:0: ... :0] in Pn−1
K . This concludes the proof of the

following lemma.

Lemma 5.5. Each local analytic function zi, i=2, ..., n, extends to a global rational

function τi99KX�K!�K. Altogether, they define a rational map

τ :X
�K 99KPn−1

�K
,

x 7−! [1 : τ2(x) : ... : τn(x)].

This rational map τ is dominant. It is equivariant with respect to the action of Γm on

X and the action of Γm⊂SLn(Z) on Pn−1
�K

by linear projective transformations.

5.5. Conclusion, in the case of regular actions

We now assume that Γ acts by automorphisms on the quasi-projective variety X; the

case of birational transformations is dealt with in the next subsection.
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Lemma 5.6. Let τ :X
�K 99KPn−1

�K
be a rational map which is equivariant with respect

to an action of Γm on X
�K by automorphisms and the linear projective action of Γm⊂

SLn(K) on Pn−1
�K

. Then, X
�K is a projective variety, and the Γm-equivariant rational map

τ is an isomorphism.

Proof. Assume that X
�K is normal and fix a compactification �X

�K of X
�K . Via its

embedding into Aut(XK), the group Γm acts by automorphisms on X
�K and by birational

transformations on �X
�K .

The image of Γm in PGLn(�K)=Aut(Pn−1
�K

) is a Zariski-dense subgroup Γ′m (this is a

simple instance of the Borel density theorem).

Let Ind(τ) be the indeterminacy set of τ . Its intersection with X
�K is a Γm-invariant

algebraic subset, because Γm acts by automorphisms on both X and Pn−1
�K

. Its total

transform under τ is a Γ′m-invariant locally closed subset of Pn−1
�K

. But all such subsets

are either empty or equal to Pn−1
�K

, because Γ′m is Zariski-dense in PGLn(�K). Thus, Ind(τ)

does not intersect X
�K .

The image of X
�K by τ is a constructible Γ′m-invariant subset of Pn−1

�K
; as such, it

must be equal to Pn−1
�K

, because Γ′m is Zariski-dense in PGLn(�K). Similarly, the total

transform of the boundary �X
�K \X�K is empty. Thus, X

�K is complete, and τ determines

a morphism from X
�K to Pn−1

�K
. The critical locus of τ is a Γ′m-invariant subset of Pn−1

�K

of positive codimension: it is therefore empty, and τ is an isomorphism because Pn−1
�K

is

simply connected.

If X
�K is not normal, replace it by its normalization X̃

�K , and lift the action of Γm

on X
�K to an action by automorphisms on X̃

�K . We deduce that X̃
�K is isomorphic to the

projective space and the action of Γm on X̃
�K does not preserve any non-empty Zariski

closed subset; thus, the normalization X̃
�K!X�K is an isomorphism. This proves the

lemma.

Apply this lemma to the rational map τ given by Lemma 5.5. Since X
�K is isomorphic

to the projective space Pn−1
�K

, the complex variety XC is also isomorphic to Pn−1
C . Since

the action of Γ on X is an action by automorphisms, it is given by an embedding of Γ

into PGLn(C). This concludes the proof of Theorem 5.1, and of Theorem A.

5.6. Conclusion, in the case of birational actions

Let us now assume that X is projective and Γ acts by birational transformations on X.

Lemma 5.7. The equivariant rational mapping τ :X
�K 99KPn−1

�K
is birational.

Proof. By construction, τ is rational and dominant; changing X in a birationally

equivalent variety, we assume that X is normal and τ is a regular morphism. The
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elements γ of Γm satisfy

τ �γX = γPn−1 �τ

where γX denotes the birational action of γ on X
�K and γPn−1 corresponds to the linear

projective action on Pn−1
�K

.

We may assume that X is normal. Embed X in some projective space PN , and

consider the linear system of hyperplane sections H of X. Fix an element γ of Γm,

and intersect X with n−1 hyperplanes to get an irreducible curve C⊂X that does not

intersect the indeterminacy set of γ. The image of C by γX is an irreducible curve (γX)∗C,

which satisfies τ∗((γX)∗(C))=(γPn−1)∗τ∗(C). The degree of the curve (γPn−1)∗τ∗(C) is

equal to the degree of τ∗(C), because γPn−1 is a regular automorphism of the projective

space; in particular, it does not depend on γ. This implies that the degree of the curve

(γX)∗C in X⊂PN is bounded by an integer D(τ) that does not depend on γ. As a

consequence, the degrees of the formulas defining the elements γX of Γm in Bir(X
�K) are

uniformly bounded. The following result shows that Γm is “regularizable” (see [66] and

the references in [15]).

Theorem 5.8. (Weil regularization theorem) Let M be a projective variety, defined

over an algebraically closed field. Let Λ be a subgroup of Bir(M). If there is a uniform

upper bound on the degrees of the elements of Λ, then there exist a birational map ε:M 99K

M ′ and a finite-index subgroup Λ′ of Λ such that ε�Λ�ε−1 is a subgroup of Aut(M) and

ε�Λ′�ε−1 is a subgroup of the connected component of the identity Aut(M)0 in Aut(M).

In our context, this result shows that, after conjugacy by a birational map ε:X99K

X ′, Γm becomes a group of automorphisms of X ′. Lemma 5.6 shows that the rational

map τ �ε−1:X ′
�K
99KPn−1

�K
is an isomorphism which conjugates the action of Γm on X ′

�K
to

the linear projective action on Pn−1
�K

. In particular, τ is a birational map.

Thus, τ is a birational conjugacy between the action of Γm on X and the action of

Γm by linear projective transformations on the projective space.

Lemma 5.9. The action of τ �Γ�τ−1 on Pn−1
�K

is an action by automorphisms.

Proof. The group Γm is a normal, finite-index subgroup of Γ. Its image Γ′m in

PGLn(�K) is Zariski dense. Let γ be an element of Γ, and let γPn−1 denote the bira-

tional transformation τ �γX �τ
−1; we have γPn−1Γ′m=Γ′mγPn−1 . Since Γ′m acts by auto-

morphisms on Pn−1
�K

, it fixes the indeterminacy set of γPn−1 , and this indeterminacy set

must be empty, because Γ′m is Zariski dense in PGLn(�K). This shows that γPn−1 has no

indeterminacy point and that τ �Γ�τ−1⊂PGLn(�K).

The existence of such a conjugacy τ :X
�K 99KPn−1

�K
implies also the existence of a
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conjugacy XC99KPn−1
C over the field of complex numbers. This concludes the proof of

Theorem 5.1.

6. Mapping class groups and nilpotent groups

To describe another application of the p-adic method, we study the actions by automor-

phisms of the mapping class groups Mod(g) and of nilpotent groups.

6.1. Mapping class groups

Recall from §1.5 that ma(Γ) is the smallest dimension of a complex irreducible variety

X on which some finite-index subgroup of Γ acts faithfully by automorphisms.

Remark 6.1. Assume that Γ0 is a finite-index subgroup of Γ, and that Γ0 acts

faithfully on a complex irreducible variety X. Let us show that Γ acts faithfully on the

disjoint union of n copies of X. Indeed, Γ acts faithfully on the quotient Γ×Γ0X of Γ×X
by the action of Γ0 defined by h·(g, x)=(gh−1, hx); and Γ×Γ0

X is a disjoint union of

[Γ:Γ0] copies of X.

Thus, ma(Γ) is bounded from below by the smallest dimension of a complex variety

X on which Γ acts faithfully by regular automorphisms (the dimension of X is the

largest dimension of its irreducible components). The following example shows that this

inequality may be strict.

Example 6.2. Consider the direct product H of two non-abelian free groups F` and

F`′ . Since PGL2(C) contains a free group, H acts faithfully on the disjoint union of two

projective lines. But H does not act faithfully by automorphisms on an irreducible curve.

Theorem 6.3. (Theorem D) If Mod(g) acts faithfully on a (not necessarily ir-

reducible) complex variety X by automorphisms, then dim(X)>2g−1. The minimal

dimension ma(Mod(g)) satisfies 2g−16ma(Mod(g))66g−6 for all g>2.

Remark 6.4. We shall need the following fact because X is not assumed to be irre-

ducible: In Mod(g), the intersection of two infinite normal subgroups is infinite. Indeed,

if N is an infinite normal subgroup of Mod(g), then N contains two pseudo-Anosov

elements a and b that generate a free group (see [42, Theorem 2]). If M is another

normal subgroup containing a pseudo-Anosov element h, then [w, h]=whw−1h−1 is an

element of N∩M for every w∈N . By a theorem of McCarthy [52], the centralizer of a

pseudo-Anosov element is virtually cyclic. Thus, N∩M is infinite.
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α1 α2 αg−1 αg

β1 β2 βg−1 βg

γ1 γg−1

δ1
δ2

δg−2 δg−1

Figure 1. Simple closed loops on the surface of genus g.

Proof. The upper bound ma(Mod(g))66g−6 is well known; it comes from the action

of Mod(g) on the character variety parameterizing conjugacy classes of representations

of the fundamental group of the surface of genus g in SL2, an affine variety of dimension

6g−6. This action is faithful for g>3 (see [50, Theorem 9.15] and [1, Theorem 4.2]). For

g=2, the kernel of the action of Mod(2) on the character variety is the order-2 subgroup

generated by the hyperelliptic involution. From [1, Theorem 4.3], or [31, Theorem 6.8],

Mod(g) is virtually torsion-free. Consequently, Mod(2) contains a finite-index torsion-free

subgroup; this subgroup acts faithfully on the character variety.

We now fix a finite-index subgroup Γ of Mod(g), and we assume that Γ acts faithfully

on a complex quasi-projective variety X of dimension d (note that X is not assumed to

be irreducible). Our goal is to obtain the lower bound d>2g−1. We identify Γ with its

image in Aut(X). Since Mod(g) is virtually torsion-free, there is a finite-index, torsion-

free subgroup in Γ; we now replace Γ by such a group.

The group Γ permutes the irreducible components of X; let Γ′ be the kernel of this

action by permutations. Denote by Xi the irreducible components of X, and by Γ′i the

kernel of the action of Γ′ on Xi. The intersection of the Γ′i is trivial. As Γ is torsion-free,

either Γ′i is trivial, or Γ′i is infinite. Since the intersection of two infinite normal subgroups

of Mod(g) is infinite (Remark 6.4), at least one of the Γ′i is trivial, and the action of Γ′

on Xi is faithful. We replace Γ by its finite-index subgroup Γ′ and the variety X by such

a component Xi. Thus, in what follows, Γ acts faithfully on the irreducible variety X.

We need to show that d=dim(X)>2g−1. Apply Proposition 3.2 to obtain a prime

number p>3 and a good model of the pair (X,Γ) over Zp. Then, apply Proposition 3.3.

We obtain a finite extension K of Qp, an analytic polydisk U⊂X(K), and a finite-index

subgroup Γ′′ of Γ that preserves U : The action of Γ′′ on U is given by an embedding

Γ′′ into Diffan(U)1, the group of Tate analytic diffeomorphisms which are equal to Id

modulo p (see §2.3.2). Again, we replace Γ by this finite-index subgroup Γ′′. Then, the

conclusion is a consequence of the following lemma.
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Lemma 6.5. Let p be an odd prime and K be a finite extension of Qp. If a finite-

index subgroup Γ of Mod(g) embeds in Diffan(U)1, where U'OdK is an analytic polydisk

of dimension d, then d>2g−1.

Proof. Elements of Γ give Tate analytic diffeomorphisms of U which are equal to the

identity modulo p. Since p>3, we can apply the Bell–Poonen theorem to every element

of Γ (take c=1 in Theorem 2.4). In particular, each element γ∈Γ determines a Tate

analytic vector field Xγ on U ; and, if γ and γ′ commute, then so do the corresponding

vector fields (Corollary 2.8).

Denote by Tαi and Tβi , i=1, ..., g, the Dehn twists along the simple closed loops

which are depicted in Figure 1. There exists an integer m>1 such that the twists Tmαi
and Tmβi are all in Γ. Observe that the g twists Tmαi commute. For x∈U , denote by s(x)

the dimension of the K-vector space spanned by the tangent vectors XTmαi
(x), 16i6g;

let s be the maximum of s(x), for x in U .

There exists a smaller polydisk V⊂U and a subset S of {1, ..., g} such that |S|=s
and the XTmαj

(x), j∈S, are linearly independent at every point x of V. Denote by Xj

the vector field XTmαj
for j in S. Each XTmαi

, 16i6g, can be written in a unique way as

a sum

XTmαi
=
∑
j∈S

Fi,jXj (6.1)

where the Fi,j ’s are analytic functions on V. Since [XTmαl
,XTmαj

]=0 for every pair of

indices l∈{1, ..., g} and j∈S, we obtain

XkFi,j = 0 (6.2)

for all i∈{1, ..., g} and j, k∈S.

Suppose that S 6={1, ..., g}, and pick an index r in {1, ..., g}\S. Observe that Tmβr does

not commute with Tmαr but commutes with the other Tmαi ; hence [XTmβr
,Xj ]=0 for every

j∈S. Assume by contradiction that, for every x in V, XTmβr
(x) is a linear combination of

the Xj(x), j∈S, and write XTmβr
=
∑
j∈S GjXj , where the Gj ’s are analytic functions on

U . The commutation rules imply XiGj=0 for all indices i and j in S; thus, equations (6.1)

and (6.2) lead to

• XTmαl
Gj=0 for all indices l∈{1, ... g};

• [XTmαr
,XTmβr

]=0.

Thus, by Corollary 2.8, Tmβr commutes with Tmαr , a contradiction. This means that

there exists a smaller polydisk W⊂V⊂U on which the vector fields {XTmβr
}∪{Xj :j∈S}

are everywhere linearly independent. Now, we add r to S and set Xr :=XTmβr
.

Use that the Tmβi commute, and commute with the Tmαj for i 6=j, and repeat this

argument to end up with a set Xi, i∈S={1, ..., g}, of vector fields which are linearly
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independent on a smaller polydisk; these vector fields correspond to elements of type Tmαj
or Tmβi , for a disjoint set of curves αj and βi; we denote by Λ this set of curves. Each

index s∈S={1, ..., g} corresponds to a unique curve αs or βs in Λ; the vector field Xs is

determined by Tmαs or Tmβs .

In what follows, we fix an element Φ of the mapping class group which maps this

non-separating set of disjoint curves Λ to α1, α2, ..., αg. Then, denote by γ′i and δ′i the

images of the curves γi and δi, respectively, by Φ−1 (see Figure 1); these curves are

disjoint from the g curves of Λ.

Consider the curves γ′1 and δ′1, and fix an integer m>0 such that the Dehn twists

Tmγ′1
and Tmδ′1

generate a free subgroup of Γ (see [31, Theorem 3.14]). These twists com-

mute with the Tmν for all curves ν∈Λ. If, on some polydisk P⊂U , the vector fields Y1

and Z1 corresponding to Tmγ′1
and Tmδ′1

, respectively, are combinations Y1=
∑
j HjXi and

Z1=
∑
j H
′
jXi, then Tmγ′1

and Tmδ′1
commute on that polydisk, and then they commute

everywhere, a contradiction. Thus, one can add a vector field Y1 (or Z1) to our list of

generically independent vector fields. Playing the same game with the curves γ′k and δ′k
for 26k6g−1, we end up with 2g−1 vectors fields, and deduce that dim(U)>2g−1.

The group Out(F2n+s−1) contains a copy of Mod(n, s), the mapping class group of

the surface of genus n with s>1 punctures. The proof of Theorem D also shows that

2n−16ma(Mod(n, 1))6ma(Out(F2n))

(with s=1) and that

2n−16ma(Mod(n, 2))6ma(Out(F2n+1))

(with s=2). Thus, we obtain m−26ma(Out(Fm)) for all m>2.

6.2. Nilpotent groups

Let H be a group. Define H(1)=[H,H], the derived subgroup of H, generated by all

commutators aba−1b−1 with a and b in H, and then inductively H(r)=[H(r−1), H(r−1)].

The first integer r>1 such that H(r) is trivial is called the derived length of H; such

an r exists if and only if H is solvable. This integer is denoted by dl(H), and a similar

notation is used for Lie algebras. Then, define the virtual derived length of H by

vdl(H) = min{dl(H ′) :H ′ is a finite-index subgroup of H}.

Theorem 6.6. Let H be a finitely generated nilpotent group. If H acts faithfully

by automorphisms on an irreducible complex quasi-projective variety X, then we have

vdl(H)6dim(X). Thus, ma(H)>vdl(H).
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Let us sketch the proof. Let d be the dimension of X. Apply Propositions 3.2

and 3.3: there is a finite-index subgroup H0 of H and a polydisk U'Zp
d⊂X(Zp) such

that the action of H0 on X(Zp) preserves the polydisk U and determines an embedding

of H0 in Diffan(U)1. Consider the Lie algebra h which is generated by the vector fields

Xf , for f in H0⊂Diffan(U)1. Corollary 2.8 shows that the derived length of h is equal to

the derived length of H0. To conclude, apply the following lemma, the proof of which is

the same as in [15, Proposition 3.9], or [29, Theorem 1.1].

Lemma 6.7. Let h be a nilpotent Lie algebra of Tate analytic vector fields on a

polydisk U . Then, dl(h)6dim(U).

7. Periodic orbits and invariant polydisks

Our goal is to produce invariant p-adic polydisks for some groups of birational transfor-

mations of a projective variety defined over a finite extension K of Qp. This is closely

related to the existence of “good” periodic orbits for groups of birational transformations

defined over finite fields; in a first time, we focus on the construction of such orbits.

7.1. Property (τ∞) and linear isoperimetric inequalities

In this section, we introduce property (τ∞), which may be viewed as a weak form of

Kazhdan property (T) (see [40]), and we relate this property to linear isoperimetric in-

equalities. Then, we prove that property (τ∞) is equivalent to property (FM), introduced

in [35] and [22].

In what follows, Γ will be a group with a finite symmetric set of generators S (the

symmetry means that s∈S if and only if s−1∈S). If h is an element of Γ, |h|S denotes

the length of h with respect to S; by definition, |h|S is the minimum of the integers m>0

such that h is a product of m elements of S.

7.1.1. Quotients and Schreier graphs

Given a subgroup R of Γ, consider the quotient space Γ/R. The group Γ acts on Γ/R

by left translations: given h in Γ, we denote by Lh the translation gR 7!hgR. Denote

by `2(Γ/R) the space of `2-functions on Γ/R, i.e. functions ϕ: Γ/R!C which are square

integrable:

‖ϕ‖2`2(Γ/R) :=
∑

ω∈Γ/R

|ϕ(ω)|2<∞.
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The action of Γ on Γ/R by left translations determines a unitary representation g 7!L∗g−1

of Γ on `2(Γ/R), where L∗g−1ϕ:=ϕ�Lg−1 .

The Schreier graph GR is defined as follows: The set of vertices of GR is G0
R=Γ/R;

two vertices g1R and g2R∈Γ/R are joined by an edge if and only if there exists s∈S
satisfying g2R=sg1R. When R={e}, GR is the Cayley graph G :=G{e} of Γ. Those graphs

depend on the choice of the generating set S.

Remark 7.1. If the distance between gR and g′R in the graph GR is δ, then

dist(Lh(gR), Lh(g′R))

is at most δ+2|h|S . When R is a normal subgroup of Γ, then Γ also acts on the right,

gR 7!gRh=ghR, and this right action is by isometries.

Let Ω be a finite subset of Γ/R. Denote by χΩ: Γ/R!{0, 1} the characteristic

function of Ω, i.e. χΩ(x)=1 if and only if x∈Ω. Since Ω is finite, χΩ is square integrable.

An element x∈Ω is in the boundary ∂Ω of Ω if and only if there exists an element y of

(Γ/R)\Ω which is connected to x by an edge of GR; in other words, x∈∂Ω if and only if

x∈Ω and there exists s∈S such that Ls(x) /∈Ω, that is, if and only if χΩ(x)=1 and there

exists s∈S such that (L∗sχΩ)(x)=0. Thus, we have

‖χΩ−L∗s(χΩ)‖2`2(Γ/R) =
∑
x∈Γ/R

(χΩ(x)−χΩ(Lsx))2 6
∑

x∈
⋃
s∈S Ω4s−1(Ω)

12,

and hence

‖χΩ−L∗s(χΩ)‖2`2(Γ/R) 6 2|S| |∂Ω|. (7.1)

The Cheeger constant of the Schreier graph GR is the infimum

h(GR) = inf
Ω

|∂Ω|
|Ω|

,

where Ω describes the non-empty finite subsets of Γ/R with |Ω|6 1
2 |Γ/R| (this constraint

is void when Γ/R is infinite).

7.1.2. Uniform, linear isoperimetric inequalities and property (τ∞)

Let Γ be a group with a finite, symmetric set of generators S. The group Γ has property

(τ∞) if there exists a constant ε=ε(Γ, S)>0 such that, for every subgroup R⊂Γ of

infinite index and every function ξ∈`2(Γ/R), there exists an element s∈S such that

‖ξ−L∗sξ‖>ε‖ξ‖. Property (τ∞) does not depend on S, even if the constant ε does (this

follows from Proposition 7.3 below); thus, we refer to property (τ∞) as a property of the

(finitely generated) group Γ, and not of the pair (Γ, S).
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Proposition 7.2. Let Γ be a group with a finite, symmetric set of generators S.

Then, Γ has property (τ∞) if and only if there is a positive constant h∞ such that

h(GR)>h∞>0 for every subgroup R of Γ of infinite index.

In fact, h(GR)>ε2/2|S| if Γ satisfies property (τ∞) with constant ε for S.

Proof. Assume that Γ/R is infinite. Consider the unitary action of Γ on `2(Γ/R)

by left translations. For every finite set Ω⊆Γ/R, the characteristic function χΩ is an

element of `2(Γ/R) and property (τ∞) implies the existence of an element s∈S such that

‖χΩ−L∗sχΩ‖`2(Γ/R) > ε‖χΩ‖`2(Γ/R) = ε|Ω|1/2.

From inequality (7.1), we deduce that (2|S| |∂Ω|)1/2>ε|Ω|1/2. Hence, h(GR)>h∞ for

h∞=ε2/2|S|.
The other implication may be obtained as in Hulanicki’s characterization of amenabil-

ity (see [49, Theorems 3.1.5 and 4.3.2]). We do not prove it because it is not used in this

article.

7.1.3. Other classical properties and examples

We now compare property (τ∞) to other classical properties.

• A group Γ has property (τ) if there exists a constant ε>0 such that, for every finite-

index normal subgroup R⊂Γ, and for every function ξ: Γ/R!C which is `2-orthogonal to

the constant functions, there exists a generator s∈S such that ‖ξ−L∗sξ‖>ε‖ξ‖ (see [49]).

In [5], Bekka and Olivier study property (T`p), for p 6=2, and show that this property is

equivalent to the conjunction of properties (τ) and (τ∞). In particular, property (T`p)

implies property (τ∞).

• In [22], Cornulier introduces property (FM). Let us describe this property in the

case of a discrete group Γ. A discrete Γ-set is, by definition, an action of Γ on a discrete

set X. A mean on X (or more precisely on `∞(X)), is a linear functional m: `∞(X)!R

that satisfies m(1)=1 and m(ξ)>0 for every bounded function ξ:X!R+. A mean is

Γ-invariant if its values on ξ and ξ�γ−1 are equal for all ξ∈`∞(X) and γ∈Γ. One says

that Γ has property (FM) if every discrete Γ-set with a Γ-invariant mean contains a finite

Γ-orbit. From [22], we get the following result.

Proposition 7.3. Discrete groups with property (FM) are finitely generated. Prop-

erty (FM) is equivalent to property (τ∞).

Thus, we could have started with property (FM), without assuming Γ to be finitely

generated, and then deduce property (τ∞), which is really the definition that we use in

the sequel.
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Proof. The first assertion is contained in [22, Proposition 5.6]. [22, Remark 5.16]

shows that property (FM) implies property (τ∞). The argument is the following. Assume

that there is a sequence of infinite quotient spaces Yn=Γ/Rn and functions ξn∈`2(Yn)

of norm 1 such that ‖ξn−L∗sξn‖61/n. Consider the discrete Γ-set X which is obtained

as the disjoint union of the Yn, and extend each ξn as a function on X by ξn(y)=0 if

y∈X\Yn. The linear maps mn(ξ)=
∑
x ξn(x)2ξ(x) define a sequence of means on X. By

compactness of the set of means, a subsequence {mni}i converges towards a mean m∞;

by construction, m∞ is Γ-invariant. But X does not contain any finite orbit. Thus, (FM)

implies (τ∞).

In the opposite direction, assume that Γ has property (τ∞) but does not have

property (FM). Then, there exists a discrete Γ-set X, which is a disjoint union of infinite

orbits Yi=Γ/Ri and which supports an invariant mean m. The existence of m implies

that `2(X) contains a sequence of almost invariant vectors ξn (see [22, Lemma 5.9] and

[4, Appendix G.3]): ξn has norm 1 and ‖ξn−L∗sξn‖61/n for all s in the generating set S.

To obtain a contradiction, decompose ξn as an orthogonal sum ξn=
∑
i ξn,i, where each

ξn,i is the restriction of ξn to the orbit Yi. Since Γ/Ri is infinite, there exists a generator

sn,i such that ‖ξn,i−L∗sn,iξn,i‖
2>ε2 (with ε the constant provided by property (τ∞)).

Hence, there is a generator sn such that ‖ξn−L∗snξn‖
2>ε2/|S|. We get a contradiction

when n2>|S|/ε2.

• A discrete group Γ has Kazhdan property (T) if every action of Γ on a Hilbert

space H by affine isometries has a fixed point (see [40, Chapters 1 and 4]). Such a

group is automatically finitely generated and, given a finite system of generators, the

following equivalent definition of Kazhdan property (T) will be more useful to us. A

finitely generated group Γ has Kazhdan property (T) if, for any finite symmetric set

of generators S, there exists an ε>0, with the following property: given any unitary

representation % of Γ on a Hilbert space H, either there exists v∈H\{0} such that

%(Γ)·v=v, or, for every v∈H, there exists s∈S such that

‖v−%(s)·v‖> ε‖v‖.

Such a positive number ε is called a Kazhdan constant for the pair (Γ, S). Thus, property

(τ∞) turns out to be a weak form of property (T), in which one only considers the

unitary representations `2(Y ), where Y is a set on which Γ acts transitively. We obtain

the following result.

Proposition 7.4. If Γ satisfies Kazhdan property (T) with constant ε for the gener-

ating set S, then it satisfies the uniform linear isoperimetric inequality |∂Ω|>(ε2/2|S|)|Ω|
in all its infinite quotients Γ/R.
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Example 7.5. Let Γ be a non-amenable group with no infinite proper subgroup.

Then Γ has property (τ∞) (see [5, Proposition 15 and Example 17], or [35, §4.C]). Let Γ

be an irreducible lattice in SO(n, 2)×SO(n+1, 1), for some n>3. Then Γ does not have

property (T), but has property (τ∞) (see [5, Example 14] and [22, Example 1.14] for a

related construction).

7.2. Finite orbits and finite-index subgroups

Let X be an absolutely irreducible projective variety of dimension d defined over a finite

field F. Let Γ be a group with a finite symmetric set of generators S. Assume that the

group Γ embeds into the group Bir(XF) and identify Γ with its image in Bir(XF).

7.2.1. The escaping set E

Let U be a Zariski open subset of X defined over F such that, for every s∈S, the map

s|U :U!X is a morphism and an open immersion. Such a set exists because S is finite:

for U , take the complement of all the proper subsets Bs, for s in S, where Bs is defined

as in §3.1.2.

Remark 7.6. One may want to shrink U in certain situations. For instance, given an

element f of the group Γ, with f 6=Id, one may remove the set of fixed points of f from

X, and take U⊂X\{x:f(x)=x}. Or one can remove the singular locus of X from U .

By construction, the codimension of the Zariski closed set X\U is at least 1. Let

E⊆U be the subset of points that may escape U when one applies one of the generators:

E :=
⋃
s∈S

s−1(X\U),

where s−1(X\U) is the total transform of the Zariski closed set X\U . This escaping set

E is a proper, Zariski-closed subset of U .

7.2.2. Lang–Weil estimates (see [46])

By Lang–Weil estimates, there exists a positive constant cU such that, given any finite

field extension F′ of F, the number of points in U(F′) satisfies

|F′|d−cU |F′|d−1/2 6 |U(F′)|6 |F′|d+cU |F′|d−1/2, (7.2)

where d=dimU=dimX (the constant cU does not depend on F′).
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Similarly,

|E(F′)|6 bE |F′|d−1+cE |F′|d−3/2, (7.3)

where bE is the number of absolutely irreducible (d−1)-dimensional components of E;

the constants bE and cE depend on E but not on F′.

7.2.3. Regular stabilizers

Fix a finite extension F′ of the field F. Given a point x∈U(F′), one associates a subgroup

Rx of Γ which will be called the regular stabilizer of x. To define it, we proceed as follows.

Let (e, g1, ..., gl) be a path in the Cayley graph G, and denote by si+1 the element of S

such that gi+1=si+1gi, 16i6l−1. The path (e, g1, ..., gl) is a regular path if

(i) s1 is well defined at x0 :=x and maps x0 to a point x1∈U ;

(ii) for all i6l−1, si+1 maps xi to a point xi+1∈U (since xi is in U , si+1 is well

defined at xi).

Thus, the notion of regular path depends on the starting point x. By definition,

the regular orbit of x is the set of all points gl(x) for all regular paths (e, g1, ..., gl). The

regular orbit of x may intersect the escaping set E; when it does, we simply do not apply

an element of S that would make it leave U .

Definition 7.7. An element g∈Γ is a regular stabilizer of x∈U(F′) if there exists a

regular path (e, g1, ..., gl) in G such that (i) gl=g and (ii) gl(x)=x. The set of all regular

stabilizers is the regular stabilizer of x, and is denoted by Rx.

Lemma 7.8. The regular stabilizer Rx is a subgroup of Γ.

Proof. Given g and h in Rx, and regular paths (e, g1, ..., gl) and (e, h1, ..., hl′) in

Γ satisfying properties (i) and (ii) of Definition 7.7 for g and h, respectively, one can

define a new regular path (e, h1, ..., hl′ , g1hl′ , ..., glhl′) which fixes x; thus, g�h is an

element of Rx. Similarly, write gi+1=si+1gi, si+1∈S, x0=x, and xi+1=si+1(xi) for

06i6l−1. By construction of U and symmetry of S, si+1 is a regular automorphism

from a neighborhood of xi to a neighborhood of xi+1; hence, s−1
i+1 is well defined at xi+1.

One can therefore reverse the regular path and get a path (e, s−1
l , s−1

l−1�s
−1
l , ..., g−1) which

starts at xl and ends at x0. In our case, xl=x=x0, and we conclude that g−1 is an element

of Rx.

This proof shows that we can concatenate and reverse regular paths. The evaluation

map evx takes a regular path (e, g1, ..., gl) and gives a point

evx(e, g1, ..., gl) = gl(x).
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We shall say that an element g∈Γ is very well defined at x∈U(F′) if there is a regular

path from e to gl=g. For such an element, the image evx(e, g1, ..., gl)=gl(x)=g(x) does

not depend on the choice of the regular path joining e to g. As a consequence, the

evaluation map is defined on the set of elements of Γ which are very well defined at x,

and maps it into the set U(F′). The preimage of x is the regular stabilizer. The image

is the regular orbit of x.

7.2.4. The subsets Ωx⊆Γ/Rx

Fix a point x∈U(F′). Given an element g∈Γ which is very well defined at x, one gets

a point g(x)∈U , as well as a vertex [g]:=gRx in the graph of cosets GRx for the regular

stabilizer Rx of x. We define Ωx⊆Γ/Rx to be the set of all such vertices [g]. The

evaluation map determines a map evx: Ωx!U(F′) (we make use of the same notation

for simplicity).

Proposition 7.9. Let F′ be a finite extension of F. Let x be a point of U(F′).

The subset Ωx⊆Γ/Rx satisfies the following properties:

(1) Ωx contains [e];

(2) Ωx is connected : for every [g]∈Ωx there is a path in GRx , corresponding to a

regular path (e, g1, ..., gl) in Γ, which connects [e] to [g] in Ωx;

(3) the evaluation map evx: [g] 7!g(x) is well defined (because Rx stabilizes x ) and

is an injective map evx :Ωx!U(F′), the image of which is the regular orbit of x;

(4) Ωx is a finite set, with |Ωx|6|U(F′)|.

Proof. All we have to prove is that evx is injective. If g(x)=h(x) with two regular

paths (e, g1, ..., gl=g) and (e, h1, ..., hl′=h), one can reverse the path from e to hl′=h and

get a regular path that maps x to h−1
�g(x)=x; this means that h−1

�g∈Rx.

Thus, one gets a parametrization of the regular orbit of x∈U(F′) by the set Ωx.

An element [g]∈Ωx is a boundary point of Ωx in the graph GRx if and only if there is a

generator s∈S such that [sg] /∈Ωx; this means that s is not a regular automorphism from

a neighborhood of g(x) to its image s(x): g(x) escapes from U when one applies s, and

therefore g(x)∈E(F′). Since the evaluation map is injective, one gets

|∂Ωx|= |evx(∂Ωx)|= |Ex(F′)|,

where Ex(F′) is the subset of E(F′) which is equal to evx(∂Ωx).

Since regular orbits are disjoint, the sets Ex(F′) and Ey(F′) are disjoint as soon as

x and y are not in the same regular orbit. Being finite, U(F′) is a union of finitely many
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disjoint regular orbits. Fixing a set {x1, ..., xm} of representatives of these regular orbits,

we obtain

U(F′) =

m⊔
i=1

evxi(Ωxi).

Let us now assume that Γ has property (τ∞); thus, by Proposition 7.2, Γ satisfies a

uniform linear isoperimetric inequality

|∂Ω|> ε2

2|S|
|Ω|

in all its infinite Schreier graphs GR. Suppose that Rx has infinite index in Γ for every

x∈U(F′). Then,

|U(F′)|=
m∑
i=1

|evxi(Ωxi)|=
m∑
i=1

|Ωxi |

6
m∑
i=1

2|S|
ε2
|∂Ωxi |=

m∑
i=1

2|S|
ε2
|Exi(F′)|6

2|S|
ε2
|E(F′)|.

Then, the Lang–Weil estimates stated in equations (7.2) and (7.3) imply that

|F′|d6 cU |F′|d−1/2+
2|S|
ε2

(bE |F′|d−1+cE |F′|d−3/2).

Thus, if the degree of the extension is large enough (e.g. if |F′|1/2>cU+2|S|(bE+cE)/ε2),

one gets a contradiction. This provides a proof of the following theorem.

Theorem 7.10. Let X be an absolutely irreducible projective variety defined over

a finite field F. Let Γ be a subgroup of Bir(XF) with property (τ∞) and S be a finite

symmetric set of generators of Γ. Let U be a non-trivial, Zariski open subset of X

such that, for every s∈S, the map s|U :U!X is an open immersion. If F′ is a finite

extension of F and |F′| is large enough, there exists a point x in U(F′) such that the

regular stabilizer Rx of x is a finite-index subgroup of Γ.

7.2.5. Abelian groups

Let α>1 be a real number. Say that a graph G satisfies an isoperimetric inequality of

type α if there is a constant c>0 such that

|∂Ω|α> c|Ω| (7.4)

for every finite subset Ω of G. Let d>2 be an integer. The Cayley graph of the group

Zd satisfies an isoperimetric inequality of type d/(d−1) for any finite symmetric set of
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generators; the isoperimetric inequality satisfied in Proposition 7.2 is of linear type (i.e.

α=1). If G satisfies an isoperimetric inequality of type α, for some constant c>0, it

satisfies the isoperimetric inequality of type β for every β>α with the same constant c.

Given a group Γ, with a finite symmetric set of generators S, denote by B(r) the ball

of radius r in the Cayley graph G=G(Γ, S). The number of vertices in B(r) is denoted

by |B(r)|. Then, define the function ΦS by

ΦS(t) = min{r : t6 |B(r)|}

(as in [24, §1, p. 295]). For instance, if Γ is a free abelian group of rank d, and S is any

finite symmetric set of generators, one can find a subset S′ of S such that S′ forms a

basis of the vector space Γ⊗ZQ. The set S′ has d elements; thus, the ball of radius r in

G(Γ, S) contains at least (1+2r)d elements. This implies that ΦS(t)6t1/d. Coulhon and

Saloff–Coste proved in [24] that

|∂Ω|
|Ω|

>
1

8|S|ΦS(2|Ω|)

for every non-empty finite subset of a group Γ. We shall use this inequality to give a short

proof of the following lemma, which provides a uniform constant cS for the isoperimetric

inequality in quotients of abelian groups.

Lemma 7.11. Let A be a free abelian group of rank k>1, and let S be a finite sym-

metric set of generators of A. Fix an integer l<k; set q=k−l and cS=(16|S|)−(q−1)/q.

Then, given any subgroup R of A of rank at most l, and any finite subset Ω of the Cayley

graph G(A/R, S), we have

|∂Ω|q/q−1 > cS |Ω|.

Proof. The group R is contained in a subgroup T of A such that A/T is a free

abelian group of rank at least q. In the group A/T , with the set of generators given by

the projection of S, the function ΦS satisfies ΦS(t)6t1/q. The projection A/R!A/T

maps the ball of radius r in the Cayley graph G(A/R, S) onto the ball of the same radius

in G(A/T, S). Thus, the function ΦS for A/R satisfies the same inequality ΦS(t)6t1/q.

This implies that

|∂Ω|> (8|S|)−12−1/q|Ω|(q−1)/q,

and the result follows.

Theorem 7.12. Let X be a projective variety, defined over a finite field F, and let

d be its dimension. Let A be a free abelian group of rank k<∞, acting by birational

transformations on X (defined over F). Then, there exist a finite extension F′ of F, a

point x in X(F′), and a subgroup R of A such that the rank of R is >k−d and every

element of R is defined at the point x and fixes it.
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Proof. Changing F in a finite extension, X in one of its irreducible components, and

A in a finite-index subgroup, we may assume that X is absolutely irreducible. Fix an

algebraic closure 	F of F. We may assume that d is positive, since otherwise X is just

one point. We fix a system of generators for A and an open subset U of X such that,

on U , every generator restricts to an open immersion s|U :U!X (see §7.2.1). Assume by

contradiction that the regular stabilizer Rx of every point of X(	F) has rank at most l,

with l<k−d. Denote by α the ratio q/(q−1) with q=k−l>d; we have 1<α<d/(d−1).

Let F′ be a finite extension of F and {xi}i be a set of representatives of the regular orbits

of U(F′). From assertion (3) of Proposition 7.9, we obtain

|∂Ωxi |= |evxi(∂Ωxi)|= |Exi(F′)|,

and Lemma 7.11 provides a constant c>0 such that

|U(F′)|=
∑
i

|Ωxi |6 c
∑
i

|∂Ωxi |α = c
∑
i

|Exi(F′)|α6 c

(∑
i

|Exi(F′)|
)α
.

From Lang–Weil estimates, one derives

|F′|d6 cU |F′|d−1/2+cst(bE |F′|d−1+cE |F′|d−3/2)α.

This provides a contradiction if |F′| is large, because (d−1)α<d.

7.3. Invariant polydisks for groups with property (τ∞)

Let XQp
be an absolutely irreducible projective variety. Assume that X is defined over

Zp, that Γ is a finitely generated subgroup of Bir(XZp) with a finite symmetric set of

generators S, and that (XZp ,Γ) is a good model over Zp.

Theorem 7.13. Assume that Γ has property (τ∞). There exist a finite extension K

of Qp, a finite-index subgroup Γ0 of Γ, and a Tate analytic diffeomorphism ϕ from the

unit polydisk U=(OK)d⊂Kd to an open subset V of X(K) such that V is Γ0-invariant

and the action of Γ0 on V is conjugate, via ϕ, to a subgroup of Diffan(U). Moreover,

one can choose this polydisk in the complement of any given proper Zariski closed subset

of the generic fiber.

The following proof constructs Γ0 as a regular stabilizer Rx.

Proof. Given g∈Bir(XZp), recall that BZp,g denotes the complement of the points

of XZp around which g is an open immersion (see §3.1.2). Since (XZp ,Γ) is a good

model over Zp, the singular locus of the scheme XZp and the sets BZp,g, for g in S, have
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codimension >1 in XZp and in the special fiber too (see (ii) and (iii) in §3.1.2). Denote

by Sing(XZp) the singular locus of XZp , and set

UZp :=XZp \
(

Sing(XZp)∪
( ⋃
s∈S

BZp,s

))
.

Let XFp be the special fiber. By assumption, UZp∩XFp is a non-empty Zariski open

subset of XFp ; let U be any open subset of UZp∩XFp (for instance, take for U the

complement of a given divisor). Observe that, for any s∈S, the map s|UZp
:UZp!XZp is

an open immersion; hence, s|U :U!XFp is also an open immersion.

By Theorem 7.10, there exist a finite field extension F′ of Fp and a point x∈U(F′)

such that the regular stabilizer Rx of x is a finite-index subgroup of Γ. Let K be a finite

extension of Qp whose residue field is F′.

Every element g of Rx is a regular morphism on a neighborhood of x and fixes x.

Denote by W the set of K-points y in XK whose specialization in the special fiber XF′

coincides with x. By Proposition 3.4, one can find an analytic diffeomorphism ϕ from

the unit polydisk U=(OK)d⊂Kd to an open subset V⊂W such that V is Rx-invariant

and the action of Rx on V is conjugate, via ϕ, to a subgroup of Diffan(U).

Similarly, Theorem 7.12 provides invariant polydisks for subgroups of rank l>k−
dim(X) when Γ is a free abelian group of rank k.

7.4. Groups of birational transformations and finite-index subgroups

7.4.1. Groups of birational transformations

A group Γ is linear over the field k if Γ is isomorphic to a subgroup of GLn(k) for some

n>1 (see [39]). Similarly, a group Γ is a group of birational transformations over the field

k if Γ is isomorphic to a subgroup of Bir(Xk) for some algebraic variety defined over k.

Example 7.14. Linear groups over k are groups of birational transformations over k.

Every finite group is a group of automorphisms of some complex irreducible curve (see

[36, Theorem 6′]). The modular group Mod(g) of a closed, orientable surface of genus

g>3 and the group Out(Fg) are groups of birational transformations in dimension 66g

over C, but Out(Fg) is not a linear group if g>4 (see §6 and [50], [33]).

7.4.2. Malcev and Selberg properties

In characteristic zero, linear groups satisfy Malcev and Selberg properties: every finitely

generated linear group is residually finite and contains a torsion-free, finite-index sub-
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group. One does not know whether groups of birational transformations share the same

properties (see [14] and [21]). The following result implies Theorem C of the introduction.

Theorem 7.15. Let Γ be a discrete group with property (τ∞). If Γ is a group of

birational transformations over a field k of characteristic zero, then Γ is residually finite

and contains a torsion-free, finite-index subgroup.

Proof. Since Γ has property (τ∞), it is finitely generated (see §7.1 and Proposi-

tion 7.3); fix a finite symmetric set of generators S for Γ, and an embedding of Γ in

the group of birational transformations of a smooth projective variety X (over an alge-

braically closed field k of characteristic zero). Pick an element f in Γ\{Id} and denote

by Fix(f) the proper Zariski closed set of fixed points of f ; more precisely, Fix(f)⊂X is

defined as the Zariski closure of the subset of the domain of definition of f defined by

the equation f(z)=z. By Proposition 3.2, one can find a prime number p>3, and a good

model Γ⊂Bir(XZp) for (X,Γ), such that the special fiber XFp of XZp is not contained

in Fix(f).

Choose a Zariski open subset U of XFp which is contained in the complement of

Fix(f) and of the sets BZp,s, for s∈S. We now apply Theorem 7.10. Since Γ has property

(τ∞), one can find an extension F′ of the residue field Fp, and a point x∈U(F′), for which

the regular stabilizer Rx has finite index in Γ. By construction, Rx does not contain f .

This shows that Γ is residually finite.

Let U be the polydisk (OK)d. To prove the second assertion, keep the same nota-

tion and apply Theorem 7.13. This provides an Rx-invariant subset V and an analytic

diffeomorphism ϕ:U!V such that, after conjugacy by ϕ, Rx acts by Tate analytic dif-

feomorphisms on U . Then, there exists a finite-index subgroup R′x of Rx such that every

element g∈R′x corresponds to a power series

g(z) =A0+A1(z)+
∑
k>2

Ak(z),

where each Ai is homogeneous of degree i, A0 is zero modulo p2 and A1 is the identity

modulo p. After conjugation by z 7!pz, the Bell–Poonen theorem (Theorem 2.4) can be

applied to g. Thus, Corollary 2.5 shows that R′x is torsion-free.

7.4.3. Central extensions and simple groups

Fix two positive integers q and n, with q 6=1, 2, 4 and n>2. Consider the group Sp2n(Z),

and the central extension

0−!Z/qZ−!Γ−!Sp2n(Z)−! 1,
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which is obtained from the universal cover

0−!Z/qZ−! S̃p2n(R)/qZ−!Sp2n(R)−! 1

by taking the quotient with respect to the subgroup qZ of the center Z⊂S̃p2n(R). Since

n>2, Sp2n(Z) has Kazhdan property (T) (see [40]). Since q does not divide 4, the image

of 4Z in the center Z/qZ of Γ is non-trivial and is contained in every finite-index subgroup

of Γ (see [25]); consequently, Γ does not contain any torsion-free finite-index subgroup.

Corollary 7.16. The group Sp2n(Z) is a group of birational transformations over

the field Q but, if n>2, there is a finite cyclic central extension Γ of Sp2n(Z) that does

not act faithfully by birational transformations in characteristic zero.

In particular, the property “Γ is a group of birational transformations” is not stable

under finite central extensions. Similar examples can be derived from [53] and [56]. The

following corollary shows that the simple groups constructed in [30] and [20] do not act

non-trivially by birational transformations.

Corollary 7.17. If Γ is an infinite, simple, discrete group with property (τ∞),

and X is a complex projective variety, every homomorphism Γ!Bir(X) is trivial.

Proof. A non-trivial homomorphism Γ!Bir(X) is an embedding, as Γ is simple. If

such an embedding exists, Γ contains non-trivial finite-index subgroups, contradicting

the simplicity of Γ.

8. Birational actions of lattices on quasi-projective varieties

In this section, we prove Theorem B, and a corollary which concerns birational actions

of the lattice SLn(Z) and its finite-index subgroups.

8.1. Lattices in higher-rank Lie groups

Let S⊂GLm be an algebraic subgroup of GLm defined over the field of rational numbers

Q (see [9]). We make the following assumptions:

(i) S is almost R-simple (the Lie algebra gR of S(R) is simple);

(ii) as an algebraic group, S is connected and simply connected (equivalently, S(C)

is a simply connected manifold);

(iii) the real rank of S is greater than 1 (see §1.3);

(iv) the lattice Γ=S(Z) of S(R) is not cocompact (i.e. rankQ(S)>0).

We refer to [58], [54, §7.4], and [57] for a good introduction to the following result,

and for references to the literature and original contributions.
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Theorem 8.1. Let S be an algebraic subgroup of GLm, defined over the field Q, with

the above four properties. Then S(Z) satisfies the strong approximation and congruence

subgroup properties.

This means that the closure of S(Z) has finite index in
∏
q S(Zq), and that every

finite-index subgroup of S(Z) contains a congruence subgroup {B∈S(Z):B≡Id (modm)}
for some integer m. In other words, the profinite completion of S(Z) coincides with a

finite-index subgroup of
∏
q S(Zq).

Lemma 8.2. Let S be an algebraic subgroup of GLm defined over Q, that satisfies

the above four properties. If Γ is a finite-index subgroup of S(Z), then S(Zp) is a virtual

pro-p completion of Γ.

Proof. (See also §4.2.3.) According to [61] (Theorems 5 and 34, and the corollary

to Lemma 64) and to the above Theorem 8.1, there is a prime q0 such that S(Fq) is a

perfect group and S(Z) is dense in S(Zq) for every prime q>q0.

Let Γ be a finite-index subgroup of S(Z). Let m be a positive integer such that p

divides m, every prime q<q0 divides m, and the congruence subgroup

Γm := {B ∈S(Z) :B≡ Id(modm)}

is contained in Γ. Let F be the set of prime divisors of m.

Denote by Gq the closure of Γm in S(Zq); the profinite completion of Γm is
∏
q Gq.

The first congruence subgroup of S(Zq) is an analytic pro-q group, thus, if q∈F \{p},
Gq is a pro-q group and every morphism to a p-group is trivial. Similarly, if q /∈F , every

morphism from Gq=S(Zq) to a p-group factors through the quotient S(Fq), and is trivial

because S(Fq) is perfect. This shows that the pro-p completion of Γm is Gp, and that

S(Zp) is a virtual pro-p completion of Γ.

8.2. Minimal homogeneous spaces (see [65, p. 187] and [63])

Given a simple complex Lie algebra s, one denotes by δ(s) the minimal codimension of

its proper Lie subalgebras p<s. If S is a complex connected algebraic group with Lie

algebra equal to s, then δ(s) is equal to the minimal dimension δ(S) of a homogeneous

variety V =S/P with dim(V )>0. Such a maximal group P is the stabilizer of a point

m∈V ; it is a parabolic subgroup of S (see [65, p. 187]). If s (resp. S) is defined over a

subfield of C, we use the same notation δ(s) (resp. δ(S)) to denote δ(s⊗C).

This dimension δ(S) has been computed for all complex, simple and connected alge-

braic groups (see [63] for instance). The results are summarized in Table 1, from which

one sees that δ(s)>rankC(s) with equality if and only if s is slδ(s)+1(C).
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Lie algebra dimension

dimension

of the minimal

representation

dimension

of the smallest

homogeneous space

slk(C), k>2 k2−1 k k−1

sok(C), k>7 1
2
k(k−1) k k−2

sp2k(C), k>2 k(2k+1) 2k 2k−1

e6(C) 78 27 14

e7(C) 133 56 27

e8(C) 248 248 57

f4(C) 52 26 15

g2(C) 14 7 5

Table 1. Minimal dimensions of faithful representations and minimal homogeneous spaces.

Remark 8.3. Here are a few comments on Table 1. The inequality δ(s)>rankC(s)

may be obtained with the following argument. Choose a maximal torus T in S. Since S

is almost simple, T acts on V =S/P with a finite kernel, and hence the isotropy group in

T of a general point of V is finite; thus, dim(V )>dim(T ).

The algebra slk(C) has two representations of minimal dimension (the standard

representation on Ck and its dual); likewise, SLk(C) has two minimal homogeneous

spaces. (The other simple complex Lie algebras have a unique minimal representation,

up to isomorphism).

The group SO5(C) is isogenous to Sp4(C) and acts on P3 (the space of lines in the

smooth quadric Q⊂P4 is isomorphic to P3). Similarly, SO6(C) is isogenous to SL4(C)

and acts on P3 too.

8.3. Proof of Theorem B

Changing S into a finite cover, and Γ into its pre-image under the covering homomor-

phism, we may assume that the semisimple algebraic group S is simply connected. Iden-

tify Γ with its image in Bir(X), and choose a good p-adic model for (X,Γ), as in Propo-

sition 3.2.

The group Γ is a lattice in the higher rank, almost simple Lie group S(R). As such,

Γ has Kazhdan property (T) (see [40, Chapters 2 and 3]); hence, it has property (τ∞).
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According to Theorem 7.13, there is a finite-index subgroup Γ0 in Γ, a field extension K

of Qp and an analytic polydisk U⊂X(K) which is Γ0-invariant, and on which Γ0 acts by

Tate analytic diffeomorphisms.

We also know from Lemma 8.2 that S(Zp) is a virtual pro-p completion of Γ0. By

Theorem 2.11, there exists a finite-index subgroup Γ1 of Γ0 such that the analytic action

of Γ1 on the polydisk U extends to an analytic action of its closure G1=�Γ1, an open

subgroup of the p-adic group S(Zp).

Let o be a point of U which is not fixed by G1; the stabilizer of o is a closed subgroup

P of G1: its Lie algebra determines a subalgebra of s of codimension at most dim(X). If

dim(X)<δ(S), then P is a finite-index subgroup of G1, and the action of Γ1 on X factors

through a finite group. Thus,

dim(X)> δ(S)> rankR(S). (8.1)

If dim(X)=rankR(S), then δ(S)=rankR(S) and s=sln with n=dim(X)+1.

Remark 8.4. The inequality (8.1) is stronger than dim(X)>rankR(S). For instance,

if Γ is a non-uniform lattice in F4, then Γ does not act faithfully by birational transfor-

mations in dimension 614.

Corollary 8.5. Let Γ be a finite-index subgroup of SLn(Z), with n>3. If Γ acts by

birational transformations on an irreducible complex projective variety X, then either the

image of Γ in Bir(X) is finite, or dim(X)>n−1. Moreover, if the image is infinite and

dim(X)=n−1, then X is rational, and the action of Γ on X is birationally conjugate

to a linear projective action of Γ on Pn−1.

Proof. Let Γm be a principal congruence subgroup which is contained in Γ, with

m≡0 (mod 3); then Γm is torsion-free. The kernel of the action of Γm on X is either

trivial, or a finite-index subgroup, because every infinite normal subgroup of Γm has

finite index. Thus, we may now assume that Γm acts faithfully on X by birational

transformations. Theorem B implies that dim(X)>n−1. In case of equality, there is a

good, p-adic model of (X,Γ) such that a finite-index subgroup of Γ preserves a p-adic

polydisk and acts by analytic diffeomorphisms on it. Then, Theorem 5.1 shows that

there is a birational, Γ-equivariant mapping τ :X99KPn−1, where the action of Γ on Pn−1

is by linear projective automorphisms.
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9. Appendix

9.1. Proof of Proposition 3.2

As explained in §3.1, there exists a subring R of k, which is finitely generated over Z,

such that X and the birational transformations s∈S are defined over R. This means that

there exists a projective scheme XR!Spec(R) such that X=XR×Spec(R)Spec(k). Let

π:XR!Spec(R) be such a model, with generic fiber XK (K is the fraction field of R).

Lemma 9.1. There exists a non-empty, affine, open subset U of Spec(R) such that

the following conditions are satisfied :

(i) U is of finite type over Spec(Z);

(ii) for every point y∈U , the fiber Xy is absolutely irreducible and

dimK(y)Xy = dimK XK ,

where K(y) is the residue field at y;

(iii) for every s∈S and every y∈U , the fiber Xy is not contained in BR,s.

Proof. (See [7, Proposition 4.3].) To prove the lemma, we shall use the following

fact: For any integral affine scheme Spec(A) of finite type over Spec(Z) and any non-

empty open subset V1 of Spec(A), there exists an affine open subset V2 of V1 which is of

finite type over Spec(Z). Indeed, we may pick any non-zero element f∈I, where I is the

ideal of A that defines the closed subset Spec(A)\V and set U :=Spec(A)\{f=0}. Then

U=Spec(A[1/f ]) is of finite type over Spec(Z).

Since XK is absolutely irreducible, [37, Proposition 9.7.8] gives an affine open subset

V of Spec(R) such that Xy is absolutely irreducible for every y∈V . We may suppose

that V is of finite type over Spec(Z). By generic flatness (see [37, Theorem 6.9.1]), we

may change V in a smaller subset and suppose that the restriction of π to π−1(V ) is flat.

Then, the fiber Xy is absolutely irreducible and of dimension dimK(y)Xy=dimK XK for

every point y∈V .

For s∈S, denote by BK,s the complement of the points in XK around which s is an

open immersion. Observe that BK,s is exactly the generic fiber of π|BR,s :BR,s!Spec(R).

By generic flatness, there exists a non-empty, affine, open subset Us of V such that the

restriction of π to every irreducible component of (π|BR,s)−1(Us) is flat. Let U be the

intersection of the open subsets Us, for s in S; then, shrink U to suppose that U is of

finite type over Spec(Z). Since

dimK(y)(BR,s∩Xy) = dimK(BK,s)<dimK XK = dimK(y)Xy

for every s∈S and y∈U , the fiber Xy is not contained in BR,s.
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By Lemma 9.1, we may replace Spec(R) by U and assume that

• for every y∈Spec(R), the fiber Xy is absolutely irreducible;

• for every s∈S and y∈Spec(R), the fiber Xy is not contained in BR,s.

Since R is integral and finitely generated over Z, by Lemma 3.1 there exist infinitely

many primes p>3 such that R can be embedded into Zp. This induces an embedding

Spec(Zp)!Spec(R). Set XZp :=XR×Spec(R)Spec(Zp). All fibers Xy, for y∈Spec(R), are

absolutely irreducible and of dimension d; hence, the special fiber XFp of XZp!Spec(Zp)

is absolutely irreducible and of dimension d=dim(X). Since BZp,s∩XFp⊂BR,s∩XFp for

every s∈S, the fiber XFp is not contained in BZp,s. Thus, XZp provides a good model

for (X,Γ).

9.2. From fixed points to invariant polydisks

We now prove Proposition 3.4; the notation is from §3.2.2. Since XOK is projective, there

exists an embedding ψ:XOK!PNOK defined over OK . On the projective space PN (K),

there is a metric distp defined by

distp([x0 : ... :xN ], [y0 : ... : yN ]) =
maxi 6=j |xiyj−xjyi|p

(maxi |xi|p)(maxj |yj |p)

for all points [x0 :...:xN ], [y0 :...:yN ]∈PN (K). Via the embedding ψ|X(K):XK(K)!PNK ,

distp restricts to a metric distp,ψ on XK(K). This metric does not depend on the choice

of the embedding ψ; thus, we simply write distp instead of distp,ψ.

Lemma 9.2. For w, z∈XK(K), distp(w, z)<1 if and only if the reductions r(w) and

r(z) coincide.

Proof. Set ψ(w)=[x0 :...:xN ] and ψ(z)=[y0 :...:yN ], where the coordinates xi and yi

are in OK and satisfy maxi |xi|p=maxi |yi|p=1. Then,

ψ(r(w)) = [x̄0 : ... : x̄N ] and ψ(r(z)) = [ȳ0 : ... : ȳN ],

where x̄i and ȳi denote the images of xi and yi in the residue field F=OK/mK . By

definition,

distp([x0 : ... :xN ], [y0 : ... : yN ]) = max
i6=j
|xiyj−xjyi|p.

If r(w)=r(z), we have x̄i=ȳi for all indices i; thus,

|xiyj−xjyi|p = |(xi−yi)yj−(xj−yj)yi|p< 1
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and distp(w, z)<1. Now, suppose that r(w) 6=r(z). Assume, first, that there exists an

index i, say i=0, with x̄iȳi 6=0. Replacing each xj by xj/x0 and each yj by yj/y0, we get

x0=y0=1. Since r(w) 6=r(z), there exists j>1 with x̄j 6=ȳj . It follows that

distp(w, z)> |xjy0−x0yj |p = |xj−yj |p = 1.

To conclude, suppose that x̄iȳi=0 for all i∈{0, ..., N}. Pick two indices i and j such that

x̄i 6=0 and ȳj 6=0; thus, ȳi=0 and x̄j=0, and distp(w, z)>|xiyj−xjyi|p=1.

Recall that x is a smooth point inX(F) and V is the open subset ofXK(K) consisting

of points z∈XK(K) satisfying r(z)=x. With suitable homogeneous coordinates, x is the

point [1:0:...:0]∈PNF . Then, the open set V is contained in the unit polydisk

B := {[1 : z1 : ... : zN ] : zi ∈OK for all i= 1, ..., N}.

Recall from §2.1.1 that a map ϕ from the unit polydisk U=OdK⊂Kd to B is analytic if

we can find elements ϕi, 16i6N , of the Tate algebra OK〈x1, ...,xd〉, such that

ϕ(x1, ..., xd) = [1 :ϕ1(x1, ..., xd) : ... :ϕN (x1, ..., xd)].

Proposition 9.3. There exists a one-to-one analytic diffeomorphism ϕ from the

unit polydisk U=(OK)d⊂Kd to V.

Proof. Consider the affine chart ANOK!PNOK defined by z0 6=0. Both x and B are

contained in ANOK . Since XOK is smooth at x, we know that there are polynomial

functions Gj∈OK [z1, ..., zN ], 16j6N−d, such that

• X is locally defined by the equations G1=...=GN−d=0; in particular,

V =XK(K)∩B= {z ∈B :Gi(z) = 0 for all i= 1, ..., N−d};

• the rank of the matrix (∂zj

Gi(0))i6N−d,j6N is N−d, where 
Gi=Gi modulo

mKOK [z1, ..., zN ].

Permuting the coordinates z1, ..., zN , we may suppose that the determinant of the

matrix (∂zj

Gi(0))i,j6N−d is different from zero in F. Denote by π:B!(OK)d the pro-

jection [1:z1 :...:zN ] 7!(z1, ..., zd). By Hensel’s lemma, there exists a unique analytic dif-

feomorphism ϕ: (OK)d!V such that Gi((z, ϕ(z)))=0 for all i6N−d.

Let f be a birational map in Bir(XOK ) such that x /∈BOK ,f and f(x)=x. Then,

f fixes the set V of points z∈XK(K) such that r(z)=x, and the action of f on V is

conjugate, via ϕ, to an analytic diffeomorphism on the polydisk U . This concludes the

proof of Proposition 3.4.
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