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1. Introduction

A Thurston map is a branched covering of the sphere f :S2!S2 that is post-critically
finite. A celebrated theorem of Thurston gives a topological characterization of rational
maps among Thurston maps (see [DH3]). In this paper we consider such maps that are
expanding (see §2 for precise definitions). In the case when f is a rational map this means
that the Julia set of f is the whole sphere.

The following is the main theorem.

Theorem 1.1. Let f be an expanding Thurston map. Then for each sufficiently
high iterate F=fn there is a Peano curve γ:S1!S2 (onto) such that F (γ(z))=γ(zd)
(for all z∈S1). Here d=degF . This means that the following diagram commutes:

S1 zd
/ /

γ

��

S1

γ

� �

S2
F

// S2.

Furthermore, we can approximate the Peano curve γ as follows. There is a homo-
topy Γ:S2×[0, 1]!S2, with Γ(z, 0)=z, such that

Γ(z, 1) = γ(z) for all z ∈S1.

Here we view S1⊂S2 as the equator.

In fact Γ may be chosen to be a pseudo-isotopy, meaning that it is an isotopy on
[0, 1).

The result may be paraphrased as follows. Via γ we can view the sphere S2 as a
parameterized circle S1. Wrapping this parameterized circle (which is S2) around itself
d times yields the map F .



invariant peano curves of expanding thurston maps 97

The existence of such a semi-conjugacy γ as above follows for many rational maps F
of degree 2 by work of Tan, Rees and Shishikura (see [Ta], [Re2] and [Sh]); the relevant
construction of mating is reviewed in §1.2. Milnor constructs such a Peano curve γ (i.e.,
a semi-conjugacy) for one specific example F (see [Mi1]) in this setting. Kameyama gives
a sufficient criterion for the existence of γ (in [Ka, Theorem 3.5]).

Note that the result is purely topological, i.e., does not depend on F being (equiva-
lent to) a rational map or not.

We also prove the following converse statement to Theorem 1.1.

Theorem 1.2. Let f :S2!S2 be a Thurston map such that for some iterate F=fn

there exists a Peano curve γ:S1!S2 (onto) satisfying F (γ(z))=γ(zd) for all z∈S1.
Then f is expanding.

According to Sullivan’s dictionary there is a close correspondence between the dy-
namics of rational maps and of Kleinian groups [Su]. Cannon and Thurston construct (in
[CT]) an invariant Peano curve γ:S1!S2 for the fundamental group of a (hyperbolic)
3-manifold M3 that fibers over the circle. Theorem 1.1 may be viewed as the corre-
sponding result in the case of rational maps. Thus it provides another entry in Sullivan’s
dictionary.

1.1. Group invariant Peano curves

We review the Cannon–Thurston construction from [CT]. The purpose is to put Theo-
rem 1.1 into perspective.

Let Σ be a compact hyperbolic 2-manifold, and ϕ: Σ!Σ be a pseudo-Anosov home-
omorphism. Consider the equivalence relation on the product Σ×[0, 1] given by

(x, 0)∼ (ϕ(x), 1).

Then the 3-manifold M3 :=Σ×[0, 1]/∼ is called a manifold that fibers over the circle.
Thurston has proved that M3 admits a hyperbolic metric, see [Ot].

The fundamental groups π1(Σ) and π1(M3) are Gromov hyperbolic, see [Gr] as well
as [GH]. Thus they have boundaries at infinity, which in this case are ∂∞π1(Σ)=S1 and
∂∞π1(M3)=S2.

This is seen by noting that π1(Σ) and hyperbolic 2-space H2, as well as π1(M3) and
hyperbolic 3-space H3, are quasi-isometric. The boundary at infinity of H2 is S1, the
boundary at infinity of H3 is S2, the boundary of the disk, resp. the unit ball, in the
Poincaré model of hyperbolic space.
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The inclusion Σ!Σ×{0}!M3 induces an inclusion of the fundamental groups
ı:π1(Σ)!π1(M3), which is a group homomorphism. In fact ı(π1(Σ)) is a normal sub-
group of π1(M3). The map ı extends to the boundaries at infinity S1=∂∞π1(Σ) and
S2=∂∞π1(M3) to a continuous map σ:S1!S2.

It is well known (and not very hard to show), that a non-trivial normal subgroup
NCG of a Gromov hyperbolic group G has the same boundary at infinity as G. Thus
∂∞ı(π1(Σ))=∂∞(π1(M3))=S2. It follows that the map σ is onto, i.e., a Peano curve.

Each element g∈π1(Σ) acts (by left-multiplication) on π1(Σ); this action extends to
S1=∂∞π1(Σ). Similarly each element g∈π1(M3) acts on π1(M3) and this action extends
to S2=∂∞π1(M3). The map σ is invariant with respect to this group action, meaning
that for every g∈π1(Σ) one has ı(g)(σ(t))=σ(g(t)) for all t∈S1. Thus the following
diagram commutes:

S1
g

/ /

σ

��

S1

σ

� �

S2
ı(g)

/ / S2.

The invariant Peano curve γ from Theorem 1.1 is the object corresponding to the
group invariant Peano curve σ according to Sullivan’s dictionary.

The Cannon–Thurston construction has been extended by Minsky in [Min] and
McMullen in [Mc2] to (some) cases where Σ is not compact.

In [Th1] Thurston asked whether (in a sense) all hyperbolic 3-manifolds arise as
manifolds that fiber over the circle. This has now become known as the virtual fibering
conjecture. It stipulates that every hyperbolic 3-manifold has a finite cover which fibers
over the circle. This would mean that we can understand every hyperbolic 3-manifold
in terms of 2-manifolds. See [Ga] for more background on this conjecture, and [Ag] for
recent progress.

Theorem 1.1 may be viewed as the solution of the problem corresponding to the
virtual fibering conjecture according to Sullivan’s dictionary.

1.2. Consequences of Theorem 1.1

To not further increase the size of the present paper, we will develop the implications of
the main theorem in a follow-up paper [Me1]. They are outlined here briefly to put the
result into perspective.

Using the invariant Peano curve γ:S1!S2 from Theorem 1.1, an equivalence relation
on S1 is defined by

s∼ t ⇐⇒ γ(s) = γ(t) (1.1)
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for all s, t∈S1. Elementary topology yields that S1/∼ is homeomorphic to S2 and that
zd/∼ :S1/∼!S1/∼ is topologically conjugate to the map F .

Theorem 1.3. The following diagram commutes:

S1/∼
zd/∼

/ /

h

� �

S1/∼

h

��

S2
F

/ / S2.

Here the homeomorphism h:S1/∼!S2 is given by h([s])=γ(s) for all s∈S1.

The equivalence relation (1.1) may be constructed from finite data, more precisely
from two finite families of finite sets of rational numbers.

The proper setting is as follows. For each n∈N, two equivalence relations,
n,w∼ and

n,b∼ , are defined. The equivalence relation ∼ defined in (1.1) is the closure of the union

of all
n,w∼ and

n,b∼ . Each
n,w∼ is the pull-back of

n−1,w∼ by zd (similarly
n,b∼ is the pull-back

of
n−1,b∼ ). Thus F can be recovered (up to topological conjugacy) from the equivalence

relations
1,w∼ and

1,b∼ .
This provides a way to describe expanding Thurston maps effectively.
The description above may be viewed as a two-sided version of the viewpoint in-

troduced by Douady–Hubbard and Thurston ([DH1], [DH2], [Th2], [Th3], see also [Re2]
and [Ke]), namely the combinatorial description of Julia sets in terms of external rays.

Recently (analogously defined) random laminations have been used to study the
scaling limits of planar maps (see [Le] and [LP]).

The description of F above yields in addition that F arises as a mating of two
polynomials. Mating of polynomials was introduced by Douady and Hubbard [Do] as a
way to geometrically combine two polynomials to form a rational map. We recall the
construction briefly.

Consider two monic polynomials p1 and p2 of the same degree with connected and
locally connected Julia sets. Let K1 and K2 be their filled-in Julia sets. For j=1, 2 let

φj : Ĉ\	D−! Ĉ\Kj

be the Riemann maps, normalized by φj(∞)=∞ and

φ′j(∞) = lim
z!∞

z

φj(z)
> 0

(in fact then φ′j(∞)=1). By Carathéodory’s theorem φj extends continuously to

σj :S1 = ∂	D−! ∂Kj .
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The topological mating of K1 and K2 is obtained by identifying σ1(z)∈∂K1 with σ2(z̄)∈
∂K2. More precisely, we consider the disjoint union of K1 and K2 and let K1qK2 be
the quotient obtained from the equivalence relation generated by σ1(z)∼σ2(z̄) (for all
z∈S1=∂D). The map

p1qp2:K1qK2−!K1qK2,

given by
(p1qp2)|Kj

= pj for j=1, 2,

is well defined. If a map f is topologically conjugate to p1qp2, we say that f is obtained
as a (topological) mating. If both K1 and K2 have empty interior, each of the maps σ1

and σ2 descends to a Peano curve γ:S1!K1qK2 which provides a semi-conjugacy of
zd:S1!S1 to p1qp2 (here d=deg p1=deg p2).

In particular it is known (see [Ta], [Sh] and [Re2]) that the mating of two quadratic
polynomials p1=z2+c1 and p2=z2+c2, where c1 and c2 are Misiurewicz points (i.e., the
critical point 0 is strictly pre-periodic for pj) not contained in conjugate limbs of the
Mandelbrot set, results in a map that is topologically conjugate to a rational map F .
The filled-in Julia sets of p1 and p2 have empty interior. The Julia set of F is the whole
sphere, and hence F is expanding. Thus a Peano curve γ as in Theorem 1.1 exists for
such a map F .

Recall that a periodic critical point (of a Thurston map f) is a critical point c such
that fk(c)=c for some k>1.

Theorem 1.4. ([Me1]) Let f :S2!S2 be an expanding Thurston map without peri-
odic critical points. Then every sufficiently high iterate F=fn is obtained as a topological
mating of two polynomials.

If at least one of the filled-in Julia sets K1 and K2 has non-empty interior, we can
take a further quotient of K1qK2 by identifying the points of the closure of each bounded
Fatou component. Technically we take the closure of the equivalence relation (on the
disjoint union of K1 and K2) obtained from σ1(z)∼σ2(z̄) (for all z∈S1=∂D) as well as
x∼y if x and y are in the closure of the same bounded Fatou component of p1 or p2.

The maps p1 and p2 descend to the quotient map p1q̂p2.

Theorem 1.5. ([Me1]) Let f :S2!S2 be an expanding Thurston map with (at least
one) periodic critical point. Then every sufficiently high iterate F=fn is topologically
conjugate to a map p1q̂p2 as above.

The next theorem investigates the measure-theoretic mapping properties of γ.

Theorem 1.6. ([Me1]) The Peano curve γ maps Lebesgue measure of S1 to the
measure of maximal entropy (with respect to F ) on S2.
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The polynomials into which F unmates, i.e., the polynomials p1 and p2 from The-
orems 1.4 and 1.5, can be found by a simple explicit combinatorial algorithm. This is
explained in [Me2].

As another application of Theorem 1.1 one obtains fractal tilings. Namely divide the
circle S1=R/Z into d intervals [j/d, (j+1)/d], j=0, ..., d−1. It follows from Theorem 1.1
that F maps each set γ([j/d, (j+1)/d]) to the whole sphere. The tiling lifts to the orbifold
covering, which is either the Euclidean or the hyperbolic plane.

1.3. Outline

The construction of the invariant Peano curve, i.e., the proof of Theorem 1.1, forms the
core of this work.

In §1.5 an example is introduced that serves to illustrate the construction throughout
the paper. §2 gives precise definitions of expanding Thurston maps, as well as gathers
facts from [BM] relevant here.

We will fix a Jordan curve C containing the set of all post-critical points (=post(F )).
We construct approximations γn:S1!S2, that will go through F−n(C). The limit

γ= lim
n!∞

γn

will be the desired Peano curve.
The construction of γ consists of two parts. In the first part (which is logically the

second) we assume that we can deform C to γ1=F−1(C) by a pseudo-isotopy relative to
post(F ). The approximations γn can then be constructed inductively by repeated lifts.
This is done in §3. The correct parametrization of γn is done in §4.

The second part is the construction of the pseudo-isotopy H0 relative to post(F ),
which deforms the Jordan curve C to the first approximation γ1.

We color one component of S2\C white, and the other black. Preimages of these
Jordan domains by F then form the white and black 1-tiles. At each vertex (of 1-tiles)
we will declare which white and black 1-tiles are connected. These connections will be
described by complementary non-crossing partitions.

Connections at all vertices will be defined in such a way that the white tile graph
forms a spanning tree. The “outline” of this spanning tree forms the first approximation
γ1. The main work consists of making sure that γ1 lies in the right homotopy class (that
C can be deformed to γ1 by a pseudo-isotopy relative to post(F )).

§5 assembles some standard topological lemmas needed in the following. In §6 the
necessary background about connections and complementary non-crossing partitions is
developed.
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The desired pseudo-isotopy H0 (equivalently the spanning tree of white 1-tiles) is
constructed in §7. It is here that we (possibly) need to take an iterate F=fn (in order
to be in the right homotopy class).

In §8 an alternative combinatorial way to construct the approximations γn is pre-
sented. An n-tile is the preimage of a component of S2\C by Fn. At each n-vertex of
such an n-tile we define which n-tiles are connected. Following the “outline” of one con-
nected component as before yields the approximation γn. These connections of n-tiles
are constructed inductively in a purely combinatorial fashion.

Theorem 1.2 (existence of a Peano curve which semi-conjugates zd to F implies
expansion) is proved in §9.

The question arises whether it is necessary to take an iterate F=fn in Theorem 1.1.
While we do not have a definite answer, we give an example in §10 which shows (in the
opinion of the author) that the answer is likely yes. More precisely, for the considered
example h, there exists no pseudo-isotopy H0 as required (there is one for the second
iterate h2).

We finish with some open problems in §11.

1.4. Acknowledgments

The author wishes to thank Juan Rivera-Letelier for many fruitful discussions; Stanislav
Smirnov, Mario Bonk and Kari Astala for their hospitality. Kevin Pilgrim and Tan Lei
pointed out that Theorem 1.1 should have a converse, i.e., that Theorem 1.2 should hold.

1.5. An example

We illustrate the proof using the following map g. It is a Lattès map (see [La] and [Mi3]).
Map the square

[
0, 1

2

]2⊂C to the upper half-plane by a Riemann map, normalized
by mapping the vertices 0, 1

2 , 1
2 + 1

2 i and 1
2 i to 0, 1, ∞ and −1, respectively (here i denotes

the imaginary unit). By Schwarz reflection this map can be extended to a meromorphic
function ℘: C!Ĉ. This is the Weierstraß ℘-function (up to a Möbius transformation),
it is (doubly) periodic with respect to the lattice L:=Z2. Thus we may view ℘ as a
(double) branched covering map of the sphere by the torus T2 :=C/L.

Color preimages of the upper half-plane by ℘ white, and preimages of the lower
half-plane by ℘ black. The plane is then colored in a checkerboard fashion. Consider the
map

ψ: C−!C,

z 7−! 2z.
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0

1

−1

∞

17!0
7!1

07!0

7!−1

−17!0

7!1

∞7!0

7!−1

g

7!∞

Figure 1. The Lattès map g.

We may view ψ as a self-map of the torus T2. One checks that there is a (unique and
well defined) map g: Ĉ!Ĉ such that the diagram

C
ψ

/ /

℘

��

C
℘

� �

Ĉ g
// Ĉ

commutes. The map g is rational, in fact

g=4
z(1−z2)
(z2+1)2

.

The Julia set of g is the whole sphere.
One may describe g as follows. Push the Euclidean metric of C to the (Riemann)

sphere Ĉ by ℘. In this metric the sphere looks like a pillow (technically this is an orbifold,
see for example [Mi2, Appendix E] and [Mc1, Appendix A]). Indeed, by construction,
the upper and lower half-planes are then both isometric to the square

[
0, 1

2

]2. Two such
squares glued along their boundary form the sphere. We color one of these squares (say
the upper half-plane) white, and the other square (the lower half-plane) black. The map
g is now given as follows. Divide each of the two squares into four small squares (of side-
length 1

4 ). Color these eight small squares in a checkerboard fashion white and black.
Map one such small white square to the big white square. This extends by reflection
to the whole pillow, which yields the map g. There are obviously many different ways
to color and map the small squares. The “right” way to do so (in order to obtain g) is
indicated in Figure 1.
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H0

H1

H2

γ0 γ1

γ1 γ2

γ2 γ3

Figure 2. Construction of γ for the map g.

The six vertices of the small squares at which four small squares intersect are the
critical points of g. They are mapped by g to {1,∞,−1}; these points in turn are mapped
to 0, which is a fixed point. The set {0, 1,∞,−1}=post(g) is the set of all post-critical
points.

The map ℘ is the orbifold covering map. The pictures explaining our construction
will all be in the orbifold covering, i.e., in C. For example, the Peano curve will be
constructed by certain approximating curves. These are more easily visualized when
lifted to C.

1.6. The construction for the example

The construction is explained using the example g defined in the last section.
The 0-th approximation γ0 of the Peano curve is the extended real line

R̂ = R∪{∞}⊂ Ĉ.

Note that R̂ contains all post-critical points of g. In the “pillow” model, R̂ is the common
boundary of the two squares. The picture in the orbifold covering is shown in Figure 2
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in the lower left. The (lifts of the) post-critical points are the dots at the vertices.

The upper and lower half-planes (the two squares from which the “pillow” was
constructed) are called the 0-tiles. Their preimages by g (the small squares to the left in
Figure 1) are called the 1-tiles. We color them white if they are preimages of the upper
half-plane, and black otherwise. There are four white as well as four black 1-tiles. The
white 1-tiles intersect at the critical points, of which there are six. At each critical point
(1-vertex ) we define a connection. This is an assignment of which 1-tiles are connected
and which are disconnected at this 1-vertex. Connections are defined in such a way that
the resulting white tile graph is a spanning tree. This means that it contains all white
1-tiles and no loops. In our example the white 1-tiles are connected at the three critical
points labeled by “7!−1” and “7!∞” in Figure 1, and disconnected at the others. The
corresponding picture in the orbifold covering is shown in the lower right of Figure 2.

Following the boundary of this spanning tree gives the first approximation of the
Peano curve γ1 (again indicated in the lower right of Figure 2). To obtain the curve γ1

on the pillow, one needs to “fold the two squares that are overlapping to the left and
right on the back” (where they intersect in a critical point).

We will need the following additional assumption on the spanning tree. We have to
be able to deform γ0 to γ1 by a pseudo-isotopy H0 that keeps the post-critical points
fixed. Recall that a pseudo-isotopy H0:S2×[0, 1]!S2 is a homotopy that ceases to be
an isotopy only at t=1.

The pseudo-isotopy is lifted to (pseudo-isotopies) Hn by iterates gn. The approxi-
mations of the Peano curve are constructed inductively. Namely γn+1 is obtained as the
deformation of γn by Hn. Each curve γn goes through g−n(post). The limiting curve γ
is the desired Peano curve.

1.7. Notation

The Riemann sphere is denoted by Ĉ=C∪{∞}. We denote the 2-sphere by S2, when
it is not assumed to be equipped with a conformal structure. By intU we denote the
interior of a set U . The cardinality of a (finite) set S is denoted by #S. The circle S1

will often be identified with R/Z whenever convenient.

For two non-negative expressions A and B we write A.B if there is a constant C>0
such that A6CB. We refer to C as C(.). Similarly we write A�B if A/C6B6CA for
a constant C>1.

• The n-iterate of a map f is denoted by fn; f−n(A) denotes the preimage of a set
A by the iterate fn.

• Upper indices indicate the order of an object, meaning that Un is the preimage
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of some object U0 by fn or Fn.
• By crit=crit(f) and post=post(f) we denote the sets of critical and post-critical

points, respectively (see the next section).
• The degree of F is denoted by d, the number of post-critical points by k.
• The local degree of F at v∈S2 is denoted by degF (v) (see Definition 2.1 (1)).
• C is a Jordan curve containing all post-critical points.
• Lower indices w and b denote whether objects are colored white or black.
• X0

w and X0
b denote the white and black 0-tiles, respectively (§2).

• The sets of all n-tiles, n-edges and n-vertices are denoted by Xn, En and Vn,
respectively (§2).

• The expansion factor of a fixed visual metric for F is denoted by Λ, see (2.3).
• γn is the n-th approximation of the invariant Peano curve (§3).
• H0 is the pseudo-isotopy that deforms C to γ1. Hn is the lift of H0 by Fn; it is

a pseudo-isotopy that deforms γn to γn+1 (see Definition 3.2 and Lemma 3.4).
• αnj ⊂R/Z is a point that is mapped by γn (and subsequently by γ) to an n-vertex

(§4.2).
• πw∪πb is a complementary non-crossing partition. It describes which white and

black 1-tiles are connected at some 1-vertex (§6.1).
• A lower index ε indicates a geometric realization of an object, where in a small

neighborhood of each 1-vertex we change tiles to “geometrically represent the connection”
(Definition 6.8).

2. Expanding Thurston maps as subdivisions

Definition 2.1. A Thurston map is an orientation-preserving, post-critically finite,
branched covering of the sphere

f :S2!S2.

To elaborate:
(1) f is a branched cover of the sphere S2, meaning that locally we can write f as

z 7!zq after orientation-preserving homeomorphic changes of coordinates in domain and
range.

More precisely, for each point v∈S2 there exist q∈N, (open) neighborhoods V and
W of v and w=f(v), respectively, and orientation-preserving homeomorphisms ϕ:V!D
and ψ:W!D, with ϕ(v)=0 and ψ(w)=0, satisfying

ψ�f �ϕ−1(z) = zq
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for all z∈D. The integer q=degf (v)>1 is called the local degree of the map at v. A point
c at which the local degree degf (c)>2 is called a critical point. The set of all critical
points is denoted by crit=crit(f). There are only finitely many critical points, since S2

is compact. Note that no assumptions about the smoothness of f are made.
(2) The map f is post-critically finite, meaning that the set of post-critical points

post= post(f) :=
⋃
n>1

{fn(c) : c∈ crit(f)}

is finite. As usual fn denotes the nth iterate. We are only interested in the case when
# post(f)>3.

(3) Consider a Jordan curve C⊃post. The Thurston map f is called expanding if

mesh f−n(C)! 0 as n!∞.

Here mesh f−n(C) is the maximal diameter of a component of S2\f−n(C). It was
shown in [BM, Lemma 6.1] that this definition is independent of the chosen curve C.
This notion of “expansion” agrees with the one by Häıssinsky–Pilgrim in [HP] (see [BM,
Proposition 6.2]).

Fix a Jordan curve C⊃post. Here and in the following, we always assume that such a
curve C is oriented. Let Uw and Ub be the two components of S2\C, where C is positively
oriented as boundary of Uw. The closures of Uw and Ub are denoted by X0

w and X0
b ,

respectively. We color X0
w white, and X0

b black. We refer to X0
w (resp. X0

b ) as the white
(resp. black) 0-tile.

The closure of one component of f−n(Uw) or of f−n(Ub) is called an n-tile. It was
shown in [BM, Proposition 5.17] that for such an n-tile X the map

fn:X!X0
w,b is a homeomorphism. (2.1)

This means in particular that each n-tile is a closed Jordan domain. The set of all n-tiles
is denoted by Xn. The definition of “expansion” implies that n-tiles become arbitrarily
small, this is the (only) reason we require expansion.

In [BM, Theorem 14.2] (see also [CFP3]) it was shown that if f is expanding, then
for every sufficiently high iterate F=fn we can choose C to be invariant with respect to
F . This means that F (C)⊂C (⇔C⊂F−1(C)). It implies that each n-tile is contained in
exactly one (n−1)-tile. Furthermore, F may be represented as a subdivision (see [BM,
Chapter 12] as well as the ongoing work of Cannon, Floyd and Parry [CFP1], [CFP2]).
We will require C to be F -invariant only in §7. This is clearly a convenience in the proof,
the author however feels that this assumption is not strictly necessary.
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The set of all n-vertices is defined as

Vn = f−n(post). (2.2)

Note that post=V0⊂V1⊂... . Each point v∈Vn is called an n-vertex.
The post-critical points (or 0-vertices) divide the curve C into k=# post(f) closed

Jordan arcs called 0-edges. The closure of one component of f−n(C)\Vn is called an n-
edge. For each n-edge En there is a 0-edge E0 such that fn(En)=E0. Furthermore the
map fn:En!E0 is a homeomorphism ([BM, Proposition 5.17]). The set of all n-edges
is denoted by En, so that f−n(C)=

⋃
En. There are #En=k deg(f)n n-edges.

Each n-edge will have an orientation, meaning that it has an initial and a terminal
point. A 0-edge is positively oriented if its orientation agrees with the one of the Jordan
curve C. Similarly, an n-edge En is called positively oriented if fn maps the initial (resp.
terminal) point of En to the initial (resp. terminal) point of (the 0-edge) fn(En).

Each n-tile contains exactly k=# post n-edges and k n-vertices in its boundary.
The n-tiles, n-edges and n-vertices form a cell complex when viewed as 2-, 1- and

0-cells, respectively (see [BM, Chapter 5]).
The n-edges and n-vertices form a graph in the natural way. Note that this graph

may have multiple edges, but no loops.
We color the n-tiles white if they are preimages of X0

w, and black if they are preim-
ages of X0

b . Each n-edge is shared by two n-tiles of different color. Thus n-tiles are
colored in a “checkerboard fashion”. An oriented n-edge is positively oriented if and
only if it is positively oriented as boundary of the white n-tile it is contained in (and
negatively oriented as boundary of the black n-tile it is contained in). The set of white
n-tiles is denoted by Xn

w, and the set of black n-tiles by Xn
b .

Lemma 2.2. The n-tiles of each color are connected, meaning that⋃
Xn
w and

⋃
Xn
b are connected sets.

Proof. Note that
⋃

Xn
w (and

⋃
Xn
b ) is connected if and only if

⋃
En is connected.

If
⋃

En is not connected, one component of S2\
⋃

En is not simply connected. This
contradicts the fact that each such component is the interior of an n-tile, and thus simply
connected.

In [BM, Chapter 8] visual metrics for an expanding Thurston map f were considered.
If n-tiles have been defined (in terms of a Jordan curve C⊃post), we define m=mf,C by

m(x, y) := max{n∈N : there exist non-disjoint n-tiles X 3x and Y 3 y}
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for all x, y∈S2, x 6=y. We set m(x, x)=∞. A metric % on S2 is called a visual metric for
f if there is a constant λ>1 (called the expansion factor of %) such that

%(x, y)�λ−m(x,y) (2.3)

for all x, y∈S2 and a constant C=C(�) independent of x and y. Here it is understood
that λ−∞=0.

Visual metrics always exist, see [BM, Theorem 15.1], as well as [HP]. In fact % can
be chosen such that f is an expanding local similarity with respect to %. More precisely,
for each x∈S2 there exists a neighborhood Ux3x such that

%(f(x), f(y))
%(x, y)

=λ (2.4)

for all y∈Ux\{x}. We do however not need this stronger form.
We fix a curve C⊃post(f) as well as an iterate F=fn for now, assuming that they

have certain properties (more precisely, that there is a pseudo-isotopy H0 as in the next
section). In §7 they will be chosen properly. Note that the post-critical set of F equals the
post-critical set of f , which is thus just denoted by “post”. Throughout the construction,
we set

d := degF =(deg f)n and k :=# post .

From now on m-tiles, m-edges and m-vertices are understood to be with respect
to (F, C), meaning that they are mn-tiles, mn-edges and mn-vertices, respectively, with
respect to (f, C).

Clearly expansion of f implies expansion of F . A visual metric for f with expansion
factor λ is a visual metric for F with expansion factor Λ=λn. Expression (2.4) continues
to hold, where we have to replace λ by Λ:=λn>1.

Lemma 2.3. Let % be a visual metric for F with expansion factor Λ. Then there are
ε0>0 and a constant K>1 such that the following holds: For any ε∈(0, ε0) let N (V1, ε)
be the ε-neighborhood of V1 (defined in terms of %). Then there is a neighborhood V 1

ε

of V1 such that

N
(
V1,

ε

K

)
⊂V 1

ε ⊂N (V1, ε)

and, for all n∈N, the set V =V n+1
Λ−nε :=F

−n(V 1
ε ) satisfies

N
(
Vn+1,Λ−n

ε

K

)
⊂V ⊂N (Vn+1,Λ−nε).

The proof of this lemma follows immediately from [BM, Lemmas 8.9 and 8.10].
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3. The approximations γn

We begin the proof of Theorem 1.1. We assume (until the end of §7) that F (=fn, the
index “n” however will be “recycled”) is an expanding Thurston map and that C⊃post
is a fixed Jordan curve. The n-tiles and n-edges are defined in terms of (F, C); see the
previous section. Furthermore we fix a visual metric % for F with expansion factor Λ>1;
see (2.3). Metrical properties and objects, such as the diameter and neighborhoods, will
always be defined in terms of this metric.

The desired invariant Peano curve γ will be constructed as the limit of approxi-
mations γn. Here γ0 is the Jordan curve C⊃post. The first approximation γ1 will be
constructed in §7, more precisely a pseudo-isotopy H0 (relative to post) that deforms γ0

to γ1 will be constructed.

In this section the approximations γn of the invariant Peano curve will be constructed
by repeated lifts of H0. These curves are however not yet parameterized, they are
Eulerian circuits.

3.1. Pseudo-isotopies

Definition 3.1. (Pseudo-isotopies) A homotopy H:S2×[0, 1]!S2 is called a pseudo-
isotopy if it is an isotopy on S2×[0, 1). We always require that H(x, 0)=x on S2. If
H( · , t) is constant on a set A⊂S2 it is a pseudo-isotopy relative to A (from now on we
will use the abbreviation “rel.” for “relative to”). Alternatively we then say that H is
supported on S2\A. We interchangeably write Ht(x)=H(x, t) to unclutter notation.

Remark. Given a pseudo-isotopy Ht as above, it follows that H1 is surjective (in
fact S2\{point} has different homotopy type than S2) and closed (since we are dealing
with compact Hausdorff spaces). A pseudo-isotopy on a general space S is required to
end in a surjective, closed map.

Our starting point is a pseudo-isotopy H0=H0(x, t) as follows. This is the central
object of the whole construction. In this and the following sections we show that such
an H0 is sufficient to construct the invariant Peano curve as desired. The construction
of H0 itself will be done in §7. In Lemma 7.2 an equivalent condition for the existence
of H0 will be given.

Definition 3.2. (Pseudo-isotopy H0) We consider a pseudo-isotopy H0 with the fol-
lowing properties:

(H0 1) H0 is a pseudo-isotopy rel. V0=post (the set of all post-critical points).
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(H0 2) The set of all 0-edges
⋃

E0=C is deformed by H0 to
⋃

E1, that is

H0
1

(⋃
E0

)
=

⋃
E1.

To simplify the discussion we require that H0 deforms the 0-edges to 1-edges “as
nicely as possible” (see Lemma 3.3 below). The construction would still work however,
without imposing the following two properties:

(H0 3) Let ε0>0 be the constant from Lemma 2.3, 0<ε<min
{
ε0,

1
2

}
and V 1

ε be a
neighborhood of V1 as in Lemma 2.3; we require that

H0:S2×[1−ε, 1]−!S2 is supported on V 1
ε .

So H0 “freezes” on S2\V 1
ε .

(H0 4) Consider a 1-vertex v. Only finitely many points of C=
⋃

E0 are deformed
by H0 to v. In other words, we require that{

x∈
⋃

E0 :H0
1 (x) = v

}
is a finite set.

One final assumption will be made on H0. However the precise meaning will only
be explained in §3.4.

(H0 5) View γ0=C as a circuit of 0-edges. Let γ1 be the Eulerian circuit obtained
from H0, see Definition 3.8 (iv). Then

F : γ1−! γ0,

is a d-fold cover; see Definition 3.10.

Consider {xj}j :=(H0
1 )−1(V1)∩C, the set of points on C=

⋃
E0 that are mapped by

H0
1 to some 1-vertex (each xj possibly to a different one). Note that {xj}j is finite by

(H0 4) and {xj}j⊃post=V0 by (H0 1). Thus the points {xj}j divide C (and each 0-edge)
into closed arcs Aj . Recall that d=degF and k=# post.

Lemma 3.3. There are kd arcs Aj as above. Furthermore

E1
j :=H0

1 (Aj) is a 1-edge and H0
1 :Aj −!E1

j is a homeomorphism,

for each j. On the other hand

each 1-edge E1 is the image of one such Aj by H0
1 .
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Proof. Consider one arc Aj as in the statement with endpoints xj and xj+1. Note
that

⋃
E1\V1 is disconnected, each component is the interior of a 1-edge. Thus

H0
1 (intAj)⊂ intE1

j

for some 1-edge E1
j . Assume that H0

1 :Aj!E1
j is not a homeomorphism.

Assume first that H0
1 (Aj) 6=E1

j . Then H0
1 (xj)=H0

1 (xj+1) and there are distinct
points x, y∈intAj mapped to the same point z by H0

1 . But z∈S2\V 1
ε for sufficiently

small ε. Then
H0

1−ε(x) =H0
1 (x) =H0

1 (y) =H0
1−ε(y),

which is a contradiction (H0
1−ε is a homeomorphism). Thus H0

1 (Aj)=E1
j . Exactly the

same argument shows that H0
1 :Aj!E1

j is bijective, and hence a homeomorphism.
Using the previous argument again shows that distinct arcs Ai and Aj map to

distinct 1-edges E1
i and E1

j , respectively.
Finally, since H0

1 (
⋃

E0)=
⋃

E1 (by (H0
1 2)), each 1-edge E1 is the image of one such

arc Aj by H0
1 .

Thus, there is exactly one Aj for each 1-edge, and so there are kd such arcs.

3.2. Lifts of pseudo-isotopies

Lemma 3.4. (Lift of pseudo-isotopy) Let H:S2×[0, 1]!S2 be a pseudo-isotopy rel.
post=V0. Then H can be lifted uniquely by F to a pseudo-isotopy H̃ rel. V1. This
means that F (H̃(x, t))=H(F (x), t) for all x∈S2 and all t∈[0, 1], i.e., the following dia-
gram commutes:

S2
eH / /

F

��

S2

F

� �

S2
H

// S2.

Furthermore, the following are true:
(1) If H is a pseudo-isotopy rel. a set S⊂S2, then the lift H̃ is a pseudo-isotopy

rel. F−1(S).
(2) Let Hn be the lift of H by an iterate Fn. Then

diamHn := max
x∈S2

diam{Hn(x, t) : t∈ [0, 1]}.Λ−n.

Here the diameter is measured with respect to the fixed visual metric with expansion factor
Λ>1. The constant C(.) is independent of n.
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The proof follows from the standard lifting of paths, see [BM, Proposition 11.1]. For
property (2) see [BM, Lemma 11.3].

We now lift the pseudo-isotopy from the last subsection. Lifts retain the properties
of H0.

Lemma 3.5. (Properties ofHn) Let H0 be a pseudo-isotopy as in the last subsection.
Let Hn be the lift of H0 by Fn (equivalently the lift of Hn−1 by F ). The lifts satisfy
the following properties:

(Hn 1) Hn is a pseudo-isotopy rel. Vn (the set of all n-vertices).
(Hn 2) The set of all n-edges

⋃
En is deformed by Hn to

⋃
En+1, that is

Hn
1

(⋃
En

)
=

⋃
En+1.

(Hn 3) Let V 1
ε be the neighborhood of V1 as in (H0 3), see also Lemma 2.3. The

set V =V n+1
Λ−nε :=F

−n(V 1
ε ), which is a neighborhood of Vn+1, is such that

Hn:S2×[1−ε, 1]−!S2 is supported on V .

So Hn “freezes” on S2\V .
(Hn 4) Consider an (n+1)-vertex v. Only finitely many points of

⋃
En are de-

formed by Hn to v. In other words,{
x∈

⋃
En :Hn

1 (x) = v
}

is a finite set.

We list the final property here. Again it will be explained and proved only in §3.4.
(Hn 5) Let γn and γn+1 be the Eulerian circuits from Definition 3.8 (iv). Then

F : γn+1−! γn

is a d-fold cover in the sense of Definition 3.10.

Proof. (Hn 1) is clear from Lemma 3.4 (1).
(Hn 3) follows directly from Lemma 2.3 and Lemma 3.4 (1).
(Hn 2) Since Hn is the lift of H0 by Fn, we have

Fn
(
Hn

1

(⋃
En

))
=H0

1

(
Fn

(⋃
En

))
=H0

1

(⋃
E0

)
=

⋃
E1.

Thus,
Hn

1

(⋃
En

)
⊂

⋃
En+1.

To prove equality in the last expression consider intE1, the interior of a 1-edge. Let
U0=intA0=(H0

1 )−1(intE1)∩
⋃

E0 be the set in
⋃

E0 that is deformed by H0
1 to intE1.

This is an arc that does not contain a post-critical point (see Lemma 3.3).
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Consider Un1 , ..., U
n
dn⊂

⋃
En, the preimages of U0 by Fn; they are disjoint arcs.

Each Unj is deformed by Hn
1 to (the interior of) an (n+1)-edge (since Fn(Hn

1 (Unj ))=
H0

1 (Fn(Unj ))=H0
1 (U0)=intE1).

We remind the reader of the following elementary fact about lifts. Let

σ: [0, 1]−!S2\post(F )

be a path, and let σ̃1 and σ̃2 be two lifts by Fn with distinct initial points. Then the
endpoints of σ̃1 and σ̃2 are distinct. Indeed otherwise the lift of the reversed path σ(1−t)
would fail to be unique.

Therefore the Unj are deformed by Hn to (the interior of) dn distinct (n+1)-edges.
It follows that

⋃
En is deformed by Hn to kdn+1 (n+1)-edges, i.e., all of them.

(Hn 4) Assume distinct points {xnj }j∈N⊂
⋃

En are deformed to some (n+1)-vertex
vn+1 byHn

1 . Then the (infinitely many different) points x0
j :=F

n(xnj )∈
⋃

E0 are deformed
by H0

1 to the 1-vertex v1 :=Fn(vn+1), contradicting property (H0 4).

From now on we assume that the pseudo-isotopies Hn are given as above.

Consider {xj}j :=(Hn
1 )−1(Vn+1)∩

⋃
En, the set of points on

⋃
En that are mapped

by Hn
1 to some (n+1)-vertex (each xj possibly to a different one). Note that {xj}j is

finite by (Hn 4) and {xj}j⊃Vn by (Hn 1). Thus the points {xj}j divide
⋃

En (and each
n-edge) into closed arcs Aj .

Lemma 3.6. There are kdn+1 such arcs Aj as above. Furthermore

E′
j :=Hn

1 (Aj) is an (n+1)-edge and Hn
1 :Aj −!E′

j is a homeomorphism,

for each j. On the other hand

each (n+1)-edge E′ is the image of one such Aj by Hn
1 .

Proof. This follows exactly as in Lemma 3.3.

3.3. Eulerian circuits γn

We construct γn, the nth approximation of the invariant Peano curve, from the pseudo-
isotopies Hn. The curves γn however do not yet have the “right” parametrization. Thus
γn will for now be an Eulerian circuit in

⋃
En. However the parametrization of this

Eulerian circuit will later still be denoted by γn(t).
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Definition 3.7. An Eulerian circuit is a closed edge path that traverses each edge
exactly once.

Consider now the graph of n-edges
⋃

En, containing kdn n-edges. In this graph an
Eulerian circuit is a finite sequence of oriented n-edges

γn =E0, ..., Ekdn−1,

such that the following holds (indices are taken mod kdn). Each n-edge appears exactly
once, and the terminal point of Ej is the initial point of Ej+1. In particular, the terminal
point of Ekdn−1 is the initial point of E0. If v is the terminal point of Ej (the initial
point of Ej+1), we say that Ej+1 succeeds Ej in γn at v.

Cyclical permutations of indices are not considered to change γn, but orientation
reversing does.

The approximations γn of the invariant Peano curve are defined as follows.

Definition 3.8. (Eulerian circuits γn) Recall that the Jordan curve C=
⋃

E0 is pos-
itively oriented as boundary of the white 0-tile X0

w. Let

γ0 =S1−! C

be an orientation-preserving homeomorphism. We define inductively

γn+1:S1−!
⋃

En+1,

t 7−!Hn
1 (γn(t)),

for all n>0. Let us note the following properties:
(i) The map is surjective by (Hn 2).
(ii) The set Wn :=(γn)−1(Vn)⊂S1 is finite by (Hn 4).
(iii) For each n-edge E there is exactly one closed arc [wj , wj+1]⊂R/Z=S1, formed

by consecutive points wj , wj+1∈Wn, such that

γn: [wj , wj+1]−!E is a homeomorphism.

This follows directly from Lemma 3.6.
(iv) The map γn induces an Eulerian circuit (still denoted by γn) on

⋃
En in the

obvious way, namely the n-edges are given the orientation and ordering induced by γn.

We record how the Eulerian circuit γn is related to the Eulerian circuit γn+1. Con-
sider an n-edge E, which is subdivided into arcs A0, ..., Am as in Lemma 3.6. An orien-
tation of E induces an orientation of the arcs Aj . As before we say that Aj succeeds Ai
in E if the terminal point of Ai is the initial point of Aj .
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Lemma 3.9. Let D′ and E′ be two (n+1)-edges. Let A′, B′⊂
⋃

En be the two
arcs that are mapped (homeomorphically) to D′ and E′, respectively, by Hn

1 . Then E′

succeeds D′ in γn+1 if and only if either
(a) A′ and B′ are contained in the same n-edge E, and B′ succeeds A′ in E (ori-

ented by γn); or
(b) A′ and B′ are contained in different n-edges E(A′) and E(B′), the terminal

point of A′ is the terminal point of E(A′), the initial point of B′ is the initial point of
E(B′), and E(B′) succeeds E(A′) (in γn).

Proof. This is again obvious from the construction.

3.4. γn+1 is a d-fold cover of γn

We are now ready to give the definition of properties (H0 5) and (Hn 5).

Definition 3.10. (Cover of Eulerian circuits) Let γn+1 and γn be the Eulerian circuits
constructed in Definition 3.8 (iv). We call

F : γn+1−! γn

a d-fold cover if F maps succeeding (n+1)-edges (in γn+1) to succeeding n-edges (in γn).
An equivalent definition is as follows. Let

γn =E0, ..., Edn−1 and γn+1 =E′
0, ..., E

′
dn+1−1

be two Eulerian circuits. Here each Ej is an (oriented) n-edge and each E′
j an (oriented)

(n+1)-edge. Let m be the index such that F (E′
0)=Em. Then γn+1 is a d-fold cover of

γn by F if
F (E′

j) =Em+j

for all j=0, ..., dn+1−1.

Convention. Indices of n-edges (and n-vertices) are taken mod kdn here and in the
following.

Property (H0 5) is equivalent to the following (seemingly weaker) condition. Recall
that each 0-edge Ej⊂C is positively oriented if its orientation agrees with the one induced
by C. Similarly each n-edge En is positively oriented if Fn:En!Ej preserves orientation.
Recall furthermore that n-tiles are colored white or black if they are preimages by Fn

of the 0-tile X0
w or X0

b , respectively. Each n-edge En is contained in the boundary of
exactly one white and one black n-tile. Then En is positively oriented if it is positively
oriented as boundary arc of the white n-tile in Xn⊃En.
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Lemma 3.11. Let γ1 be an Eulerian circuit in
⋃

E1. Then the following conditions
are equivalent:

(H0 5) F : γ1!γ0 is a d-fold cover ;
(H0 5′) Each 1-edge in γ1 is positively oriented.

Proof. Let p0, ..., pk−1⊂C be the post-critical points, labeled positively on C. Con-
sider an oriented 1-edge E1 with initial point v∈V1 and terminal point v′∈V1. It is
positively oriented if and only if F (v′) succeeds F (v), i.e., if F (v)=pj and F (v′)=pj+1

for some j (indices are taken mod k).
Let γ1 go through 1-vertices v0, ..., vkdn−1 in this order. Then F : γ1!γ0 is a d-fold

cover if and only if F (vj+1) succeeds F (vj) (for all j; indices are taken mod kdn), which
holds if and only if each edge in γ1 is positively oriented.

Remark. It is not very hard to show that if γ1 is obtained as in Definition 3.8
(without assuming (H0 5)), then either all 1-edges are positively oriented, or all 1-edges
are negatively oriented in γ1 (see [Me2, Lemma 6.7]). In the latter case our construction
would result in a semi-conjugacy of F to z−d. Indeed a Peano curve γ:S1!S2 that
semi-conjugates F=fn to z−d exists by a slight variation of the construction presented
here. Namely in §7 the role of the white and black 1-tiles has to be reversed.

We now show how property (H0 5) implies (Hn 5), i.e., finish the proof of Lemma 3.5.

Lemma 3.12. Let H0 be a pseudo-isotopy as in Definition 3.1 and Hn be the lifts
of H0 by Fn. The Eulerian circuits γn are the ones from Definition 3.8. Then

(Hn 5) F : γn+1!γn is a d-fold cover.

Proof. The reader is advised to consult Figure 3 for reference. Roughly speaking,
by deforming

⋃
E0 via H0 and

⋃
E1 via H1, one can push the d-fold cover F : γ1!γ0 to

a d-fold cover F : γ2!γ1. We give however a more pedestrian (combinatorial) proof.
The proof is by induction. Thus assume that F : γn!γn−1 is a d-fold cover.
Assume that the (n+1)-edge E′ succeeds the (n+1)-edge D′ in γn+1. We need to

show that the n-edge E :=F (E′) succeeds the n-edge D:=F (D′) in γn.
Let A′, B′⊂

⋃
En be the two arcs that are mapped by Hn

1 to D′ and E′, respectively,
see Lemma 3.6. Let A:=F (A′), B :=F (B′)⊂

⋃
En−1 be their images. Since Hn is the lift

of Hn−1 by F (the diagram commutes), we have

Hn−1
1 (A) =D and Hn−1

1 (B) =E.

There are two cases to consider, by Lemma 3.9.

Case 1. A′ and B′ are contained in the same n-edge En, and B′ succeeds A′ (given
the orientation of En by γn).
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S1

γ1

γ0

H1
1

H0
1

F F

γ2

γ1

⋃
E1

⋃
E2

⋃
E0

⋃
E1

A′

B′

D′

E′

A

B

D

E

Figure 3. Commutative diagram for Lemma 3.12.

Note that since F : γn!γn−1 is a d-fold cover, F maps n-edges oriented by γn to
(n−1)-edges oriented by γn−1.

Therefore A and B are contained in the same (n−1)-edge En−1=F (En), and B

succeeds A (given the orientation of En−1 by γn−1). Thus E succeeds D in γn.

Case 2. A′ and B′ are contained in different n-edges E(A′) and E(B′), such that
A′ and E(A′) have the same terminal points, B′ and E(B′) have the same initial points,
and E(A′) and E(B′) are succeeding in γn.

Thus the (n−1)-edge F (E(B′))⊃B succeeds F (E(A′))⊃A in γn−1, since

F : γn−! γn−1

is a d-fold cover. Furthermore, the terminal point of A is the terminal point of F (E(A′)),
which is the initial point of both B and F (E(B′)). Thus E succeeds D in γn by
Lemma 3.9.

By repeating the argument in Lemma 3.11 we obtain inductively the following con-
sequence.

Corollary 3.13. All n-edges in the Eulerian circuit γn are positively oriented (for
each n).
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4. Construction of γ

In this section we complete the construction of γ, i.e., the proof of Theorem 1.1, under
the assumption of the existence of a pseudo-isotopy H0 as in Definition 3.2.

Lemma 4.1. To construct γ:S1!S2 as in Theorem 1.1, it is enough to show that
there is a Peano curve γ̃:S1!S2 such that the diagram

S1
eϕ

/ /

eγ
� �

S1

eγ
� �

S2
F

// S2

commutes, where ϕ̃(z)=e2πiθ0zd.

(Here and in other powers of e, throughout the paper, i denotes the imaginary unit.)

Proof. Let µ:=e2πiθ0/(1−d). This means that

e2πiθ0µd = e2πiθ0µd−1µ=µ.

Consider γ(z):=γ̃(µz). Then

F (γ(z))=F (γ̃(µz))= γ̃(e2πiθ0µdzd) = γ̃(µzd) = γ(zd).

In this section however we will drop the “˜” from the notation. This means that
we will write γ, γn and so on; when in fact we mean γ̃, γ̃n, which become our desired
objects by composing with a rotation as above.

4.1. The length of n-arcs

The circle S1 will be divided into n-arcs, each of which will be mapped by γn to an
n-edge. We first need to find the right “length” of such n-arcs. It will be convenient to
parameterize those lengths by the corresponding n-edges. Thus l(E) will be the length
of the n-arc (in S1) that is mapped by γn to the n-edge E. We require the following
properties:

(l 1) l(E)>0 for every n-edge E.
(l 2) For all n, ∑

E∈En

l(E) = 1.

(l 3) Given an (n+1)-edge E′ let E=F (E′)∈En. Then

l(E) = dl(E′).
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(l 4) Let E be an n-edge. Then Hn
1 (E) is a chain E′

1, ..., E
′
N of (n+1)-edges. We

require that

l(E) =
N∑
i=1

l(E′
i).

To this end, consider (all) 0-edges E0, ..., Ek−1 ordered by the first approximation
γ0 (positively on C). We say that an n-edge En is of type j if Fn(En)=Ej . Recall that
H0 deforms each 0-edge to several 1-edges. We define a matrix M=(mij)i,j , which keeps
track of those deformations, by

mij is the number of 1-edges in H0
1 (Ei) that are of type j.

Lemma 4.2. Consider an n-edge Eni of type i. Let m̃ij be the number of (n+1)-
edges of type j in Hn

1 (Eni ). Then
m̃ij =mij .

Furthermore, let mn
ij be the number of n-edges of type j contained in

Hn−1
1 �Hn−2

1 �...�H0
1 (Ei).

Then
(mn

ij)i,j =Mn.

Proof. Let En+1
1 , ..., En+1

m be the (n+1)-edges in Hn
1 (Eni ). Since Hn is the lift of

H0 by Fn, it follows that H0 deforms (the 0-edge) Ei=Fn(Eni ) to the 1-edges

E1
1 =Fn(En+1

1 ), ..., E1
m =Fn(En+1

m ).

The first statement follows, since Fn preserves the type of edges.
The second statement follows immediately from the first.

Lemma 4.3. The matrix M is primitive, i.e., Mn>0 for some n.

Proof. Recall from §3.4 that F : γn+1!γn is a d-fold cover. Thus, by induction,
Fn: γn!γ0 is a dn-fold cover. Therefore, along γn the type of n-edges varies cyclically,
in γn an n-edge of type j is succeeded by one of type j+1. This means that every chain
of k n-edges in γn contains exactly one n-edge of each type.

Fix a 0-edge Ei connecting two post-critical points p and q. Consider

Hn−1
1 �Hn−2

1 �...�H0
1 (Ei).

This is a chain of n-edges in γn that connects the points p and q. Since F is expanding
(see Definition 2.1 (3)), the diameter of n-edges goes to 0 (uniformly) with n. Thus, by
choosing n large enough, our chain contains at least k n-edges, and therefore at least one
n-edge of each type.

With this choice of n the claim follows from Lemma 4.2.
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Note that there are d 1-edges of each type, and thus
∑
imij=d. The Perron–

Frobenius theorem (see, for example, [HJ, Theorems 8.2.11 and 8.1.21]) implies that d
is a simple eigenvalue of M (in fact its spectral radius). Furthermore, there is a unique
eigenvector l={lj}k−1

j=0 to d, such that lj>0 (for all j=0, ..., k−1) and
∑k−1
j=0 lj=1. We

note that lj⊂Q for all j=0, ..., k−1. The length of (an n-arc in S1 corresponding to) an
n-edge Enj of type j is now defined as

l(Enj ) := d−nlj . (4.1)

Lemma 4.4. The length defined above satisfies properties (l 1)–(l 4).

Proof. (l 1) This follows immediately, since lj>0 for all j.
There are dn n-edges of each type. Thus

∑
E∈En

l(E) =
k−1∑
j=0

lj =1,

which is property (l 2).
(l 3) This is again clear, since F maps (n+1)-edges to n-edges of the same type.
Property (l 4) follows from the fact that Ml=dl. Let Eni be an n-edge of type i, and

En+1
1 , ..., En+1

N be the (n+1)-edges contained in Hn
1 (Eni ). Then, by Lemma 4.2,

∑
m

l(En+1
m ) = d−n−1

k−1∑
j=0

mij lj = d−nli = l(Eni ).

Note that the lengths depend on the particular pseudo-isotopy H0 chosen, it is not
a property of the edges alone.

4.2. Parameterizing γn

Fix a post-critical point p0. Consider the Eulerian circuit γ0=C=
⋃

E0, that is

γ0 =E0, ..., Ek−1, Ej ∈E0.

It is labeled in such a way that the initial point of E0 is p0. Recall that we want to
parameterize γ so that ϕ=e2πiθ0zd is semi-conjugate to F (see Lemma 4.1). We now
define θ0. If p0 is a fixed point of F set θ0 :=0. Otherwise let E0, ..., Em0−1 be the
(unique) positively oriented chain in γ0 from p0 to F (p0). Then

θ0 := l(E0)+...+l(Em0−1). (4.2)
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Label γ1=E1
0 , ..., E

1
kd−1 in such a way that E1

0 is the initial 1-edge of the chain
H0

1 (E0) in γ1. In the same fashion label (the Eulerian circuit)

γn =En0 , ..., E
n
kdn−1, Enj ∈En,

so that En0 is the initial n-edge in Hn−1
1 (En−1

0 ) (for each n). Thus the initial point of
each En0 is p0. Note, however, that γn may go through p0 several times.

It will be convenient to identify S1 with R/Z. Divide the circle R/Z into k arcs aj
as follows. Let

α0 := 0 and αj := l(E0)+...+l(Ej−1) (4.3)

for j=1, ..., k−1. Then aj :=[αj , αj+1] (where indices are taken mod k).

Convention. When writing [α, β]⊂R/Z for an arc on the circle, we always mean the
positively oriented arc from α to β. In particular ak−1=[αk−1, 0]=[αk−1, 1].

In the same fashion we divide the circle R/Z into kdn n-arcs anj (for each n) by

αn0 := 0 and αnj := l(En0 )+...+l(Enj−1)

for j=1, ..., kdn−1. Then anj :=[αnj , α
n
j+1].

Convention. The (lower) indices of points αnj , n-arcs anj and n-edges Enj are always
taken mod kdn. In particular, αnkdn =αn0 and ankdn−1=[αnkdn−1, 0]=[αnkdn−1, 1]⊂R/Z.

We now define the approximations γn on each n-arc anj ⊂R/Z by

γn: anj −!Enj is (any) orientation-preserving homeomorphism,

as parameterized curves. Thus initial and terminal points are mapped onto each other
by γn. Note that γn(0)=p0 for all n.

In R/Z the map ϕ(z)=e2πiθ0zd is given by

φ: R/Z−!R/Z, φ(t) = dt+θ0 mod 1.

Lemma 4.5. The parameterized curves γn satisfy the following properties:
(1) If m>n, then each point αnj is a point αmi . Furthermore,

γm(αnj ) = γn(αnj ),

for all j=0, ..., kdn−1. Note that {αnj }
kdn−1
j=0 =(γn)−1(Vn). So the n-th approximation

determines the preimages (on the circle) of the n-vertices.
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(2) The map φ maps each point αn+1
j to a point αni . For any point αn+1

j ∈R/Z,

F (γn+1(αn+1
j ))= γn(φ(αn+1

j )).

Thus we have the following commutative diagram:

{αn+1
j }kd

n+1−1
j=0 ⊂R/Z

φ
/ /

γn+1

� �

{αnj }
kdn−1
j=0 ⊂R/Z

γn

� �

Vn+1⊂S2
F

// Vn⊂S2.

This will imply the desired semi-conjugacy.
(3) The supremum norm is given in terms of the visual metric (2.3). Then

‖γn+1−γn‖∞ .Λ−n

for all n. Here C(.) does not depend on n.

Proof. (1) ConsiderE0, the first 0-edge in γ0. ThenH0
1 (E0) is the chainE1

0 , ..., E
1
m−1

of 1-edges in γ1. Note that the terminal point of E0 is the terminal point of E1
m−1. By

property (l 4),
α1 = l(E0) = l(E1

0)+...+l(E1
m−1) =α1

m.

Thus

γ1(α1) = γ1(α1
m) = terminal point of E1

m =terminal point of E0 = γ0(α1).

In the same fashion one shows that each αj is a point α1
i , and γ1(αj)=γ0(αj) for all

j=0, ..., k−1. The general statement follows by induction (see Lemma 4.2).
(2) Recall from the definitions of θ0 (4.2) and {αj}k−1

j=0 (4.3) that αm0 =θ0. Then,
by (1) and the definition of θ0, we have

γn(θ0) = γ0(θ0) =F (p0).

Let mn=mn(θ0) be the index such that αnmn =θ0.
Consider En+1

0 , the initial (n+1)-edge in γn+1. It is clear that F (En+1
0 ) is an n-

edge with initial point F (p0) (by Corollary 3.13). There may be several such n-edges in
general however. We next show that F (En+1

0 ) is in fact the “right” n-edge, namely the
image (by γn) of the n-arc (on R/Z) with initial point θ0.

Claim 1. F (En+1
0 )=γn(anmn)=Enmn .
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This is clear for n=0, since there is only one 0-edge with initial point F (p0). To
prove the claim by induction, we assume it is true for n−1.

Consider En0 ; by assumption, F (En0 )=γn−1(an−1
mn−1)=En−1

mn−1 . Let An⊂En0 be the
(initial) n-arc that is deformed by Hn to En+1

0 . Let An−1 :=F (An)⊂En−1
mn−1 ; it is an

n-arc that is deformed by Hn−1 to an n-edge Enj (since Hn is the lift of Hn−1 by F ):

An⊂En0
Hn

1 //

F

��

En+1
0

F

��

An−1⊂En−1
mn−1

Hn−1
1

// Enj .

The crucial property is that by construction j=mn. This is seen as follows. By (l 4)
the total length of the (n−1)-edges preceding En−1

mn−1 (which is θ0) is the same as the
total length of all n-edges preceding Enj :

θ0 = l(En−1
0 )+...+l(En−1

mn−1−1) = l(En0 )+...+l(Enj−1),

and thus j=mn.
Hence, F (En+1

0 )=Enmn , since the diagram above commutes. This proves Claim 1.

Claim 2. F (En+1
j )=Enmn+j for j=0, ..., kdn+1−1.

This follows from Claim 1, and the fact that F : γn+1!γn is a d-fold covering in the
sense of Definition 3.10. The reader is reminded (for the last time) that the index mn+j
is taken mod kdn.

Claim 3. The map φ maps points αn+1
j to points αni , in fact

φ(αn+1
j ) =αnmn+j .

To prove this claim note first that

φ(αn+1
0 ) =φ(0)= θ0 =αnmn

by definition. In the following we write α≡β if α and β represent the same point on the
circle R/Z, i.e., if α−β∈Z.

By the previous claim, F (En+1
j )=Enmn+j , and thus

l(Enmn+j) = dl(En+1
j )
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by Property (l 3). Therefore

αnmn+j ≡αnmn +l(Enmn)+l(Enmn+1)+...+l(E
n
mn+j−1)

= θ0+d (l(En+1
0 )+...+l(En+1

j−1 ))= θ0+dαn+1
j ≡φ(αn+1

j )

for j=0, ..., kdn+1−1. Thus Claim 3 is proved.
It remains to show the semi-conjugacy. Note that, by construction, γn maps αnj to

the initial point of Enj . Thus, by Claims 2 and 3,

F (γn+1(αn+1
j ))=F (initial point of En+1

j ) = initial point of Enmn+j

= γn(αnmn+j) = γn(φ(αn+1
j )).

This finishes the proof of property (2).
(3) The diameter of each n-edge En in the visual metric (2.3) is given by

diamEn�Λ−n,

see [BM, Lemma 8.4].
Consider one n-arc anj =[αnj , α

n
j+1]. Then γn(anj )=E

n
j . The pseudo-isotopy Hn de-

forms Enj to a (n+1)-chain En+1
i , ..., En+1

i+m−1. The number m (of (n+1)-edges in this
chain) is uniformly bounded by Lemma 4.2. By (the proof of) property (1), we have
αnj =αn+1

i and αnj+1=αn+1
i+m, and so

anj = an+1
i ∪...∪an+1

i+m−1,

where
γn+1(an+1

i ) =En+1
i , ..., γn+1(an+1

i+m−1) =En+1
i+m−1.

Furthermore, the (n+1)-chain En+1
i , ..., En+1

i+m−1 and the n-edge Enj intersect in (the end-
points of Enj ) γn(αnj )=γ

n+1(αn+1
i ) and γn(αnj+1)=γ

n+1(αn+1
i+m), again by property (1).

Thus, on anj ,

‖γn−γn+1‖∞ 6diamEnj +diamEn+1
i +...+diamEn+1

i+m−1 .Λ−n+mΛ−n−1 .Λ−n,

as desired.

4.3. Construction of the invariant Peano curve γ

We now come to the proof of the main result, assuming the existence of a pseudo-isotopy
H0 as in Definition 3.2.
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Define

γ: R/Z−!S2,

t 7−! lim
n!∞

γn(t).

Since the sequence {γn}∞n=1 converges uniformly by Lemma 4.5 (3), this is a parameter-
ized curve.

Claim 1. γ is a Peano curve (onto).

This is clear since the curve γ contains by construction
⋃∞
n=1 Vn (all n-vertices).

This set is dense in S2.

Claim 2. F (γ(t))=γ(φ(t)) for all t∈R/Z.

Note that, by properties (1) and (2) of Lemma 4.5, this is true for all t=αnj . The
claim follows, since the set of all such points αnj is dense in the circle R/Z.

Thus we “just” need to construct the pseudo-isotopy H0 (with properties (H0 1)–
(H0 5)) to finish the proof of Theorem 1.1.

4.4. γ is the end of a pseudo-isotopy

The homotopy Γ:S2×[0, 1]!S2 from Theorem 1.1 is constructed as follows. Roughly
speaking we concatenate the homotopies Hn. The precise definition is as follows. Break
up the unit interval into intervals

I = [0, 1]=
[
0, 1

2

]
∪

[
1
2 ,

3
4

]
∪...∪

[
1−2−n, 1−2−n−1

]
∪...∪{1}.

The nth interval in this union is denoted by In=[1−2−n, 1−2−n−1]. Let sn: In!I,
sn(t)=2n+1(t−(1−2−n)) for n∈N0. We define Γ:S2×I!S2 by Γ(x, t)=H0(x, s0(t)) for
t∈I0 and Γ(x, t)=H1(H0

1 (x), s1(t)) for t∈I1. In general,

Γ(x, t) :=Hn(Hn−1
1 �...�H0

1 (x), sn(t))

for t∈In (for some n∈N0) and all x∈S2. Since the diameters of Hn tend to 0 exponen-
tially (see Lemma 3.4 (2)), it follows that Γ extends to t=1 by Γ(x, 1):=limt!1 Γ(x, t)
continuously. This is the desired homotopy.

It is possible to choose Γ to be a pseudo-isotopy. This can be done explicitly by
slightly altering the above construction. We do not work out the details here. It is
however a direct consequence of the general theory of decomposition spaces. Namely
it follows from the fact that every cell-like upper semi-continuous decomposition of a
2-manifold is shrinkable [Da, Theorem 25.1].
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5. Some topological lemmas

Here we collect some topological theorems and lemmas for future reference. We first note
the following form of the Jordan–Schönflies theorem.

Theorem 5.1. (Isotopic Schönflies theorem) Let γ, σ⊂D be two Jordan arcs with
common endpoints p, q∈	D. Then there is an isotopy of 	D rel. ∂D∪{p, q} that deforms
γ to σ.

We give a quick outline of how this form can be obtained from the standard Schönflies
theorem.

Theorem 5.2. (Schönflies theorem [Mo, Theorem 10.4]) Let h: J⊂R2!J̃⊂R2 be a
homeomorphism, where J is a Jordan curve. Then h may be extended to a homeomor-
phism h: R2!R2.

We remind the reader of the Alexander trick.

Theorem 5.3. (Alexander [Mo, Theorem 11.1]) Let h:	D!	D be a homeomorphism
such that h|S1 =idS1 . Then the map φ:	D×[0, 1] defined by

φ(x, t) :=

{
th

(x
t

)
, if 0 6 |x|6 t,

x, if t6 |x|6 1,

is an isotopy with φ( · , 0)=id
�D and φ( · , 1)=h.

Outline of proof of Theorem 5.1. Consider first p, q∈S1=∂	D. Let C1, C2⊂S1 be the
two arcs bounded by p and q. Let hj : γ∪Cj!σ∪Cj be homeomorphisms which are
constant on S1, j=1, 2. Using Theorem 5.2, they can be extended to a homeomorphism
of 	D. Theorem 5.3 gives the desired isotopy.

If p=0 and q∈S1, extend γ and σ to arcs with common endpoints p̃, q∈S1. The
previous procedure yields the isotopy.

If p∈D and q∈S1, we use the same construction as before. Then we post-compose
with the isotopy that maps the rays between φ(p, t) and ζ∈S1 to the rays between p and
ζ∈S1.

Finally let p, q∈D. By the above, we may assume that p=0. Extend γ and σ to
curves γ̃ and σ̃, respectively, with common endpoints p̃ and q̃. As above we obtain an
isotopy φ(x, t) rel. S1∪{p} deforming γ̃ to σ̃. We may assume that φ(q, 1)=q (choose
the homeomorphisms hj such that hj(q)=q). This means that φ deforms γ to σ. Let
rt :=|φ(q, t)| and αt :=log r0/log rt. Then post-composition with the radial stretch

ψ(x, t) := |x|αt
x

|x|
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yields an isotopy φ̃ rel. S1∪{p} which keeps |q| constant. Let θt :=arg φ̃(q, t)−arg q.
Post-composing with

ϕ: reiθ 7−! rei(θ−θt(1−r)/(1−|q|))

yields the desired isotopy. There is a tricky point hidden here: θ1 could be a multiple
of 2π. We can however always arrange that θ1=0 in the following way. Let γ̃|[q̃,q] and
σ̃|[q̃,q] be the paths of the extensions from q̃ to q. By choosing the extensions γ̃ and σ̃ in
such a way that the change of argument along γ̃|[q̃,q] and σ̃|[q̃,q] is equal, it follows that

θ1 =0.

The following is due to Epstein–Zieschang, see [Bu, Theorem A.5].

Theorem 5.4. (Isotopy rel. post) Let C, γ⊂S2 be two Jordan curves going through
the post-critical points p0, ..., pk−1 in the same cyclical order. Let Cj and γj be the arcs
on C and γ, respectively, between pj and pj+1 (indices are taken mod k here). Then the
following conditions are equivalent :

(1) Cj and γj are isotopic rel. post for all j=0, ..., k−1;
(2) C and γ are isotopic rel. post.

Combining the previous with Theorem 5.1, we obtain the following result.

Theorem 5.5. With notation as in the previous theorem assume that

Ci∩γj 6= ∅ only for j= i−1, i, i+1.

Then C and γ are isotopic rel. post.

6. Connections

In this and the following section the initial pseudo-isotopy H0 is constructed. This was
used to define the first approximation γ1 of the Peano curve. Recall that γ1 is an Eulerian
circuit of 1-edges. Thus γ1 is given by the following construction. For each 1-edge E
ending at a 1-vertex v we have to define a succeeding 1-edge E′3v. Since γ1 will be
non-crossing, there will be an even number of 1-edges in the sector between E and E′

(as well as in the sector between E′ and E). Let E be contained in the white 1-tile X,
and E′ be contained in the white 1-tile X ′. From the above it follows that if γ1 traverses
E positively (as boundary of X), then it traverses X ′ positively (as boundary of X ′).

Since γ1 is non-crossing, it is possible to “distort the picture” in a neighborhood of
v slightly, so that the resulting curves are simple. In this distorted picture the 1-tiles X
and X ′ are connected at v. See Figure 4 for an illustration.
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Figure 4. Connection at a vertex.

Formally we will do the reverse of the description above. Namely at each 1-vertex
we will define a connection, which is an assignment of which 1-tiles are connected. This
will be done in a non-crossing manner. The approximation γ1 and the pseudo-isotopy
H0 are constructed from the connection of (all) 1-tiles.

6.1. Non-crossing partitions

Recall that a partition of the set [n]:={0, ..., n−1} is a set π={b1, ..., bN} of pairwise
disjoint subsets (called blocks) of [n], whose union is [n]. It is crossing if and only if it
contains distinct blocks bi and bj with a, c∈bi and b, d∈bj such that

0 6 a< b< c<d6n−1;

otherwise it is non-crossing.
It is easy to see that the partition π={b1, ..., bN} of [n] is non-crossing if and only if

the sets Bj′ :={em :m∈bj′}, where em :=e2πim/n, have the property that each Bj′ lies in
one component of S1\Bj (for j′ 6=j).

With this description in mind let, for i, j∈[n],

[i, j] :=
{
{i, ..., j}, if i6 j,
{i, ..., n−1}∪{0, ..., j}, if i> j,

(i, j) := [i, j]\{i, j}.

(6.1)

Let b={j0, ..., jm}⊂[n], where j0<...<jm. Then a component of [n]\b is defined to be
one of the sets

(j0, j1), ..., (jm−1, jm), (jm, j0).
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The partition π={b1, ..., bN} is non-crossing if and only if each bi lies in one component
of [n]\bj for all i 6=j.

The set of non-crossing partitions of [n] is partially ordered by refinement. Namely,
for two partitions π and σ, one defines σ6π if and only if every block in π is the union
of blocks in σ. Equipped with this partial ordering the non-crossing partitions (of [n])
form a lattice, i.e., meet and join are well defined. The meet of (non-crossing) partitions
π1, ..., πm is

m∧
i=1

πi := {b1∩...∩bm : bi ∈πi, i=1, ...,m}. (6.2)

It is the biggest (non-crossing) partition smaller than any πi. The join is the smallest
non-crossing partition bigger than any πi (the description is slightly more difficult).

Non-crossing partitions were introduced in [Kr], see [Si] for a recent survey. The
number of non-crossing partitions of [n] is equal to the nth Catalan number

Cn :=
1

n+1

(
2n
n

)
.

Consider now

even= evenn = {2m :m=0, ..., n−1} and odd= oddn = {2m+1 :m=0, ..., n−1},

so that [2n]=even∪ odd.
Non-crossing partitions of even and odd are defined as before. We denote by πw

a non-crossing partition of even, and by πb a non-crossing partition of odd. They will
describe how white (black) tiles are connected at a vertex v; see again Figure 4 for an
illustration, and Figure 9 for a more complicated example.

Lemma 6.1. Let πw be a non-crossing partition of evenn. Then there is a unique
maximal non-crossing partition πb=πb(πw) of oddn such that πw∪πb is a non-crossing
partition of [2n].

Proof. Fix a block bi∈πw={b1, ..., bN}. Let c1, ..., cM be the components of [2n]\bi.
Let

aj := odd∩cj , j=1, ...M.

Then πb(bi):={a1, ..., aM}. This is a non-crossing partition of odd. We now define (see
(6.2))

πb :=
N∧
i=1

πb(bi);

this is a non-crossing partition of odd. Also πw∪πb is a non-crossing partition of [2n].
Let σb be any non-crossing partition of odd such that πw∪σb is a non-crossing

partition of [2n]. Then σb6πb(bi) for all i. Thus σb6πb.
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The partition πb=πb(πw) is called the partition complementary to πw. We mention
some more facts which can be found in [Kr, §3].

Lemma 6.2. (Properties of complementary partitions) Complementary partitions
have the following properties:

• Two blocks a and b are called adjacent if there are i∈a and j∈b such that i+1∈b
and j+1∈a. The partition πw∪πb has the property that the two blocks containing i

and i+1 are adjacent for all i. This characterizes πb, meaning that it is the unique
non-crossing partition of odd, such that πw∪πb is non-crossing, with this property.

• One may define πw=πw(πb), the partition (of even) complementary to the parti-
tion πb (of odd) as before. Then the previous characterization shows that

πw(πb(πw))=πw.

Thus we simply say that the partitions πw and πb are complementary.
• It is possible to define a graph, where the vertices are the blocks of πw∪πb, con-

nected by edges if and only if they are adjacent. It is not very hard to show that this is
a tree with n edges. Thus πw∪πb contains exactly n+1 blocks.

From now on, we write cnc-partition for complementary non-crossing partitions
πw∪πb as above.

We next proceed to construct a geometric realization of a given cnc-partition; see
again Figure 4.

Divide the unit disk into n+1 (simply connected) domains D1, ..., Dn+1 by n disjoint
Jordan arcs g1, ..., gn⊂	D. More precisely, the (distinct) endpoints of each gj lie in S1=∂D,
the interior of gj in D. The arcs gm divide S1 into 2n circular arcs a0, ... a2n−1⊂S1

(labeled positively on S1). A partition π({gm}nm=1) of [2n] is obtained as follows:

i, j ∈ [2n] are in the same block of π({gm}nm=1) if and only if

ai and aj are in the boundary of the same component Dl.
(6.3)

So, for each component Dl of D\
⋃n
j=1 gj , there is exactly one block bl∈π({gm}nm=1).

Lemma 6.3. The partition π({gm}nm=1) is a cnc-partition. Conversely each cnc-
partition of [2n] is obtained in this way.

Furthermore 
Dk and 
Dl are not disjoint if and only if the (corresponding) blocks
bk and bl are adjacent. In this case the intersection of 
Dk and 
Dl is one arc gm.
Conversely, each gm is the intersection of the closure of two components 
Dk and 
Dl.

Proof. We first show that π({gm}nm=1) is non-crossing. Consider distinct compo-
nents Dk and Dl. Then there is a Jordan arc gm⊂∂Dk that separates Dk from Dl. Let
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α, β∈S1 be the endpoints of gm. Let ai, ai+1⊂S1 and aj , aj+1⊂S1 be the circular arcs
containing α and β. We may assume that ai⊂∂Dk, and thus aj+1⊂∂Dk. Then all arcs
in the boundary of Dl are contained in ai+1, ..., aj . This means that bl⊂[i+1, j], which
is one component of [2n]\bk (recall that bk is the block corresponding to Dk, while bl is
the block corresponding to Dl; see (6.1) for notation). This shows that π({gm}nm=1) is
non-crossing.

If ∂Dl⊃ai+1 (equivalently, i+1∈bl) it follows that gm⊂∂Dl. Thus aj⊂∂Dl (equiv-
alently, j∈bl). Hence i, j+1∈bk and i+1, j∈bl, i.e., bk and bl are adjacent. This shows
that the partition π({gm}nm=1) is a cnc-partition.

Furthermore, it is clear that bk and bl are adjacent if and only if 
Dk and 
Dl intersect.

It remains to show that each cnc-partition is obtained in this geometric fashion.
Identify each j∈[2n] with the circular arc aj=[ej , ej+1]⊂S1 (where ej=e2πij/2n). For
each block bl∈πw∪πb the domain Dl is the hyperbolic polygon whose boundary intersects
S1 in

⋃
j∈b aj .

To be more precise, for each two adjacent blocks b3i, j+1 and b′3i+1, j, we connect
ei+1 and ej+1 by a hyperbolic geodesic. Since every block distinct from b is contained in
one component of [2n]\{i, j+1}, the Jordan arcs gm thus obtained are disjoint.

How 1-tiles are connected at a 1-vertex v will be described by complementary non-
crossing partitions. Additional data is needed however, to make the construction well
defined. Namely, if v=p is a post-critical point, we need to declare where p lies in the
“distorted picture” (in the geometric representation of the complementary connections,
see below).

Definition 6.4. (Marking) A cnc-partition πw∪πb is marked by singling out a pair
of adjacent blocks b, c∈πw∪πb. Equivalently, this means that if the cnc-partition πw∪πb
is given geometrically as above in Lemma 6.3, we mark one of the arcs gm. In Figure 4
the marked arc gm is indicated by the big dot.

Given a marked cnc-partition, we always assume that the geometric realization from
Lemma 6.3 was chosen in such a way that the marked arc gm contains the origin.

A third equivalent way to mark a connection is given in Corollary 6.14.

Assume now that the circular arcs from Lemma 6.3 are of the form aj=[ej , ej+1]⊂S1

(where ej=e2πij/2n). Color the set Dl white if the corresponding block bl∈πw, and black
otherwise. Thus we obtain a “checkerboard tiling” of the unit disk, where sets which
share a side gm have different color.

Definition 6.5. (Geometric representation of cnc-partition) The decomposition of
the closed unit disk into black and white sets as above is called a geometric representation
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of the cnc-partition πw∪πb, and is denoted by 	D(πw∪πb). The union of the white sets 
Dl

is denoted by 	Dw=	Dw(πw∪πb), and the union of the black sets 
Dl by 	Db=	Db(πw∪πb).

Denote by Sj , j=0, ..., 2n−1, a sector in 	D, namely

Sj :=
{
re2πiθ :

j

2n
6 θ6

j+1
2n

and 0 6 r6 1
}
. (6.4)

Lemma 6.6. (Deforming 	D(πw∪πb)) Let the geometric representation 	D(πw∪πb) be
as above. Then there is a pseudo-isotopy H of 	D rel. ∂	D∪{0} satisfying the following
properties:

• H deforms 	D(πw∪πb) to sectors. More precisely,

H1(	Dw) =
⋃

j even

Sj and H1(	Db) =
⋃
j odd

Sj .

• The pseudo-isotopy H “freezes” outside of a neighborhood of 0. By this we mean
that, for ε< 1

2 ,

H:	D×[1−ε, 1]−!	D is a pseudo-isotopy rel. 	D\Bε,

where Bε={z :|z|<ε}.
• Only one point on each arc gm is deformed to 0 by H.

Proof. This follows from the Schönflies theorem (Theorem 5.1).

6.2. Connections

Let v be a 1-vertex. A connection at v consists of an assignment of which white and
black 1-tiles are connected at v. The objective is to “cut” tiles at vertices, so that the
boundary of the “white (or black) component” is a Jordan curve.

Let n=degF v be the degree of F at v, let X0, ..., X2n−1 be the 1-tiles containing v,
labeled positively around v, such that white 1-tiles have even index and black 1-tiles have
odd index.

Definition 6.7. (Connection at a vertex) A connection at a 1-vertex v consists of
a labeling of 1-tiles containing v as above and cnc-partitions πw=πw(v) and πb=πb(v)
of evenn (representing white 1-tiles) and oddn (representing black 1-tiles). The 1-tiles
Xi and Xj (of the same color) are said to be connected at v if i and j are contained in
the same block of πw∪πb, 1-tiles of different color are never connected. The 1-tile Xi is
incident (at v) to the block b∈πw∪πb containing i. By Lemma 6.1, it is enough to define
πw(v), then πb(v) will always be the complementary partition.
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If v=p is a post-critical point the connection at p is marked in addition (see Defi-
nition 6.4). Recall that the marked arc of a geometric representation 	D(πw∪πb) (of the
connection at the post-critical point p, Definition 6.5) is assumed to contain the origin.

The connection illustrated in Figure 4 is given by

πw = {{0, 2, 6}, {4}} and πb = {{1}, {3, 5}, {7}}.

The marked arc is indicated by the dot.
When talking about 1-tiles Xj and cnc-partitions at the same time, it is always

assumed without mention that the indices of the Xj are as above.
Let v be a 1-vertex, and n=degv F . Let X0, ..., X2n−1 be the 1-tiles containing v,

labeled positively around v (white tiles have even index, black ones odd index as before).
Every such 1-vertex v has arbitrarily small neighborhoods U=U(v), that are closed and
homeomorphic to the closed disk 	D, such that there is a homeomorphism

h=hv:U −!	D (6.5)

that maps tiles to sectors (see (6.4)),

h(Xj∩U) =Sj

for j=0, ..., 2n−1. In particular, h(v)=0. We require that the neighborhoods U(v) and
U(v′) have disjoint closures for distinct 1-vertices v and v′. The reader should think of
the neighborhood U as a “blowup” of the point v.

Definition 6.8. (Geometric representation of a connection) Let a connection at v be
given, with cnc-partition πw∪πb, geometrically represented by 	D(πw∪πb) as in Defini-
tion 6.5. Let h and U=U(v) be as above. A geometric representation of the connection
at v is given by replacing U by h−1(	D(πw∪πb)).

More precisely, the white 1-tiles in U , i.e. (X0∪X2∪... X2n−2)∩U , are replaced by
h−1(	Dw) (see Definition 6.5). Note that this set is colored white. Similarly we replace
the black 1-tiles in U , i.e. (X1∪X3∪... X2n−1)∩U , by h−1(	Db). This set is colored black.

Let v=p be a post-critical point and the connection at p be marked by the arc gm.
More precisely, in the geometric representation D(πw∪πb) of the connection πw∪πb at p,
the marking corresponds to the arc gm⊂D(πw∪πb). Since the marked arc was chosen to
contain 0, it follows that in this case p∈h−1(gm), and thus the geometric representation
of the marked arc contains p. This is the purpose of the marking, namely to keep track of
where in the geometric representation of the connection the post-critical point is located.
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Definition 6.9. (Connection) A connection of 1-tiles is an assignment of a connec-
tion at every 1-vertex. Representing the connection at each 1-vertex geometrically as
above gives a geometric representation of this connection of 1-tiles. Objects arising from
a geometric representation will be denoted with an ε-subscript.

Assume a geometric representation of a connection of 1-tiles is given. From the
construction it follows that each boundary component of some white or black component
is a Jordan curve. Let X be a 1-tile with 1-vertices v0, ..., vk−1. Then the geometric
representation of X is Xε :=X\

⋃k−1
j=0 U(vj), where the neighborhood U(vj) of vj is as in

(6.5). Note that by construction two 1-tiles X and Y (of the same color) are connected
at a 1-vertex v if and only if their geometric representations Xε and Yε are connected in
U(v). This means that Xε and Yε can be joined by a path in U(v) that does not intersect
any boundary of some white or black component.

6.3. The connection graph

Given a connection of 1-tiles, we construct the white and black connection graphs.

Definition 6.10. (Connection graph) The white connection graph is constructed as
follows. For each white 1-tile X there is a vertex c(X) (thought of as the center of the
1-tile X). For each 1-vertex v and block b∈πw(v) there is a vertex c(v, b). The vertex
c(X) is connected to c(v, b) by an edge if and only if X is incident to b at v.

The black connection graph is constructed in the same manner from black 1-tiles
and their connections.

We will identify a 1-tile X with (the vertex of the white connection graph) c(X). For
example we will say that two white 1-tiles X and Y are connected (given a connection
of 1-tiles) if c(X) and c(Y ) lie in the same component of the white connection graph.

Definition 6.11. (Cluster) A white (black) cluster K is one component of the white
(black) connection graph. Using the previous identification, we say that K contains a
1-tile X (and write X⊂K), if c(X)∈K. This means that we identify K with the union of
1-tiles “contained” in it. Similarly, a 1-edge E (resp. 1-vertex v) is said to be contained
in K if E⊂X⊂K (resp. v∈X⊂K) for some 1-tile X. Each 1-tile is contained in exactly
one cluster (of the same color), each 1-edge is contained in exactly two clusters (one black
and one white). A 1-vertex v may be contained in several clusters (in fact at most n+1,
where n=degF v).

Assume a geometric representation of the connection has been given. Let X be a 1-
tile contained in the clusterK. Then there is a unique componentKε (of the same color as
X) containing (the geometric representation) Xε. Recall that some 1-tile Y is connected
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to X at a 1-vertex v if and only if they are connected at v in a geometric representation
of the connection. Thus one obtains inductively that any 1-tile Z is contained in K if
and only if Zε⊂Kε. Thus each white (black) cluster K corresponds to one white (black)
component Kε (of a geometric representation of the connection) and vice versa. We call
Kε a geometric representation of the cluster K.

A cluster K is a tree if the underlying component of the connection graph is a tree,
i.e., contains no cycles. The white cluster K is a spanning tree, if it is a tree and contains
all white 1-tiles.

In the next section the connection of 1-tiles will be constructed such that the white
1-tiles form a spanning tree in “the right homotopy class”.

Remark. Assume that all white 1-tiles are connected at each 1-vertex. Of course we
can extract a spanning tree (in the standard sense) from the resulting white connection
graph. This spanning tree however will have only one vertex for each 1-vertex v. Thus
not all spanning trees in the sense of the previous definition can be obtained in this way.
See Corollary 6.20 for an inductive way to construct trees in the connection graph.

The first approximation of the Peano curve γ1 will be constructed as “the outline”
of the spanning tree. One should think of the construction as follows. A geometric
representation of this (white) spanning tree will be a Jordan domain. The positively
oriented boundary of this domain “is” the first approximation γ1.

6.4. Succeeding edges

Let a connection of 1-tiles be given. Let E be a 1-edge contained in the white 1-tile Xi,
positively oriented (as boundary of Xi) with terminal point v.

Since 1-tiles are cyclically ordered around v, the 1-tiles that are connected at v with
Xi are cyclically ordered as well.

Let Xj be the cyclical successor (in positive order around v) of Xi among 1-tiles
connected to Xi at v. If no other 1-tile is connected to Xi at v, we let Xj=Xi.

Formally i and j are contained in the same block of πw, and none of the numbers in
[i+1, j−1] are contained in this block.

Note that Xj is a white 1-tile. Thus an oriented 1-edge E′⊂Xj is positively oriented
if and only if it is positively oriented as boundary of Xj .

Definition 6.12. (Successor) Let v and E, as well as Xi and Xj , be as above. The
successor to E (at v) is the positively oriented 1-edge E′⊂Xj with initial point v. Note
that each 1-edge E′ is the successor to exactly one 1-edge E.



invariant peano curves of expanding thurston maps 137

See Figure 4 for an illustration. For each 1-edge E with initial point v and terminal
point w, let Eε :=E\(U(v)∪U(w)). Here U(v) and U(w) are the neighborhoods of v and
w from (6.5). Recall from Lemma 6.3 how a cnc-partition was geometrically represented
by dividing the disk by arcs gm. We call such an arc gm positively oriented if it is
positively oriented as boundary arc of a white set Dl.

Lemma 6.13. (Equivalent formulations for succeeding edges) Consider white 1-tiles
Xi⊃E and Xj⊃E′, where E and E′ are positively oriented 1-edges containing a 1-
vertex v. The following statements are equivalent :

(1) E′ is the successor to E at v.
(2) E′

ε is succeeding Eε on ∂Kε, where Kε is a geometric representation of the white
cluster K containing E. This means that, when ∂Kε is positively oriented (as boundary
of Kε) there is no (geometric representation of a 1-edge Ẽ ) Ẽε⊂∂Kε on the positively
oriented arc from Eε to E′

ε.
(3) Represent the connection at v geometrically as in Lemma 6.3. Using the notation

from this lemma, there is a (positively oriented) arc gm that connects the right endpoint
of the arc ai⊂S1 to the left endpoint of the arc aj⊂S1.

(4) There are adjacent blocks b∈πw(v) and c∈πb(v) such that

i, j ∈ b and i+1, j−1∈ c.

The proof is clear from the proof of Lemma 6.3.

Corollary 6.14. (Marked connection) A marking of a connection at a post-critical
point p may be given

(1) by marking an arc gm from a geometric representation of the connection at p;
(2) ” or equivalently by marking a pair of succeeding 1-edges E and E′ at p;
(3) or equivalently by marking a pair of adjacent blocks b∈πw(p) and c∈πb(p).

The precise correspondences (i.e., which marked arc corresponds to which marked
pair of succeeding edges, corresponds to which marked pair of adjacent blocks) is given
by Lemma 6.13.

The 1-tiles containing the successors E and E′ are connected at v. If on the other
hand the 1-tiles X and Y are connected at v, we can find a chain of succeeding 1-edges.

Lemma 6.15. Two 1-tiles X and Y (of the same color) are connected at the 1-vertex
v if and only if there is a chain

X =X1, E1, E
′
2, X2, ..., Xm−1, Em−1, E

′
m, Xm =Y.

Here Xj3v are 1-tiles of the same color as X and Y , Ej , E′
j⊂Xj are 1-edges and E′

j+1

succeeds Ej at v.
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Figure 5. Adding clusters.

Note that, above, the labeling of the white 1-tiles is not the one used in the definition
of the connection at v (there are some white 1-tiles with odd index).

Proof. If the 1-tiles in the lemma are white, the cyclical order of 1-tiles connected to
X at v from X=X1 to Y =Xm is given by X1, ..., Xm. If the 1-tiles are black this gives
the anti-cyclical order. Clearly going (anti-)cyclically around v among 1-tiles connected
to X gives all such 1-tiles.

6.5. Adding clusters

The spanning tree will be built successively by adding more “secondary clusters” to a
“main cluster”.

Let the connection at a 1-vertex v be given by the cnc-partition πw∪πb (of [2n],
where n=degF (v)), and K and K ′ be two white clusters containing v. Let b∈πw be a
block with indices of 1-tiles in K (Xj⊂K if j∈b), and b′∈πw be a block with indices of
1-tiles in K ′. We add the cluster K ′ to K at v by replacing b and b′ in πw by b̃:=b∪b′.
The resulting partition π̃w may however not be non-crossing anymore.

Lemma 6.16. (Adding clusters) The partition π̃w is non-crossing if and only if there
is a block c∈πb that is adjacent to both b and b′ (see Lemma 6.2).

In this case, let K̃ be the cluster in the new connection graph that contains K and
K ′. If K and K ′ are trees, then K̃ is a tree as well.

The situation is illustrated in Figure 5.

Proof. We show the equivalence first.

(⇐) Assume that π̃w is crossing. Then there is a block b̂∈πw such that there are
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a, a′∈b̂, d∈b and d′∈b′ satisfying

a<d<a′<d′.

This means that b and b′ have to be contained in different components of [2n]\{a, a′}.
Thus every block c∈πb adjacent to b has to be in a different component of [2n]\{a, a′}
than every block c′∈πb adjacent to b′. Thus there is no block c∈πb adjacent to both b

and b′.
(⇒) Assume now that there is no c∈πb adjacent to both b and b′. Let

b= {b1, ..., bN} and b′ = {b′1, ..., b′M},

where b1<...<bN and b′1<...<b
′
M . Since πw is non-crossing, b and b′ are in disjoint

intervals, meaning that we may assume that, for some j,

bj <b
′
1<b

′
M <bj+1.

Since πb is complementary to πw, there are blocks c, c′∈πb such that

bj+1, bj+1−1∈ c and b′1−1, b′M+1∈ c′,

by Lemma 6.2. The blocks c and c′ are distinct by assumption. Let c′1 :=min{c′j∈c′} and
c′2 :=max{c′j∈c′}. The numbers c′1−1 and c′2+1 are in the same block b̂∈πw (since πw
and πb are complementary). Thus we have the following ordering:

bj︸︷︷︸
∈b

<bj+1︸ ︷︷ ︸
∈c

<c′1−1︸ ︷︷ ︸
∈b̂

< c′1︸︷︷︸
∈c′

<b′1<b
′
M︸ ︷︷ ︸

∈b′

< c′2︸︷︷︸
∈c′

<c′2+1︸ ︷︷ ︸
∈b̂

<bj+1−1︸ ︷︷ ︸
∈c

<bj+1︸︷︷︸
∈b

.

Clearly b∪b′ and b̂ are crossing, which finishes this implication.
We now show the second statement. Recall that in the white connection graph the

block b∈πw is represented by a vertex c(v, b) and b′∈πw is represented by a (different)
vertex c(v, b′). The new white connection graph (where the connection at v is given by
π̃w) is obtained by identifying c(v, b) and c(v, b′); this yields the vertex c(v, b̃). Then K̃

is the component (of the new white connection graph) containing c(v, b̃). If K and K ′

are trees, then clearly K̃ is a tree as well.

Assume that c is adjacent to both b and b′, i.e., that we can add K ′ to K at v
in this fashion. Let the notation be as in the previous proof, i.e., b={b1, ..., bN} and
b′={b′1, ..., b′M}, where

b1< ...< bN , b′1< ...< b
′
M and bj <b

′
1<b

′
M <bj+1. (6.6)
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Then the complementary partition π̃b to π̃w is given by replacing c∈πb by the two blocks

c̃= c∩[bj , b′1] and c̃′ = c∩[b′M , bj+1]. (6.7)

These two blocks are both adjacent to b̃=b∪b′∈π̃b.
If we add a cluster K ′ to a cluster K as above at a post-critical point p, we need to

specify the marking (see Definition 6.4) of the new connection at p.

Definition 6.17. (Marking of new connection) Let πw∪πb be a marked cnc-partition,
i.e., a connection at a post-critical point p. Then the marking of the cnc-partition π̃w∪π̃b
from the previous lemma is given as follows (notation is as before). Let the marked
adjacent blocks in πw∪πb be

• b, c or b′, c; then (in both cases) we can pick b̃, c̃ or b̃, c̃′, as the marked adjacent
blocks in π̃w∪π̃b;

• d, c, where d∈πw\{b, b′}; then d is adjacent to either c̃ or c̃′, which are the marked
adjacent blocks in π̃w∪π̃b;

• b, e or b′, e, where e∈πb\{c}; then b̃, e are the marked adjacent blocks in π̃w∪π̃b;
• d, e, where d∈πc\{b, b′} and e∈πb\{c}; then d, e are the marked adjacent blocks

in π̃w∪π̃b.

Lemma 6.18. Assume that a white cluster K ′ can be added to a white cluster K

at a 1-vertex v as in Lemma 6.16 to form a cluster K̃. Then there exist (uniquely)
succeeding 1-edges at v

E,E′⊂K as well as D,D′⊂K ′

such that
E and D′ as well as D and E′

are succeeding in K̃.

The situation is again illustrated in Figure 5.

Proof. Consider the blocks b, b′∈πw(v) which are both adjacent to the block c∈πb(v)
as in Lemma 6.16 (here b contains indices of 1-tiles in K, while b′ contains indices of 1-
tiles in K ′). The succeeding 1-edges E,E′⊂K and D,D′⊂K ′ are the ones corresponding
to these adjacencies according to Lemma 6.13. Using the notation from (6.6), we obtain
that these 1-edges are contained in the following (white) 1-tiles. In K and K ′, we have

E⊂Xbj
, E′⊂Xbj+1 , D⊂Xb′M

and D′⊂Xb′1
.

Recall the description of the blocks c̃, c̃′∈π̃b from (6.7). They are both adjacent to
b̃=b∪b′∈π̃w. Then bj+1, b′1−1∈c̃ and b′M+1, bj+1−1∈c̃′. Therefore (using Lemma 6.13
again) we obtain that E,D′ and D,E′ are succeeding in K̃.
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We will often be in the following specific situation. Consider a white cluster K. As-
sume that the only white 1-tiles that are possibly connected at a 1-vertex v are in K. Put
differently, this means that all distinct white 1-tiles Y, Y ′3v not in K are disconnected
at v. Let Xi3v be a white 1-tile not contained in K. The following lemma means that
we can add Xi, or the cluster containing Xi, to K at v.

Lemma 6.19. In the situation as above, there is a block b∈πw containing indices
of white 1-tiles in K (Xj⊂K if j∈b), such that the partition π̃w, obtained by replacing
b, {i}∈πw by b̃=b∪{i}, is non-crossing.

Furthermore, if K and the cluster containing Xi are trees, the resulting cluster K̃

(⊃K∪X) is a tree as well.

Proof. Consider the graph Γ representing πw∪πb from Lemma 6.2 (this is neither
the white connection graph nor the graph

⋃
E1).

Let Xj3v be a white 1-tile not contained in K. Since Xj is not connected to any
other 1-tile at v the singleton {j} is a block of πw. This block is adjacent to a single
block (in πb), and thus {j} is a leaf of Γ (incident to a single edge).

Consider the block c∈πb adjacent to {i}∈πw. Since Γ is connected, c has to be
connected to a block b∈πw containing indices corresponding to 1-tiles in K. This means
that b and c are adjacent blocks. The result now follows from Lemma 6.16.

We record the following corollary (see also Lemma 2.2).

Corollary 6.20. (Trees in connection graphs) A (cluster that is a) tree in the
white (black) connection graph may be constructed inductively by adding one 1-tile to
a cluster at a time. Every tree in the white (black) connection graph (in a cluster) is
obtained in such a way.

6.6. Boundary circuits

The first approximation of the Peano curve γ1 will be given as the boundary circuit of a
(cluster that is a) spanning tree (in the white connection graph).

Definition 6.21. (Boundary circuit of a cluster) Consider a cluster K. A boundary
circuit E of K is a circuit E0, ..., EM−1 of positively oriented 1-edges in K such that Ej+1

is the successor of Ej for each j (indices are taken mod M , in particular E0 succeeds
EM−1); furthermore, no 1-edge appears twice in E .

Recall that every 1-edge has exactly one successor and one predecessor. Thus it is
clear that starting from any 1-edge E0⊂K and following succeeding 1-edges will yield a
boundary circuit.
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We note the following, which is an immediate consequence of Lemma 6.13 and
Corollary 6.14, see also the discussion after Definition 6.8.

Lemma 6.22. (Kε contains p) Let K be a cluster and p be a post-critical point. A
boundary circuit of K contains the marked succeeding 1-edges at p if and only if p∈Kε

for any geometric representation Kε of K.

Lemma 6.23. Consider a cluster K. The following are equivalent :
(1) the cluster K is a tree;
(2) K has only a single boundary circuit ;
(3) each geometric representation Kε of K is a Jordan domain.
In this case the single boundary circuit E of K is an Eulerian circuit in K. This

means that each of the km 1-edges in K appears exactly once in E. Here m is the number
of 1-tiles in K (k=# post=#0-edges).

Proof. Assume without loss of generality that the cluster K is white.

(1)⇒ (2) Recall from Corollary 6.20 that every tree can be obtained inductively by
adding more 1-tiles to one cluster in the connection graph. Start with a white tile graph
that is totally disconnected, meaning that no two white 1-tiles are connected (at any
1-vertex). Consider one white 1-tile X0 and a 1-edge E0⊂X0. Clearly E0 is contained in
an Eulerian circuit in X0 of length k (containing all 1-edges in ∂X0). So the statement
is true for the cluster K0=X0 (consisting of a single 1-tile).

Let the white connection graph be given such that all clusters except one cluster
Kj−1 contain a single 1-tile, i.e., as in Lemma 6.19. Assume that E0⊂Kj−1. Furthermore
we assume that E0, ..., Ekj−1 is an Eulerian circuit inKj−1 containing all 1-edges inKj−1,
where j is the number of 1-tiles in Kj−1.

Add a 1-tile X to Kj−1 at a 1-vertex v∈Kj−1 as in Lemma 6.19 to form a new
component Kj . The above procedure then yields as a path

E0, ..., Ei, E
X
1 , ..., E

X
k , Ei+1, ..., Ekj−1,

see Lemma 6.18. Here EX1 , ..., E
X
k are the 1-edges in X, positively oriented, starting at v.

This is an Eulerian circuit in Kj . The construction ends when K=Kj . Since the
constructed circuit contains all 1-edges in K, there is only a single boundary circuit.

(2)⇒ (3) Consider a neighborhood U of a 1-vertex v∈K as in Definition 6.8. The
boundary of Kε is constructed from boundary circuits by replacing Ej and Ej+1∩U by
h−1(gm). Thus ∂Kε is a single Jordan curve.

(3)⇒ (1) Assume that K is not a tree. Then there exists a circuit in K. This means
there are 1-tiles X0, ..., XN−1 in K such that Xj is connected to Xj+1 at a 1-vertex vj
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(indices modN), where all 1-vertices vj are distinct. Then in the interior of any geometric
representation Kε we can find a Jordan curve following this circuit (connecting X0,ε to
X1,ε at v0,ε and so on). This Jordan curve divides Kε into two components. Note that
both components contain boundary of Kε, namely the (geometric representations of the)
two arcs on ∂Xj between vj−1 and vj lie in different components. Thus Kε is not a
Jordan domain.

We record the following, which is an easy corollary.

Lemma 6.24. (Boundary circuit of added trees) Consider trees K and K ′ with
boundary circuits E=E0, ..., EN−1 and E ′=D0, ..., DM−1. Assume that we can add them
at a 1-vertex v as in §6.5 to form a tree K̃. Then the boundary circuit Ẽ of K̃ is

E0, ..., Ei, Dj+1, ..., DM−1, D0, ..., Dj , Ei+1, ..., EN−1.

Proof. This is clear from Lemma 6.18, where Ei, Ei+1⊂K and Dj , Dj+1⊂K ′ are
the succeeding 1-edges associated with adding K to K ′.

We next show that adding a tree K ′ which “does not contain a post-critical point”
to another tree K does not change the “homotopy type” of ∂Kε.

Definition 6.25. (Trivial tree) A clusterK ′ that is a tree is called trivial if a (and thus
any) geometric representation K ′

ε does not contain a post-critical point. Equivalently the
boundary circuit of K ′ does not contain the marked successors E=E(p) and E′=E′(p)
at p for any post-critical point p (see Corollary 6.14).

Lemma 6.26. (Adding a trivial tree does not change homotopy type) Consider a
cluster K that is a tree, and a trivial tree K ′ as above. Assume that it is possible to add
K ′ to K at some 1-vertex v as in Lemma 6.16, to obtain the tree K̃.

Then, if ∂Kε is isotopic to a Jordan curve C rel. post, we have that ∂K̃ε is isotopic
to C rel. post as well (for any geometric representations Kε and K̃ε of K and K̃).

Proof. Let U=U(v) be as in Definition 6.8. We consider a neighborhood V of
“K ′

ε⊂K̃ε”. More precisely, V satisfies the following:
• V is a Jordan domain;
• V contains no post-critical point;
• V is a neighborhood of K ′

ε\U ;
• ∂V intersects ∂K̃ε exactly twice, where ∂V ∩∂K̃ε={w1, w2}⊂U .

The arc ∂K̃ε\{w1, w2} contained in V is now deformed to one contained in U by an
isotopy rel. ∂V as in Theorem 5.1. This isotopy deforms K̃ε to Kε.
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7. Construction of H0

The 0-th pseudo-isotopy H0 as required in §3 is constructed here, and thus the first
approximation γ1 of the Peano curve.

Consider two oriented Jordan curves C, C′⊂S2. We say that C and C′ are orientation-
preserving isotopic rel. A if there is an isotopy H:S2×[0, 1]!S2 rel. A, with H0=idS2 ,
such that H1 maps C orientation preserving to C′.

We construct a connection of 1-tiles with the following properties.

Definition 7.1. (Properties of connections)
(C1) The associated white connection graph (§6.3) is a spanning tree K.
(C2) The Jordan curve ∂Kε is orientation-preserving isotopic to C=γ0 rel. post,

where Kε is a geometric representation of K, see Lemma 6.23.

Here ∂Kε is positively oriented as boundary of Kε, recall that C is positively oriented
as boundary of the white 0-tile X0

w.

Lemma 7.2. A connection of 1-tiles satisfies properties (C1) and (C2) if and only
if there exists a pseudo-isotopy H0 as in Definition 3.2.

Proof. (⇒) Concatenate an isotopy H̃ rel. post that deforms C to ∂Kε (orientation
preserving) with a pseudo-isotopy rel. post that deforms ∂Kε in a neighborhood U(v)
(as in (6.5)) of each 1-vertex as in Lemma 6.6. This yields a pseudo-isotopy rel. post
that clearly satisfies (H0 1)–(H0 4). Since H̃1 maps C orientation preserving to ∂Kε, it
follows that every 1-edge in the first approximation γ1 (constructed via H0 as in §3.3) is
positively oriented. It follows from Lemma 3.11 that (H0 5) is satisfied.

(⇐) Let γ1=H0
1 (γ0) be the Eulerian circuit constructed from H0 as in §3.3. By

Lemma 6.15 we can reconstruct the connection at each 1-vertex from γ1. It is a cnc-
partition by Lemma 6.3. Since γ1 contains all 1-edges, all white 1-tiles are connected.
Furthermore γ1

ε :=H0
1−ε(γ

0) is a Jordan curve, and thus it follows from Lemma 6.23 that
the white connection graph is a spanning tree, i.e., (C1). Finally γ1

ε is clearly isotopic to
γ0 rel. post. From (H0 5) and Lemma 3.11 it follows that the orientation on γ1

ε induced by
C and H0

1−ε agrees with the orientation of γ1
ε as boundary of (a geometric representation

of the white spanning tree) Kε. Thus (C2) holds.

Let us note the following immediate consequence.

Theorem 7.3. Let F :S2!S2 be an expanding Thurston map. The following two
equivalent conditions are sufficient for the existence of an (onto) invariant Peano curve
γ:S1!S2 as in Theorem 1.1:

(1) There is a Jordan curve C⊃post and a pseudo-isotopy H0 in Definition 3.2.
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(2) There is a Jordan curve C⊃post and a connection of 1-tiles satisfying the prop-
erties from Definition 7.1.

In [Me1] it will be shown that the same conditions are sufficient to ensure that F
arises as a mating. Furthermore, the polynomials p1 and p2 into which F unmates, may
then be obtained by an explicit algorithm. More precisely, the critical portraits of p1 and
p2 may be obtained from the vector l considered in §4.1, see [Me2].

The proof of Theorem 1.1 will be finished by constructing the white connection as
in Definition 7.1.

Let us first note the following, which is an immediate consequence of the proof of the
previous lemma. Assume that a connection of 1-tiles satisfying (C1) and (C2) is given.
Let H0 be a corresponding pseudo-isotopy from Lemma 7.2.

Lemma 7.4. The first approximation γ1 (viewed as an Eulerian circuit) constructed
from H0 as in §3.3 is equal to the boundary circuit of the (white) spanning tree K (see
Lemma 6.23).

The main work in constructing the connection as desired lies in ensuring property
(C2).

The starting point is to take a sufficiently high iterate F=fn such that there is an
F -invariant Jordan curve C⊃post and the 1-tiles defined in terms of (F, C) (i.e., closures
of components of S2\F−1(C)) are sufficiently small. We require two separate conditions,
since they are needed in distinct parts of the construction; they could be expressed as a
single one. In fact, the second condition is only given later, when the suitable description
becomes available.

Lemma 7.5. For each sufficiently high n∈N there is a Jordan curve C with post⊂C
satisfying the following condition:

• C is invariant for the iterate F=fn. This means that F (C)⊂C.
The 1-tiles for (F, C) satisfy the following conditions:
• There is no 1-tile X that joins opposite sides of C. This means that no 1-tile X

meets disjoint 0-edges in the case # post>4, and no 1-tile X intersects all three 0-edges
in the case # post=3.

• The 1-tiles do not form a link in the sense of Definition 7.12.

This is essentially [BM, Theorem 14.2], see also [CFP3]. A proof of this lemma is
given in §7.3, here we show how the arguments in [BM] are slightly adjusted to obtain
the statement in the above form.

The iterate F=fn as well as the F -invariant Jordan curve C as above will be fixed
from now on, tiles are defined in terms of (F, C).
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Let us first give a slightly incomplete outline of the construction. Recall that X0
w and

X0
b are the white and black 0-tiles, respectively; they are both bounded by the invariant

curve C. We consider a spanning tree of white 1-tiles in X0
w. Then we consider a spanning

tree of black 1-tiles in X0
b , the complementary white 1-tiles in X0

b form (“homotopically”)
trivial trees in the sense of Definition 6.25. These (white) trivial trees (in X0

b ) are then
attached to the white spanning tree in X0

w.
This construction has to be slightly adjusted for the following reason: the white

1-tiles in X0
w (as well as the black 1-tiles in X0

b ) need not be connected. So there are no
spanning trees as described before.

7.1. Decomposing X0
w

Here we decompose the white 0-tile X0
w into white trees.

Consider the white 1-tiles in X0
w. We assume in the next lemma that they are all

connected at all 1-vertices v in the interior of X0
w, and disconnected at all 1-vertices on C.

The resulting white connection graph may not be connected.

Lemma 7.6. The white connection graph in X0
w as above has exactly one (white)

cluster that intersects all sides (0-edges).

Proof. Let K be a (white) cluster in X0
w as above. Consider one component B (in

the standard topological sense) of X0
w\K. We call the set a:=∂B∩K a boundary arc

of K.

Claim 1. Every boundary arc a as above is contained in a single black 1-tile.

Clearly a is a union of 1-edges. Either a starts and ends at two distinct 1-vertices
v, w∈C, or a is a closed curve. Let E,E′3v be two 1-edges contained in a which are
consecutive in ∂B, where v /∈C is a 1-vertex. Note that by construction all white 1-tiles
Xj3v are connected at v. Thus E and E′ are contained in the same black 1-tile. The
claim follows.

Assume now that a is a closed curve. Then a is a Jordan curve in the boundary of a
single black 1-tile. Thus the corresponding component B is the interior of a single black
1-tile. Hence a does not separate K from any other distinct white cluster K ′ in X0

w.
We call a black 1-tile Y ⊂X0

w non-trivial if Y ∩C contains at least two 1-vertices. A
complementary component of Y is the closure of a component X0

w\Y .

Claim 2. Let X,X ′⊂X0
w be two distinct white 1-tiles. ThenX andX ′ are contained

in distinct white clusters K,K ′⊂X0
w if and only if there is a black 1-tile Y ⊂X0

w such
that X and X ′ are contained in complementary components of Y .



invariant peano curves of expanding thurston maps 147

The implication (⇐) is clear. To see the other implication we note that if X ′ is
contained in a cluster distinct from the cluster K⊃X, then X ′ has to be contained in
the closure of one component of X0

w\K. Such a component is separated from K by a
boundary arc a. However, if a does not contain two 1-vertices v, w∈C, this component
is a single black 1-tile, meaning that it does not contain X ′. Otherwise X ′ is separated
from X by the black 1-tile Y containing a, proving the claim.

Recall that we assumed that no 1-tile joins opposite sides of C (see Lemma 7.5). Thus
for every non-trivial black 1-tile Y there is a complementary component of Y , denoted
by KY , that intersects all 0-edges.

We now define �K :=
⋂
Y KY , where the intersection is taken over all non-trivial black

1-tiles Y ⊂X0
w. Since two non-trivial black 1-tiles Y, Y ′⊂X0

w do not cross, it follows that
�K intersects all 0-edges.

By Claim 2 it follows that all white 1-tiles contained in �K are connected, i.e., belong
to the same cluster denoted by K.

Assume that �K intersects a given 0-edge E0 in a 1-edge E. This cannot happen if E
is contained in a black 1-tile Y ⊂X0

w, since Y would be non-trivial, and the corresponding
set KY does not contain E. Thus E is contained in a white 1-tile, which is in �K.

If �K intersects E0 only in a 1-vertex v, there is a boundary arc a⊂∂�K containing v.
Let Y ⊂X0

w be the corresponding non-trivial black 1-tile containing a. Let E⊂a be the
1-edge containing v. Since E is not in C, the white 1-tile containing E is in �K.

This means that there is a white 1-tile in K that intersects E0.

In each white cluster inX0
w define a spanning tree (see Definition 6.11). The spanning

tree in the cluster from Lemma 7.6 is called the main tree KM , the spanning trees in
the other clusters are called the secondary trees in X0

w. The connections at all 1-vertices
v∈X0

w\C are thus defined, they will not be changed any more in the construction.
Let E be the boundary circuit of the main tree KM (see Definition 6.21 and Lem-

ma 6.23). Let v0, ..., vN−1 be the 1-vertices on C that E visits (in this order). Note that
a 1-vertex v may appear several times in this list.

Notation. Given points v, w∈C, denote by [v, w] (resp. (v, w)), the closed (resp.
open) positively oriented arc on C from v to w. Note that (v, v)=∅.

Lemma 7.7. The points {vi}N−1
i=0 satisfy the following conditions (indices are taken

mod N here):
(1) Each (open) arc (vi, vi+1) contains no point vl. This means that the points

{vi}N−1
i=0 are positively oriented on C.
(2) The points vi and vi+1 are not contained in disjoint 0-edges, in particular each

0-edge contains at least one point vi.
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(3) For all i there is a black 1-tile Y 3vi, vi+1.
(4) Let K be a secondary tree in X0

w. Then there is an arc [vi, vi+1] such that

K∩C ⊂ [vi, vi+1].

Proof. (1) Let KM,ε be a geometric representation of KM as in Lemma 6.23 (3). The
path γi on E between vi and vi+1 is then represented by a Jordan arc γi,ε with endpoints
vi,ε and vi+1,ε such that |vi−vi,ε| and |vi+1−vi+1,ε| are arbitrarily small. Since all white
1-tiles are disconnected at every 1-vertex v∈C, we may assume that vi,ε∈C and γi,ε⊂X0

w

for all i.

The arcs γi,ε are non-crossing, and thus the points {vi,ε}N−1
i=0 are ordered cyclically

or anti-cyclically on C. Hence the points {vi}N−1
i=0 are ordered cyclically or anti-cyclically

on C.
The winding number of E around x /∈E is 1 if and only if x is in the interior of a white

1-tile of the main tree. This follows from an inductive argument as in Corollary 6.20.

Assume that the points {vi}N−1
i=0 are ordered anti-cyclically on C. Let Ci be the

(positively oriented) arc on C between vi and vi+1. Then γi+Ci has winding number 0
around any point x in the interior of a 1-tile of the main tree. Thus E+C has winding
number 0 around such an x. This is a contradiction.

(3) Consider vi and vi+1. Then
• either vi=vi+1 in which case the statement is trivial;
• or [vi, vi+1] is a 1-edge, property (3) is then clear again;
• or vi and vi+1 are the boundary points of a boundary arc a of KM , as in Claim 1

from the proof of Lemma 7.6. In this case there is a black 1-tile Y ⊃a.
(2) This follows immediately from (3) and the assumption that no 1-tile intersects

disjoint 0-edges. Furthermore KM intersects a 0-edge E if and only if it intersects it
in some 1-vertex. The set of all 1-vertices in which KM intersects C is equal to the set
{vi}N−1

i=0 . Thus, since KM intersects each 0-edge, it follows that each 0-edge contains one
point vi.

(4) The reader is reminded of Claims 1 and 2 in the proof of Lemma 7.6. For every
secondary component K there is an arc a contained in a (non-trivial) black 1-tile Y such
that intK is in the component of X0

w\a not intersecting all 0-edges. Let vi and vi+1 be
the endpoints of a (see the discussion from (3)), then

K∩C ⊂ [vi, vi+1].
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7.2. Decomposing X0
b

We now decompose the black 0-tile X0
b . Consider the black 1-tiles in X0

b . Construct
clusters of black 1-tiles as before. Namely assume that all black 1-tiles are connected
at each 1-vertex v∈X0

b \C. All (black and white) 1-tiles in X0
b are disconnected at each

1-vertex v∈C. Pick a spanning tree in each cluster (of black 1-tiles in X0
b ). This defines

the connections at all 1-vertices v∈X0
b \C, they will not be changed anymore in the

construction. As in Lemma 7.6, there is exactly one such tree (of black 1-tiles in X0
b )

that intersects all 0-edges.
Consider now the white 1-tiles in X0

b . The connections at 1-vertices v∈X0
b \C are

already given (they are all disconnected at each 1-vertex v∈C).

Lemma 7.8. Every white cluster K in X0
b as above

• is a tree;
• furthermore

K∩C ⊂ [v, w],

where v, w∈C are 1-vertices contained in a single white 1-tile.

Proof. Assume that K is not a tree. Then K has at least two distinct boundary
circuits (see Lemma 6.23).

Claim. There is a (white) 1-tile X⊂K and a 1-vertex v∈X at which 1-edges E,E′⊂
X, from distinct boundary circuits, intersect.

If the claim were not true we could partition K into 1-tiles containing 1-edges from
distinct boundary circuits. These partitions, and therefore K, would not be connected
by Lemma 6.15.

Let v, E and E′ be as in the claim. Note that v /∈C, since all 1-tiles are disconnected
at C.

Consider the black 1-tiles Y, Y ′⊂X0
b that contain E and E′. Let Kb,K

′
b⊂X0

b be the
black clusters containing Y and Y ′, respectively. Since they are by assumption trees,
they are distinct (again by Lemma 6.23).

On the other hand the (black) 1-tiles Y and Y ′ were connected at v, before spanning
trees were picked. This means that they are in the same tree (Kb=K ′

b), which is a
contradiction.

The arguments from Lemmas 7.6 and 7.7 apply verbatim to X0
b . Thus there is a

unique black tree KM,b⊂X0
b that intersects each 0-edge. Let w0, ..., w eN be the 1-vertices

that the boundary circuit of KM,b visits (in this order); note that these points are ordered
positively on C (recall that 1-edges in a boundary circuit of a cluster were always positively
oriented as boundary of the white 1-tiles they are contained in, regardless of the color of
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Figure 6. Illustration to Lemma 7.11.

the cluster). As in Lemma 7.7 one obtains that the endpoints wi and wi+1 of each arc
[wi, wi+1] are contained in a single white 1-tile. Each set K∩C is contained in one such
arc [wi, wi+1].

We call the (white) trees from the previous lemma the secondary trees in X0
b . Let

us record the following immediate consequence of Lemmas 7.7 and 7.8.

Lemma 7.9. No secondary tree (in X0
w or X0

b ) intersects disjoint 0-edges.

We will need to break up boundary circuits.

Definition 7.10. (Subpaths of boundary circuits) Let E be a boundary circuit and
D,E⊂E be two 1-edges. Then E(D,E) is the positively oriented subpath (of 1-edges) of
E with initial 1-edge D and terminal 1-edge E. Note that E(E,E)=E.

In the next lemma we consider a secondary tree K⊂X0
b with boundary circuit E .

Consider two distinct 1-vertices v, w∈(E∩C). Let Ev, E′
v⊂E and Ew, E′

w⊂E be succeed-
ing 1-edges at v and w.

Given x, y∈C, in the following we write [x, y]b for the boundary arc on C=∂X0
b

between x and y that is positively oriented with respect to X0
b (and thus negatively

oriented on C).

Lemma 7.11. The subpath E(E′
w, Ev) does not intersect [v, w]b\{v, w}.

Proof. The situation is illustrated in Figure 6. Assume that the statement is false,
i.e., that E(E′

w, Ev) intersects [v, w]b\{v, w} in a 1-vertex u(∈C). Let Eu, E′
u⊂E(E′

w, Ev)
be the succeeding 1-vertices at u. Then intK is divided into points bounded by (having
winding number 1) E(E′

w, Eu)∪[u,w]b and E(E′
u, Ev)∪[v, u]b.

Thus Eu and E′
u are contained in different white 1-tiles X,X ′⊂K. Hence X and

X ′ are connected at u. This contradicts the construction of K, where no 1-tiles are
connected at any 1-vertex in C.

7.3. Connecting the trees

The secondary trees are attached to the main tree at the 1-vertices on C.
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Initially all white 1-tiles are disconnected at each 1-vertex v∈C. To use the results
from §6.5 we want the connections at all 1-vertices v∈C to be cnc-partitions. Thus we
now assume that all black 1-tiles are connected at each 1-vertex v∈C, and hence the
connections form cnc-partitions as desired.

We first add secondary trees to ensure that all points of post are contained in the
main tree. Consider the main tree KM (in X0

w) from §7.1. Let v0, ..., vN−1 be the
1-vertices on C along the boundary circuit E of KM , see Lemma 7.7.

Consider one (positively oriented) 0-edge E0 with terminal point p∈post, let vi be
the last of the 1-vertices as above on E0. Then either vi=p or vi /∈post.

• If vi=p, let Ej⊂E be the last 1-edge with terminal point vi, and Ej+1⊂E be the
succeeding 1-edge. The connection at p is now marked by Ej and Ej+1, see Corollary 6.14.

• If vi /∈post, consider the 1-edge E=[vi, w]⊂E0 succeeding vi in C. Let K be the
secondary cluster containing E. This means that K contains the (unique) white 1-tile
containing E. Add K to the main tree KM at vi. Note that no white 1-tile is connected
at vi, so this is possible by Lemma 6.19. We obtain a new main tree, still denoted by KM .

• Repeat the above procedure till the main tree contains p.
The added secondary components will only intersect the 0-edges preceding and suc-

ceeding E0. Then we want to use the same procedure on the other 0-edges. There is one
problem however: we may encounter a 1-edge E as above that belongs to a secondary
component already added before (when the above procedure was applied to a different
0-edge Ẽ0). This may lead to a boundary circuit of KM in which the post-critical points
are traversed not in the same order as in C, violating (C2).

To elaborate, let E0
1 =E0, E0

2 and E0
3 be the 0-edges succeeding E0

1 . Let q be the
terminal point of E0

2 , and vj be the last of the points {vi}N−1
i=0 on E0

2 . The described
problem occurs if there is a secondary component K containing a 1-edge in [vi, p]⊂E0

1

and a 1-edge in [vj , q]⊂E0
2 . By Lemma 7.7 (3) and (4), as well as Lemma 7.8, this can

only happen if there are white and black 1-tiles linked in a certain way, see Figure 7.

Definition 7.12. (Link) A link means that the following exist:
• a (black) 1-tile X1 containing vi∈E0

1 and intersecting E0
2 ;

• a (black) 1-tile X2 containing vj∈E0
2 and intersecting E0

3 ;
• a (white) 1-tile Y intersecting [vi, p]⊂E0

1 and [vj , q]⊂E0
2 .

Thus we have given the description of the last property in Lemma 7.5.

Proof of Lemma 7.5. We essentially recall the proof of [BM, Theorem 14.2], see also
[BM, Theorem 14.3] and its proof.

More precisely, we break up each 0-edge into two 0-arcs and use the same arguments
as in [BM] to show that there is an fn-invariant curve C̃, such that no n-tile connects
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Figure 7. A link.

disjoint 0-arcs.
Let k0 be a fixed integer such that there are at least twice as many k0-vertices as

post-critical points (recall that the number of n-vertices grows exponentially). Fix a
Jordan curve C⊂S2 such that post⊂C; additionally C has the property that each arc on
C between two consecutive post-critical points p and q contains a k0-vertex distinct from
p and q. Let P be the set of all such k0-vertices and post-critical points. The points in
P divide divide C into 0-arcs. Each 0-edge on C is divided into two 0-arcs.

Consider the n-tiles given in terms of (f, C), where n>k0. Since f is expanding,
n-tiles get arbitrarily small, meaning that maxX∈Xn diamX!0 as n!∞. This implies,
by [BM, Lemma 11.17], that there is an n0>k0 such for all n>n0 there is a Jordan curve
C′⊂f−n(C) isotopic to C rel. P (and thus P⊂C′). Furthermore, no n-tile joins opposite
sides of (C′, P ). This means that there is no n-tile that intersects disjoint closed 0-arcs
into which P divides the curve C′.

Let H:S2×[0, 1]!S2 be an isotopy rel. P that deforms C to C′, i.e., H1(C)=C′.
Then F̂ :=H1�f

n is a Thurston map, such that C′ is F̂ -invariant, since

F̂ (C′) =H1(fn(C′))⊂H1(C) = C′.

The 1-tiles for (F̂ , C′) are exactly the n-tiles for (f, C). Since no 1-tile for (F̂ , C′) joins
opposite sides of C′, we can choose F̂ to be expanding, see [BM, Corollary 13.18]. Fur-
thermore, no 1-tile for (F̂ , C′) intersects disjoint 0-arcs of C′.

The map F̂ is Thurston equivalent to fn. Since they are both expanding, they are
actually topologically conjugate, i.e., there is a homeomorphism h:S2!S2, such that
h�F̂ �h−1=fn (see [BM, Theorem 11.4]). Let C̃ :=h(C′). Note that C̃ is fn-invariant,
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since
fn(C̃) =h�F̂ �h−1(C̃) =h�F̂ (C′)⊂h(C′) = C̃.

We call the images of 0-arcs on C′ by h the 0-arcs of C̃. The images of 1-tiles for
(F̂ , C′) by h are the n-tiles for (f, C̃). It follows that no n-tile (for (f, C̃)) intersects
disjoint 0-arcs of C̃. Recall that each 0-edge of C̃ contains exactly two 0-arcs.

With this choice of F=fn and C̃, we will show that a link as in Definition 7.12
cannot occur. Let A−

j and A+
j be the two 0-arcs in E0

j , where A+
j succeeds A−

j in C. Then
the white 1-tile Y has to intersect E0

2 in intA−
2 , while the black 1-tile X2 has to intersect

E0
2 in intA+

2 . The claim follows.

Since we assumed that F=fn and C were chosen to satisfy the properties from
Lemma 7.5, there are no links. Thus the following holds. Let K be a secondary cluster
added (to the main tree) when considering the 0-edge E0, and let K̃ be a secondary
cluster added when considering a distinct 0-edge Ẽ0.

Corollary 7.13. The secondary clusters K and K̃, given as above, are distinct.

Thus we can apply the above procedure to each 0-edge. This yields the (new) main
tree (still denoted by KM ). Note that KM⊃post by construction. More precisely, KM

contains the marked succeeding 1-edges E(p) and E′(p) at each post-critical point p. This
means that KM,ε⊃post (for any geometric representation KM,ε of KM ), see Lemma 6.22.

7.4. The main tree is in the right homotopy class

Recall from Definition 7.10 how a boundary circuit E was broken up into subpaths.
Assume that E contains the marked succeeding 1-edges E(p) and E′(p) at p∈post, as
well as the marked succeeding 1-edges E(q) and E′(q) at q∈post. Then

E(p, q) := E(E′(p), E(q))

and, for any 1-edge E⊂E ,

E(p,E) := E(E′(p), E) and E(E, q) := E(E,E(q)).

Furthermore, if E and E′ are succeeding in E , we define

E(E′, E) = ∅.

We are now ready to finish the proof of Theorem 1.1. KM is the main tree as
constructed in §7.3.
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Lemma 7.14. The main tree KM is in the right homotopy class, i.e., satisfies (C2).

Proof. Let E be the boundary circuit of KM . Consider a 0-edge E0 with initial and
terminal points p, q∈post; and the subpath E(p, q)⊂E as defined above. We will prove
the following statement.

Claim 1. E(p, q) does not intersect any 0-edge disjoint with E0.

The statement of the lemma follows quickly from this claim. Namely consider a
geometric representation KM,ε of KM , where the neighborhoods U(v) from (6.5) were
chosen in such a way that U(v)∩C=∅ whenever v /∈C. It follows from Claim 1 that the
(positively oriented) arc on ∂KM,ε from p to q does not intersect 0-edges disjoint from
E0. Theorem 5.5 now finishes the proof.

To prove Claim 1 we go through the construction of KM . Consider KM,0, the main
tree from §7.1 (before any secondary tree was added), with boundary circuit E0. Let
w0, w1∈E0 be the first and last 1-vertices on E0 that E0 visits; and E0, E

′
0⊂E0, as well as

E1, E
′
1⊂E0, be the first and last succeeding 1-edges at w0 and w1. Consider E0(E′

0, E1),
and note that E(E′

0, E1)=E(E′
0, E0)=∅ in the case when E0 intersects E0 only once.

This subpath does not intersect any 0-edge disjoint from E0 by Lemma 7.7 (in fact it
may only intersect adjacent 0-edges if w0=p or w1=q).

Note that E0(E′
0, E1) is a subpath of E(p, q), or E(E′

0, E1)=E0(E′
0, E1), which we call

the middle subpath of E(p, q). The remaining subpaths of E(p, q) are given as follows.
Let D0 be the 1-edge preceding E′

0 in E and D1 be the 1-edge succeeding E1 in E . Then
the initial subpath of E(p, q) is E(p,D0) (connecting p to E(E′

0, E1)), and the terminal
subpath of E(p, q) is E(D′

1, q) (connecting E(E′
0, E1) to q). Note that the initial and/or

the terminal subpath may be empty. We focus our attention for now on the terminal
subpath.

Let K1, ...,Km be the secondary trees that were added in §7.3 to “reach” the post-
critical point q. The last secondary tree Km contains the post-critical point q by con-
struction.

Let KM,j be the main tree obtained when the secondary tree Kj was added to
KM,j−1 at the 1-vertex wj∈E0. Let Ej , E′

j⊂KM,j−1 and Dj , D
′
j⊂Kj be the succeeding

1-edges associated with adding Kj to KM,j−1 by Lemma 6.18. Note that by construction
the 1-vertices of KM,j closest to q on the 0-edge E0 are contained in Kj⊂KM,j . Hence
Kj+1 is attached to KM,j at 1-edges contained in Kj .

Thus, if we denote by Ej the boundary circuit of the secondary tree Kj , we have
Dj , D

′
j , Ej+1, E

′
j+1∈Ej , and Ej consists of the two (non-empty) subpaths Ej(D′

j , Ej+1)
and Ej(E′

j+1, Dj) for j=1, ...,m−1. We break Em up into the (non-empty) subpaths
Em(D′

m, q) and Em(q,Dm).
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Figure 8. Adding Kj to KM,j−1.

Lemma 6.18 implies that the terminal subpath E(D′
1, q) is given as the concatenation

of (subpaths from the boundary circuits from the secondary trees Kj)

E1(D′
1, E2), E2(D′

2, E3), ..., Em(D′
m, q), (7.1)

see Figure 8. It follows from Lemma 7.9 that E(D′
1, q) does not intersect any 0-edge

disjoint from E0.
It remains to show that the initial subpath does not intersect a 0-edge disjoint

from E0.
Instead of looking at the initial subpath of E(p, q), we consider the initial subpath

of E(q, r). Here r is the terminal point of the 0-edge (E0)′ succeeding E0. Let EN⊂E0

be the first 1-edge intersecting (E0)′ in a 1-vertex wN . The initial subpath of E(q, r) is
E(q, EN ); it is given as the concatenation of

Em(q,Dm), Em−1(E′
m, Dm−1), ..., E1(E′

2, D1), E0(E′
1, EN ),

where Dj and E′
j are as above. These are the “complementary subpaths” to the ones in

(7.1) (of the boundary circuits of the secondary trees Kj). See again Figure 8.
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It remains to show that this path does not intersect a 0-edge disjoint from (E0)′.
Clearly E0(E′

1, EN ) intersects C only at the endpoints, which are in E0 and (E0)′.

Recall that Ej(E′
j+1, Dj)⊂Kj , where Kj does not intersect disjoint 0-edges. Thus

Ej(E′
j+1, Dj) may only intersect E0, (E0)′, or the E0-preceding 0-edge Ẽ0.

Claim 2. The subpath Ej(E′
j+1, Dj) does not intersect Ẽ0.

This is clear if Kj⊂X0
w, since then Kj∩C⊂[w1, q]∪[q, wN ] by Lemma 7.7 (4).

Assume now that Kj⊂X0
b . Let w be the initial point of Ej(E′

j+1, Dj) and v be its
terminal point. Note that, by construction, w∈E0 is closer to q on E0 than v∈E0. From
Lemma 7.11 it follows that Ej(E′

j+1, Dj)⊂[v, w]⊂E0\{p}. Claim 2 follows.

The argument that the initial subpath E(p,D0) does not intersect 0-edges disjoint
from E0 is completely analogous. This completes the proof of Claim 1, and thus the
proof of the lemma.

We finish the construction of the main tree, i.e., of the connection of 1-tiles by adding
the remaining secondary trees to the main tree arbitrarily, to form the spanning tree KM .
The previous lemma, together with Lemma 6.26, implies that KM satisfies properties
(C1) and (C2). Thus there is a pseudo-isotopy H0 as required in Definition 3.2, by
Lemma 7.2. This yields the invariant Peano curve by §3 and §4. The proof of Theorem 1.1
is thus finished.

8. Combinatorial construction of γn

The (n+1)-th approximation γn+1 of the invariant Peano curve γ was constructed as a
deformation of γn by Hn. Here Hn was the lift of the “initial pseudo-isotopy” H0 by Fn.
In this section we give an alternative way to construct γn+1 from γn, namely in a purely
combinatorial fashion.

Recall from Lemma 7.4 that the first approximation γ1 may be obtained as the
boundary circuit of the white spanning tree, defined via the connection of 1-tiles. Here
we construct the connection of n-tiles (which will again satisfy (C1) and (C2)) in such
a way that γn is the boundary circuit of the white tree of n-tiles. See Figure 2 for an
illustration of the desired connections of n-tiles.

The connections of n-tiles could be constructed from the approximations γn (using
Lemma 6.15). We do however take the opposite route here, namely we construct the
connections inductively and show that their boundary circuits are the approximations as
defined before.
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8.1. Connection of n-tiles

We give the (inductive) description of the connection of n-tiles first, before showing that
it has the desired properties.

Fix n>1. Assume that the connection of n-tiles is given. This means that at
each n-vertex v a cnc-partition πnw(v)∪πnb (v) is defined; if v=p∈post, it is marked (see
Definition 6.7). The connection satisfies properties (C1) and (C2), and the (single)
boundary circuit is equal to the nth approximation γn (viewed as an Eulerian circuit).

Consider now an (n+1)-vertex v. The connection of (n+1)-tiles at v is defined as
follows.

Case 1. v is not an n-vertex.
Note that this implies that v is not a critical point. Thus we can define the connection

at v as the “pull-back” of the connection at F (v).
More precisely, let w:=F (v) (∈Vn). Let Xn

0 , ..., X
n
2m−1 be the n-tiles around w

(labeled positively around w). Label the (n+1)-tiles Xn+1
0 , ..., Xn+1

2m−1 around v in such
a way that F (Xn+1

j )=Xn
j , j=0, ..., 2m−1. Then

Xn+1
i and Xn+1

j are connected at v ⇐⇒ Xn
i and Xn

j are connected at w. (8.1)

In other words, the connection (of (n+1)-tiles) at v is defined by

πn+1
w (v)∪πn+1

b (v) :=πnw(w)∪πnb (w).

Case 2. v is an n-vertex (v∈Vn+1∩Vn).
Then p:=Fn(v)∈post=V0. Consider two white (n+1)-tiles Xn+1, Y n+13v. They

are connected (at v) if and only if
• either they are contained in the image of the same (white) n-tile Xn by the

pseudo-isotopy Hn, namely
Xn+1, Y n+1⊂Hn

1 (Xn),

and their images by Fn are connected, i.e., the 1-tiles Fn(Xn+1) and Fn(Y n+1) are
connected at p;

• or Xn+1 and Y n+1 are contained in the images of connected n-tiles Xn, Y n3v,

Xn+1⊂Hn
1 (Xn) and Y n+1⊂Hn

1 (Y n),

Xn and Y n are connected at v, and Xn+1 and Y n+1 both map to 1-tiles that are
“connected to the marked succeeding 1-edges”, i.e., the 1-tiles Fn(Xn+1) and Fn(Y n+1)
are connected at p to the white 1-tiles X1 and X̃1 that contain the marked succeeding
1-edges E1 and Ẽ1.
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Figure 9. Inductive construction of connections.

The connection of black (n+1)-tiles at v is defined analogously to the above.
We will formalize the description above. To do this, we will first have to label the

involved 1-tiles, n-tiles and (n+1)-tiles in a consistent manner. See Figure 9 for an
illustration.

Recall from Lemma 3.6 that for each (j+1)-edge Ej+1 there is a unique arc Aj

contained in a j-edge Ej that is deformed by the pseudo-isotopy Hj to Ej+1. Since we
will often want to keep track of where such an Ej+1-edge “comes from”, in this case we
use the notation

Hj :Aj ⊂Ej −!Ej+1.

We will single out one 0-, 1-, n- and (n+1)-edge. Let Ẽ0 be the 0-edge with initial
point p (Ẽ0 is positively oriented as boundary of the white 0-tile X0

w). The 1-edge Ẽ1 is
the marked one with initial point p. Thus, there is an arc Ã03p such that

H0: Ã0⊂ Ẽ0−! Ẽ1.
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We choose (arbitrarily) one n-edge Ẽn3v such that Fn(Ẽn)=Ẽ0. Finally we choose the
(n+1)-edge Ẽn+13v such that there is an n-arc Ãn3v satisfying

Hn: Ãn⊂ Ẽn−! Ẽn+1.

Let 2m be the number of n-tiles containing v (this means that m=degFn(v)) and
2k be the number of 1-tiles containing p. Then the number of (n+1)-tiles containing v
is 2km.

The 1-tiles X1
0 , ..., X

1
2k−1 around p, the n-tiles Xn

0 , ..., X
n
2m−1 around v and the

(n+1)-tiles Xn+1
0 , ..., Xn+1

2km−1 around v are labeled positively (around p and v, respec-
tively) and such that Ẽ1⊂X1

0 , Ẽn⊂Xn
0 and Ẽn+1⊂Xn+1

0 .
Recall that white tiles are always labeled by even, and black tiles by odd indices.

Thus X1
0 , Xn

0 and Xn+1
0 are all white tiles. This finishes the labeling.

The blocks bn+1 of the cnc-partition πn+1
w (v)∪πn+1

b (v) are defined as follows. For
each block b1∈π1

w(v)∪π1
b (v) and each j=0, ...,m−1 there is a block

bn+1 = bn+1
j (b1) = b1+2kj= {i+2kj : i∈ b1}. (8.2)

This corresponds to the first part of the description above.
Now let b1?∈π1

w(p) be the block containing 0; it contains indices of white 1-tiles that
are connected to the marked succeeding 1-edges at p. The sets bn+1

j (b1?)=b
1
?+2kj are

defined as in (8.2), they contain indices of (n+1)-tiles that are mapped to (1-tiles with
indices in) b1? by Fn. For each block bn∈πnw(v) there is a block bn+1

? ∈πn+1
w (v) given by

bn+1
? = bn+1

? (bn) :=
⋃
{b1?+2kj : 2j ∈ bn}. (8.3)

This is the formal description of the second part described above.
In the same fashion, let c1?∈π1

b (p) be the block containing 2k−1. It contains indices
of black 1-tiles connected to the marked succeeding 1-edges at p. For each block cn∈πnb (v)
there is a block cn+1

? ∈πn+1
b (v) given by

cn+1
? = cn+1

? (cn) :=
⋃
{c1?+2kj : 2j+1∈ cn}. (8.4)

The cnc-partition πn+1
w (v)∪πn+1

b (v) consists of all blocks bn+1
j (b1) as in (8.2), with

b1 6=b1? and b1 6=c1?, as well as all blocks bn+1
? =bn+1(bn) and cn+1

? =cn+1
? (cn) as above.

Case 3. v∈post.
Note that post=V0⊂Vn. This case is thus a subcase of case 2. The cnc-partition

πn+1
w (v)∪πn+1

b (v) is thus already constructed in case 2. It remains to mark it. Recall
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that in case 2 the n-edge Ẽn with Fn(Ẽn)=Ẽ0 was chosen arbitrarily. Now, however,
we let Ẽn be the marked n-edge with initial point v.

The marked (n+1)-edge with initial point v is Ẽn+1 (recall that there is an arc
Ãn3v such that Hn: Ãn⊂Ẽn!Ẽn+1).

Alternatively, consider the blocks

bn+1 = bn+1(0)∈πn+1
w (v) and cn+1 = cn+1(2km−1)∈πn+1

b (v)

such that 0∈bn+1 and 2km−1∈cn+1. These two adjacent blocks mark the connection of
(n+1)-tiles at p (see Corollary 6.14).

8.2. Properties of connections

Here we prove that the connections of n-tiles defined above have the desired properties.

Proposition 8.1. The connection of n-tiles as defined in §8.1 satisfies the following
properties:

(1) each πnw(v)∪πnb (v) is a cnc-partition;
(2) the connection of n-tiles satisfies properties (C1) and (C2) from Definition 7.1;
(3) the (single) boundary circuit of the cluster of white n-tiles is equal to the nth

approximation γn (viewed as an Eulerian circuit).

Proof. To be able to keep the notation from §8.1, we will prove the statements for
the connection of (n+1)-tiles.

(1) The statement will be proved by induction. Thus we assume that πnw(w)∪πnb (w)
is a cnc-partition for each n-vertex w. Consider now an arbitrary (n+1)-vertex v. We
want to show that πn+1

w (v)∪πn+1
b (v) is a cnc-partition. This is trivial in case 1 (i.e., if v

is not an n-vertex). Thus assume that we are in case 2, i.e., that v∈Vn+1∩Vn.
(1a) We first prove that πn+1

w (v)∪πn+1
b (v) is non-crossing. Consider first two blocks

bn+1 = bn+1
i (b1), cn+1 = bn+1

j (c1)∈πn+1
w (v)∪πn+1

b (v)

as in (8.2), where i, j=0, ...,m−1 and b1, c1∈π1
w(p)∪π1

b (p)\{b1?, c1?}. If i 6=j, the blocks
bn+1 and cn+1 are non-crossing, since bn+1 and cn+1 are contained in disjoint intervals,
namely bn+1⊂[2ki, 2k(i+1)−1] and cn+1⊂[2kj, 2k(j+1)−1].

If i=j, the blocks bn+1 and cn+1 are non-crossing, since the blocks b1 and c1 are.
(1b) Now let bn+1=bn+1

i (b1) be as before, and

bn+1
? = bn+1

? (bn) =
⋃
{b1?+2kj : 2j ∈ bn}
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be as in (8.3) (where bn∈πnw(v)). Assume without loss of generality that i=0. Then
bn+1 is contained in one component of [0, 2k−1]\b1?. Each set b1?+2kj distinct from b1?
is contained in an interval distinct from [0, 2k−1]. It follows that bn+1 and bn+1

? are
non-crossing.

That bn+1 and cn+1
? (as in (8.4)) are non-crossing is shown by the same argument.

(1c) Now let bn+1
? =bn+1

? (bn) be as before and b̃n+1
? =bn+1

? (b̃n) be a distinct set as
in (8.3), meaning that the block b̃n∈πnw(v) is distinct from bn. Since bn and b̃n are non-
crossing, it follows that bn+1

? and b̃n+1
? are non-crossing. The same argument shows that

distinct cn+1
? and c̃n+1

? as in (8.4) are non-crossing.
(1d) Consider now two sets bn+1

? =bn+1
? (bn) and cn+1

? =cn+1
? (cn) as in (8.3) and (8.4)

(bn∈πnw(v) and cn∈πnb (v)). Recall that πnw(v)∪πnb (v) is a cnc-partition, by inductive
hypothesis. Assume first that bn and cn are non-adjacent (see Lemma 6.2), i.e., they
do not contain indices i and i+1, respectively. Then, from the fact that bn and cn are
non-crossing, it follows that bn+1

? and cn+1
? are non-crossing.

(1e) Now let bn and cn be adjacent. Recall that 0∈b1? and 2k−1∈c1?. Thus, there
is an index i1∈b1? such that i1+1∈c1?, since π1

w(p)∪π1
b (p) is a cnc-partition. This means

that
b1?⊂ [0, i1] and c1?⊂ [i1+1, 2k−1].

Similarly, since bn and cn are adjacent, there are indices in, jn∈bn such that

in+1, jn−1∈ cn,

meaning that
bn⊂ [jn, in] and cn⊂ [in+1, jn−1].

Here we are using the notation from (6.1). From this we obtain the smallest and biggest
elements in bn+1

? =bn+1
? (bn) and cn+1

? =cn+1
? (cn) according to (8.3) and (8.4), namely

bn+1
? ⊂ [jnk, i1+ink] and cn+1

? ⊂ [i1+ink+1, jnk−1].

Thus, bn+1
? and cn+1

? are non-crossing.
We now prove that πn+1

w (v) and πn+1
b (v) are complementary. Let in+1=0, ..., 2km−1

be arbitrary. We have to show that the two blocks of πn+1
w (v)∪πn+1

b (v) containing in+1

and in+1+1 are adjacent.
If we are in case (1a), i.e., if in+1∈bn+1=bn+1

i (b1) and in+1+1∈cn+1=bn+1
j (c1),

where b1, c1∈π1
w(p)∪π1

b (p)\{b1?, c1?}, it follows that i=j. Then b1 and c1 are adjacent,
which implies that bn+1 and cn+1 are adjacent.

When we are in case (1b), it follows that b1 and b1? are adjacent. This implies that
bn+1 and bn+1

? are adjacent.
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Cases (1c) and (1d) cannot happen.
In case (1e), it is clear from the description that

jnk, i1+ink∈ bn+1
? and i1+ink+1, jnk−1∈ cn+1

? .

Thus, bn+1
? and cn+1

? are adjacent.

(3) Let Dn+1 and D̃n+1 be two (n+1)-edges. We have to show that Dn+1 and D̃n+1

are succeeding in γn+1 if and only if they are succeeding with respect to the connection
of (n+1)-tiles.

We keep the notation from §8.1. Case (1) is again clear. Thus we assume that we are
in case (2), meaning that v∈Vn+1∩Vn. Recall that Ẽ0 is the 0-edge with initial point
p=Fn(v) and Ẽ13p is the marked 1-edge (some arc Ã0⊂Ẽ0 containing p is deformed by
H0 to Ẽ1).

Let Ẽ0=Ẽn0 , ..., Ẽ
n
m−13v be all n-edges such that Fn(Ẽnj )=Ẽ0 (labeled positively

around v).
Consider the (n+1)-edges Ẽn+1

j such that Hn: Ãnj ⊂Ẽnj !Ẽ
n+1
j , for some arc Ãnj 3v.

These (n+1)-edges Ẽn+1
0 , ..., Ẽn+1

m−1 are again labeled positively around v. Note that these
are not all of the (n+1)-edges containing v.

Claim. Fn(Ẽn+1
j )=Ẽ1 for all j=0, ...,m−1.

To prove the claim, we first note that Fn(Ẽn+1
j ) is a 1-edge which we denote by

D̃1. Since Ãnj ⊂Ẽnj , the arc B̃0 :=Fn(Ãnj ) is contained in Ẽ0=Fn(Ẽnj ), with initial point
p=Fn(v). As Hn is the lift of H0 by Fn, we have

D̃1 =Fn(Ẽn+1
j ) =Fn(Hn

1 (Ãnj ))=H0
1 (Fn(Ãnj ))=H0

1 (B̃0).

The unique arc in Ẽ0 with initial point p that is deformed to a 1-edge is Ã0. Therefore
B̃0=Ã0, and hence D̃1=Ẽ1, proving the claim.

Note that a sector of sufficiently small radius between Ẽn+1
j and Ẽn+1

j+1 is mapped
bijectively by Fn to some neighborhood of p with Ẽ1 removed.

Assume now that the (n+1)-edges Dn+1 and D̃n+1 are succeeding in γn+1 at the
(n+1)-vertex v. This is the case if and only if there are distinct arcs An, Ãn3x such that

Hn:An⊂Dn−!Dn+1 and Hn: Ãn⊂ D̃n−! D̃n+1

(where Dn, D̃n∈En).

Case 1. An and Ãn are contained in the same n-edge, or equivalently x /∈Vn. Note
that

D̃n+1 6= Ẽn+1
j for all j=0, ...,m−1,
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and that Hn
1 (x)=v. If Dn+1=Ẽn+1

j for a j=0, ...,m−1, it would follow that both end-
points of Ẽn+1

j are equal to v, which is impossible.
It follows that Dn+1 and D̃n+1 are contained in one sector between Ẽn+1

j and Ẽn+1
j+1 ,

since Hn is a pseudo-isotopy.

Case 2. x=v, and thus An and Ãn are contained in n-edges that succeed at v. Then

D̃n+1 = Ẽn+1
j for some j=0, ...,m−1

in this case.

Consider two (n+1)-edgesDn+1, D̃n+13v, with D̃n+1 6=Ẽn+1
j (for all j=0, ...,m−1).

They are succeeding in γn+1 at v if and only if they are contained in one sector between
Ẽn+1
j and Ẽn+1

j+1 , and the 1-edges Fn(Dn+1) and Fn(D̃n+1) are succeeding in γ1 (since
Fn is bijective on this sector). This happens if and only if Dn+1 and D̃n+1 are succeeding
with respect to πn+1

w (v)∪πn+1
b (v) by definition (see (8.2)).

Let E03p be the 0-edge with terminal point p, i.e., the one preceding Ẽ0. Let
En0 , ..., E

n
m−1 be all n-edges such that Fn(Enj )=E0, labeled such that Enj lies between

Ẽnj and Ẽnj+1. Then Ẽnj and Enj are both contained in the same white n-tile Xn
j . Thus

Eni and Ẽnj are succeeding (at v) if and only if i and j are succeeding indices of a block
bn∈πnw(v).

Consider the 1-edge E1 such that H0:A0⊂E0!E1 for an arc A03p. Let X1
l be the

white 1-tile containing E1. Now consider the (n+1)-edge En+1
j such that

Hn:Anj ⊂Enj −!En+1
j

for an arc Anj 3v. Since Hn is a pseudo-isotopy, it follows that En+1
j is in the sector

between Ẽn+1
j and Ẽn+1

j+1 ; indeed it follows that En+1
j ⊂Xn+1

2kj+l, since the diagram in
Figure 9 commutes (recall that Ẽn+1

j ⊂Xn+1
2kj ).

Consider now two (n+1)-edges Dn+13v and D̃n+1=Ẽn+1
j 3v. They are succeeding

in γn+1 if and only if Dn+1=En+1
i ⊂Xn+1

2ki+l, where i and j are succeeding indices of
a block bn∈πnw(v). This happens if and only if they are succeeding with respect to
πn+1
w (v)∪πn+1

b (v) by definition (see (8.3)) (in the notation from (1e), i=in, j=jn and
l=i1).

(2) follows as in §4.4.

9. Invariant Peano curve implies expansion

In this section we prove Theorem 1.2. Thus we assume that for some iterate F=fn

there is a Peano curve γ:S1!S2 (onto) such that F (γ(z))=γ(zd) for all z∈S1 (where
d=degF ). We want to show that f is expanding.
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The following is [BM, Lemma 6.3].

Lemma 9.1. Let f be a Thurston map and F=fn, where n∈N. Then f is expanding
if and only if F is expanding.

We will use the following equivalent formulation of “expanding” due to Häıssinsky–
Pilgrim [HP]. For a proof of the following lemma we refer the reader to [BM, Proposi-
tion 6.2].

Lemma 9.2. A Thurston map F is expanding if and only if there exists a finite
open cover U0 of S2 by connected sets such that the following holds.

Denote by Un the set of connected components of F−n(U) for all U∈U0. Then

meshUn! 0 as n!∞.

Here meshUn denotes the biggest diameter of a set in Un.

Proof of Theorem 1.2. Let γ:S1!S2 be a Peano curve (onto) such that

F (γ(z))= γ(zd) for all z ∈S1 (where d=degF ). (9.1)

Fix a point x0∈S2. Let W (x0)⊂S2 be an open neighborhood of x0 that is a Jor-
dan domain. Furthermore we assume that W (x0) is so small that each component of
F−1(W (x0)) contains exactly one point of F−1(x0).

Consider γ−1(W (x0))=:I(x0)=
⋃
j Ij⊂S1; this is a (countable) union of open arcs

Ij . Let

J (x0) :=
⋃
{Ij : γ(Ij)3x0}⊂S1,

V (x0) := γ(J (x0))⊂S2.

Note that γ(S1\J (x0)) is a compact set that does not contain x0. Thus V (x0) is a
neighborhood of x0.

Fix an xn∈F−n(x0). Let V n(xn)⊂S2 be the path component of F−n(V (x0)) con-
taining xn.

As before we view the circle as R/Z, the map z 7!zd is then given as

φd: R/Z−!R/Z,

t 7−! dt (mod 1).

Let J n :=φ−1
dn (J (x0)). Note that J n=

⋃
j J

n
j is a (countable) union of open intervals,

each of which has length 6d−n. Thus uniform continuity of γ implies that

diam γ(Jnj ) 6ω(d−n)! 0 as n!∞,
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where ω is the modulus of continuity of γ.
From (9.1) it follows that each set γ(Jnj ) contains a point xnj ∈F−n(x0). If xnj 6=xn

then γ(Jnj ) is contained in a component of F−n(W (x0)) distinct from the one containing
xn, and thus γ(Jnj )∩V n(xn)=∅. It follows that

γ−1(V n(xn))=
⋃
{Jnj : γ(Jnj )3xn}=:J n(xn).

Since γ(Jni )∩γ(Jnj )3xn for Jni , J
n
j ⊂J n(xn), it follows that

diamV n(xn) 6 2ω(d−n).

The sets V 0(x0) are not necessarily open, and intV 0(x0) is not necessarily connected.
Let U(x0)⊂V 0(x0) be an open connected set containing x0. Pick a finite subcover U0

of {U(x0):x0∈S2}. From the above it follows that meshUn!0 as n!∞. Thus F is
expanding by Lemma 9.2, and hence f is expanding by Lemma 9.1.

10. An example

The obvious question to ask is whether an iterate F=fn is necessary in Theorem 1.1
(or whether one may choose n=1). None of the assumptions in §7 seem to be necessary.
It is possible to show (similarly as in [BM, Example 14.12]) that the map f for which
Milnor constructs an invariant Peano curve in [Mi1] does not have an invariant Jordan
curve C⊃post; also the 1-tiles do intersect disjoint 0-edges.

In this section we consider an example of an expanding Thurston map h, where no
pseudo-isotopy H0 as desired exists. This means that for any Jordan curve C⊃post (not
necessarily invariant) there is no pseudo-isotopy H0 rel. post(h) as in Definition 3.2 such
that H0

1 (C)=
⋃

E1=h−1(C).
Thus, one has to take an iterate (in fact h2 will do) in our construction. Of course

there could be a Peano curve γ which semi-conjugates zd to h, but a substantially different
proof would be required.

The map h is a Lattès map as the map g from §1.5. Start with the square[
0, 1

2

√
2

]
×[0, 1],

which is mapped by a Riemann map to the upper half-plane. This extends to a mero-
morphic map ℘=℘L: C!Ĉ, which is periodic with respect to the lattice L=

√
2 Z×2Z.

Consider the map (here i denotes the imaginary unit)

ψ: C−!C,

z 7−!
√

2iz
(10.1)
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p0 7!p0

c1 7!p1

p3 7!p0

p2 7!p3

c2 7!p2

p1 7!p3

h

p0

p1

p2

p3

Figure 10. The map h.

Note that ψ(L)⊂L. The map h is the one that makes the following diagram commute:

C
ψ

//

℘

��

C
℘

� �

S2
h

// S2.

The degree of h is 2. Again one may use ℘ to push the Euclidean metric from C to
the sphere S2. In this metric the upper and lower half-planes are both isometric to the
rectangle

[
0, 1

2

√
2

]
×[0, 1]. Two such rectangles glued together along their boundaries

form a pillow as before. Divide each rectangle horizontally in two. The small rectangles
are similar to the big ones. The map h is given by mapping each small rectangle (they
are the 1-tiles) to big ones (the 0-tiles) as indicated in Figure 10. The critical points are
c1 and c2, the post-critical points are p0, p1, p2 and p3; they are mapped as follows (this
is known as the ramification portrait):

c1
2:1 / / p1

* *TTTTTT
p3 / / p0


 


c2
2:1 // p2

4 4jjjjjj

(10.2)

Lemma 10.1. Let γ0=C⊃post(h) be (any such) Jordan curve and γ1 be an Eulerian
circuit in h−1(C) such that h: γ1!γ0 is a d-fold cover. Then there is no pseudo-isotopy
H0 rel. post(h) as in Definition 3.2 that deforms γ0 to γ1.
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p0 7!p0

c1 7!p1c2 7!p2

(p2 or p1)7!p3p3 7!p0

c1 7!p1

(p1 or p2)7!p3

Figure 11. An Eulerian circuit in h−1(C) (case 1).

Sketch of proof. The proof is a (rather tedious) case-by-case analysis. There are
however only two cases that are essentially different. One of each is presented.

Case 1. The curve C goes through p0, p1, p2 and p3 (in this cyclical order).
We fix an orientation of C. Let Uw and Ub be the two components of S2\C, where

the positively oriented boundary of Uw is C. The closures of Uw and Ub are the white
and black 0-tiles X0

w=Uw∪C and Xb=Ub∪C as before. Similarly, we define the (white)
1-tiles as closures of components of h−1(Uw).

Since the degree of h is 2, there are two white 1-tiles. They intersect at the critical
points c1 and c2. The boundary of each 1-tile contains four points that are mapped to
p0, p1, p2 and p3 (in this cyclical order). There are two different Eulerian circuits γ1

in h−1(C) such that h: γ1!γ0 is a 2-fold cover. They correspond to connecting the two
1-tiles either at c1 or at c2. One situation (connection at c2) is shown in Figure 11. Note
that the cyclical ordering of the post-critical points (shown as dots) is different from the
one on C. Thus there is no pseudo-isotopy H0 as desired that deforms C=γ0 to γ1.

When C goes through the post-critical points in the order

(p0, p2, p1, p3), (p0, p3, p1, p2) or (p0, p3, p2, p1),

the same argument works.

Case 2. The curve C goes through p0, p1, p3 and p2 (in this cyclical order). The 0-
and 1-tiles are defined and colored as before (see §2).

As before, there are two different Eulerian circuits γ1 in h−1(C), such that h: γ1!γ0

is a 2-fold cover. They correspond to whether the white 1-tiles are connected at c1 or c2.
Assume that they are connected at c2. The argument when they are connected at c1 is
again completely analogous.
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p̃0 7!p̃0 7!p̃1

p̃1 7!p̃3

c̃2 7!p̃2

p̃3 7!p̃07!p̃1

p̃2 7!p̃3

Figure 12. Eulerian circuit (case 2).

Assume that the pseudo-isotopy H0 is as in Definition 3.2. Then H0 deforms (the
white 0-tile) X0

w into the two 1-tiles.
In the following we work in the (orbifold) covering. Recall that X0

w, X
0
b⊂S2 are the

white and black 0-tiles (given by C). Pull this tiling back by ℘ to a tiling of C. More
precisely, a 0-tile X̃⊂C is the closure of one component of ℘−1(Uw,b). Similarly as in the
proof of (2.1) one shows that ℘: X̃!Xw,b is a homeomorphism. We color one such 0-tile
X̃⊂C white or black if it is the preimage of X0

w or X0
b , respectively. This gives a tiling

of the plane C into white and black 0-tiles.
Recall that the ramification points of ℘ are the points in 1

2

√
2 Z×Z. At each such

ramified point c∈ 1
2

√
2 Z×Z, two white and two black tiles intersect. Furthermore, the

map ℘ is symmetric with respect to each such point. This means that ℘(c+z)=℘(c−z)
for all z∈C. Thus the tiling of C is pointwise symmetric with respect to each such point c.

We now define the 1-tiles in C. They may be obtained in two different ways; either
as preimages of 1-tiles in S2 by ℘, or as preimages of 0-tiles X̃⊂C by ψ (10.1).

Fix one white 0-tile X̃⊂C. Note that X̃ has four vertices p̃0, p̃1, p̃2, p̃3∈ 1
2

√
2 Z×Z,

they are mapped by ℘ to p0, p1, p2 and p3, respectively. We may assume that p̃0=0.
As in Lemma 3.4, the pseudo-isotopy H0 lifts to a pseudo-isotopy (rel. 1

2

√
2 Z×Z)

H̃0: C×[0, 1]!C. Note that H̃0 deforms X̃ into two 1-tiles (in C) connected at a point
c̃2. Here ℘(c̃2)=c2.

The ordering of the post-critical points along C together with (10.2) implies that the
situation looks as in Figure 12. Here “7!p̃j” labels a point z̃ that satisfies h(℘(z̃))=pj .

The symmetry of the 1-tiles with respect to the point c̃2 implies that

2c̃2 = p̃3 = p̃1+p̃2.

Note that c̃2 and p̃1 are contained in the same 1-tile X̃1, which contains p̃0=0. There
are two 0-tiles containing p̃0, symmetric with respect to the origin. Thus (here i denotes
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the imaginary unit)

±ψ(X̃1) =±
√

2iX̃1 = X̃.

Therefore

±
√

2ic̃2 = p̃2 and ±
√

2ip̃1 = p̃3.

Combining these three equations yields

p̃2 =±
√

2ic̃2 =± 1
2

√
2ip̃3 =± 1

2

√
2i(±

√
2ip̃1) =−p̃1.

Thus,

p̃3 = p̃1+p̃2 =0,

which is a contradiction.

If C goes through the post-critical points in the cyclical order p0, p2, p3 and p1, the
argument is completely analogous to the one above.

11. Open problems and concluding remarks

A rational map of degree d can naturally be viewed as a point in C2d+1 via its coefficients.
Consider a post-critically finite rational map f without periodic critical points. This is
an expanding Thurston map in our sense, the Julia set is all of S2. Rees [Re1] has shown
that such a map can be disturbed in a set of positive measure (in C2d+1) such that the
Julia set stays S2.

Open problem 1. Let f be a rational map with Julia set S2. Does Theorem 1.1 hold
in this case?

On the other hand one may ask if the theorem continues to hold if the Julia set
is not the whole sphere. This however is false. Namely, Kameyama [Ka, §4] gives an
example of a post-critically finite rational map where no such semi-conjugacy exists.

Finally one can ask if a corresponding result holds in the group case.

Open problem 2. Let Γ be a Gromov-hyperbolic group whose boundary at infinity
is S2. Is there a Peano curve γ:S1!S2 which is invariant under a non-trivial normal
subgroup of Γ?

A positive answer might conceivably open another line of attack on Cannon’s con-
jecture.
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matics, 106. Birkhäuser, Boston, MA, 1992.
[CFP1] Cannon, J.W., Floyd, W. J. & Parry, W.R., Finite subdivision rules. Conform.

Geom. Dyn., 5 (2001), 153–196.
[CFP2] — Expansion complexes for finite subdivision rules. I. Conform. Geom. Dyn., 10

(2006), 63–99.
[CFP3] — Constructing subdivision rules from rational maps. Conform. Geom. Dyn., 11

(2007), 128–136.
[CT] Cannon, J.W. & Thurston, W.P., Group invariant Peano curves. Geom. Topol.,

11 (2007), 1315–1355.
[Da] Daverman, R. J., Decompositions of Manifolds. Pure and Applied Mathematics, 124.

Academic Press, Orlando, FL, 1986.
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