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1. Introduction

Each Hilbert modular surface has a beautiful minimal smooth compactification due to
Hirzebruch. Higher-dimensional Hilbert modular varieties instead admit many toroidal
compactifications none of which is clearly the best. In this paper, we consider canonical
compactifications of closely related varieties, namely the real multiplication locus RMO
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in the moduli space Mg of genus-g Riemann surfaces, as well as the locus of eigenforms
ΩEO in the bundle ΩMg!Mg of holomorphic 1-forms.

If g=3, we give a complete description of the stable curves in the Deligne–Mumford
compactification Mg which are in the boundary of RMO and we describe which stable
curves equipped with holomorphic 1-forms are in the boundary of the eigenform locus
ΩEO. The case g=2 is treated in [4]. If g>3, we give strong restrictions on the stable
curves in the boundary of RMO. This allows one to reduce many difficult questions about
Riemann surfaces with real multiplication to concrete problems in algebraic geometry and
number theory by passing to the boundary of Mg. In this paper, we apply our boundary
classification to obtain finiteness results for Teichmüller curves in M3 and non-invariance
of the eigenform locus under the action of GL+

2 (R) on ΩM3.

Boundary of the eigenform locus

We now state a rough version of our calculation of the boundary of the eigenform locus.
See Theorems 5.2, 8.1 and 8.5 for precise statements. Consider a totally real cubic
field F , and let O⊂F be the ring of integers (we handle arbitrary orders O⊂F , but
stick to the ring of integers here for simplicity). The Jacobian of a Riemann surface
X has real multiplication by O roughly speaking if the endomorphism ring of Jac(X)
contains a copy of O (see §2 for details). We denote by RMO⊂M3 the locus of Riemann
surfaces whose Jacobians have real multiplication by O. Real multiplication on Jac(X)
determines an eigenspace decomposition of Ω(X), the space of holomorphic 1-forms on X.
The eigenform locus ΩEO⊂ΩM3 is the locus of pairs (X, ω), where Jac(X) has real
multiplication by O, and ω∈Ω(X) is an eigenform.

The bundle ΩMg!Mg extends to a bundle ΩMg!Mg whose fiber over a stable
curve X is the vector space of stable forms on X. A stable form over a stable curve is
a form which is holomorphic, except for possibly simple poles at the nodes, such that
the two residues at a single node are opposite (see §3 for details). We describe here the
closure of ΩEO in ΩM3, which also determines the closure of RMO in M3.

Consider the quadratic map Q: F!F , defined by

Q(x) =
NF

Q (x)
x

. (1.1)

We say that a finite subset S⊂F satisfies the no-half-space condition if the interior of
the convex hull of Q(S) in the R-span of Q(S) in F⊗QR contains 0.

It is well known that every stable curve which is in the closure of the real multi-
plication locus RMO⊂Mg has geometric genus zero or g (we give a proof via complex
analysis in §5). Our description of the closure of the eigenform locus is as follows.
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Theorem 1.1. A stable form (X, ω)∈ΩM3 of geometric genus zero lies in the
boundary of the eigenform locus ΩEO if and only if

• the set of residues of ω is a multiple of ι(S), for some subset S⊂F , satisfying
the no-half-space condition and Z-spanning an ideal I⊂O, and for some embedding
ι: F!R;

• and, furthermore, if Q(S) lies in a Q-subspace of F , then an explicit additional
equation (see Theorem 8.5), involving cross-ratios of the nodes of X, is satisfied.

Remark. The more precise version of this theorem, which we state in §5, gives a
necessary condition which holds more generally in any genus. In §8, we show that this
condition is sufficient in genus 3. In fact, it is sufficient also in genus 2, but we ignore
this case as the boundary of the eigenform locus was previously calculated in the genus-2
case in [4]. The higher-genus cases are more difficult, as the Torelli map Mg!Ag is no
longer dominant.

The boundary of EO :=PΩEO has a stratification into topological types, where two
stable forms are of the same topological type if there is a homeomorphism between them
which preserves residues up to a constant multiple. We may encode a topological type
by a directed graph with the edges weighted by the elements of an ideal I⊂O. Vertices
represent irreducible components, edges represent nodes, and weights represent residues.
The corresponding boundary stratum of EO is a product of moduli spaces M0,n, or a sub-
variety thereof. For g=3 the possible topological types arising in the boundary of RMO
are shown in Figure 1 (p. 46). In Appendix A, we give an algorithm for enumerating all
boundary strata of EO associated with a given ideal I. In Table 1 (p. 86), we tabulate
the number of 2-dimensional boundary strata for many different fields.

An important particular case is boundary strata parameterizing irreducible stable
curves, also known as trinodal curves. Consider a basis r=(r1, r2, r3) of an ideal I⊂O.
We say that r is an admissible basis of I if the rj satisfy the no-half-space condition.
Let Sι

r⊂PΩM3 be the locus of trinodal forms having residues (±ι(r1),±ι(r2),±ι(r3)).
Since a trinodal curve may be represented by six points in P1 identified in pairs, we may
identify Sι

r with the moduli space M0,6 of such points. Suppose that r is admissible. As
three points in R3 whose convex hull contains 0 must be contained in a subspace, we are
in the second case of Theorem 1.1, so EO∩Sι

r is cut out by a single polynomial equation
on Sι

r
∼=M0,6. We see in Theorem 8.5 that this equation is

Ra1
1 Ra2

2 Ra3
3 = 1, (1.2)

where Rj :M0,6!C∗, j=1, 2, 3, are certain cross-ratios of four points and where the aj

are integers determined explicitly by the rj .
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For example, for the integers in the field of discriminant 49 there is just one admis-
sible basis up to a scalar multiple. This basis and the complete boundary of RMO for
this order are given in Appendix A.

Intersecting flats in SLg( )\SLg( )/SOg( )

In §7, we show that the notion of an admissible basis of a lattice in a totally real cubic
number field is equivalent to a second condition on bases of totally real number fields,
which we call rationality and positivity. Namely, a Q-basis r1, ..., rg of F is rational and
positive if

rj/sj

rk/sk
∈Q+ for all j �= k,

where s1, ..., sg is the dual basis of F with respect to the trace pairing (which is such that
TrF

Q (rjsk)=δjk). We highlight the conditions of rationality and positivity here, since
rationality is on one hand a familiar condition of commensurable moduli (see the end
of §10) in the framework of Teichmüller curves. On the other hand, for irreducible stable
curves, i.e. g -nodal curves, this condition is (together with positivity) a characterization
of the residues of eigenforms.

There is a classical correspondence between ideal classes in totally real degree-g
number fields and compact flats in the locally symmetric space

Xg = SLg(Z)\SLg(R)/SOg(R),

the moduli space of lattices in Rg. Given a lattice I in a totally real number field F ,
let U(I)⊂F ∗ be the group of totally positive units preserving I, embedded in the group
D⊂SLg(R) of positive diagonal matrices via the g real embeddings of F . There is an
isometric immersion pI of the flat torus T (I)=U(I)\D into Xg arising from the right
action of D on SLg(Z)\SLg(R). Let Rec⊂Xg be the locus of lattices in Rg which have
an orthogonal basis. Rec is a closed, but not compact, (g−1)-dimensional flat. In §7, we
show that rational and positive bases of lattices in number fields correspond to intersec-
tions of the corresponding compact flat with Rec.

Theorem 1.2. Given a lattice I in a totally real number field, there is a natural
bijection between the set p−1

I (Rec) and the set of rational and positive bases of I up to
multiplication by units, changing signs and reordering.

To sketch the bijection, we remark that given a basis of a lattice there is a unique
element in D whose action makes the first basis vector parallel to the first vector of the
dual basis. Rationality ensures that this automatically also holds for the other basis
vectors.
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Specializing back to g=3, Theorems 1.1 and 1.2 together imply that there is a natural
bijection between boundary strata of eigenform loci EO⊂PΩM3 and intersection points
of compact flats in X3 with the distinguished flat Rec. Note that X3 is 5-dimensional,
while each flat in X3 is at most 2-dimensional, so one would not expect many intersections
between these flats. Nevertheless, we show in §9 that the ring of integers in each totally
real cubic field has some ideal which has an admissible basis. In fact, the computations
described in Appendix A suggest that most lattices in cubic fields have many admissible
bases, although there are also examples of lattices which have none. It would be an
interesting problem to study the asymptotics of counting these bases.

Algebraically primitive Teichmüller curves

There is an important action of GL+
2 (R) on ΩMg, the study of which has many appli-

cations to the dynamics of billiards in polygons and translation flows. A major open
problem is the classification of GL+

2 (R)-orbit-closures. In genus 2, this was solved in [36]
by McMullen, while not even partial classification results are known for higher genera.

Very rarely, a form (X, ω) has a GL+
2 (R)-stabilizer which is a lattice in SL2(R).

In this case, the GL+
2 (R)-orbit of (X, ω) projects to an algebraic curve in Mg which is

isometrically immersed with respect to the Teichmüller metric. Such a curve in Mg is
called a Teichmüller curve. A Teichmüller curve C is uniformized by a Fuchsian group,
called the Veech group of C ([42]). The field F generated by the traces of elements in the
Veech group is called the trace field of C. The trace field is a totally real field of degree
at most g. See §10 for basic definitions about Teichmüller curves and the GL+

2 (R)-action.

Our main motivation for this work was the problem of classifying algebraically primi-
tive Teichmüller curves in Mg, that is Teichmüller curves whose trace field has degree g.
Every algebraically primitive Teichmüller curve lies in RMO for some order O in its
trace field by [38], and every Teichmüller curve has a cusp, so Theorem 1.1 allows one to
approach the classification of Teichmüller curves by studying the possible stable curves
which are limits of their cusps.

In ΩM2, each eigenform locus ΩEO is GL+
2 (R)-invariant and contains one or two

Teichmüller curves (see [32] and [33]). With the exception of the decagon, these Teich-
müller curves lie in the stratum ΩM2(2) (where we write ΩMg(n1, ..., nk)⊂ΩMg for
the stratum of forms having zeros of order n1, ..., nk). These Teichmüller curves were
discovered independently by Calta in [14].

A major obstruction to the existence of algebraically primitive Teichmüller curves
in higher genera is that the eigenform loci are no longer GL+

2 (R)-invariant. McMullen
showed in [32] that ΩEO is not GL+

2 (R)-invariant if O is the ring of integers in Q
(
cos 2

7π
)
.
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We prove in §11 the following stronger non-invariance statement.

Theorem 1.3. The eigenform locus ΩEO is not invariant if O is the ring of integers
in any totally real cubic field.

This statement is likely to hold for all orders. See the end of §11 for more details. In
contrast to the situation in M2, we give in this paper strong evidence for the following
conjecture.

Conjecture 1.4. There are only finitely many algebraically primitive Teichmüller
curves in M3.

In §13, we prove the following instance of this conjecture.

Theorem 1.5. There are only finitely many algebraically primitive Teichmüller
curves generated by a form in the stratum ΩM3(3, 1).

The proof uses the cross-ratio equation (1.2) together with a torsion condition from
[37] which gives strong restrictions on Teichmüller curves generated by forms with more
than one zero. This torsion condition was used in [35] to show that there is a unique prim-
itive Teichmüller curve in ΩM2(1, 1), and in [39] to show the finiteness of algebraically
primitive Teichmüller curves in the hyperelliptic components ΩMg(g−1, g−1)hyp of
ΩMg(g−1, g−1). Similar ideas should establish finiteness in the strata of ΩM3 with
more than two zeros. In the remaining cases, the two components of ΩM3(4) and the
component ΩM3(2, 2)odd of ΩM3(2, 2), more ideas are needed. In ΩM3(2, 2)odd, which
does not entirely consist of hyperelliptic curves, the torsion condition gives no information
due to the presence of a sublocus parameterizing hyperelliptic curves.

While we cannot rule out infinitely many algebraically primitive Teichmüller curves
in the stratum ΩM3(4), Theorem 1.1 gives an efficient algorithm for searching any given
eigenform locus ΩEO for Teichmüller curves in this stratum. Given an order O, one first
lists all admissible bases of ideals in O as described in Appendix A. For each admissible
basis, there are a finite number of irreducible stable forms having these residues and a
fourfold zero. One then lists these possible stable forms and then checks each to see if
the cross-ratio equation (1.2) holds. If it never holds, then there are no possible cusps of
Teichmüller curves in ΩM3(4)∩ΩEO, so there are no Teichmüller curves.

Due to numerical difficulties with the odd component, we have only applied this
algorithm to the hyperelliptic component ΩM3(4)hyp. The algorithm recovers the one
known example in this stratum, Veech’s heptagon curve, contained in ΩEO with O being
the ring of integers in the unique cubic field of discriminant 49; it has ruled out alge-
braically primitive Teichmüller curves in ΩM3(4)hyp for every other eigenform locus to
which it was applied.
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Theorem 1.6. Other than Veech’s heptagon curve there are no algebraically primi-
tive Teichmüller curves generated by a form in ΩEO∩ΩM3(4)hyp with O being the ring
of integers in any of the 1778 totally real cubic fields of discriminant less than 40000.

We discuss the algorithm on which this theorem is based in §14. We also give in this
section some further evidence for Conjecture 1.4 in ΩM3(4)hyp, that an infinite sequence
of algebraically primitive Teichmüller curves in this stratum would have to satisfy some
unlikely arithmetic restrictions on the widths of cylinders in periodic directions. We
have not yet made an attempt to obtain a statement like Theorem 1.6 for the stratum
ΩM3(3, 1). The bounds used in Theorem 1.5 are effective but rely on height bounds
which are so bad, that new ideas are needed to make the algorithm feasible.

For completeness we mention that there is no hope of proving a finiteness theorem for
algebraically primitive Teichmüller curves in Mg without bounding g. Already Veech’s
fundamental paper [42], and also [44] and [13], contain infinitely many algebraically
primitive Teichmüller curves for growing genus g.

The eigenform locus is generic

A rough dimension count leads one to expect Conjecture 1.4 to hold for the stratum
ΩM3(4), as the expected dimension of EO∩PΩM3(4) is zero, which is too small to
contain a Teichmüller curve. On the other hand, if the eigenform locus ΩEO⊂ΩM3 is
contained in some stratum besides the generic one ΩM3(1, 1, 1, 1), one would expect this
intersection to be positive-dimensional. This would be a source of possible Teichmüller
curves. In §12, we prove that the eigenform locus is indeed generic, i.e. a dense open set
is contained in ΩM3(1, 1, 1, 1).

Theorem 1.7. For any order O in a totally real cubic field, each component of the
eigenform locus ΩEO lies generically in ΩM3(1, 1, 1, 1).

The proof uses Theorem 1.1 to construct a stable curve in the boundary of ΩEO with
the property that each irreducible component is a thrice-punctured sphere. A limiting
eigenform on this curve must have a simple zero in each component.

Primitive but not algebraically primitive Teichmüller curves

From a Teichmüller curve in Mg, one can construct many Teichmüller curves in higher-
genus moduli spaces by a branched covering construction. A Teichmüller curve is primi-
tive if it does not arise from one in lower genus via this construction. Every algebraically
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primitive Teichmüller curve is primitive, but the converse does not hold. In M3, Mc-
Mullen exhibited in [34] infinitely many primitive Teichmüller curves with quadratic
trace field. These curves lie in the intersection of ΩM3(4) with the locus of Prym eigen-
forms, that is, forms (X, ω) with an involution X!X such that the −1 part of Jac(X)
is an Abelian surface with real multiplication having ω as an eigenform. It is not known
whether all primitive Teichmüller curves in M3 with quadratic trace fields arise from
this Prym construction.

Our approach to classifying algebraically primitive Teichmüller curves could also be
applied to the classification of (say) primitive Teichmüller curves in M3 with quadratic
trace field. Given a positive integer d and an order O in a real quadratic field F ,
there is the locus EO(d)⊂PΩM3 of forms (X, ω) such that there exists a degree-d map
of X onto an elliptic curve E with the kernel of the induced map Jac(X)!E having
real multiplication by O with ω as an eigenform. The locus EO(d) is 3-dimensional,
and EO(2) coincides with McMullen’s Prym eigenform locus. Teichmüller curves in M3

having quadratic trace field must be generated by a form in some EO(d). There is a
classification of the forms of geometric genus zero in the boundary of EO(d), similar to
that of Theorem 1.1, with the map Q replaced by a quadratic map

Q̃: F⊕Q−!F⊕Q.

Each boundary stratum of EO(d) parameterizing trinodal curves is again a subvariety
of M0,6 cut out by an equation in cross-ratios similar to (1.2).

Since the cross-ratio equation (1.2) is responsible for ruling out algebraically prim-
itive Teichmüller curves in ΩM3(4), one might wonder why its analogue does not also
rule out McMullen’s Teichmüller curves in EO(2). The difference is that the cross-ratio
equation cutting out the trinodal boundary strata of EO(2) no longer depends on the
associated residues rj∈F as in (1.2). Moreover, each such boundary stratum contains
forms having a four-fold zero that one can explicitly exhibit for all O, as opposed to the
algebraically primitive case where these forms almost never exist. We hope to provide
the details of this discussion in a future paper.

Towards the proof of Theorem 1.1

We conclude by summarizing the proof of Theorem 1.1. For simplicity, we continue to
assume that O is a maximal order. The reader may also wish to ignore the case of
non-maximal orders on a first reading.

The real multiplication locus RMO⊂Mg (or more precisely, its lift to the Teich-
müller space) is cut out by certain linear combinations of period matrices. To better
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understand the equations which cut out the real multiplication locus, in §4 we give a
coordinate-free description of period matrices. Given an Abelian group L, we define a
cover Mg(L)!Mg, the moduli space of Riemann surfaces X equipped with a Lagrangian
marking, that is, an isomorphism of L onto a Lagrangian subspace of H1(X; Z). We define
a homomorphism

Ψ:SZ(HomZ(L, Z))−!Hol∗ Mg(L),

where SZ( ·) denotes the symmetric square, and Hol∗ Mg(L) is the group of nowhere van-
ishing holomorphic functions on Mg(L). Each function Ψ(a) is a product of exponentials
of entries of period matrices. There is a Deligne–Mumford compactification Mg(L) of
Mg(L) with a boundary divisor Dγ for each γ∈L, consisting of stable curves where a
curve homologous to γ has been pinched. In Theorem 4.1 we show that each Ψ(a) is
meromorphic on Mg(L) with order of vanishing

ordDγ Ψ(a) = 〈a, γ⊗γ〉 along Dγ .

Cusps of the real multiplication locus correspond to ideal classes in O (or extensions
of ideal classes in case O is non-maximal). Given an ideal I⊂O, we define in §5 a real
multiplication locus RMO(I)⊂M3(I), covering RMO⊂M3, of surfaces which have
real multiplication in a way which is compatible with the Lagrangian marking by I. The
closure of RMO(I) in M3(I) covers the closure of the cusp of RMO corresponding to I,
and therefore it suffices to compute the closure in M3(I). In §5, we construct a rank-3
subgroup Γ of

SZ(Hom(I, Z))∼=SZ(I∨)

(where I∨⊂F is the inverse different of I) such that RMO(I) is cut out by the equations

Ψ(a) = 1 (1.3)

for all a∈Γ. The proof of Theorem 6.1 yields an identification of Γ with a lattice in F

with the property that for each a∈Γ and t∈I, the order of vanishing of Ψ(a) along the
divisor Dt⊂Mg(I) is

ordDt
Ψ(a) = 〈a,Q(t)〉 (1.4)

with the pairing being the trace pairing on F , and with Q(t) as in (1.1).
Now suppose that S⊂Mg(I) is a boundary stratum which is the intersection of the

divisors Dtj
for t1, ..., tn∈I, and suppose that the tj do not satisfy the no-half-space

condition. This means that we can find a vector a∈F such that 〈a,Q(tj)〉�0 for each tj

with strict inequality for at least one. Multiplying a by a sufficiently large integer, we
may assume that a∈Γ. From (1.3) we see that Ψ(a)≡1 on RMO(I), and from (1.4) we



10 m. bainbridge and m. möller

see that Ψ(a)≡0 on S. It follows that RMO(I)∩S=∅, from which we conclude the first
part of Theorem 1.1.

If the Q(tj) lie in a subspace of F , then we may choose a∈Γ to be orthogonal to
each Q(tj). By (1.4), the function Ψ(a) is non-zero and holomorphic on S. The equation
Ψ(a)=1 restricted to S cuts out a codimension-1 subvariety of S, which yields the second
part of Theorem 1.1. In the case where S parameterizes trinodal curves, the equation
Ψ(a)=1 is exactly the cross-ratio equation (1.2). This concludes the necessity of the
conditions of Theorem 1.1.

To obtain sufficiency of these conditions, in §8 we show that one can often define,
using the functions Ψ(a), local coordinates from a neighborhood of a boundary stratum
S in Mg(L) into (C∗)m×Cn. In these coordinates, S is (C∗)m×{0}, and the real mul-
tiplication locus RMO(I) is a subtorus of (C∗)m+n. The computation of the boundary
of the real multiplication locus is thus reduced to the computation of the closure of an
algebraic torus in (C∗)m+n. This is taken care of by Theorem 8.14.

Hilbert modular varieties and the locus of real multiplication

We conclude with a discussion of the relation between Hilbert modular varieties and the
real multiplication locus. In several textbooks (e.g. [18]) Hilbert modular varieties are
defined as the quotients Hg/Γ, where Γ=SL(O⊕O∨)∼=SL2(O) for some order O⊂F , or
even more restrictively when O is the ring of integers [20]. There is a natural map from
Hg/Γ to the moduli space of Abelian varieties whose image is a component of the locus of
Abelian varieties with real multiplication by O. In Appendix B, we provide an example
showing that the real multiplication locus need not be connected, so it is in general not
the image of Hg/Γ. This phenomenon is surely known to experts but is often swept under
the rug. If one restricts to quadratic fields (as in [19]) or to maximal orders (as in [20])
this phenomenon disappears.

In this paper, we regard a Hilbert modular variety more generally as a quotient
Hg/Γ′ for any Γ′ commensurable with SL2(O). With this more general definition, the
locus RAO⊂Ag of Abelian varieties with real multiplication by O is parameterized by a
union XO of Hilbert modular varieties.

The eigenform loci EO⊂PΩMg which we compactify are closely related to the Hilbert
modular varieties XO. In genus 2, EO is isomorphic to XO, while in genus 3, EO is a
(degree-1) branched cover of XO. In other words, the canonical map EO!XO is one-to-
one on the level of points, but the orbifold structures are different. The real multiplication
locus RMO⊂Mg is a quotient of EO by an action of the appropriate Galois group. See
§2 for details on Hilbert modular varieties and the various real multiplication loci.
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Notation

Throughout the paper, F will denote a totally real number field, O an order in F and
I⊂F a lattice whose coefficient ring contains O.

Given an R-module M , we write SymR(M) for the submodule of M⊗RM fixed
by the involution θ(x⊗y)=y⊗x. We write SR(M) for the quotient of M⊗RM by the
submodule generated by the relations θ(z)−z.

We write Hom+
R(M,N) and Hom−

R(M,N) for the self-adjoint and anti-self-adjoint
maps from M to N when this makes sense (either N=HomR(M,R) or N=M with a
bilinear pairing on M).

We write Δr for the (open) disc of radius r about the origin in C; we write Δ for
the unit disc, and Δ∗ for the unit disc with the origin removed.

2. Orders, real multiplication and Hilbert modular varieties

In this section, we discuss necessary background material on orders in number fields,
Abelian varieties with real multiplication, and their various moduli spaces. There are two
consequences to keep in mind. First, cusps of Hilbert modular varieties are in bijection
with symplectic extensions (Proposition 2.3). We determine in Theorem 2.1 the vector
space the extension class lives in. Second, the extension class E will be responsible for
a root of unity in the equation alluded to in Theorem 1.1. This root of unity will be
introduced in equation (5.5). Unfortunately, with a view towards finiteness results of
Teichmüller curves, we know of no a-priori bound for the order of this root of unity.

Orders

Consider a number field F of degree d. A lattice in F (also called full module) is a
subgroup of the additive group of F isomorphic to a rank-d free Abelian group. An order
in F is a lattice which is also a subring of F containing the identity element. The ring
of integers in F is the unique maximal order.
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Given a lattice I in F , the coefficient ring of I is the order

OI = {a∈F : ax∈I for all x∈I}.

Lattices in finite-dimensional vector spaces over F and their coefficient rings are
defined similarly.

Ideal classes

Two lattices I and I ′ in F are similar if I=αI ′ for some α∈F . An ideal class is an
equivalence class of this relation. Given an order O, the set Cl(O), of ideal classes of
lattices with coefficient ring O, is a finite set (see [12]). If O is the maximal order, Cl(O)
is the ideal class group of O.

Modules over orders

Let O be an order in a number field F and M be a module over O. The rank of M is the
dimension of M⊗Q as a vector space over F . We say that M is proper if the O-module
structure on M does not extend to a larger order in F .

Every finitely generated, torsion-free, rank-1 O-module M is isomorphic to a frac-
tional ideal of O, that is, a lattice in F whose coefficient ring contains O.

A symplectic O-module is a torsion-free O-module M together with a unimodular
symplectic form 〈 · , · 〉: M×M!Z which is compatible with the O-module structure in
the sense that

〈λx, y〉= 〈x, λy〉

for all λ∈O and x, y∈M .
We equip F 2 with the symplectic pairing

〈(α1, β1), (α2, β2)〉= TrF
Q (α1β2−α2β1). (2.1)

Every rank-2 symplectic O-module is isomorphic to a lattice L in F 2 whose co-
efficient ring contains O, such that the symplectic form on F induces a unimodular
symplectic pairing L×L!Z.

Inverse different

Given a lattice I⊂F with coefficient ring O, the inverse different of I is the lattice

I∨ = {x∈F : TrF
Q (xy)∈Z for all y ∈M}.
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I∨ and I have the same coefficient rings. The trace pairing induces an O-module
isomorphism I∨!Hom(I, Z).

The sum I⊕I∨ is a symplectic O-module with the canonical symplectic form (2.1).

Symplectic extensions

We now discuss the classification of certain extensions of lattices in number fields. This
will be important in the discussion of cusps of Hilbert modular varieties below.

Let I be a lattice in a number field F with coefficient ring OI . An extension of I∨

by I over an order O⊂OI is an exact sequence of O-modules,

0−! I −!M −! I∨ −! 0,

where M is a proper O-module. Given such an extension, a Z-module splitting s: I∨!M

determines a Z-module isomorphism I⊕I∨!M . The module M inherits the symplectic
form (2.1), which does not depend on the choice of the splitting s since the determinant
of an upper triangular matrix does not depend on the off-diagonal entries. We say that
this is a symplectic extension if the symplectic form is compatible with the O-module
structure of M .

Let E(I) be the set of all symplectic extensions of I∨ by I over any order O⊂OI
up to isomorphism of exact sequences which are the identity on I and I∨. We give E(I)
the usual Abelian group structure: given two symplectic extensions,

0−! I ιj−−!Mj
πj−−−! I∨ −! 0,

define π: M1⊕M2!I∨ by π(α, β)=π1(α)−π2(β) and ι: I!M1⊕M2 by ι=ι1⊕(−ι2).
The sum of the two extensions is

0−! I −!Ker(π)/Im(ι)−! I∨ −! 0.

and the identity element is the trivial extension I⊕I∨.
Let Hom+

Q(F, F ) be the vector space of endomorphisms of F that are self-adjoint
with respect to the trace pairing. Note that HomF (F, F )⊂Hom+

Q(F, F ). For x∈F , let
Mx∈HomF (F, F ) denote the multiplication-by-x endomorphism.

Given E∈Hom+
Q(F, F ), let O(E) be the order

{x∈F : [Mx, E](I∨)⊂I},

where [X, Y ]=XY −Y X is the commutator. The fact that O(E) is a subring of F follows
from the formula

Mλ[Mμ, E]+[Mλ, E]Mμ = [Mλμ, E].
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O(E) is a lattice, as for each x∈F we have nx∈O(E) for some integer n. Define a
symplectic extension (I⊕I∨)E of I∨ by I over O(E) by giving I⊕I∨ the O(E)-module
structure

λ·(α, β) = (λα+[Mλ, E](β), λβ).

Theorem 2.1. The map E �!(I⊕I∨)E induces an isomorphism

Hom+
Q(F, F )/(HomF (F, F )+Hom+

Z(I∨, I))−!E(I).

Proof. To see that our map is a well-defined homomorphism is just a matter of
working through the definitions, which we leave to the reader.

In order to show that our map is a monomorphism, suppose that (I⊕I∨)E is iso-
morphic to the trivial extension via φ: (I⊕I∨)E!I⊕I∨. This isomorphism must be
of the form φ(α, β)=(α+R(β), β) for some self-adjoint R: I∨!I. The condition that
this is an O(E)-module isomorphism implies that [Mx, E−R]=0 for all x∈O(E). Since
HomF (F, F ) is its own centralizer in HomQ(F, F ), we must have E−R∈HomF (F, F ), so

E ∈HomF (F, F )+Hom+
Z(I∨, I).

Now consider the space D=HomQ(F, Hom−
Q(F, F )). We write elements of D as Qx,

with Qx∈Hom−
Q(F, F ) for each x∈F . Let C⊂D be those elements Q− satisfying

MxQy+QxMy = Qxy (2.2)

for all x, y∈F . We claim that every element of C is of the form QE
x =[Mx, E]. To see this,

let θ be a generator of F over Q. The map C!Hom−
Q(F, F ) sending Q− to Qθ is injective

by (2.2), so dim C� 1
2d(d−1), where d=[F :Q]. The map Hom+

Q(F, F )/ HomF (F, F )!C
sending E to QE

− is injective, so it is an isomorphism because the domain also has
dimension 1

2d(d−1). Thus every element of C has the desired form.
Now, every symplectic extension of I∨ by I over an order O is isomorphic as a

symplectic Z-module to I⊕I∨ with the O-module structure

λ·(α, β) = (λα+Qλ(β), λβ),

where Q−∈C. Since Q−=QE
− for some E, our map is surjective.

Given an order O⊂OI , let EO(I)⊂E(I) be the subgroup of extensions over some
order O′ such that O⊂O′⊂OI , and let EO(I)⊂EO(I) be the set of extensions over O.
From the above description of E(I), we obtain the following result.

Corollary 2.2. E(I) is a torsion group with EO(I) being a finite subgroup.

If two lattices I and I ′ are in the same ideal class, then the groups E(I) are canon-
ically isomorphic.
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Real multiplication

We now suppose F is a totally real number field of degree g.
Consider a principally polarized g -dimensional Abelian variety A. We let End(A)

be the ring of endomorphisms of A and End0(A) be the subring of endomorphisms such
that the induced endomorphism of H1(A; Q) is self-adjoint with respect to the symplectic
structure defined by the polarization.

Real multiplication by F on A is a monomorphism �: F!End0(A)⊗ZQ. The subring
O=�−1(End(A)) is an order in F , and we say that A has real multiplication by O.

There can be many ways for a given Abelian variety to have real multiplication
by O. We write Aut(O/Z) for the subgroup of the automorphism group Aut(F/Q)
which preserves O. If �:O!End0(A) is real multiplication of O on A, then so is � σ for
any σ∈Aut(O/Z).

Let Ag=Hg/Sp2g(Z) be the moduli space of g -dimensional principally polarized
Abelian varieties (where Hg is the 1

2g(g+1)-dimensional Siegel upper half-space). We
denote by RAO⊂Ag the locus of Abelian varieties with real multiplication by O.

Eigenforms

Real multiplication �:O!End0(A) induces a monomorphism �:O!End Ω(A), where
Ω(A) is the vector space of holomorphic 1-forms on A. Usually, for λ∈O we just write
λ·ω, for short, instead of �(λ)(ω). If ι: F!R is an embedding of F , we say that ω∈Ω(A)
is an ι-eigenform if

λ·ω = ι(λ)ω

for all λ∈O. Equivalently, ω is an ι-eigenform if∫
λ·γ

ω = ι(λ)
∫

γ

ω

for all λ∈O and γ∈H1(A; Z). If we do not wish to specify an embedding ι, we just call
ω an eigenform.

Given an embedding ι and an ι-eigenform (A,ω), there is a unique choice of real
multiplication �:O!End0(A) which realizes (A,ω) as an ι-eigenform. Thus considering
ι-eigenforms allows one to eliminate the ambiguity of the choice of real multiplication.

We denote by Ωι(A) the 1-dimensional space of ι-eigenforms. We obtain the eigen-
form decomposition,

Ω(A) =
⊕

ι:F!R

Ωι(A), (2.3)

where the sum is over all field embeddings ι.
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We denote by ΩAg!Ag the moduli space of pairs (A,ω), where A is a principally
polarized Abelian variety and ω is a non-zero holomorphic 1-form on A. Moreover, we
write EAO⊂PΩAg for the locus of eigenforms for real multiplication by O and EAι

O
for the locus of ι-eigenforms. Note that for Gal(O/Z)-conjugate embeddings ι and ι′,
the eigenform loci EAι

O and EAι′
O coincide (as an ι-eigenform is simultaneously an ι′-

eigenform for a Galois conjugate real multiplication); however, each (A,ω)∈EAι
O comes

with a canonical choice of real multiplication which depends on ι.

Hilbert modular varieties

Choose an ordering ι1, ..., ιg of the g real embeddings of F . We set x(j)=ιj(x). The
group SL2(F ) then acts on Hg by A·(zj)

g
j=1=(A(j) ·zj)

g
j=1, where SL2(R) acts on the

upper half-plane H by Möbius transformations in the usual way.
Given a lattice M⊂F 2, we define SL(M) to be the subgroup of SL2(F ) which pre-

serves M . The Hilbert modular variety associated with M is

X(M) = Hg/SL(M).

Given an order O⊂F , we define

XO =
∐
M

X(M),

where the union is over a set of representatives of all isomorphism classes of proper
rank-2 symplectic O-modules. If O is a maximal order, then every rank-2 symplectic
O-module is isomorphic to O⊕O∨ (this also holds if g=2; see [36]), so in this case
XO is connected. In general, XO is not connected, as there are non-isomorphic proper
symplectic O-modules; see Appendix B.

There are canonical maps jι: XO!EAι
O and j:XO!RAO defined as follows. Given

a lattice M⊂F 2 and τ =(τj)
g
j=1∈Hg, we define φτ : M!Cg by

φτ (x, y) = (x(j)+y(j)τj)
g
j=1.

The Abelian variety Aτ =Cg/φτ (M) has real multiplication by O defined by

λ·(zj)
g
j=1 = (λ(j)zj)

g
j=1.

The form dzj is an ιj-eigenform.
The map jι: XO!EAι

O is an isomorphism, so we may regard XO as the moduli
space of principally polarized Abelian varieties A with a choice of real multiplication
�:O!End0(A).

The Galois group Gal(O/Z) acts on XO, and the map j factors through to a gener-
ically one-to-one map j′: XO/ Gal(O/Z)!RAO.
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Cusps of Hilbert modular varieties

The Baily–Borel–Satake compactification X̂(M) of X(M) is a projective variety obtained
by adding finitely many points to X(M) which we call the cusps of X(M). More precisely,
we embed P1(F ) in (H∪{i∞})g by (x:y) �!(x(j)/y(j)

)g
j=1

. We define H
g
F =Hg∪P1(F ) with

a certain topology whose precise definition is not needed for this discussion; see [11]. The
compactification of X(M) is X̂(M)=H

g
F /SL(M). We define X̂O to be the union of the

compactifications of its components.

Proposition 2.3. There is a natural bijection between the set of cusps of XO and
the set of isomorphism classes of symplectic extensions

0−! I −!N −! I∨ −! 0 (2.4)

with N being a proper rank-2 symplectic O-module and I a torsion-free rank-1 O-module.
The cusps of X(M) correspond to the isomorphism classes of such extensions where
M∼=N as symplectic O-modules.

Sketch of proof. Fix a lattice M⊂F 2. We must provide an SL(M)-equivariant bijec-
tion between lines L⊂F 2 and extensions 0!I!M!I∨!0 (up to isomorphism which
is the identity on M). We assign to a line L the extension

0−!L∩M −!M −!M/(L∩M)−! 0.

The line L is recovered from an extension 0!I!M!I∨!0 by defining L=I⊗Q.
The bijection for cusps of XO follows immediately.

Consider the set of all pairs (I, E), where I is a lattice in F whose coefficient
ring contains O, and E∈EO(I). The multiplicative group of F acts on such pairs by
a·(I, E)=(aI, Ea), where Ea(x)=aE(ax) (using the identification of Theorem 2.1). We
define a cusp packet for real multiplication by O to be an equivalence class of a pair
(I, E) under this relation.

We denote by C(O) the finite set of cusp packets for real multiplication by O. We
have seen that there are canonical bijections between C(O), the set of isomorphism classes
of symplectic extensions of the form (2.4), the set of cusps of XO and the set of cusps
of EAι

O. Moreover, there is a canonical bijection between the set of cusps of RAO and
C(O)/Aut(O/Z).

3. Stable Riemann surfaces and their moduli

In this section, we discuss some background material on Riemann surfaces with nodal
singularities, holomorphic 1-forms, and their various moduli spaces.
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Stable Riemann surfaces

A stable Riemann surface (or stable curve) is a connected, compact, 1-dimensional, com-
plex analytic variety with possibly finitely many nodal singularities—that is, singularities
of the form zw=0—such that each component of the complement of the singularities has
negative Euler characteristic (equivalently finite automorphism group). In other terms,
a stable Riemann surface can be regarded as a disjoint union of finite-volume hyperbolic
Riemann surfaces with cusps, together with an identification of the cusps into pairs, each
pair forming a node. We will refer to a pair of cusps facing a node as opposite cusps.

The arithmetic genus of a stable Riemann surface is the genus of the non-singular
surface obtained by thickening each node to an annulus; the geometric genus is the sum
of the genera of its irreducible components.

Homology

Given a stable Riemann surface X, let X0 be the complement of the nodes. For each
cusp c of X0, let αc∈H1(X0; Z) denote the class of a positively oriented simple closed
curve winding once around c, and let I⊂H1(X0; Z) be the subgroup generated by the
expressions αc+αd, where c and d are opposite cusps.

We define Ĥ1(X; Z)=H1(X0; Z)/I. Defining C(X)⊂Ĥ1(X; Z) to be the free Abelian
subgroup (of rank equal to the number of nodes) generated by the αc, we have the
canonical exact sequence

0−!C(X)−! Ĥ1(X; Z)−!H1(X̃; Z)−! 0,

where X̃!X is the normalization of X. See e.g. the appendix of [4] for the basic
properties of normalization.

Markings

Fix a genus-g surface Σg, and let X be a genus-g stable Riemann surface. A collapse is
a map f : Σg!X such that the inverse image of each node is a simple closed curve and
f is a homeomorphism on the complement of these curves.

A marked stable Riemann surface is a stable Riemann surface X together with a
collapse f : Σg!X. Two marked stable Riemann surfaces f : Σg!X and g: Σg!Y are
equivalent if there is a homeomorphism φ: Σg!Σg which is homotopic to the identity
and a conformal isomorphism ψ: X!Y such that g φ=ψ f .



the deligne–mumford compactification of the real multiplication locus 19

Augmented Teichmüller space

The Teichmüller space T (Σg) is the space of non-singular marked Riemann surfaces
of genus g. It is contained in the augmented Teichmüller space T (Σg), the space of
marked stable Riemann surfaces of genus g. We endow T (Σg) with the smallest topology
such that the hyperbolic length of any simple closed curve is continuous as a function
T (Σg)!R�0∪{∞}. Abikoff [1] showed that this topology agrees with other natural
topologies on T defined via quasiconformal mappings or quasi-isometries.

Deligne–Mumford compactification

The mapping class group Mod(Σg) of orientation-preserving homeomorphisms of Σg,
defined up to isotopy, acts on T (Σg) and T (Σg) by precomposition of markings. The
moduli space of genus-g Riemann surfaces is the quotient Mg=T (Σg)/Mod(Σg). The
Deligne–Mumford compactification of Mg is Mg=T (Σg)/Mod(Σg), the moduli space of
genus-g stable curves.

Over Mg is the universal curve p: C!Mg, a compact algebraic variety whose fiber
over a point representing a stable curve X is a curve isomorphic to X (provided X has
no automorphisms).

Stable Abelian differentials

Over Mg is the vector bundle ΩMg!Mg whose fiber over X is the space Ω(X) of
holomorphic 1-forms on X. We extend this to the vector bundle ΩMg!Mg whose fiber
Ω(X) over X is the space of stable Abelian differentials on X, defined as follows.

Given a genus-g stable Riemann surface X, a stable Abelian differential is a holo-
morphic 1-form on X0, the complement in X of its nodes, such that the following two
conditions are satisfied:

• ω has at worst simple poles at the cusps of X0;
• if p and q are opposite cusps of X0, then

Resp ω =−Resq ω.

The dualizing sheaf ωX is the sheaf on X of 1-forms locally satisfying the two above
conditions (see [23, p. 82]), so a stable Abelian differential is simply a global section of
the dualizing sheaf ωX . We write Ω(X) for the space of stable Abelian differentials on X,
a g -dimensional vector space by Serre duality.

In the universal curve p: C!Mg, let C0 be the complement of the nodes of the fibers.
The relative cotangent sheaf of C0!Mg (the sheaf of cotangent vectors to the fibers) is
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an invertible sheaf which extends in a unique way to an invertible sheaf ωC/Mg
on C, the

relative dualizing sheaf of this family of curves.
The restriction of ωC/Mg

to a fiber X of this family is simply ωX . The push-forward
p∗ωC/Mg

is the sheaf of sections of the rank-g vector bundle ΩMg!Mg.

Plumbing coordinates

Following Wolpert [45] we give explicit holomorphic coordinates at the boundary of Mg

and a model of the universal curve in these coordinates. See also [8], [9] and [31].
Let X be a stable curve with nodes n1, ..., nk, and let X0 be X with the nodes

removed, a disjoint union of punctured Riemann surfaces. At each node nj , let Uj and
Vj be small neighborhoods of nj in each of the two branches of X through nj , and choose
conformal maps Fj : Uj!C and Gj : Vj!C whose images contain the unit disc around the
origin Δ1. We write zj and wj for the coordinates on Uj and Vj induced by these maps.
We define

X∗ = X\
k⋃

j=1

({
zj ∈Uj : |zj |< 1

2

}
∪
{
wj ∈Vj : |wj |< 1

2

})
and M = X∗×Δk

1 .

We take a model of a degeneration of a family of curves.

Vj = {(xj , yj , t)∈Δ1×Δ1×Δk
1 : xjyj = tj},

where t=(tj , ..., tk). The fiber Vt of the projection (xj , yj , t) �!t is a non-singular annulus
except when tj =0, in which case it is two discs meeting at a node.

Let X!Δk
1 be the family of stable curves obtained by gluing each Vj to M by the

maps

F̂j(p, t) =
(

Fj(p),
tj

Fj(p)
, t
)

and Ĝj(p, t) =
(

tj
Gj(p)

, Gj(p), t
)

,

defined on subsets of M . The fiber Xt over t is simply the stable Riemann surface ob-
tained by removing the discs {zj∈Uj :|zj |<|tj |1/2} and {wj∈Vj :|wj |<|tj |1/2} and gluing
the boundary circles by the relation wj =tj/zj . If tj =0, the node nj is unchanged.

Let Q be the space of holomorphic quadratic differentials on X0 with at worst simple
poles at the nodes. Choose 3g−3−k Beltrami differentials μj on X0\

⋃k
j=1(Uj∪Vj) so

that no non-trivial linear combination of the μj pairs trivially with a quadratic differential
in Q (the pairing is defined by integrating the product of the two differentials over X; see
[27]). Given s∈Δ3g−3−k

ε for sufficiently small ε, the Beltrami differential μs=
∑k

j=1 sjμj

satisfies ‖μs‖∞<1 (where ‖ · ‖∞ denotes the L∞-norm).
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We define a family of stable curves Y!Δ3g−3−k
ε ×Δk

1 by endowing Y=X×Δ3g−3−k
ε

with the complex structure on Y defined by placing on each fiber Xs
t over (s, t) the

Beltrami differential μs.
We obtain a holomorphic (orbifold) coordinate chart Δ3g−3−k

s ×Δk
1!Mg sending

(s, t) to the point representing the stable curve Xs
t . The family Y is the pullback of the

universal curve by this coordinate chart.

Lagrangian markings

Given a genus-g stable curve X, a Lagrangian subgroup of Ĥ1(X; Z) is a free Abelian
subgroup L of rank g with the properties that Ĥ1(X; Z)/L is torsion-free and that the
restriction of the intersection form on H1(X̃; Z) to the image of L under the canonical
projection Ĥ1(X; Z)!H1(X̃; Z) is trivial.

Fix a free Abelian group L of rank g. A Lagrangian marking of a genus-g stable Rie-
mann surface X by L is a monomorphism �: L!Ĥ1(X; Z) whose image is a Lagrangian
subgroup. The image �(L) necessarily contains the subgroup C(X) of Ĥ1(X; Z) gener-
ated by the nodes. Thus we may assign to each node of X its “homology class” in L, an
element of L which is well defined up to sign.

Let Mg(L) be the space of genus-g stable Riemann surfaces with a Lagrangian
marking by L and let Mg(L)⊂Mg(L) be the subspace of non-singular surfaces. If we
identify L with a Lagrangian subgroup of H1(Σg; Z), we have

Mg(L) = T (Σg)/Mod(Σg, L),

where Mod(Σg, L) is the subgroup of Mod(Σg) fixing L pointwise. Moreover

Mg(L) = T (Σg, L)/Mod(Σg, L),

where T (Σg, L)⊂T (Σg) is the locus of stable Riemann surfaces which can be obtained by
collapsing only curves on Σg whose homology class belongs to L (including homologically
trivial curves).

Given a non-zero γ∈L, there is the divisor Dγ⊂Mg(L) consisting of stable curves,
where a curve homologous to γ has been pinched. The divisors Dγ and D−γ are the
same.

The above plumbing coordinates provide in the same way coordinates at the bound-
ary of Mg(L).
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Weighted stable curves

Given a free Abelian group L, we define an L-weighted stable curve to be a stable curve
of geometric genus zero with an element of L associated with each cusp of X, called the
weight of that cusp, subject to the following restrictions:

• opposite cusps of X0 have opposite weights;
• for each irreducible component of X, the weights of the cusps sum to zero;
• the weights of X span L.
Note that the first two conditions mean that the weights are subject to the same

restrictions as the residues of a stable form.
We say that two L-weighted stable curves X and Y are isomorphic (resp. topologi-

cally equivalent) if there is a weight-preserving conformal isomorphism (resp. homeomor-
phism) X!Y .

The notion of an L-weighting of a stable curve X of geometric genus zero is in fact
equivalent to a Lagrangian marking �: L!Ĥ1(X; Z) (necessarily an isomorphism because
X has genus zero). If αc∈Ĥ1(X; Z) is the class of a positively oriented curve around a
cusp c with weight w, the marking � maps w to αc.

Weighted boundary strata

An L-weighted boundary stratum is a topological equivalence class in the set of all L-
weighted stable curves. If X is an L-weighted stable curve having m components Cj , each
homeomorphic to P1 with nj points removed and with each component having distinct
weights, then the corresponding L-weighted boundary stratum is an algebraic variety
isomorphic to

m∏
j=1

M0,nj
,

where M0,n is the moduli space of n labeled points on P1, with each point being labeled
by its weight.

The notion of an L-weighted boundary stratum is in fact equivalent to that of a
boundary stratum in Mg(L) parameterizing curves of geometric genus zero. We con-
sider two marked stable curves (X, �) and (Y, σ) in Mg(L) to be equivalent if there is
a homeomorphism f : X!Y which commutes with the markings, and we define a La-
grangian boundary stratum in ∂Mg(L) to be an equivalence class of this relation. A
Lagrangian boundary stratum is simply a maximal connected subset of ∂Mg(L) param-
eterizing homeomorphic stable curves.

In view of the above correspondence between L-weightings and Lagrangian markings
by L, every L-weighted boundary stratum S can be regarded canonically as a Lagrangian



the deligne–mumford compactification of the real multiplication locus 23

boundary stratum S⊂Mg(L) of geometric genus zero, and vice versa.
Given an L-weighted boundary stratum S, we define Weight(S)⊂L to be the set of

weights of any surface in S.

Embeddings of strata

Suppose now that I is a lattice in a degree-g number field F . Given an I -weighted
boundary stratum S and a real embedding ι of F , we define pι:S!PΩMg by associating
with a weighted stable curve X the unique stable form on X which has residue ι(w) at
a cusp with weight w. The ιth embedding Sι of S is its image under pι.

Similar strata

Suppose that I and J are lattices in a number field F . We say that I - and J -weighted
stable curves X and Y are similar if there is a conformal isomorphism X!Y which
sends each weight x to λx for some fixed λ∈F .

We say that two weighted boundary strata are similar if they parameterize similar
weighted stable curves. Note that if the unit group of F is infinite, then an I -weighted
boundary stratum is similar to infinitely many distinct I -weighted boundary strata.

Extremal length and the Hodge norm

Given any Riemann surface X, the Hodge norm on H1(X; R) induced by

‖γ‖X = sup
ω∈Ω1(X)

∣∣∣∣
∫

γ

ω

∣∣∣∣
on H1(X; Z), where Ω1(X) denotes the space of forms with unit norm, for the norm

‖ω‖=
(∫

X

|ω|2
)1/2

.

Given a curve γ on a Riemann surface X, we write Ext(γ) for the extremal length
of the family of curves which are homotopic to γ, that is

Ext(γ) = sup



L(�)2

A(�)
,

where the supremum is over all conformal metrics �(z) dz with � non-negative and mea-
surable,

L(�) = inf
δ�γ

∫
δ

�(z) |dz|,
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and
A(�) =

∫
X

�(z)2 |dz|2.

The relation between curves with small extremal length and homology classes with
small Hodge norm is summarized by the following two propositions.

Proposition 3.1. For any curve γ on a Riemann surface X, we have

‖γ‖2
X � Ext(γ).

Proof. Choose a form ω such that ‖ω‖=1 and
∣∣∫

γ
ω
∣∣=‖γ‖X . Regarding |ω| as a

conformal metric on X, we obtain

‖γ‖X =
∣∣∣∣
∫

γ

ω

∣∣∣∣�
∫

γ

|ω|.

Thus, using the compactness of X,

‖γ‖2
X �L(|ω|)2 � Ext(γ).

Proposition 3.2. Given any Riemann surface X with g(X)>1, there exists a con-
stant C, depending only on the genus of X, such that any cycle γ∈H1(X; Z) is homol-
ogous to a sum of simple closed curves γ1, ..., γn such that for each j,

Ext(γj) �C‖γ‖2
X (3.1)

Proof. Let ω be a holomorphic 1-form on X such that Imω is Poincaré dual to γ.
Since Im ω has integral periods, the map f : X!R/Z defined by f(q)=

∫ q

p
Im ω (with p

being a chosen basepoint) is well defined. The horizontal foliation of ω (that is, the kernel
foliation of Imω) is periodic, and each fiber γr=f−1(r) is a union of closed, horizontal
leaves of ω. Giving the leaves of γr the orientation defined by Reω, we can regard γr as
a cycle in H1(X; Z) which is homologous to γ. By Poincaré duality,

length(γr) =
∫

γr

Re ω =
∫

X

Re ω∧Im ω =
1
2
‖ω‖2,

so each component of γr has length at most 1
2‖ω‖2.

Since ω has at most 2g−2 distinct zeros, there is an open interval I⊂R/Z of length
at least 1/(2g−2) which is disjoint from the images of the zeros of ω. Choose some r∈I.
The inverse image f−1(I) consists of flat cylinders C1, ..., Cn, each of height at least
1/(2g−2), and with each Cj containing a component γj

r of γr. We obtain the bound

Mod(Cj) � 2
(2g−2)‖ω‖2

, (3.2)

for the modulus of Cj . From monotonicity of extremal length (see [3, Theorem I.2]), we
have Ext(γj

r)�1/Mod(Cj), which with (3.2) implies (3.1) (setting γj =γj
r).

Remark. A similar argument is used by Accola in [2], where he shows that ‖γ‖2
X is

equal to the extremal length of the homology class γ.
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4. Period matrices

In this section, we study period matrices as functions on Mg. We develop a coordinate-
free version of the classical period matrices. We see that exponentials of entries of period
matrices are canonical meromorphic functions on Mg(L), and we calculate the orders of
vanishing of these functions along boundary divisors of Mg(L).

Fix a genus-g surface Σg and a splitting of H1(Σg; Z) into a sum of Lagrangian
subgroups,

H1(Σg; Z) =L⊕M.

Given a surface X∈T (Σg), integration of forms yields isomorphisms

PX
L : Ω(X)−!HomZ(L, C) and PX

M : Ω(X)−!HomZ(M, C).

We obtain a holomorphic map

T (Σg)−!HomC(HomZ(L, C), HomZ(M, C))
∼=−−!L⊗ZL⊗ZC, (4.1)

where the second map uses the isomorphism L!M∗ provided by the intersection form.
The Riemann bilinear relations imply that the image of the map (4.1) lies in SymZ(L),
so we obtain a holomorphic map,

Φ: T (Σg)−!SymZ(L)⊗C,

and the dual homomorphism

Φ∗:SZ(Hom(L, Z))⊗C−!Hol T (Σg),

where Hol T (Σg) denotes the additive group of holomorphic functions on T (Σg).
The map Φ∗ is just a coordinate-free version of the classical period matrix. If we

choose a basis (αj)
g
j=1 of L and dual bases (βj)

g
j=1 of M and (ωj)

g
j=1 of Ω(X), the period

matrix is (τjk)g
j,k=1, where τjk=ωj(βk). The map Φ∗ is simply

Φ∗(α∗
j ⊗α∗

k) = τjk,

where (α∗
j )

g
j=1 is the dual basis of Hom(L, Z).

The map Φ∗ depends on the choice of the complementary Lagrangian subgroup M .
Every complementary Lagrangian is of the form

MT = {m+T (m) :m∈M},
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for some self-adjoint T : M!L. Suppose we choose a different complementary Lagrangian
MT , and Φ∗

T is the corresponding homomorphism. The new homomorphism Φ∗
T is related

to the old one by
Φ∗

T (a) = Φ∗(a)+〈a, T 〉,

where we are regarding T as an element of SymZ(L) using the canonical isomorphisms
HomZ(M,L)∼=HomZ(L∗, L)∼=L⊗L which identify self-adjoint homomorphisms with sym-
metric tensors. It follows that the functions Ψ(a)=e2πiΦ∗(a) do not depend on the choice
of M and so descend to non-zero holomorphic functions on Mg(L). We obtain a canonical
homomorphism

Ψ:SZ(Hom(L, Z))−!Hol∗ Mg(L).

We denote by
〈 · , · 〉:SZ(Hom(L, Z))×Sym2(L)−!Z (4.2)

the extension of the natural contraction to the second symmetric product.

Theorem 4.1. For each a∈SZ(Hom(L, Z)), the function Ψ(a) is meromorphic on
Mg(L). For each non-zero γ∈L, the order of vanishing of Ψ(a) along Dγ is

ordDγ
Ψ(a) = 〈γ⊗γ, a〉.

The function Ψ(a) is holomorphic and nowhere vanishing along any Lagrangian
boundary stratum obtained by pinching a curve homologous to zero.

If S⊂∂Mg(L) is a Lagrangian boundary stratum with

〈γ⊗γ, a〉� 0 for all γ ∈Weight(S), (4.3)

then Ψ(a) is holomorphic on S. If the pairing (4.3) is zero for all γ∈Weight(S), then
Ψ(a) is nowhere vanishing on S. Otherwise Ψ(a) vanishes identically on S.

Proof. We use in this proof the plumbing coordinates and related notation intro-
duced in §3. Let X be a stable curve with nodes n1, ..., nk obtained by pinching curves
γ1, ..., γk with homology classes [γ1], ..., [γk]∈L. Let

Y −!B := Δ3g−3−k
ε ×Δk

1

be the family of stable curves constructed above, with X being the fiber over (0,0). The
nodes of this family are contained in the open sets

Wj := Vj×Δ3g−3−k
ε = {(xj , yj , s, t)∈Δ1×Δ1×Δ3g−3−k

ε ×Δk
1 : xjyj = tj}
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for j=1, ..., k. Define sections pj , qj : B!Y with image in ∂Wj by

pj(s, t) = (1, tj , s, t) and qj(s, t) = (tj , 1, s, t).

Choose α1⊗α2∈SZ(Hom(L, Z)) and let η be the holomorphic section of the rela-
tive dualizing sheaf ωY/B such that each period homomorphism L!C defined by each
restriction ηs

t to the fiber Xs
t agrees with α1: L!Z.

On Wj we may express η as

η =
α1([γj ])

2πi

dxj

xj
+fj dxj +gj dyj , (4.4)

with fj and gj being holomorphic functions of xj , yj , s and t.
Let δs

t,j : [−1, 1]!Wj be a path in the fiber of Wj over (s, t) joining pj(s, t) to qj(s, t).
We may explicitly parameterize such a path as

δs
t,j(r) =

⎧⎪⎪⎨
⎪⎪⎩

(
√

tj−r(1−√
tj),

tj√
tj−r(1−√

tj )
, s, t
)

, if r � 0,(
tj

r(1−√
tj )+

√
tj

, r(1−√
tj )+

√
tj , s, t

)
, if r � 0.

Next, we choose a continuous family of 1-chains δs
t,0 in Xs

t with endpoints in

{pj(s, t), qj(s, t) : j = 1, ..., k}

such that

δs
t = δs

t,0+
k∑

j=1

α2([γj ])δs
t,j

is a 1-cycle whose intersection with classes in L agrees with the homomorphism α2: L!Z.
We have

Ψ(α1⊗α2)(s, t) = exp
(∫

δs
t

ηs
t

)
, (4.5)

where we use the notation
exp(z) := e2πiz.

Note that
∫

δs
t,0

ηs
t is an integral of a holomorphically varying form over a 1-cycle with

holomorphically varying endpoints, and so its contribution to (4.5) is holomorphic and
non-zero. Thus it does not contribute to the order of vanishing of Ψ(α1⊗α2).

The integral ∫
δs
t,j

(fj +gj) dxj
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is a finite holomorphic function of s and t and so does not contribute to the order of
vanishing of Ψ(α1⊗α2). The factor of Ψ(α1⊗α2) coming from the first term of (4.4) is

exp
(

α1([γj ])α2([γj ])
∫

δs
t,j

dxj

xj

)
= t

α1([γj ])α2([γj ])
j .

In our (s, t)-coordinates for Mg(L), the divisor Dγj
is the locus {(s, t):tj =0}. We

have seen that in these coordinates

Ψ(α1⊗α2)(s, t) =h(s, t)
k∏

j=1

t
α1([γj ])α2([γj ])
j , (4.6)

where h is a non-zero holomorphic function. Thus Ψ(α1⊗α2) is meromorphic with the
desired orders of vanishing.

Now let S be a Lagrangian boundary stratum and choose an a∈Hom(L, Z) with
〈γ⊗γ, a〉�0 for each weight γ. We see from (4.6) that Ψ(a) is holomorphic on S, since
each tj has non-negative exponent. If 〈γ⊗γ, a〉>0 for some weight γ, then some tj has
positive exponent, so Ψ(a) vanishes on S.

We will also need the following strengthening of this theorem.

Corollary 4.2. Let S⊂∂Mg(L) be a Lagrangian boundary stratum obtained by
pinching n curves on Σg whose homology classes are γ1, ..., γn∈L. Take local coordinates
t1, ..., tn around some x∈S in which the divisor Dγj of curves obtained by pinching γj

is cut out by the equation tj =0. Then for any a∈SZ(Hom(L, Z)), the function

n∏
j=1

t
−〈γj⊗γj ,a〉
j Ψ(a)

is holomorphic and non-zero on a neighborhood of x.

Proof. This follows immediately from (4.6).

5. Boundary of the eigenform locus: Necessity

In this section we begin the study of the boundary of the locus of Riemann surfaces
whose Jacobians have real multiplication. We give an explicit necessary condition for a
stable curve to lie in the boundary of the real multiplication locus. In §8, we will see
that this condition is also sufficient in genus 3.

In all that follows, F will denote a totally real number field of degree g>1, O will
denote an order in F , and I will denote a lattice in F whose coefficient ring contains O.
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The real multiplication locus

The Jacobian of a stable curve X is

Jac(X) = Ω(X)∗/Ĥ1(X; Z) = Ω(X)∗/H1(X0; Z),

where X0⊂X is the complement of the nodes. The Jacobian is a compact Abelian variety
if each node of X is separating, or equivalently if the geometric genus of X is g. Otherwise
it is a non-compact semi-Abelian variety. We denote by M̃g⊂Mg the locus of stable
curves with compact Jacobians. The Torelli map t:M̃g!Ag maps each Riemann surface
to its Jacobian.

Let RMO⊂M̃g be the locus of Riemann surfaces whose Jacobians have real mul-
tiplication by O. In other words, RMO=t−1(RAO). This is a slight abuse of notation,
since we defined RMO in §1 to be a subvariety of Mg, but the distinction will never be
important. If g=2 or g=3, then t is a bijection, so RMO is a g -dimensional subvariety
of Mg. In general, it is not known what the dimension of RMO is, or even whether
RMO is non-empty.

We define EO⊂PΩM̃g to be the locus of eigenforms for real multiplication by O and
E ι
O to be the locus of ι-eigenforms. The Torelli map exhibits E ι

O as a one-to-one branched
cover of EAι

O∼=XO.

Admissible strata

The tensor product F⊗QF has the structure of an F -bimodule. We define

Λ1 = {λ∈F⊗QF : x·λ = λ·x for all x∈F}.

The proof of the following proposition contains an alternative interpretation of Λ1

as the vector space HomF (F, F ).

Proposition 5.1. Λ1⊂SymQ(F ).

Proof. Identify F with HomQ(F, Q) via the trace pairing. This naturally induces an
isomorphism F⊗QF!HomQ(F, F ). Under this isomorphism, SymQ(F ) corresponds to
the self-adjoint endomorphisms Hom+

Q(F, F ), and Λ1 corresponds to HomF (F, F ). Since
left multiplication by x∈F is self-adjoint, HomF (F, F )⊂Hom+

Q(F, F ).

Identifying F with its dual as above, the dual of SymQ(F ) is SQ(F ). Then we let
Ann(Λ1)⊂SQ(F ) denote the annihilator of Λ1.
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Given an I -weighted boundary stratum S, we define the following subsets of the
vector space SQ(F ), where the bilinear form is the one defined in (4.2):

C(S) = {x∈SQ(F ) : 〈x, α⊗α〉� 0 for all α∈Weight(S)},

N(S) = {x∈SQ(F ) : 〈x, α⊗α〉= 0 for all α∈Weight(S)}.

Note that C(S) is a convex cone, and N(S) is a subspace contained in C(S).
We say that an I -weighted boundary stratum S is admissible if

C(S)∩Ann(Λ1)⊂N(S). (5.1)

The admissibility of a stratum only depends on the set of residues and not on the
topology of the stable curves it parameterizes.

We will see in Corollary 8.2 that if I is a lattice in a cubic field, then there are only
finitely many admissible I -weighted boundary strata up to similarity.

In §1 we defined, using the no-half-space condition, the notion of an admissible
basis of a lattice in a cubic field. We will see in §6 that the no-half-space condition is
equivalent to (5.1), so an admissible basis is exactly the set of weights of an admissible
stratum parameterizing irreducible stable curves.

Algebraic tori

Fix an I -weighted boundary stratum S. There is a surjective map of algebraic tori

p: Hom(N(S)∩SZ(I∨), Gm)−!Hom(N(S)∩Ann(Λ1)∩SZ(I∨), Gm). (5.2)

The reader unfamiliar with algebraic groups should think of Gm as the multiplicative
group C∗ of non-zero complex numbers.

By the discussion at the end of §3, we may regard S as a boundary stratum of
Mg(I). By Corollary 4.2, for each non-zero a∈N(S)∩SZ(I∨) the restriction of Ψ(a) to
S is a non-zero holomorphic function on S. We obtain a canonical morphism

CR:S −!Hom(N(S)∩SZ(I∨), Gm), (5.3)

which we call the cross ratio map. (The reason for this terminology will be apparent in
Corollary 8.4.) Recall that E(I) is the torsion Abelian group of symplectic extensions of
I∨ by I. Identifying Hom+

Q(F, F ) with SymQ(F ) via the trace pairing, the isomorphism
of Theorem 2.1 becomes an isomorphism

SymQ(F )/(Λ1+SymZ(I))−!E(I). (5.4)
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Given E∈SymQ(F ) and a∈Ann(Λ1)∩SZ(I∨), we define

q(E)(a) = e−2πi〈E,a〉. (5.5)

Since q(E)(a)=1 if a∈N(S)∩Ann(Λ1)∩SZ(I∨) and if E lies in Λ1 or in SymZ(I),
(5.5) defines a homomorphism

q: E(I)−!Hom(N(S)∩Ann(Λ1)∩SZ(I∨), Gm).

Given a symplectic extension E∈E(I), we define

G(E) = p−1(q(E)),

a translate of a subtorus of Hom(N(S)∩SZ(I∨), Gm). We then obtain for each extension
E a subvariety of S, namely

S(E) = CR−1(G(E)) (5.6)

We define Sι(E)⊂PΩMg to be the image of S(E) under pι.
If S is an I -weighted stratum and S ′ is a similar aI-weighted stratum, then the

subvarieties S(E) and S ′(Ea) are identified under the canonical isomorphism S!S ′.
Thus the variety S(E) can be regarded as depending only on the similarity class of S
and the cusp packet (I, E).

Boundary of RMO

We can now state our necessary condition for a stable curve to be in the boundary of
RMO.

Theorem 5.2. Consider an order O in a degree-g totally real number field F , a real
embedding ι of F , and a cusp packet (I, E)∈C(O). The closure in PΩMg of the cusp
of E ι

O associated with (I, E) is contained in the union over all admissible I -weighted
boundary strata S of the varieties Sι(E).

The closure of the corresponding cusp of RMO in Mg is contained in the union
over all I -weighted boundary strata S of the images of the S(E) under the forgetful map
to Mg.

The proof of Theorem 5.2 appears at the end of this section.

Auxiliary real multiplication loci

Given a cusp packet (I, E)∈C(O), let

RMO(I, E)⊂Mg(I)
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be the locus of Riemann surfaces with Lagrangian marking (X, �) such that Jac(X) has
real multiplication by O, the marking �: I!H1(X; Z) is an O-module homomorphism,
and the extension of O-modules

0−! �(I)−!H1(X; Z)−!H1(X; Z)/�(I)−! 0

is isomorphic to the extension determined by (I, E).
We also have bundles of eigenforms over RMO(I, E). On Mg(I), there is the

trivial bundle ΩιMg(I) of forms ω such that for some constant c and for each λ∈I, we
have

∫

(λ)

ω=cι(λ), where � is the Lagrangian marking. The restriction ΩιRMO(I, E)
of ΩιMg(I) to RMO(I, E) is the trivial line bundle of ι-eigenforms. We denote its
projectivization by Ē ι

O(I, E)⊂PΩMg(I).
Given a cusp packet (I, E) and a symplectic isomorphism η: I⊕I∨!H1(Σg; Z), we

define
RT O(I, E, η)⊂T (Σg)

to be the locus of marked Riemann surfaces (X, f) such that Jac(X) has real multipli-
cation by O and the symplectic Z-module isomorphism

f∗ η: (I⊕I∨)E −!H1(X; Z)

is also an isomorphism of symplectic O-modules.
The homomorphism η determines a Lagrangian splitting of H1(Σg; Z), and we obtain

as in §4 a holomorphic map Φ: T (Σg)!SymZ(I)⊗C.

Proposition 5.3. We have

RT O(I, E, η) = Φ−1(Λ1⊗QC−E)

Proof. In this proof, we will identify SymZ(I) with Hom+(I∨, I). Under this iden-
tification, we have

SymZ(I)⊗C = Hom+
C(I∨⊗C, I⊗C),

Λ1⊗C = Hom+
F (I∨⊗C, I⊗C),

φ := Φ(X, f)∈Hom+
C(I∨⊗C, I⊗C),

E ∈Hom+
Q(I∨⊗Q, I⊗Q).

We have two splittings of H1(X; C): the one induced by �, that is

H1(X; C) = (I⊗C)⊕(I∨⊗C),
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and the Hodge decomposition

H1(X; C) = HomC(Ω(X), C)⊕HomC(Ω(X), C).

The Hodge decomposition is determined by the map φ: I∨⊗C!I⊗C:

HomC(Ω(X), C) = Graph(φ). (5.7)

The O-module structure of H1(X; C) inherited from that of (I⊕I∨)E induces real
multiplication on Jac(X) if and only if it preserves the Hodge decomposition. By (5.7),
the Hodge decomposition is preserved if and only if

φ(λ·α) =λ·φ(α)+[Mλ, E](α)

for all α∈I∨ and λ∈O, which holds if and only if

(φ+E)(λ·α) =λ·(φ+E)(α),

that is, if and only if φ+E∈Λ1.

Corollary 5.4. Given any a∈Ann(Λ1)⊂SZ(I∨), we have

Ψ(a)≡ q(E)(a)

on RMO(I, E).

Proof. This follows directly from Proposition 5.3 and the definition of q.

Invariant vanishing cycles

Consider a family X!Δ of stable curves which is smooth over Δ∗ in the sense that the
fiber Xp over non-zero p is smooth. Any such family defines a holomorphic map Δ!Mg

sending p to Xp, and conversely any holomorphic disc Δ!Mg sending Δ∗ to Mg, after
possibly taking a base extension (a cover of Δ ramified only over 0), arises from such a
family.

In any smooth fiber Xp, there is a collection of isotopy classes of simple closed curves,
which we call the vanishing curves which are pinched as p!0. The vanishing curves are
consistent, in the sense that given any path in Δ∗ joining p to q, the lifted homeomorphism
f : Xp!Xq (defined up to isotopy) preserves the vanishing curves. The vanishing cycles
in H1(Xp; Z) are those cycles generated by the vanishing curves. Trivializing the family
over a path starting and ending at p yields a homeomorphism of Xp which is simply
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a product of Dehn twists around the vanishing curves. Thus the monodromy action of
π1(Δ∗, p) on H1(Xp; Z) is unipotent and fixes pointwise the subgroup Vp⊂H1(Xp; Z) of
vanishing cycles.

Real multiplication by O on X!Δ is a monomorphism �:O ↪!End0 JacX/Δ, where
JacX/Δ!Δ is the relative Jacobian of the family X!Δ. This is equivalent to a choice
of real multiplication �:O!Jac(Xp) for each smooth fiber Xp with the requirement that
each isomorphism H1(Xp; Z)!H1(Xq; Z) arising from the Gauss–Manin connection (the
canonical flat connection on the bundle of first homology; see [43]) commutes with the
action of O.

Proposition 5.5. Consider a family of genus-g stable curves X!Δ, smooth over
Δ∗, with real multiplication by O. For each non-zero p, the subgroup Vp⊂H1(Xp; Z) of
vanishing cycles is preserved by the action of O on H1(Xp; Z).

Proof. Since the action of O on the first homology commutes with the Gauss–Manin
connection, it is enough to show that Vp is invariant for a single p.

Let λ∈O be a primitive element for F . For any γ∈H1(Xp; Z), we have the bound

‖λ·γ‖Xp � ‖λ‖∞ ‖γ‖Xp ,

where ‖λ‖∞=supι |ι(λ)|, with the supremum over all field embeddings ι: F!R, and
‖ · ‖Xp

is the Hodge norm introduced in §3.
There is a constant D (independent of p) such that Ext(γ)�D for any curve γ on

Xp which is not a vanishing curve. For any ε>0, we may choose p sufficiently small that
Ext(γj)<ε for any vanishing curve γj . By Proposition 3.1, we have

‖λ·γj‖Xp
� ‖λ‖∞ ‖γj‖< ‖λ‖∞ε1/2.

By Proposition 3.2, λ·γj is homologous to a sum of simple closed curves δk with

Ext(δk) <C‖λ‖2
∞ε.

Thus Ext(δk)<D if ε is chosen sufficiently small. The δk must then be vanishing
curves. Thus the action of λ preserves Vp, and since λ is a primitive element, Vp is
preserved by O.

Corollary 5.6. Each stable curve in RMO⊂Mg has geometric genus either 0
or g.

Proof. Suppose that X is a stable curve in RMO. Choose a family of stable curves
X!Δ, smooth over Δ∗, with real multiplication by O, and with X being the fiber over 0.
The geometric genus of X is g−rank Vp for any non-zero p. By Proposition 5.5, Vp⊗Q

is a vector space over F , so dimQ Vp⊗Q must be a multiple of [F :Q]=g.
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Proof of Theorem 5.2

Consider (X0, ω0) in the closure of the cusp of E ι
O determined by the cusp packet (I, E).

We first claim that (X0, ω0) must lie in the image of Ē ι
O(I, E)⊂PΩMg(I, E). Since Ē ι

O
is a variety, we may choose a holomorphic disc f : Δ!Ē ι

O sending 0 to (X0, ω0) and Δ∗ to
the cusp of E ι

O determined by (I, E). Possibly taking a base extension, we may assume
that f arises from a family of stable curves X!Δ with real multiplication by O. For each
p∈Δ∗, the vanishing cycles Vp for the fiber Xp over p are O-invariant by Proposition 5.5,
so we obtain an extension of O-modules

0−!Vp −!H1(X; Z)−!H1(X; Z)/Vp −! 0,

which must be isomorphic to the extension determined by (I, E). Since the monodromy
action of π1(Δ∗, p) on Vp is trivial, we may identify each Vq with I and obtain a consistent
Lagrangian marking of Ĥ1(Xq; Z) by I for each q, which defines a lift

g: Δ−! Ē ι
O(I, E)⊂PΩMg(I).

It follows that (X0, ω0) lies in the image of some (Y, η)∈Ē ι
O(I, E) as claimed.

The form (Y, η) must lie in some boundary stratum Sι⊂PΩMg(I) lying over a
boundary stratum S⊂Mg(I). We must then show that if S∩RMO(I, E) is non-trivial,
then S is admissible, and moreover that S∩RMO(I, E)⊂S(E).

Suppose that the stratum S is not admissible, so the cone condition (5.1) does not
hold. Then there is some a in C(S)∩Ann(Λ1)∩SZ(I∨) but not in N(S). By Theorem 4.1,
the function Ψ(a) is holomorphic and identically zero on S. By Corollary 5.4, we have
Ψ(a)≡q(E)(a), a non-zero constant on RMO(I, E). In particular, Ψ(a) is non-zero along
S∩RMO(I, E) �=∅, a contradiction. Thus S is admissible.

Since Ψ(a)≡q(E)(a) on RMO(I, E) for all a∈N(S)∩Ann(Λ1)∩SZ(I∨), it follows
immediately that RMO(I, E)∩S⊂S(E).

6. A geometric reformulation of admissibility

The aim of this section is to give a more explicit reformulation of when an I -weighted
boundary stratum is admissible.

The no-half-space condition

Consider a finite-dimensional vector space V over Q. We say that a set S={v1, ..., vn}⊂V

satisfies the no-half-space condition if it is not contained in a closed half-space of its Q-
span. Equivalently, S satisfies the no-half-space condition if and only if zero is in the
interior of the convex hull of S.
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The reformulation

Consider a totally real number field F with Galois closure K. Let

G = Gal(K/Q) and H = Gal(K/F ).

We define I=(H×H)�Z/2Z, with Z/2Z acting on H×H by exchanging the factors.
The group I acts on G by

(h1, h2, ε)·σ = h2σ
εh−1

1 ,

where ε=±1∈Z/2Z. We let Stab(σ)⊂I denote the stabilizer of σ∈G, and we define a
homomorphism �σ: Stab(σ)!G by

�σ(h1, h2, ε) =
{

h1, if ε = 1,
h1σ, if ε =−1.

Let Gσ=�σ(Stab(σ)) and Kσ=KGσ . For each σ∈G let Qσ: F!Kσ be the quadratic
map defined by

Qσ(t) = tσ−1(t).

Theorem 6.1. A weighted boundary stratum with weights {t1, ..., tn}⊂F is admis-
sible if and only if for each σ∈G\H the set {Qσ(t1), ..., Qσ(tn)}⊂Kσ satisfies the no-
half-space condition. In fact, it is enough to check this for each σ in a set of orbit
representatives of G/I.

The tensor product K⊗K has the structure of a K-bimodule. Given σ∈G, we define

Λσ
K = {λ∈K⊗K : x·λ = λ·σ(x) for all x∈K},

generalizing the definition of Λ1∈SymQ(F ) in §5.
The trace pairing 〈x, y〉K =TrK

Q (xy) on K induces a pairing on K⊗K:

〈x1⊗x2, y1⊗y2〉= 〈x1, y1〉K〈x2, y2〉K .

Lemma 6.2. Let (r1, ..., rg) be a basis of K over Q and (s1, ..., sg) be its dual basis
with respect to the trace pairing. The element

εσ =
g∑

j=1

rj⊗σ(sj)∈K⊗K

lies in Λσ and does not depend on the choice of the basis (r1, ..., rg). Moreover, for any
x∈Kσ and t∈F , we have

〈xεσ, t⊗t〉= [K : Kσ]〈x,Qσ(t)〉Kσ .
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Proof. Identifying K⊗K with HomQ(K, K) via the trace pairing, Λσ corresponds
to

{φ: K!K : φ(xλ) =σ(x)φ(λ) for all x, λ∈K}.

Under this correspondence, εσ is the map x �!σ(x). Thus, εσ∈Λσ and does not
depend on the choice of the rj .

Now, write t∈F as t=
∑g

j=1 tjσ(rj) for tj∈Q. We calculate

〈xεσ, t⊗t〉=
〈 g∑

k=1

xrk⊗σ(sk),
g∑

l,m=1

tltmσ(rl)⊗σ(rm)
〉

=
g∑

k,l,m=1

tltm〈xrk, σ(rl)〉K 〈σ(sk), σ(rm)〉K

=
g∑

k,l=1

tktl〈xrk, σ(rl)〉K

= TrK
Q (xtσ−1(t))

= [K : Kσ] TrKσ

Q (xQσ(t)).

Proof of Theorem 6.1

We first wish to identify SymQ(F ) and the orthogonal complement (Λ1
F )⊥ as subspaces

of K⊗K. We have the orthogonal decomposition

K⊗K =
⊕
σ∈G

Λσ
K .

We can recover SymQ(F ) as a subspace of K⊗K by

SymQ(F ) =
⊕

τ∈G/I

Γτ ,

where for each orbit τ∈G/I, we let Γτ be the subspace of
⊕

σ∈τ Λσ
K fixed pointwise by

the action of I. For any σ in an orbit τ∈G/I, we define the isomorphism vσ: Kσ!Γτ by

vσ(x) =
∑

γ∈I/ Stab(σ)

γ(xεσ) =
∑

γ∈I/ Stab(σ)

xεγ·σ.

Choose a set σ1=1, σ2, ..., σn∈G of representatives of the orbits G/I. We obtain an
isomorphism

v:
n⊕

j=2

Kσj −! (Λ1
F )⊥ ⊂SymQ(F ),
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defined by v((xj)n
j=2)=(vσj (xj))n

j=2. By Lemma 6.2, we have for any xj∈Kσj and t∈F ,

〈v((xj)n
j=2), t⊗t〉=

n∑
j=2

qj〈xj , Qσ(t)〉Kσj
(6.1)

for some positive rationals qj .
Now, identifying Ann(Λ1

F )⊂SQ(F ) with (Λ1
F )⊥⊂SymQ(F ) via the trace pairing, the

admissibility condition asserts that for any x∈(Λ1
F )⊥, if 〈x, tj⊗tj〉�0 for all j, then

〈x, tj⊗tj〉=0 for all j. By (6.1), this is equivalent to the Qσ(tj) satisfying the no-half-
space condition for each j.

Cubic fields

We now suppose that F is a cubic field. Define a quadratic map Q: F!F by

Q(x) =
NF

Q (x)
x

.

In this case, Theorem 6.1 becomes the following.

Corollary 6.3. Given a totally real cubic field F , a weighted boundary stratum
with weights {t1, ..., tn}⊂F is admissible if and only if {Q(t1), ..., Q(tn)}⊂F satisfies
the no-half-space condition.

Proof. If F is Galois, the statement follows directly from Theorem 6.1, so suppose
that F is non-Galois with Galois closure K. We may identify G=Gal(K/Q) with the
symmetric group S3 with F =K(12). The action of I on G has two orbits, so we need
only check the condition of Theorem 6.1 for a single σ∈G\H. Take σ=(13). We have
(132)·Q(12)(x)=Q(x) for all x∈F , and thus the two conditions coincide.

7. Rationality and positivity

In this section, we study in more detail the irreducible strata—that is, those that pa-
rameterize irreducible stable curves—in the boundary of the real multiplication locus.
Given a basis r=(r1, ..., rg) of a lattice I⊂F , we write Sr for the associated I -weighted
boundary stratum, parameterizing irreducible stable curves having 2g nodes with weights
±r1, ...,±rg. We say that r is an admissible basis of I if Sr is an admissible stratum in
the sense of §5.

We introduce in this section two additional properties of bases of number fields which
we call rationality and positivity. We show that for totally real cubic fields, rationality and
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positivity together are equivalent to admissibility. For higher-degree fields, the relation
between these conditions is not clear. We then show that the rationality and positivity
conditions are necessary for an irreducible stratum to intersect the boundary of the real
multiplication locus. Finally, we give a geometric interpretation of the rationality and
positivity conditions in terms of the geometry of locally symmetric spaces, from which
we conclude that any lattice has only finitely many rational and positive bases, up to
similarity.

Rationality and positivity

Consider a basis r=(r1, ..., rg) of a lattice in a totally real number field F . Let (s1, ..., sg)
be its dual basis. We say that r is rational if

rj/sj

rk/sk
∈Q for all j �= k.

We say that r is positive if
rj

sj
� 0 for all j,

where x�0 means that x is positive under each embedding F!R.
As an intermediate technical notion, we say that r is weakly positive if

rj/sj

rk/sk
� 0 for all j �= k.

Lemma 7.1. Every weakly positive and rational basis of F is positive.

Proof. Suppose that (r1, ..., rg) is a basis of F which is weakly positive and rational
but not positive. For each k we define

a(k) =
∣∣∣∣s(k)

1

r
(k)
1

∣∣∣∣1/2

,

where the upper index (k) indicates the kth embedding, and for each j and k we set

r̃
(k)
j = a(k)r

(k)
j and s̃

(k)
j =

s
(k)
j

a(k)
.

Note that the bases (r̃(1)
j , ..., r̃

(g)
j ) and (s̃(1)

j , ..., s̃
(g)
j ) are dual with respect to the

standard inner product on Rn. For each j, define

qj =
rj/sj

r1/s1
.
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By weak positivity and rationality, each qj is a positive rational. We then have, for
each j and k,

r̃
(k)
j = ε(k)qj s̃

(k)
j (7.1)

with each ε(k)=±1. Since the basis (r1, ..., rg) is not positive, we must have ε(k)=−1 for
some k. Consider the matrices R=(Rjk)g

j,k=1=
(
r
(k)
j

)g
j,k=1

and S=(Sjk)g
j,k=1=

(
s
(k)
j

)g
j,k=1

.

Let Dε be the diagonal matrix with ε(k) as the kth diagonal entry, and define Dq similarly.
We then have, by (7.1),

S = DqRDε,

so since RtS=I,

RtDqR = D−1
ε . (7.2)

Therefore R can be interpreted as an isomorphism between the indefinite quadratic
form given by the matrix D−1

ε and the definite quadratic form given by Dq, which is
impossible.

Proposition 7.2. A basis (r1, r2, r3) of a cubic field F is admissible if and only if
it is both rational and positive.

Proof. Suppose that the no-half-space condition holds. If the three elements Q(r1),
Q(r2) and Q(r3) are Q-linearly independent, their convex hull cannot contain zero. Since
(r1, r2, r3) is a basis of F , the Q(rj) cannot all be Q-multiples. Hence their Q-span is a
plane. Let vj =Q(rj)×Q(rj+1), where the Q( ·)-images are considered as elements of R3

using the three field embeddings. One calculates that

vj = rjrj+1sj+2Δ(r1, r2, r3),

where Δ(w1, w2, w3)=det
(
w

(k)
j

)3
j,k=1

and where we identify vj∈F with its image in R3.

The no-half-space condition implies that the vj are all proportional as elements of
R3, i.e., vj/vk∈Q when considered as elements of F . This gives the rationality condition.

Moreover, the no-half-space condition implies that the angle between Q(rj) and
Q(rj+1) (in Span(Q(r1), Q(r2), Q(r3))) is strictly contained in (0, π). Thus the vj are all
pointing in the same direction. Consequently, the rational number rjsk/rksj is positive.
This is weak positivity and the preceding lemma concludes one implication.

Conversely, suppose that rationality and positivity hold for (r1, r2, r3). The first
part of the proof read backwards implies that the Q(rj) lie in a plane. If the no-half-
space condition fails, we have that vj/vk∈Q+ but vj/vl∈Q− for a suitable numbering
with {j, k, l}={1, 2, 3}. This contradicts weak positivity, and hence positivity.
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Necessity of rationality and positivity

Given an irreducible I -weighted boundary stratum Sr and a real embedding ι of F , recall
that Sι

r⊂PΩMg is the stratum of irreducible stable forms having 2g poles of residues
±ι(r1), ...,±ι(rg).

Theorem 7.3. Any irreducible stable form in the boundary of E ι
O is contained in Sι

r

for some rational and positive basis r of a lattice I⊂F whose coefficient ring contains O.

Proof. Consider a family of stable curves X!Δ, smooth over Δ∗, with the fiber X0

over 0 irreducible, of geometric genus zero, and with real multiplication by O. We label
the vanishing cycles of the fiber Xp over p as α1, ..., αg, and we choose a family of cycles
β1, ..., βg (with βj defined only up to Dehn twist around αj) such that (αj , βj)

g
j=1 is a

symplectic basis of H1(Xp; Z). As in §5, we may identify, as an O-module, the subspace
Vp⊂H1(Xp; Z) spanned by the vanishing cycles with some lattice I whose coefficient
ring contains O. Under this identification, the αj correspond to some rj∈I. Choose an
ordering ι1=ι, ..., ιg of the real embeddings of F . We let ω(k)∈Ω(Xp) be the ιk-eigenform
determined by

ω(k)(αj) = r
(k)
j .

We must show that (r1, ..., rg) is a rational and positive basis of I.
The plumbing coordinates from §3 provide holomorphic functions tj : Δ!C which

parameterize the opening-up of the jth node of X0. Since Xp is non-singular for p �=0,
each function tj is vanishing only at 0. We claim that for some positive integers nj ,

Im
ω(k)(βj)
ω(k)(αj)

∼ nj

2π
log

1
|tj |

, (7.3)

meaning that the ratio of the two sides tends to 1 as p!0.
Denote by ηj∈Ω(Xp) the form with ηj(αk)=δjk. We then have

ω(k) =
g∑

j=1

r
(k)
j ηj ,

so after exponentiation, we obtain

E

(
ω(k)(βj)
ω(k)(αj)

)
= E(ηj(βj))

∏
l 
=j

E

(
r
(k)
l

r
(k)
j

ηl(βj)
)

. (7.4)

By Corollary 4.2, we have

E(ηj(βj)) = t
nj

j φ and E(ηj(βk)) = ψk (7.5)
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for non-zero holomorphic functions φ and ψk on Δ and a positive integer nj (equal to
the intersection number of Δ with the boundary stratum where αj has been pinched).
Substituting (7.5) into (7.4) and taking logarithms yields

Im
ω(k)(βj)
ω(k)(αj)

=
nj

2π
log

1
|tj |

+O(1),

from which (7.3) follows.
Since we have identified Vp with I as O-modules, we also have the O-module iso-

morphism
H1(Xp; Z)/Vp

∼= Hom(Vp, Z)∼= Hom(I, Z)∼= I∨,

where the first isomorphism arises from the intersection pairing and the last from the
trace pairing. Under this isomorphism, the basis (β1, ..., βg) of H1(X; Z)/Vp corresponds
to the basis (s1, ..., sg) of I∨ which is dual to (r1, ..., rg). Thus, under the action of real
multiplication, we have

rj

rl
·αl = αj and

sj

sl
·βl = βj (mod Vp).

From this and (7.3), we then obtain

s
(k)
j /r

(k)
j

s
(k)
l /r

(k)
l

=
Im ω(k)(βj)/ω(k)(αj)
Im ω(k)(βl)/ω(k)(αl)

∼ log nj/|tj |
log nl/|tl|

. (7.6)

Since the right-hand side of (7.6) is independent of k, so is the left-hand side. Thus
(sj/rj)/(sl/rl) is rational. The right-hand side of (7.6) is also positive for p∼0 because
th(0)=0 for all h, so (sj/rj)/(sl/rl) is positive as well. Therefore this basis is both
rational and weakly positive. By Lemma 7.1, the basis is then positive.

Finiteness of rational and positive bases

We now give a geometric interpretation of bases of lattices satisfying the rationality
and positivity conditions as points of intersection of flats in the locally symmetric space
SLg(Z)\SLg(R)/SOg(R). This yields a quick proof that there are only finitely many such
bases up to the action of the unit group.

We recall the classical correspondence between similarity classes of lattices in degree-
g totally real number fields and compact totally geodesic flat tori of dimension g−1
in SLg(Z)\SLg(R)/SOg(R). Consider a degree-g totally real number field F with an
ordering ι1, ..., ιg of the embeddings of F into R. Let I be a lattice in F , which we regard
as a point in the space of lattices SLg(Z)\SLg(R). Let U(I)⊂OI be the group of totally
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positive units ε such that εI=I. We embed U(I) in the group D⊂SLg(R) of positive
diagonal matrices by the embeddings ιj . By Dirichlet’s units theorem, U(I) is a lattice
in D. Let T (I)=U(I)\D, a compact torus. The stabilizer of I under the right action
of D on SLg(Z)\SLg(R) is U(I), so we obtain an immersion

pI : T (I)−!SLg(Z)\SLg(R)/SOg(R)

of T (I) as a compact flat in SLg(Z)\SLg(R)/SOg(R). Since similar lattices lie on the
same D-orbit, this associates a compact flat with each similarity class of lattices.

Let Rec⊂SLg(Z)\SLg(R)/SOg(R) be the locus of lattices in Rg which have a basis
of orthogonal vectors, a closed (but not compact) flat isometric to Rg/Cg, where Cg⊂
SOg(R) is the group of symmetries of the cube.

Theorem 7.4. For each lattice I in a degree-g totally real number field F , the
flat pI(T (I)) intersects Rec transversely. There is a natural bijection between the set
p−1
I (Rec) and the set of rational and positive bases of I, up to the action of U(I),

changing signs and reordering.

Note that we do not claim that the intersection is non-empty. Indeed this is not
always the case, as indicated in Figure 1 for D=39699.

Proof. Let R̃ec⊂SLg(R)/SOg(R) be the image of the diagonal orbit of the standard
basis of Rg, a lift of Rec to SLg(R)/SOg(R).

Lifts of T (I) to SLg(R)/SOg(R) correspond to oriented bases of I up to the action
of the unit group by associating the flat

(
r
(k)
j

)
·D·SOg(R) with the ordered basis (rj)

g
j=1.

Points of p−1
I (Rec) correspond bijectively (up to the action of the group Cg⊂SLg(Z) of

symmetries of the cube) to intersection points of pI(T (I)) with Rec. Note that if a lift
F intersects R̃ec, then so does the lift γ ·F for any γ∈Cg. These intersection points
correspond to the same point in p−1

I (Rec), and on the level of bases, replacing F with
γ ·F corresponds to reordering and changing signs in the basis (rj)

g
j=1.

We must show that
(
r
(k)
j

)
·D·SOg(R) intersects R̃ec if and only if (rj)

g
j=1 is rational

and positive. Note that the rationality and positivity conditions make sense for bases
of Rn, with the kth embedding r

(k)
j interpreted as the kth coordinate of the vector rj .

A vector is regarded as rational if all of its coordinates are equal, totally positive if all
of its coordinates are positive, and so on. With this interpretation, an orthogonal basis
(rj)n

j=1 of Rn is rational and positive, since the basis is orthogonal if and only if each dual
vector sj is a positive multiple of the corresponding rj . The rationality and positivity
conditions are invariant under the action of D, and thus any basis (rj)

g
j=1 whose D-orbit

meets R̃ec is rational and positive.
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Now suppose that the basis (rj)
g
j=1 of I is rational and positive and let (sj)

g
j=1 be

its dual basis. For each k, set

a(k) =

√√√√s
(k)
1

r
(k)
1

.

Let A be the diagonal matrix
(
a(1), ..., a(g)

)
, and let

r̃
(k)
j = a(k)r

(k)
j and s̃

(k)
j =

s
(k)
j

a(k)
.

Note that
(
s̃
(k)
j

)g
j=1

is the dual basis to
(
r̃
(k)
j

)g
j=1

in Rg, and A is the unique diagonal

matrix in SLg(R) for which the vectors
(
r̃
(k)
1

)g
k=1

and
(
s̃
(k)
1

)g
k=1

are positively proportional.
If the positivity and rationality conditions are satisfied, we have

s̃
(k)
j

r̃
(k)
j

=
1(

a(k)
)2 · s

(k)
j

r
(k)
j

=
qj(

a(k)
)2 · s(k)

1

r
(k)
1

= qj

for some positive qj∈Q. Since each s̃j is proportional to r̃j , the basis (r̃j)
g
j=1 of Rg is

rectangular, so it is the unique intersection point of
(
r
(k)
j

)
·D·SOg(R) and R̃ec. Otherwise

for some j the vectors
(
r̃
(k)
j

)g
k=1

and
(
s̃
(k)
j

)g
k=1

are not proportional, so the flats are disjoint.
Since we saw that there was at most one intersection point between each lift of the two
flats, these intersection points are transverse.

Corollary 7.5. The set of bases of I satisfying the rationality and positivity con-
ditions is finite, up to the action of U(I).

Proof. Since T (I) is compact, there are at most finitely many intersection points
with Rec by transversality.

8. Boundary of the eigenform locus: Sufficiency for genus 3

In this section we specialize to genus 3. We prove that the boundaries of RMO and E ι
O

are indeed the union of the components described in Theorem 5.2. Moreover, we show
how to derive these subvarieties explicitly from the weights of a boundary stratum.

Boundary strata in genus 3

The topological type of a stable curve of geometric genus zero (or a weighted boundary
stratum) can be encoded by a graph where each vertex represents an irreducible compo-
nent and an edge joining two vertices (or possibly joining a vertex to itself) represents a
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node at the intersection of those two components. There are fifteen topological types of
stable curves with arithmetic genus 3 and geometric genus zero, shown in Figure 1. We
will refer to a stable curve represented by the kth graph in the jth row of Figure 1 as a
stable curve of type (j, k).

An I -weighted stable curve can be represented by a directed graph with a weight
r∈I attached to each edge e (contrary to standard practice, we allow edges which join
a vertex to itself). The cusp on the component represented by the terminal vertex of e

has weight r, and the other cusp has weight −r.
It will be convenient to have a compact notation for boundary strata without sep-

arating curves, the only ones which will be important in the sequel. For all but one
of these strata the components of the corresponding stable curves can be arranged in a
chain or a loop. We code those boundary strata in the following way: we write [mj ] for
a genus-zero component of the stable curve with mj marked points. We write ×aj for
the number of intersection points with the subsequent curve. The possible patterns for
curve systems without separating curves include [6], [m1]×a [m2], [m1]×a1 [m2]×a2 [m3]
and [m1]×a1 [m2]×a2 [m3]×a3 . In the last pattern, a3 is the number of nodes joining the
last and the first component. For example, a [5]×3 [3] boundary stratum is represented
by graph (2, 2) in Figure 1 and a [4]×2 [3]×1 [3]×2 boundary stratum is represented by
graph (3, 1).

Boundary strata of type [6] parameterize irreducible stable curves with three non-
separating nodes, often called trinodal curves.

Theorem 8.1. Consider an order O in a totally real cubic number field F , a real
embedding ι of F , and a cusp packet (I, E)∈C(O). The closure in PΩMg of the cusp of
E ι
O associated with (I, E) is equal to the union over all admissible I -weighted boundary

strata S of the varieties Sι(E).
The closure of the corresponding cusp of RMO in Mg is equal to the union over all

I -weighted boundary strata S of the images of the S(E) under the forgetful map to Mg.

After some preliminary discussion, we prove Theorem 8.1 at the end of this section.
Since the intersection of two algebraic subvarieties of M3 has a finite number of

components, we obtain the following generalization for genus 3 of Corollary 7.5.

Corollary 8.2. Given a lattice I in a cubic number field F , the number of I -
weighted admissible boundary strata up to similarity is finite.

We will discuss in Appendix A various aspects concerning enumerating and counting
this set of admissible weighted boundary strata.

In order to make Theorem 8.1 completely explicit, we will now give coordinates
on some weighted boundary strata in terms of cross-ratios and give explicit equations
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Figure 1. Stable curves with aritmetic genus 3 and geometric genus zero.
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cutting out the subvarieties S(E).
We say that a weighted boundary stratum S1 is a degeneration of S2, if S1 is obtained

by pinching a collection of curves on a surface represented by S2. We also say that S2 is
an undegeneration of S1 in this situation.

Irreducible strata

Consider an irreducible stratum Sr (that is, type [6] if we are in genus 3). A weighted
stable curve parameterized by Sr is determined by 2g distinct points p1, ..., pg and
p−1, ..., p−g on P1 with weights rj at pj and −rj at p−j , so Sr

∼=M0,2g. For k �=l we
define the cross-ratio morphisms R[kl]:Sr!C\{0, 1} by

R[kl] = [pk, p−k, p−l, pl]−1, (8.1)

where, for z1, ..., z4∈C,

[z1, z2, z3, z4] =
(z1−z3)(z2−z4)
(z1−z4)(z2−z3)

.

Take (s1, ..., sg) to be the dual basis of I∨ (with respect to the trace pairing) to
(r1, ..., rg). We can now make the cross-ratio map CR defined in (5.3) more explicit.

Proposition 8.3. The elements sk⊗sl for k �=l form a basis of N(Sr). Moreover
we have Ψ(sk⊗sl)=R[kl] as functions on Sr.

Proof. That sk⊗sl belongs to N(Sr) follows from the definition of the dual basis
with respect to the trace pairing. They are obviously linearly independent and thus the
set of sk⊗sl for k �=l is a basis by a dimension count.

We normalize a point P =(p−g, ..., pg) of Sr by a Möbius transformation so that
pk=0, p−k=∞ and p−l=1. By definition of Ψ(sk⊗sl), we must choose the stable 1-
form ω on P1 with residue ±Tr(skrm)/2πi at the point p±m, that is, we have to choose
ω=dz/2πiz. We then integrate this form over the path whose intersection with the loop
around the node at p±m is Tr(slrm). On P1, this is a path γ joining p−l=1 to pl. We
then have

Ψ(sk⊗sl)(P ) = e2πi
∫
γ

ω = pl = R[kl](P ).

Corollary 8.4. For g=3, after identifying Hom(N(S)∩SZ(I∨), C∗) with (C∗)3

via the basis (s1⊗s2, s2⊗s3, s3⊗s1) of N(S)∩SZ(I∨), the map CR becomes

CR = (R[12], R[23], R[31]):Sr −! (C\{0, 1})3.

The map CR is a degree-2 branched cover which identifies orbits of the involution
φι:Sr!Sr which exchanges each pair ph and p−h.
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r1

r2

r2

r3

Figure 2. I -weighted stable curve of type [4]×2 [4].

Proof. That CR is of this form follows immediately from the definition of CR and
Proposition 8.3.

That the map CR=(R[12], R[13], R[23]) is degree-2 onto its image can be checked by
fixing three of the pj and solving for the rest. Interchanging each ph and p−h leaves each
cross-ratio R[kl] invariant, so CR is the quotient map by this involution.

Type [4]×4 [4] strata

Consider an I -weighted stable curve X of type [4]×4 [4] having weights r1, ..., r4∈I with∑4
j=1 rj =0, and let S be the corresponding I -weighted boundary stratum. We name

u1, ..., u4 the four points on one irreducible component with weight r1, ..., r4 and name
v1, ..., v4 the opposite points on the other component. We define the cross-ratios,

Ru = [u1, u2, u3, u4] and Rv = [v1, v2, v3, v4].

The stratum S is isomorphic to M0,4×M0,4 with Ru and Rv coordinates on the
first and second factors.

Type [4]×2 [4] strata

Now consider the I -weighted stable curve shown in Figure 2 with distinct weights
r1, r2, r3∈I, and let S be the corresponding I -weighted boundary stratum. We label
by p1, p−1, p2, p−2 the points on one irreducible component with weights r1,−r1, r2,−r2

and label by q1, q−1, q2, q−2 the points on the other irreducible component with weights
r3,−r3,−r2, r2. The stratum S is isomorphic to M0,4×M0,4 with coordinates

R1 = [q1, q−1, q−2, q2] and R3 = [p1, p−1, p−2, p2]. (8.2)

The stratum S arises as a degeneration of the irreducible weighted boundary stratum
with weights r1, r2, r3 by pinching a curve around the points of weights r1,−r1, r2. As
this curve is pinched, the cross-ratio R[13] tends to 1.
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Calculation of S(E)

We will write Rj for R[kl] where {j, k, l}={1, 2, 3} and we let (s1, s2, s3) be the dual basis
to (r1, r2, r3).

Whether S(E)=S is the content of the next theorem. To measure the difference
we introduce the following notion. Given an I -weighted boundary stratum S, we let
Span(S)⊂Q3 denote the Q-span of {Q(r):r∈Weight(S)}, and let codim(Span(S)) denote
the codimension of Span(S) in Q3.

Theorem 8.5. The locus S(E) is determined as a subvariety of S in the various
cases as follows.

• Case [6]. For a boundary stratum of type [6], we use the cross-ratio coordinates
R1, R2 and R3 defined in Proposition 8.3. Then the subvariety S(E) of the admissible
boundary stratum S(r1,r2,r3) is given by the cross-ratio equation

3∏
j=1

R
aj

j = ζ, (8.3)

where the aj are the unique (up to sign) relatively prime integers such that aj =tbj for
some t∈F , and

bj = NF
Q (rj)

(sj

rj

)2
, (8.4)

and where ζ is the root of unity ζ=e2πiu with

u = 〈E, σ〉 (8.5)

and

σ =
3∑

j=1

ajsj+1⊗sj+2. (8.6)

Here we interpret the extension class E as an element of SymQ(F ) using (5.4).
• Case [4]×2 [4]. The subvariety S(E) of the admissible boundary stratum with

weights {r1, r2, r3, r4=−r2} is given, using the cross-ratio coordinates defined above, by

Ra1
1 Ra3

3 = ζ, (8.7)

where aj and ζ are calculated from {r1, r2, r3} as in the preceding case [6].
• Case [4]×4 [4]. There are two possibilities. If codim(Span(S))=0, then S(E) is

the whole stratum. If codim(Span(S))=1, then S is a degeneration of an admissible
irreducible weighted boundary stratum S(r1,r2,r3) with the property that the exponents aj

defined above satisfy
∑3

j=1 aj =0. Moreover, S(E) is cut out by the equation

(RuRv)a1

(
Ru

1−Ru

Rv

1−Rv

)a3

=
1
ζ
, (8.8)

where ζ is as in case [6].
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This is a complete list of the cases of boundary strata without separating curves,
where for some admissible boundary stratum S we can have S(E)�S.

We will refer to the equations stated in the above theorem as the cross-ratio equations
and to the exponents aj in (8.3) as the cross-ratio exponents.

For comparison, we sketch the analogous result for genus 2 from reference [4] in
this notation. There are just two strata, the 1-dimensional stratum [4] consisting of
irreducible 2-nodal curves and the zero-dimensional stratum [3]×3 [3] consisting of stable
curves with two components intersecting at three nodes. In the stratum [4] a basis
{r1, r2} is admissible if NF

Q (r1/r2)<0. In the stratum [3]×3 [3] the residues are of the
form {r1, r2,−r1−r2} and again the corresponding boundary stratum is admissible if
NF

Q (r1/r2)<0. There is no cross-ratio equation in this case. The boundary of the real
multiplication locus is, given an admissible boundary stratum, the full stratum of the
Deligne–Mumford compactification.

The following lemmas determine the possibilities for codim(Span(S)).

Lemma 8.6. Suppose that the Q-span of r1, r2 and r3 is 2-dimensional and the
Q-linear dependence is given by b1r1+b2r2+b3r3=0 with all bj∈Q\{0}. Then Q(r1),
Q(r2) and Q(r3) are Q-linearly independent.

Proof. Embedding F in R3 by its three real embeddings, the map Q becomes

Q(x, y, z) = (yz, xz, xy),

which we regard as a degree-2 map Q: P2(R)!P2(R). Suppose the Q(rj) are Q-linearly
dependent. They then lie on a line L⊂P2(R) cut out by an equation a1X+a2Y +a3Z=0
with each aj∈Q. Each coefficient aj of this equation must be non-zero, for if (say) a3

were zero, then r2r3 and r1r3 would be Q-linearly dependent, and hence r2 and r1 would
be Q-linearly dependent, contradicting the hypothesis.

The inverse image Q−1(L) is a non-singular conic, so it intersects any line in at most
two points. Thus if the rj were Q-linearly dependent, they could not map to L.

Lemma 8.7. If the stratum S is irreducible or if it is of type [4]×2 [4], then we
have codim(Span(S))=1. If it is of type [4]×4 [4], then either codim(Span(S))=0 or
codim(Span(S))=1. In all of the remaining cases, codim(Span(S))=0.

Proof. Since the set of weights contains a Q-basis of F , codim(Span(S)) is at most 1.
Suppose that a stable curve parameterized by the stratum S contains a component iso-
morphic to a thrice-punctured P1. The weights of this component satisfy the hypothesis
of Lemma 8.6 since they sum to zero and their Q-span is not 1-dimensional by Proposi-
tion 5.5. Consequently, this lemma implies that codim(Span(S))=0 for those strata.
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The only remaining cases are the irreducible stratum and strata of type [4]×2 [4].
In either case there are only three distinct weights. We only need to remark that three
vectors cannot span R3 and contain 0 in its convex hull at the same time.

We will show in Example 2 of Appendix A that this is a complete list of constraints,
i.e. all the codimensions of strata not excluded by Lemma 8.7 do occur.

Lemma 8.8. Suppose that {Pj}k
j=1 are k points in Rn, k�n+2, whose R+-span is

all of Rn and such that no n of the Pj are contained in a subspace of dimension n−1.
Then there are n+1 points among the Pj whose R+-span also is all of Rn.

Proof. Given k�n+2 points Pj in Rn whose convex hull contains zero, we must show
that there are k−1 among them whose convex hull still contains zero. The hypothesis
on the span of subsets of n elements will then imply that these vectors span Rn, and the
claim follows from induction on k.

Consider the linear map f that assigns to x∈Rk the sum f(x)=
∑k

j=1 xjPj . The

hypothesis implies that K=Ker(f) contains w=(w1, ..., wk) with
∑k

j=1 wj =1 and wj >0.

Since dim(K)�2 there is also 0 �=y∈K with
∑k

j=1 yj =0. The affine space w+λy has to
intersect the coordinate hyperplanes at some point different from zero. This point yields
a convex combination of zero with at most k−1 summands.

Proof of Theorem 8.5

We start with case [6]. Recall that S(E)⊂S is the subvariety cut out by the equations

Ψ(a) = e−2πi〈E,a〉, (8.9)

as a ranges in N(S)∩Ann(Λ1)∩SZ(I∨). By Lemma 8.7 and equation (5.6), this is a
rank-1 Z-module, so, by Proposition 8.3, it is generated by

∑3
j=1 ajsj+1⊗sj+2 for some

relatively prime integers aj , and equation (8.9) is simply (8.3) with ζ as in (8.5). To find
the aj , we will find some rationals bj with

∑3
j=1 bjsj+1⊗sj+2∈Ann(Λ1), and the aj will

be primitive integral multiples.
If bj∈Q, then

∑3
j=1 bjsj+1⊗sj+2∈Ann(Λ1) if and only if

Tr
( 3∑

j=1

bjsj+1sj+2x

)
=
〈 3∑

j=1

bjsj+1⊗sj+2,

3∑
k=1

rk⊗skx

〉
= 0

for all x∈F , and thus if and only if
∑3

j=1 bjsj+1sj+2=0.
If we let b̃j =N(rj)sj/rj and take cj satisfying

∑3
j=1 cj/rj =0, then we have

3∑
j=1

b̃j
cj

N(rj)
sj+1sj+2 = 0.
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From Lemma 8.9 below, we deduce that (b̃jcj/N(rj))3j=1 is proportional to (b1, b2, b3) as
in the statement. Thus the exponents in the cross-ratio equation are proportional to the
bj as claimed.

We next treat the case of a stratum S of type [4]×4 [4]. As explained above along
with the cross-ratio coordinates, this case is a degeneration of a boundary stratum of
type [6]. Since Span(S) here is the same as for S(r1,r2,r3) we obtain the same equation,
only the cross-ratio R2 is identically equal to 1.

It remains to treat the case of a boundary stratum S of type [4]×4 [4] in the case
dim(Span(S))=2. Lemma 8.8 implies that S is a degeneration of some admissible stratum
of type [6], say S(r1,r2,r3) given a suitable numbering of the weights.

Next we show that
∑3

j=1 aj =0. Admissibility implies that (8.10) below holds for
some cj∈Q. The hypothesis on the dimension of the span implies the equation (8.10)
and

1
r1+r2+r3

=
e1

r1
+

e2

r2

for some e1, e2∈Q. We may moreover rescale such that r1=1 and solve the system for
cubic equations killing r2 and r3, respectively. These equations must be the minimal
polynomials of r2 and r3. We obtain

NF
Q (r2) =−c2e2

c1e1
and NF

Q (r3) =
c2
3e2

c2c1e1−c2
1e2

.

Using the Corollary 8.10 to the calculations in case [6] below, we only need to check that∑3
j=1 c2

j/N
F
Q (rj)=0, which is obvious.

We may normalize the degeneration from the boundary stratum S(r1,r2,r3) to S as
follows. Let p1=0, p2=1, p3=∞ and let the p−j all converge to the same point μ, that
is, p−j =μ+λjt with t!0. Then

Ru =
μ−1

μ
and Rv =

λ1−λ3

λ2−λ3
,

and in the limit as t!0,

R2

R1
=

μ−1
μ

λ1−λ3

λ2−λ3
and

R2

R3
= (1−μ)

λ1−λ3

λ1−λ2
.

Thus the cross-ratio equation (
R2

R1

)a1
(

R2

R3

)a3

= ζ

for S(r1,r2,r3) becomes

(RuRv)a1

(
Ru

1−Ru

Rv

1−Rv

)a3

=
1
ζ
,
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as we claimed.
The last statement is an immediate consequence of Lemma 8.7.
We give here the lemma needed above and as corollary a second version of calculating

the exponents of the cross-ratio equation. Using the no-half-space condition, there are
rational coefficients cj such that

c1

r1
+

c2

r2
+

c3

r3
= 0. (8.10)

Lemma 8.9. If the rj and cj are as in (8.10), then the triple (c1, c2, c3) is propor-
tional to (N(rj)sj/rj)3j=1.

Proof. Note that the triple (N(rj)sj/rj)3j=1 is (up to a factor r1/s1) integral by
rationality. It thus suffices to check that

3∑
j=1

(
N(rj)

sj

rj

) 1
rj

= 0.

We have

3∑
j=1

(
N(rj)

sj

r2
j

)r1

s1
=

3∑
j=1

r
(2)
j r

(3)
j

s
(1)
j

r
(1)
j

r
(1)
1

s
(1)
1

=
3∑

j=1

r
(2)
j r

(3)
j

s
(2)
j

r
(2)
j

r
(2)
1

s
(2)
1

(by rationality)

=
r
(2)
1

s
(2)
1

3∑
j=1

s
(2)
j r

(3)
j . (8.11)

Consider the 3×3 matrices R=
(
r
(k)
j

)3
j,k=1

and S=
(
s
(k)
j

)3
j,k=1

. Since the bases (rj)3j=1

and (sj)3j=1 are dual, we have RSt=I. Thus StR=I as well, and (8.11) is 0.

Corollary 8.10. The exponents aj appearing in the cross-ratio equation (8.3) are
the unique (up to sign) relatively prime integers with aj =tb′j for some t∈F and

b′j =
c2
j

NF
Q (rj)

.

Period coordinates

In preparation for the proof of Theorem 8.1, we now define local coordinates around
certain Lagrangian boundary strata S⊂M3(L) in terms of exponentials of entries of
period matrices.
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Let S⊂M3(L) be a Lagrangian boundary stratum obtained by pinching curves
γ1, ..., γm on Σ3. We say that such a boundary stratum is nice if the complement of any
two of the γj is connected. There are five topological types of nice boundary strata in
M3(L), representing stable curves of type (1, 1), (2, 1), (2, 2), (3, 1) and (4, 2).

Let αj∈L⊂H1(Σ3; Z) denote the homology class of γj after choosing an orientation.

Lemma 8.11. If S⊂M3(L) is a nice boundary stratum, then there are elements
σ1, ..., σn∈Hom(L, Z) such that

〈σj , αk⊗αk〉= δjk. (8.12)

Proof. We represent a curve in S by a directed graph G with the edges weighted by
elements of L. A closed circuit c in G determines a functional βc∈Hom(L, Z) defined as
follows. If e is an edge with weight γ, then βc(γ)=n, where n is the number of times c

crosses e in the forward direction minus the number of times c crosses e in the reverse
direction.

Each of the graphs in Figure 1 representing nice boundary strata has the property
that for each edge e there are two circuits c and d which pass through e once and have
no other edge in common. For each edge f , write �(f)=w⊗w, where w is the weight
of f . Then the functional βc⊗βd maps �(e) to 1 and �(f) to 0 for any other edge f .

Choose σ1, ..., σm∈S(Hom(L, Z)) as in the lemma, and choose a basis (τ1, ..., τn) of
the annihilator N(S)⊂S(Hom(L, Z)) of {αj⊗αj}m

j=1.
Let U⊂M3(L) be the open subset consisting of M3(L), S and any intermediate

boundary stratum obtained by pinching some subset of the curves {γj}m
j=1. We consider

the map Ξ:U!Cm×(C∗)n defined by

Ξ = (Ψ(σ1), ...,Ψ(σm), Ψ(τ1), ...,Ψ(τn)),

sending S to (0, ..., 0)×(C∗)n.
Any automorphism T of L induces an automorphism φT of Mg(L) defined by replac-

ing the marking � of the marked surface (X, �) with � T . Let ι: L!L be the negation
homomorphism α �!−α. We define M′

g(L) to be the quotient of Mg(L) by the involu-
tion φι.

Each of the meromorphic functions Ψ(α) on Mg(L) is constant on orbits of φι and
so defines a meromorphic function Ψ′(α) on M′

g(L). If S is fixed by φι, then so is U ,
and the map Ξ then factors through to a map Ξ′: U ′!Cm×(C∗)n, where U ′=U/φι.

Lemma 8.12. Consider a nice boundary stratum S⊂M3(L). If S is not fixed by
πι, then for any basis (τ1, ..., τn) of N(S), the functions Ψ(τ1), ...,Ψ(τn) form a system
of local coordinates on S. If S is fixed by φι, then for any basis (τ1, ..., τn) of N(S), the
functions Ψ′(τ1), ...,Ψ′(τn) form a system of local coordinates on S/φι.



the deligne–mumford compactification of the real multiplication locus 55

Proof. It is enough to produce a single basis of N(S) which yields a system of local
coordinates, since the coordinate systems defined by any two bases are related by an
automorphism of the algebraic torus (C∗)n.

Any stratum S of type [6] is fixed by φι. Corollary 8.4 implies that the functions
Ψ′(sj⊗sk) for j �=k identify S/φι with an open subset of (C∗)3, and so they give a system
of local coordinates on S/φι.

Any stratum of type [4]×4 [4] is also fixed by φι. We use the notation for these
strata from p. 48. Under the identification of S with M0,4×M0,4, the map φι is just the
involution exchanging the two factors.

Let {s1, s2, s3} be a basis of F dual to {r1, r2, r3}. Let

τ1 = (s2−s1)⊗s3 and τ2 = (s3−s1)⊗s2.

From the definition of Ψ, we get

Ψ′(τ1) =RuRv and Ψ′(τ2) = (1−Ru)(1−Rv),

a system of local coordinates on M0,4×M0,4/φι.
The remaining cases are strata not fixed by φι. We leave these simpler cases to the

reader.

Proposition 8.13. Consider a nice L-weighted boundary stratum S in M3(L). If
S is not fixed by φι, then the map Ξ is locally biholomorphic on a neighborhood of S.
Otherwise Ξ′ is locally biholomorphic on a neighborhood of S/φι. In either case, the
map Ξ is open.

Proof. Suppose that S is not fixed by the involution. Centered at an arbitrary point
of S, we choose plumbing coordinates t1, ..., tm, s1, ..., sn, as in §3, so that each divisor
Dj where γj has been pinched is cut out by tj =0. We must show that the Jacobian of
Ξ at (0,0) is non-zero. The functions Ψ(σj) vanish to order 1 on Dj and zero on Dk for
k �=j. For all j and k we have

∂Ψ(σj)
∂tk

(0,0)
{

= 0, if j �= k,
�= 0, if j = k,

and
∂Ψ(σj)

∂sk
(0,0) = 0.

Thus, to show that the Jacobian of Ξ at (0,0) is non-zero, it suffices to show that the
matrix (

∂Ψ(τj)
∂sk

(0,0)
)
j,k

is invertible. In other words, we must show that the functions Ψ(sk) locally define a
system of local coordinates on S. This is the content of Lemma 8.12.
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The case where S is fixed is nearly identical. Note that since the quotient mapping
M3(L)!M′

3(L) is unbranched along the boundary divisors, the order of vanishing of
any Ψ′(a) along Dj is also given by the formula of Theorem 4.1.

The last statement follows, since any quotient map—in particular, the canonical
map M3(L)!M′

3(L)—is open.

Closures of algebraic tori

The period coordinates above reduce the problem of computing the boundary of the
eigenform locus to computing the closures of algebraic tori T⊂(C∗)n⊂Cn, which we now
consider.

Consider the algebraic torus T =(C∗)k×(C∗)l⊂Ck×(C∗)l. We identify the char-
acter group χ(T ) with Zk⊕Zl by assigning to (a,b)=(a1, ..., ak, b1, ..., bl) the character
λ(a,b): T!C∗ defined by

λ(a,b)(z,w) = za1
1 ... zak

k wb1
1 ... wbl

l .

Given a subgroup L of χ(T ) with χ(T )/L torsion-free and given a homomorphism
φ: L!C∗, we define TL,φ to be the subvariety of T cut out by the monomial equations

λ(a,b)(z,w) =φ(a,b) (8.13)

for each (a,b)∈L, a translate of a subtorus of T .
Let Δ={0}×(C∗)l. We define

C = {(a,b)∈χ(T ) : aj � 0 for 1� j � k} and N = {0}⊕Zl ⊂χ(T ).

Let ΔL,φ be the subvariety of Δ cut out by the monomial equations (8.13) for
(a,b)∈L∩N .

Theorem 8.14. The closure TL,φ∩Δ is non-empty if and only if L∩C⊂N , in which
case we have TL,φ∩Δ=ΔL,φ.

Proof. Suppose that (a,b) is a non-zero element of (L∩C)\N . The equation (8.13)
is then satisfied on TL,φ, but λ(a,b)(z,w)≡0 on Δ, so Δ and TL,φ must be disjoint.

Conversely, suppose that L∩C⊂N . Then the orthogonal projection p(L) of L onto
the Zk factor of χ(T ) satisfies p(L)∩C=0. [41, Theorem 15.7] states that given a sub-
space V of Rn with V ∩{x∈Rn :xj �0 for all j}={0}, there is a vector y∈V ⊥ with each
coordinate positive. Thus we may find an integral c∈p(L)⊥⊂Zk with positive coordi-
nates.
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Note that the curve parameterized by

f(w) = (d1w
c1 , ..., dkwck , e1, ..., el)

lies in TL,φ if and only if for each (a,b)∈L, the equation

da1
1 ... dak

k eb1
1 ... ebl

l = φ(a,b) (8.14)

is satisfied, in which case (0, ..., 0, e1, ..., el)∈TL,φ∩Δ.
Choose some (0, e)∈ΔL,φ, and let (aj ,bj)=(aj1, ..., ajh, bj1, ..., bjl) for 1�j�dim(L)

be a basis of L with ajk=0 for j�dim(L∩N). We must find g1, ..., gh satisfying the
equations

aj1g1+...+ajhgh+bj1 log e1+...+bjl log e� = log φ(aj ,bj). (8.15)

Among these, the first dim(L∩N) equations do not involve the gj and are satisfied
automatically because (0, e)∈ΔL,φ as long as the values of log were chosen correctly.
The vectors adim(L∩N)+1, ...,adim(L) are linearly independent, so the matrix (ajk)jk (with
dim(L∩N)<j�dim(L) and 1�k�h) has maximal rank. Thus we can solve (8.15) for
the gj . Setting dj =egj , (8.14) is satisfied.

Proof of Theorem 8.1

It suffices to show that for any cusp packet (I, E) and admissible I -weighted boundary
stratum S⊂M3(I) the variety S(E) lies in the closure of RMO(I, E).

For nice boundary strata, the map Ξ of Proposition 8.13 reduces the computation
of the closure of RMO to the computation of the closure of an algebraic torus in Cn

(since under an open mapping, the inverse image of the closure of a set is equal to the
closure of the inverse image), which is done in Theorem 8.14. It is easily checked that
the condition of this theorem is equivalent to the admissibility condition. This handles
admissible boundary strata of type (1, 1), (2, 1), (2, 2), (3, 1) and (4, 2) in Figure 1.

Admissible boundary strata which are in the boundary of a nice admissible boundary
stratum S with codim(S)=0 are then automatically in the closure of RMO(I, E). It
follows from Lemma 8.8 that any admissible boundary stratum S with codim(S)=0 is
in the boundary of such a nice admissible stratum, since some collection of nodes can be
unpinched to obtain a stratum of type [4]×4 [4] or [5]×3 [3] where the cone condition still
holds. This handles admissible boundary strata of type (3, 2), (3, 3), (4, 1) and (4, 3).

It remains to consider admissible boundary strata of type (2, 3), (2, 4), (3, 4), (3, 5),
(4, 4) and (4, 5). Any such boundary stratum is in the closure of a unique irreducible
Lagrangian boundary stratum S. The weights of S define the equation

Ψ(σ) =u, (8.16)
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with u and σ as in (8.5) and (8.6). Let V ⊂M3(I) be the subvariety cut out by this
equation. For any stratum S ′⊂S, we have S ′(E)=S ′∩V by the definition of S ′(E),
so we must show for any such S ′ that S ′∩V ⊂RMO(I, E). Since we have already
handled irreducible boundary strata, we know that V ∩S=RMO(I, E)∩S. It follows
that V ∩S⊂RMO(I, E). If S∩V were irreducible, it would follow that S∩V =S∩V ,
and we would be done.

We see the irreducibility of S∩V as follows. Since V is codimension-1 and S∩V is
irreducible, as is easily seen from the form of the cross-ratio equation (8.3), S∩V could
only fail to be irreducible if a 2-dimensional stratum in the boundary of S were contained
in V . Such a stratum must be of type (2, 3) (that is, [4]×2 [4]) or (2, 4) in Figure 1. The
restriction of the equation (8.16) to a stratum of type [4]×2 [4] is the cross-ratio equation
(8.7) which is not satisfied on an entire stratum. Similarly, a stratum of type (2, 4) is
isomorphic to M0,5, and the equation (8.16) reduces to the equation R=u, where R is a
cross-ratio of four marked points and u is a root of unity. This equation is not satisfied
on the entire stratum.

9. Existence of an admissible basis

In this section we construct, for any totally real cubic number field F with ring of integers
OF , an OF -ideal with an admissible basis. This will be used in §11 to show GL+

2 (R)-
non-invariance of eigenform loci.

Lemma 9.1. For any cubic number field F , there is some fractional OF -ideal I with
basis {1, α, α2}.

Proof. For α∈F \Q, let Iα⊂F be the lattice 〈1, α, α2〉. If aX3+bX2+cX+d∈Z[X]
is the minimal polynomial of α, one checks that

R = 〈1, aα, aα2+bα〉 satisfies R·Iα ⊂Iα.

We must arrange that R=OF . Let {1, μ, ν} be a basis of OF . Associated with this
basis is the index form, an integral binary cubic form which is defined by

C(x, y)2 =
disc(xν−yμ)

disc(F )

for x, y∈Q (see [15, Proposition 8.2.1]), where disc(α) is the discriminant of the lattice
Iα. If we choose α to be a root of C(x, 1), then R=OF by [15, Proposition 8.2.3].

Proposition 9.2. Given a totally real cubic field F , there is an OF -ideal I with
an admissible basis.
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Proof. Let I be a fractional ideal with basis {1, α, α2} provided by Lemma 9.1. The
basis given by r1=α, r2=1−α and r3=α(α−1) satisfies the equation

1
NF

Q (r1)
NF

Q (r1)
r1

+
1

NF
Q (r2)

NF
Q (r2)
r2

+
1

NF
Q (r3)

NF
Q (r3)
r3

= 0, (9.1)

and so

dim Span
{

NF
Q (r1)
r1

,
NF

Q (r2)
r2

,
NF

Q (r3)
r3

}
= 2.

The no-half-space condition is then equivalent to the coefficients of (9.1) having the
same sign, that is, NF

Q (α)<0 and NF
Q (1−α)<0. We are free to replace α with α′=α−k

for any k∈Z, since the basis {1, α′, (α′)2} spans the same lattice. Thus the problem is
reduced to finding k∈Z such that NF

Q (α+k) and NF
Q (α+k+1) have opposite signs.

Define P (k)=NF
Q (α+k). Then P (k)=−C(k), where C is the monic minimal poly-

nomial of α. We claim that there are consecutive integers at which P has opposite signs.
In fact, this holds for any polynomial P of odd degree with no integral roots, for if P

had the same sign at any two consecutive integers, then it must have the same sign at
all integers. This is impossible, as the sign of P (x) as x!∞ is the opposite of the sign
of P (x) as x!−∞.

Example 9.3. Consider the field F =Q[x]/〈x3−x2−10x+8〉 of discriminant D=961.
Its ring of integers OF =

〈
1, x, 1

2 (x2+x)
〉

is not monogenic, i.e. it does not have a basis of
the form {1, θ, θ2} for any θ in F . The class number of OF is 1, so the above algorithm
provides a basis of this form spanning some fractional ideal similar to OF .

One calculates the index form to be C(X, 1)=2X3−X2−5X+2, and therefore if θ

is a root of this polynomial, then OF =〈1, 2θ, 2θ2−θ〉 and I=〈1, θ, θ2〉. Here N(α)=−1
and NF

Q (1−α)=−1, so the last step of the proof is unnecessary.

Corollary 9.4. For any field F , the closure of the eigenform locus EOF
intersects

a boundary stratum of type [6], that is, a stratum of trinodal curves.

We do not know if the class of the ideal class of I given by Lemma 9.1 always is the
class of OF . Nor do we know if there is always an admissible basis of OF . Computer
experiments using the algorithm described in Appendix A suggest an affirmative answer.
This algorithm also produces examples of ideal classes with no such bases.

10. Teichmüller curves and the GL+

2 ( ) action

In preparation for the next sections, we recall the well-known action of GL+
2 (R) on ΩMg

and the basic properties of Teichmüller curves in Mg.
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Translation surfaces

A Riemann surface X equipped with a non-zero holomorphic 1-form ω is otherwise known
as a translation surface. The form ω defines a metric |ω| on X\Z(ω), where Z(ω) is the
set of zeros of ω, assigning to a vector v the length |ω(v)|. The metric |ω| has cone
singularities at the zeros of ω.

We recall that the form ω defines an atlas of charts {φα: Uα!C} covering X\Z(ω),
where φα(z)=

∫ z

p
ω for some choice of basepoint p∈Uα. The transition functions of this

atlas are translations of C, and the form ω is recovered by ω|Uα =φ−1
α (dz).

Any translation-invariant geometric structure on C can then be pulled back to X

via this atlas. In particular, for any slope θ∈R∪{∞} there is a foliation Fθ of X by
geodesics of slope θ.

GL+

2 ( ) action

We can now regard ΩMg as the moduli space of genus-g translation surfaces. GL+
2 (R)

acts on ΩMg as follows. We identify C with R2 in the usual way so that a matrix
A∈GL+

2 (R) determines an R-linear automorphism of C. Replacing the atlas of charts
{φα: Uα!C} defined above by {A φα: Uα!C} yields a new atlas where transition func-
tions also are translations of C. Pulling back the complex structure of C and the 1-form
dz via this atlas defines a new translation surface A·(X, ω).

Strata

Given a partition n1, ..., nr of 2g−2, there is the stratum

ΩMg(n1, ..., nr)⊂ΩMg

of forms with exactly r zeros of orders given by the nj . This stratification is preserved
by the GL2(R)-action.

Veech surfaces and Teichmüller curves

We define the affine automorphism group of a translation surface (X, ω) to be the group
Aff+(X, ω) of orientation preserving, locally affine homeomorphisms of (X, ω). There is
a homeomorphism

D: Aff+(X, ω)−!SL2(R),

sending a map A to its derivative DA in a local translation chart. We define

SL(X, ω) =D(Aff+(X, ω))⊂SL2(R).
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The group SL(X, ω) is known as the Veech group of (X, ω).
The surface (X, ω) is said to be Veech if SL(X, ω) is a lattice in SL2(R). The group

SL(X, ω) coincides with the stabilizer of (X, ω) under the GL+
2 (R)-action. Thus (X, ω)

is Veech if and only if GL+
2 (R)·(X, ω)⊂ΩMg descends to an immersed finite-volume

Riemann surface (orbifold) in Mg. An immersed finite volume Riemann surface arising
in this way is called a Teichmüller curve and is necessarily isometrically immersed with
respect to the Teichmüller metric.

A Teichmüller curve can also be regarded as an embedded smooth curve in PΩMg.

Periodicity

A saddle connection on a translation surface (X, ω) is an embedded geodesic segment
connecting two zeros of ω.

The foliation Fθ of slope θ is said to be periodic if every leaf of Fθ is either closed
(i.e. a circle) or a saddle connection. In this case, we say that θ is a periodic direction. A
periodic direction θ yields a decomposition of (X, ω) into finitely many maximal cylinders
foliated by closed geodesics of slope θ. The complement of these cylinders is a finite
collection of saddle connections.

Veech proved the following strong periodicity property of Veech surfaces.

Theorem 10.1. ([42]) Suppose that (X, ω) is a Veech surface with either a closed
geodesic or a saddle connection of slope θ. Then the foliation Fθ is periodic and the
moduli of the cylinders in the direction θ are commensurable.

Given a Veech surface (X, ω) generating a Teichmüller curve C⊂PΩMg, there is a
natural bijection between the cusps of C and the periodic directions on (X, ω), up to the
action of SL(X, ω). The cusp associated with a periodic direction θ is the limit of the
geodesic AtR·(X, ω), where R⊂SO2(R) is a rotation which makes θ horizontal, and

At =
(

e−t 0
0 et

)
.

The stable form in PΩMg, which is the limit of this cusp, is obtained by cutting
each cylinder of slope θ along a closed geodesic and gluing a half-infinite cylinder to each
resulting boundary component (see [30]). These infinite cylinders are the poles of the
resulting stable form, and the two poles resulting from a single infinite cylinder are glued
to form a node.

A periodic direction θ of a Veech surface (X, ω) generating a Teichmüller curve
C is irreducible if the complement of the cylinders of Fθ is a connected union of saddle
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connections. Equivalently, a periodic direction is irreducible if the stable curve at the cusp
corresponding to the limit of a geodesic in that direction is irreducible. An irreducible
periodic direction always has g cylinders, where g is the genus of X. We also say, for
short, that a cusp is irreducible if the stable curve it parameterizes is irreducible.

Lemma 10.2. Every Veech surface (X, ω) having at most two zeros has an irreducible
periodic direction.

Proof. If (X, ω) has only a single zero, then every periodic direction is irreducible.

If (X, ω) has two zeros, take a saddle connection I joining them. Such a saddle
connection can be obtained by straightening any path joining the two zeros to a geodesic
path. The direction determined by I is periodic by Theorem 10.1, and this direction is
irreducible as the graph of saddle connections is connected.

Algebraic primitivity

The trace field of a Veech surface (X, ω) is the field Q(TrA:A∈SL(X, ω)). The trace field
of (X, ω) is a number field which is totally real (see [38] or [26]) whose degree is at most
the genus of X (see [32]). A Veech surface (X, ω) is said to be algebraically primitive if
the degree of its trace field is equal to the genus of X.

Our finiteness theorem for algebraically primitive Teichmüller curves will require the
following facts.

Theorem 10.3. ([37], [38]) Suppose that (X, ω) is an algebraically primitive Veech
surface. Then we have the following :

• GL+
2 (R)·(X, ω) lies in the locus of eigenforms for real multiplication by the trace

field of (X, ω);
• For any two distinct zeros p and q of ω the divisor p−q, regarded as a point in

Jac(X), is a torsion point.

The following lemma shows that the heights of cylinders in an irreducible periodic
direction of an algebraically primitive Veech surface can be recovered from knowledge of
their widths.

Lemma 10.4. Suppose that (X, ω)∈ΩMg is an eigenform for real multiplication by
a totally real field F of degree g, and that the horizontal direction of (X, ω) is periodic
and irreducible. Then the vector (rj)

g
j=1 of widths of the g horizontal cylinders is a real

multiple of a basis of F over Q, and the corresponding vector (sj)
g
j=1 of heights of these

cylinders is a real multiple of the dual basis of F over Q with respect to the trace pairing.



the deligne–mumford compactification of the real multiplication locus 63

Proof. Let M⊂H1(X; Q) be the g -dimensional subspace generated by the core
curves of the horizontal cylinders, and let N=H1(X; Q)/M . Real multiplication gives
both M and N the structure of 1-dimensional F -vector spaces, so we may choose iso-
morphisms of F -vector spaces φ: M!F and ψ: N!F . Since ω is an eigenform, there
are constants c, d∈R and an embedding ι: F!R such that∫

α

ω = cι(φ(α)) and Im
∫

β

ω = dι(ψ(β)) (10.1)

for all α∈M and β∈N .
The intersection pairing between M and N yields a perfect pairing 〈 · , · 〉: F×F!Q

which is compatible with the action of F in the sense that 〈λx, y〉=〈x, λy〉 for all λ∈F .
A second such pairing is given by (x, y)=Tr(xy). Since the space of all such perfect
pairings is a 1-dimensional F -vector space, there is a λ∈F such that

〈x, λy〉= Tr(xy) (10.2)

for all x, y∈F .
Let αj∈M be the class of a core curve of the jth horizontal cylinder Cj , moreover

let rj =φ(αj), and let (sj)
g
j=1 be the dual basis of F to (rj)

g
j=1. Choose βj∈H1(X; Q)

such that βj≡ψ−1(λsj) (mod M). By (10.2), the βj are dual to the αj with respect to
the intersection pairing. It follows that βj crosses Cj once and no other cylinder, so the
height of Cj is Im

∫
βj

ω. By (10.1), we have∫
αj

ω = cι(rj) and Im
∫

βj

ω = dι(λ)ι(sj).

As a consequence of this lemma we see that for an algebraically primitive Teichmüller
curve and an irreducible cusp, the well-known commensurability of moduli is equivalent
to rationality. With this in mind, one may restate Theorems 5.2 and 8.1 by saying
that even without the presence of Teichmüller curves the generalization ‘commensurable
moduli’ is a necessary (and for g=3 together with positivity also sufficient) condition for
irreducible cusps to lie in the eigenform locus.

11. GL+

2 ( ) non-invariance

In this section we show that the GL+
2 (R) action on ΩMg admits a continuous extension to

the Deligne–Mumford compactification. We deduce from this and the previous sections
that the eigenform locus for real multiplication by the ring of integers in any totally real
cubic field is not invariant under the action of GL+

2 (R). McMullen proved non-invariance
in [32] for the maximal order in Q

(
cos 2

7π
)

using the existence of a curve with a special
automorphism group.
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GL+

2 ( )-action on ΩMg

The definition of the GL+
2 (R) action on Abelian differentials works just as well for sta-

ble Abelian differentials (X, ω), regarding ω as a holomorphic 1-form on the punctured
Riemann surface X. The opposite-residue condition is preserved by linearity of the
GL+

2 (R)-action on R2: If α and −α are simple loops around a pair of opposite nodes p

and q, then

A·resp(ω) =A·
∫

α

ω =−A·
∫
−α

ω−A·resq(ω).

Thus we obtain an action of GL+
2 (R) on ΩMg and ΩT (Σg).

Proposition 11.1. The action of GL+
2 (R) on ΩMg is continuous.

Proof. We show that the action of GL+
2 (R) on ΩT (Σg) is continuous. As the

GL+
2 (R)-action on ΩT commutes with the action by the mapping class group, this action

then descends to a continuous action on ΩMg.
We claim that under the action of GL+

2 (R) on ΩT (Σg) the hyperbolic lengths of
simple closed curves vary continuously. Since the topology of T (Σg) is the smallest
topology such that hyperbolic lengths of simple closed curves are continuous functions
�γ : T (Σg)!R+∪{∞}, it follows that under this action, the underlying Riemann surfaces
are varying continuously.

That the length of a simple closed curve γ varies continuously follows easily from
considering the annular covering of X corresponding to 〈γ〉⊂π1(X). The modulus of
this annulus varies continuously under quasiconformal deformation, and the length of γ

is determined by this modulus (see for example [16, Proposition 7.2]).
Consider a form ([f : Σg!X], ω)∈ΩT (Σg). Say that the collapse f pinches a set of

curves S on Σg. We may choose a set of curves α1, ..., αg on Σg that generate a Lagrangian
subspace of H1(Σg; Z) and such that each of the αj is either one of the curves in S or
intersects each curve in S trivially. We obtain a trivialization of the bundle ΩT (Σg) over
a neighborhood of X sending a form η to (η(α1), ..., η(αg))∈Cg.

Say that A·(Y, η)=(Z, ζ). From the definition of the GL+
2 (R) action, we have

ζ(αj) =A·η(αj),

with A∈GL+
2 (R) acting on C∼=R2 in the usual way. Thus η(αj) varies continuously under

the GL+
2 (R)-action, and so the action on ΩT (Σg) is continuous.

Four-punctured spheres

Given r1, r2∈C, we let R(r1,r2)
∼=M0,4 be the moduli space of pairs (X, ω), where X is

the four-punctured sphere P1\{p1, p−1, p2, p−2} and ω is the unique meromorphic 1-form
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with simple poles at the pj with residue r±j at p±j . We identify R(r1,r2) with C\{0, 1}
via the cross-ratio R=[p1, p−1, p−2, p2] and write (XR, ωR) for the form associated with
the cross-ratio R.

If r1, r2∈R, then the subgroup P⊂GL+
2 (R) of matrices fixing the vector (1, 0) acts

on R(r1,r2), as this is the subgroup of GL+
2 (R) preserving the residues rj .

Proposition 11.2. Let r1, r2∈R, with r1 �=±r2. We have the following :
• The horizontal foliation of each (XR, ωR)∈R(r1,r2) is periodic. Each (XR, ωR)

has either two or three cylinders (counting the two half-infinite cylinders of width rj as
a single cylinder).

• The form ωR has a double zero for the single value of R,

R =
(r1−r2

r1+r2

)2
. (11.1)

• We define Spine(r1,r2)⊂R(r1,r2) to be the locus of 2-cylinder forms. Spine(r1,r2) is
the locus of singular leaves of a quadratic differential on R(r1,r2). Spine(r1,r2) is homeo-
morphic to a figure with the shape of a “9”, with the 3-pronged singularity at the unique
form (XR, ωR) with a double zero. The 1-pronged singularity is at R=1, the point in the
boundary of R(r1,r2) obtained by pinching the curve separating p±1 from p±2.

• Spiner1,r2
is the locus of points fixed by the action of P on R(r1,r2).

Proof. See [5, Proposition 7.3] for the first statement, [4, Proposition 6.10] for the
second statement and [5, Proposition 7.4] for the third statement.

For the final statement, suppose that (X, ω)∈R(r1,r2) is a 3-cylinder surface. Then
there is a single finite horizontal cylinder C⊂X with a simple zero of ω on the top and
bottom boundaries of C. The period

∫
γ

ω along a curve joining these two zeros has
non-zero imaginary part, so it is not fixed by any matrix in P . Thus P does not fix ω.

If (X, ω)∈Spine(r1,r2), then (X, ω) is obtained by gluing four half-infinite cylinders
to the graph (the spine of (X, ω)). There is an affine automorphism of (X, ω) with
derivative P which is the identity on the spine. Thus (X, ω) is stabilized by the action
of P .

GL+

2 ( ) non-invariance

Let ΩE ι
O⊂ΩMg be the locus of ι-eigenforms (as opposed to its projectivization E ι

O).

Theorem 11.3. Let O be a totally real cubic order and X⊂ΩM3 be an irreducible
component of ΩE ι

O. If X⊂ΩM3 has non-trivial intersection with a boundary stratum
of type [6], then X is not invariant under the action of GL+

2 (R).
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Proof. Suppose that X meets the locus R(r1,r2,r3) of irreducible stable forms with
poles of residues (±r1,±r2,±r3), where (r1, r2, r3) is an admissible basis of ι(F ). In the
boundary of R(r1,r2,r3) there is a stratum R′ of type-[4]×2 [4] parameterizing forms with
two nodes of residue ±r2, one of residue ±r1, and one of residue ±r3. We identify R′

with R(r1,r2)×R(r3,r2)
∼=M0,4×M0,4, with cross-ratio coordinates R1 on R(r1,r2) and R3

on R(r3,r2) as in the previous paragraph.
By Theorems 8.5 and 8.1, X∩(R(r1,r2)×R(r3,r2)) contains an irreducible component

V cut out by the equation
Ra1

1 Ra3
3 = ζ (11.2)

for some root of unity ζ. We suppose that X is GL+
2 (R)-invariant, in which case V is

invariant under P⊂GL+
2 (R) by Proposition 11.1.

We define φ, ψj : C!C by ψj(z)=zaj , and φ(z)=ζ/z. Since the spine in R(rj ,r2) is
the locus fixed by the action of P⊂GL+

2 (R) by Proposition 11.2, if V is preserved by this
action, we must have

ψ−1
3 φψ1(Spine(r1,r2))⊂Spine(r3,r2) .

Moreover, since the ψj and φ are local homeomorphisms, for a 1- or 3-pronged singular-
ity p of Spine(r1,r2), we must have that ψ−1

3 φψ1(p) consists entirely of 1- or 3-pronged
(respectively) singularities of Spine(r3,r2). Since each spine has only one singularity of
each type, we must have a3=±1. By switching the roles of r1 and r3, we must also have
a1=±1. As the 1-pronged singularity of each spine is located at Rj =1, we must have
ζ=1, or else ψ−1

3 φψ1(1) �=1.
It remains to consider the case where aj =±1 and ζ=1. Given the location of the

3-pronged singularities (11.1) and the cross-ratio equation (11.2), we obtain

(r1−r2

r1+r2

)(r3−r2

r3+r2

)±1

= 1,

which implies that
r1

r2
=±r3

r2
.

This contradicts the requirement that (r1, r2, r3) is a basis of F .

Corollary 11.4. If OF is the maximal order in a totally real cubic number field
F , then the eigenform locus ΩE ι

OF
is not invariant under the action of GL+

2 (R).

Proof. If OF is a maximal totally real cubic order, Proposition 9.2 provides an
admissible basis of some ideal in O. By Theorem 8.1, the eigenform locus EOF

then
intersects the corresponding irreducible boundary stratum, so EOF

is not invariant by
Theorem 11.3.
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It should be true also for non-maximal orders O that no irreducible component of
ΩE ι

O is GL+
2 (R)-invariant. To achieve this using our approach one needs to have in-

formation about which symplectic extensions of O-modules arise from cusps of a given
irreducible component X of EO. This seems like a quite delicate number-theoretic ques-
tion.

12. Intersecting the eigenform locus with strata

Given the results of the previous section, one might now ask whether the intersection of
the eigenform locus with lower-dimensional strata or the hyperelliptic locus is GL+

2 (R)-
invariant. Refined versions of the proof of Theorem 11.3 are likely to give negative answers
to this question as well, provided that the intersection has large enough dimension so
that the degeneration techniques can still be applied.

The most basic dimension question is, whether the eigenform locus lies generically in
the principal stratum ΩM3(1, 1, 1, 1), i.e. the stratum of maximal dimension. Motivation
for this question is the following coarse heuristics. Almost all primitive Teichmüller curves
in genus 2 are obtained by intersecting the eigenform locus with the minimal stratum
ΩM2(2). In genus 3, the stratum ΩM3(4) (of minimal dimension) has codimension 3 in
the principal stratum. Hence if the eigenform locus EO lies generically in the principal
stratum, then the expected dimension for its intersection (in PΩM3) with PΩM3(4) is
zero—too small for a Teichmüller curve. On the other hand, components of EO that do
not lie generically in the principal stratum are a potential source of Teichmüller curves.
We show that such components do not exist.

Theorem 12.1. For any given order O in a totally real cubic number field each
component of the eigenform locus ΩEO lies generically in the principal stratum.

The theorem will follow from an intersection property of the real multiplication locus
with small strata.

Lemma 12.2. Given a weighted admissible boundary stratum S of type [4]×2 [4],
there is a weighted admissible boundary stratum S ′ of type [3]×2 [3]×1 [3]×2 [3]×1 which
is a degeneration of S.

Proof. Let ±r1 and ±r2 be the weights in one component of curves parameterized
by S, and let ±r2 and ±r3 be the weights in the other component. Admissibility implies
that the Q+-span of Q(r1), Q(r2) and Q(r3) is a half-plane H in R3. In each of the two
components we can pinch further curves. They necessarily carry the weights ±(r1±r2),
resp. ±(r2±r3), the signs depending on the choice of the curve. By Lemma 8.6, we know
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that Q(r1±r2) does not lie in H. In the Galois closure of F we calculate

Q(r1±r2) =Q(r1)+Q(r2)±(rσ
1 rσ2

2 +rσ
2 rσ2

1 ).

Consequently the two choices of the sign lead to Q-images on different sides of H. To
produce S ′ it thus suffices to pinch some curve that acquires the weight r2+r3 and also
to pinch a curve on the other component acquiring the weight r1±r2 with the sign chosen
such that Q(r2+r3) and Q(r1±r2) lie on opposite sides of H.

Lemma 12.3. For any given order O in a totally real cubic number field, each cusp
of the eigenform locus EO has non-empty intersection with a boundary stratum parame-
terizing stable curves without separating curves and all of whose components are thrice-
punctured projective lines (i.e. a pants decomposition without separating curves).

Proof. Since the boundary of the locus of RMO is obtained by intersecting with a di-
visor of M3, every boundary stratum is contained in the closure of a 2-dimensional bound-
ary stratum of RMO. Suppose this 2-dimensional stratum is an admissible weighted
boundary stratum S with dim(Span(S))=3. Case distinction and dimension count shows
that S does not contain any separating curves. Any degeneration of S is again admissi-
ble. Thus in this case it suffices to pinch enough non-separating curves to obtain a pants
decomposition.

The only admissible weighted boundary stratum S that gives a 2-dimensional com-
ponent of ∂RMO and with the property that dim(Span(S))=2 is the stratum of type [6].
We can degenerate this to a stratum of type [4]×2 [4] without changing admissibility. Now
Lemma 12.2 concludes the proof.

Proof of Theorem 12.1

By Lemma 12.3, there exists a stable form on the boundary of each component of EO
with each of the four irreducible components being a thrice-punctured sphere. This form
must then have four simple zeros, one in each irreducible component. Since the eigenform
over a degenerate curve has simple zeros, so does the eigenform over a general curve.

13. Finiteness for the stratum ΩM3(3, 1)

The aim of this section is to prove the following finiteness result for Teichmüller curves
using the cross-ratio equation and the torsion condition of Theorem 10.3. This stratum
contains one of the two known algebraically primitive Teichmüller curves in genus 3,
the billiard table T (2, 3, 4) whose unique irreducible cusp in ΩM3 is described in Exam-
ple 13.8 below.
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Theorem 13.1. There are only finitely many algebraically primitive Teichmüller
curves in the stratum ΩM3(3, 1).

This theorem will follow from the following finiteness theorem for cusps.

Theorem 13.2. There are only finitely many points in PΩM3(3, 1) which are limits
of irreducible cusps of algebraically primitive Teichmüller curves in PΩM3(3, 1).

Heights

The proof of Theorem 13.2 will require some facts about heights of subvarieties of Pn(Q)
which we summarize here. Unless stated otherwise, proofs can be found in [24].

Consider a number field K and a point P =(x0 :...:xn)∈Pn(K). The absolute loga-
rithmic Weil height of P is

h(P ) =
1

[K : Q]
log
∏

v∈MK

max{‖x0‖v, ..., ‖xn‖v},

where MK is the set of places of K, and ‖ · ‖v is the normalized absolute value at v.
The height h(P ) is unchanged under passing to an extension of K, so h is a well-defined
function h: Pn(Q)![0,∞).

There is a more general notion of the height of a subvariety V of Pn(Q). The precise
definition is not important for us; see [24, p. 446]. We write h(V )∈[0,∞) for the height
of V .

We will require the following properties of heights:
• (Northcott’s theorem) A collection of points in Pn(Q) with uniformly bounded

height and degree is finite.
• The height of a hypersurface V ⊂Pn(Q) cut out by a polynomial f is equal to the

height of the vector of the coefficients of f .
• (Arithmetic Bézout theorem [40]) If X and Y are irreducible projective subvari-

eties of Pn(Q) with Z1, ..., Zn being the irreducible components of X∩Y , then for some
constant C,

n∑
j=1

h(Zj) � deg(X)h(Y )+deg(Y )h(X)+C deg(X) deg(Y ).

• The height of a zero-dimensional subvariety of Pn(Q) is the sum of the heights of
its individual points.

• ([24, Theorem B.2.5]) Given a degree-d rational map φ: Pn!Pm defined over Q

with indeterminacy locus Z, for any P∈Pn(Q)\Z we have

h(φ(P )) � dh(P )+O(1). (13.1)
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Finally, there is the important theorem of Bombieri–Masser–Zannier [10] on inter-
sections of curves with algebraic subgroups of the torus Gn

m. We define Hk⊂Gn
m to be

the union of all algebraic subgroups of dimension at most k.

Theorem 13.3. Let C⊂Gn
m be a curve defined over Q which is not contained in

a translate of a subtorus. Then C∩Hn−1 is a set of bounded height, and C∩Hn−2 is
finite.

The H0 case was proved in [29]. An effective version of this theorem was proved
in [22].

Finiteness of cusps

We now begin working towards a weaker version of Theorem 13.2, namely that there
are up to scaling a finite number of possible triples of widths of cylinders of irreducible
periodic directions (i.e. of residues) of algebraically primitive Veech surfaces in ΩM3(3, 1).

We first introduce some notation which will be used throughout the next two sub-
sections. Consider the moduli space M0,8 of eight distinct labeled points in P1. We label
these points p, q, x1, x2, x3, y1, y2 and y3. Given a point P∈M0,8, there is a unique
(up to scale) meromorphic 1-form ωP with a threefold zero at p, a simple zero at q, and
a simple pole at each xj or yj . We will usually make the normalization that p=0 and
q=∞, and write

ωP =
z3 dz∏3

j=1(z−xj)(z−yj)
. (13.2)

Under this normalization, M0,8 is naturally identified with an open subset of P5 via
P �!(x1 :...:y3). We use this identification to define the Weil height h on M0,8. We define
S(3, 1)⊂M0,8 to be the locus of P such that ωP satisfies the opposite-residue condition
Resxj

ωP =−Resyj
ωP for each j. The variety S(3, 1) is locally parameterized by the

projective 4-tuple consisting of the three residues and one relative period, so S(3, 1) is
3-dimensional.

We define the cross-ratio morphisms Qj , Rj : S(3, 1)!Gm by

Qj = [p, q, yj , xj ] and Rj = [xj+1, yj+1, yj+2, xj+2]−1,

with indices taken mod 3. In the standard normalization of (13.2), Qj =yj/xj . We define
Q,CR: S(3, 1)!G3

m by

Q = (Q1, Q2, Q3) and CR = (R1, R2, R3).
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We define Res: S(3, 1)!P2 by Res(P )=(Resxj ωP )3j=1. Finally, given ζ=(ζ1, ζ2, ζ3)∈G3
m,

we define Sζ(3, 1)⊂S(3, 1) to be the locus where Qj =ζj for each j. The situation is
summarized in the following diagram:

5-dim 3-dim

M0,8

Q

��

CR

���
��

��
��

��
��

S(3, 1)� ��� Res �� P2

G3
m G3

m.

Lemma 13.4. Any irreducible stable form (X, ω)∈PΩM3(3, 1) which is a limit of
a cusp of an algebraically primitive Teichmüller curve C⊂PΩM3(3, 1) is equal to ωP

for some P∈S(ζ1,ζ2,ζ3)(3, 1)∩CR−1(T ), where the ζj are the non-identity roots of unity
and T⊂G3

m is a proper algebraic subgroup. Moreover, if we normalize the components
(r1 :r2 :r3) of Res(P ) such that r1∈Q, then {r1, r2, r3} is a basis of some totally real
cubic number field.

Proof. The procedure for obtaining the limit stable surface while flowing along the
Teichmüller geodesic flow in a periodic direction is described in [30]. One should cut open
the surface along the core curves of the cylinders and glue in annuli of larger and larger
moduli and, in the limit, glue in a pair of discs joined at the node. In this picture the
1-form is a multiple of dz/z, since annuli are flat cylinders in the corresponding metric.
The residue of the 1-form is 1/2πi times the integral along the core curve of any of the
annuli and thus equal to 1/2πi times the width of the respective cylinder.

Consequently, the limit of an irreducible cusp of C is an irreducible stable form with
two zeros of order 3 and 1, and six poles whose residues (up to sign and constant multiple)
are the widths of the three horizontal cylinders of (X, ω). Since a form generating C is
an eigenform for real multiplication by Theorem 10.3 and the residues rj are widths of
cylinders, they are a basis of the trace field by Lemma 10.4.

That the ζj are roots of unity follows from the torsion condition of Theorem 10.3.
By Abel’s theorem ([21, p. 235]), there is an n such that for each (Y, η)∈C we may find a
degree-n meromorphic function Y!P1 with a single pole of order n at one zero of η and
a zero of order n at the other zero of η. Taking a limit of such functions (this is justified
in [39, p. 75]), we obtain a meromorphic function f : X!P1 with a single zero at p and
a single pole at q. In the normalization of (13.2), such a function must be of the form
f(z)=zn. Since xj and yj are identified, we must have xn

j =yn
j , as desired.

That CR(P ) lies on an algebraic subgroup is a direct consequence of Theorems 5.2
and 8.5.
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Lemma 13.5. Let ζj be roots of unity, all different from 1. If the ζj are not all cube
roots of unity, then S(ζ1,ζ2,ζ3)(3, 1) is zero-dimensional. Otherwise S(ζ1,ζ2,ζ3)(3, 1) has a
single 1-dimensional component, a line in M0,8. Specifically, if ζj =e2jπi/3 for j=1, 2, 3,
this component is the line L cut out by the equation

x1+x2+x3 = 0,

under the normalization p=0 and q=∞.

Proof. S(ζ1,ζ2,ζ3)(3, 1) is cut out by the equations yj =ζjxj and

Dj = ζ3
j

∏
k 
=j

(xj−xk)(xj−ζkxk)−
∏
k 
=j

(ζjxj−xk)(ζjxj−ζkxk). (13.3)

Suppose that S(ζ1,ζ2,ζ3)(3, 1) has a positive-dimensional component, and suppose
first that (say) ζ1 is not a cube root of unity. Then there is a homogeneous polynomial
P of some degree d<4 which divides Dk for all k. Expanding Dk, we obtain

Dk = x4
k(ζ3

k−ζ4
k)+...+ζk+1x

2
k+1ζk+2x

2
k+2(ζ

3
k−1),

with indices taken mod 3. Because each Dk contains x4
k with non-zero coefficient, each

monomial xd
k appears in P with non-zero coefficient. We have that

P (0, x2, x3) =α2x
d
2+α3x

d
3+... divides D1(0, x2, x3) = ζ2x

2
2ζ3x

2
3(ζ

3
1−1).

This is not possible since the αj are non-zero and ζ3
1 �=1.

Now let ζj =e2jπi/3 for j=1, 2, 3. A simple computation shows that P =x1+x2+x3

divides each Dk, so L is a component of S(ζ1,ζ2,ζ3)(3, 1). An argument as above shows that
the quotients Dk/P have no common factor, so L is the only 1-dimensional component.

Finally, suppose that the ζj are arbitrary cube roots of unity. Replacing some of the
roots e2jπi/3 with their complex conjugates amounts to swapping the corresponding xj

and yj . Thus the new S(ζ1,ζ2,ζ3)(3, 1) is simply a rotation of the old one.

Lemma 13.6. No 1-dimensional component of any S(ζ1,ζ2,ζ3)(3, 1) lies in CR−1(T )
for any algebraic subgroup T of G3

m.

Proof. By Lemma 13.5, we need only show that the equation

Ra1
1 Ra2

2 Ra3
3 = ζ (13.4)

is not satisfied identically on the line L cut out by x1+x2+x3=0. We may assume
without loss of generality that a1 �=0. Normalizing so that x1=1 and setting x3=−1−x2,
the left-hand side of (13.4) becomes a rational function R in the single variable x2 which
must be identically equal to ζ. The factor 2x2+1 lies in the numerator of R1 and appears
nowhere else in R. Since C[x] is a unique factorization domain, it follows that R is not
constant.
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Proposition 13.7. There is a finite number of projectivized triples of real cubic
numbers (r1 :r2 :r3) with the property that for any irreducible periodic direction on any
(X, ω)∈ΩM3(3, 1) generating an algebraically primitive Teichmüller curve, the projec-
tivized widths of the cylinders in that direction is one of the triples (r1 :r2 :r3).

In particular, there are only finitely many trace fields F of algebraically primitive
Teichmüller curves in ΩM3(3, 1).

Proof. By Northcott’s theorem, we only need to give a uniform bound for the heights
of the triples (r1 :r2 :r3) of widths of cylinders, or equivalently of residues of limiting
irreducible stable forms satisfying the conditions of Lemma 13.4.

Let Tj(ζ1, ζ2, ζ3)⊂P5 be the subvariety cut out by the polynomial Dj of (13.3). Since
‖ζ‖v=1 for any root of unity ζ and place v, it follows directly from the definition of the
Weil height that there is a uniform bound on the heights of the Tj(ζ1, ζ2, ζ3), independent
of the root of unity. As S(ζ1,ζ2,ζ3)(3, 1) is the intersection of the Tj(ζ1, ζ2, ζ3) and the
hypersurfaces defined by xj−ζjyj (which have height 0), it follows from the arithmetic
Bézout theorem that the varieties S(ζ1,ζ2,ζ3)(3, 1) have uniformly bounded height. Thus
the zero-dimensional components of the S(ζ1,ζ2,ζ3)(3, 1) have uniformly bounded height
as well. By (13.1), the heights of these points increase by a bounded factor under the
rational map Res. Thus the residue triples arising from the zero-dimensional components
of the S(ζ1,ζ2,ζ3)(3, 1) have uniformly bounded heights.

By Lemma 13.5, it only remains to bound the heights of the residue triples arising
from the line L⊂M0,8 cut out by the equations x1+x2+x3=0 and xj−θyj =0 for each j,
where θ=e2πi/3. Suppose a point P∈L is a cusp of an algebraically primitive Teichmüller
curve. By Lemma 13.4, Res(P ) must be defined over a cubic number field, and CR(P )
must lie in H2. Let L′⊂L be the set of points satisfying these two conditions. If Res(P )
lies in P2(F ) for some cubic number field F , then P is defined over F (θ). Thus L′ and
CR(L′) consist of points of degree at most 9. By Lemma 13.6, CR(L) is not contained
in a translate of a subtorus of G3

m. Thus Theorem 13.3 applies, and we conclude that
CR(L)∩H2 is a set of points of bounded height. Therefore CR(L′) is finite by Northcott’s
theorem. The map CR is finite on L by Lemma 13.6, so L′ and thus Res(L′) are finite as
well. Thus there are at most finitely many residue triples arising from L as desired.

Remark. All of the estimates in the preceding propositions, in particular Theo-
rem 13.3 and the height estimates are effective. It is thus possible in principle to give
a complete list of triples (r1, r2, r3) that may appear in Proposition 13.7. Unfortunately
the available bounds are so bad that this is currently not feasible.
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Example 13.8. There is one known example of an algebraically primitive Teichmüller
curve in ΩM3(3, 1), discovered in [28]. It is the surface (X, ω) obtained by unfolding the
(2, 3, 4) triangle, shown in [28, Figure 7]. The trace field of (X, ω) is K=Q[v]/P (v), of
discriminant 81, where P (v)=v3−3v+1 has a solution v=2 cos 2

9π. The vertical direction
is of type [5]×3 [3] and the circumferences of the vertical cylinders are

w1 = 2 cos 3
9π = 1,

w2 =−2
(
cos 3

9π+cos 8
9π
)
= v2+v−1,

w3 = 2
(
cos 2

9π+cos 3
9π+cos 8

9π
)
=−v2−3,

w4 = 2 cos 4
9π = v2−2.

One can check that the wj form an admissible basis for a lattice in K.
The horizontal direction is irreducible periodic, with cylinder widths

r1 =−(2w1+w2+w3+w4) =−v2−v,

r2 = w1+w2+w3 = v+1,

r3 =−(3w1+3w2+2w3+w4) =−2v2−3v+2.

In fact, this is the unique irreducible cusp of the Teichmüller curve generated by (X, ω).
This cusp lies on the line L of Lemma 13.5, as we will now show. The irreducible cusp
(X0, ω0) is of the form

ω0 = C
z3 dz∏3

j=1(z−xj)(z−ζjxj)
=

3∑
j=1

(
rj

z−xj
− rj

z−ζjxj

)
(13.5)

for some constant C and roots of unity ζj =e2πipj/qj . To calculate the ζj , we consider
a relative period. There is a path joining the two zeros of (X, ω) of period

∑3
j=1

1
3rj ,

so the integral of ω0 along a path γ joining 0 to ∞ must be
∑3

j=1

(
aj + 1

3

)
rj for some

integers aj . From (13.5), we calculate

1
3

3∑
j=1

rj =
∫

γ

ω0 =
3∑

j=1

rj log ζj =
3∑

j=1

rj
pj

qj
,

so we must have ζj =e2jπi/3 for each j, by the linear independence of the rj . One then
calculates that up to multiplication by an element in C∗ there is a unique triple (x1, x2, x3)
so that ω0 has the residues rj , namely

x1 = 1, x2 = 2−v2 and x3 = v2−3.

Since the sum of the xj is 0, this cusp lies on the line L.
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Theorem 13.2 now follows directly from Proposition 13.7 and the following result.

Proposition 13.9. Given a basis (r1, r2, r3) over Q of a totally real cubic number
field, there are only finitely many limits of cusps of algebraically primitive Teichmüller
curves in ΩM3(3, 1) having residues (r1, r2, r3).

Proof. Consider the variety C=Res−1(r1 :r2 :r3)⊂S(3, 1) of forms having residues
±rj and two zeros of order 3 and 1. A dimension count shows that C is at least 1-
dimensional. In fact, C is exactly 1-dimensional, as C is locally parameterized by the
single relative period of the forms ωP . Let C0 be a component of C. We suppose that C0

contains infinitely many cusps of algebraically primitive Teichmüller curves and derive a
contradiction.

Consider the image Q(C0)⊂(C∗)3. We claim that Q(C0) is a curve. If not, and
Q(C0)=(ζ1, ζ2, ζ3), then C0 is a component of S(ζ1,ζ2,ζ3). Thus C0 must be the line L of
Lemma 13.5. It is easily checked that Res is not constant along L, so this is impossible.

Now, since C0 contains infinitely many cusps of Teichmüller curves, Q(C0) must
contain infinitely many torsion points of (C∗)3 by Lemma 13.4. From this it follows that
Q(C0) is a translate of a subtorus of (C∗)3 by a torsion point. This is a consequence of
the main result of [29]. It can also be seen by first applying Theorem 13.3 to show that
Q(C0) lies on a subtorus T⊂(C∗)3, and then applying Theorem 13.3 again to T .

We now claim that Q(C0) is in fact a subtorus of (C∗)3, rather than a translate. To
see this, it suffices to show that the identity (1, 1, 1) is contained in the closure of Q(C0).
Given a form (X, ω) representing a point P∈C0, we may choose a saddle connection
joining the two zeros p and q. Following [17], we may collapse this saddle connection
(and possibly simultaneously a homologous saddle connection) to obtain a path in C0

such that the zeros p and q collide. Under this deformation, each cross-ratio Qj tends
to 1, so (1, 1, 1) is in the closure, as desired.

It remains to show that Q(C0) is not a subtorus of (C∗)3. If this were true, we
could find roots of unity ζj and a projective triple (x1(a):x2(a):x3(a)), depending on a
parameter a, such that for all a∈C the differential

ω∞ =
3∑

j=1

(
rj

z−xj(a)
− rj

z−ζa
j xj(a)

)
dz =

p(z) dz∏3
j=1(z−xj(a))(z−ζa

j xj(a))

has a triple zero at z=0 and a simple zero at z=∞. The vanishing of the z4-term of p(z)
implies that

3∑
j=1

rjxj(1−ζa
j ) = 0
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and the linear term (divided by x1x2x3) also yields a linear equation. Using the normal-
ization x1=1, we may solve the two linear equations for x2 and x3. We then take the
limit of x2 and x3 as a!0, applying l’Hôpital’s rule twice. If we let ζj =e2πiqj for some
qj∈Q, we obtain

x2(0) =
q3r3−q1r1

q2r2−q3r3
and x3(0) =

q2r2−q1r1

q3r3−q2r2
. (13.6)

Taking the derivative of the z2-term of p(z) with respect to a at a=0 and making
the substitution (13.6), we obtain

(q3r3−r1q1)(q2r2−q1r1)(q1r1+q2r2+q3r3) = 0.

The Q-linear independence of the rj yields the desired contradiction.

Finiteness of Teichmüller curves

Theorem 13.1 follows from Theorem 13.2 and the following proposition.

Proposition 13.10. Suppose that there are at most finitely many limits of irre-
ducible cusps in PΩMg of algebraically primitive Teichmüller curves in a component of
the stratum PΩMg(m,n) (resp. in a component of the stratum PΩMg(2g−2)). Then
there are at most finitely many algebraically primitive Teichmüller curves in this compo-
nent of PΩMg(m,n) (resp. in this component of the stratum PΩMg(2g−2)).

Proof. Suppose that (X, ω)∈ΩMg(m,n) generates an algebraically primitive Teich-
müller curve. Let θ be an irreducible periodic direction on (X, ω), and let I and J each
be either a saddle connection or a periodic direction of slope θ. Since lengths of saddle
connections or circumferences of cylinders of a given slope are unchanged under passing
to the corresponding limiting stable form, from finiteness of irreducible cusps we obtain
a constant C, depending only on the stratum, such that

1
C

<
length(I)
length(J)

<C (13.7)

where I and J are any saddle connections or closed geodesics of the same slope.
There is an irreducible periodic direction on (X, ω) by Lemma 10.2. Choose one, and

apply a rotation of ω so that it is horizontal. Let C1, ..., Cg be the horizontal cylinders
of (X, ω). There must be some cylinder Cj having one of the two zeros in its bottom
boundary component and the other zero in the top. Take a saddle connection γ contained
in Cj and connecting these zeros. Applying the action of the matrix(

1 t

0 1

)
∈SL2(R),
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we may take γ to be vertical, whence the vertical direction is irreducible periodic with g

cylinders D1, ..., Dg.
By Lemma 10.4, after normalizing by the action of a diagonal element of GL+

2 (R),
we have w(Cj)=rj and h(Cj)=sj (where we write w(C) and h(C) for the width and
height of the cylinder C) for some basis (rj)

g
j=1 of F (with a chosen real embedding)

and dual basis (sj)
g
j=1. By finiteness of cusps, there are only finitely many possibilities

for the rj , and thus for the sj , so we may take them to be fixed. Since the saddle
connection γ crosses only one cylinder, its length is bounded by a constant depending
only on the stratum. This implies that the w(Dj) are bounded as well by (13.7), and
hence, for each j, w(Dj) assumes only finitely many values. Therefore the intersection
matrix (Bjk)g

j,k=1=(Cj ·Dk)g
j,k=1 has bounded entries, and we may take it to be fixed.

The widths and heights of the Dk are determined by B, as well as the widths and heights
of the Cj , so we may take them to be fixed as well.

Now each intersection of Cj and Dk is isometric to a rectangle Rjk of width h(Dk)
and height h(Cj). Thus the surface (X, ω) may be built by gluing the finite collection of
rectangles consisting of Bjk copies of Rjk for each index (j, k). As there are only finitely
many gluing patterns for a finite collection of rectangles, there are only finitely many
possibilities for (X, ω).

For the case PΩMg(2g−2) the same argument works. It is even simplified by the
fact that every direction is irreducible.

14. Finiteness conjecture for ΩM3(4)hyp

In this section, we give numerical and theoretical evidence for the following conjecture,
which together with Proposition 13.10 implies Conjecture 1.4 for the case of the stratum
ΩM3(4)hyp.

Conjecture 14.1. There are only a finite number of possibilities for the projec-
tivized triples (r1 :r2 :r3) of widths of cylinders of algebraically primitive Teichmüller
curves in ΩM3(4)hyp.

Everything in this section should hold as well for the other component ΩM3(4)odd of
ΩM3(4), but we only consider the hyperelliptic component for simplicity. The hyperel-
liptic component contains the other of the two known examples of algebraically primitive
Teichmüller curves in genus 3, Veech’s heptagon. We describe the stable form which is
the limit of the unique cusp of this curve in Example 14.4 below. Finally we will give the
algorithm for searching any eigenform locus for Teichmüller curves in ΩM3(4) which is
used to prove Theorem 1.6.
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Finiteness for fixed admissibility coefficients

Recall from (8.10) that if S is a weighted admissible boundary stratum of type [6], then
the weights rj satisfy

∑3
j=1 cj/rj =0 for some cj∈Z. We call the triple (c1, c2, c3) of

coprime integers the admissibility coefficients of the rj .

Proposition 14.2. For any fixed triple (c1, c2, c3) there is only a finite number of
algebraically primitive Teichmüller curves in ΩM3(4)hyp which possess a direction whose
cylinders have lengths with admissibility coefficients (c1, c2, c3).

This has the following obvious consequence.

Corollary 14.3. In ΩM3(4)hyp there is only a finite number of algebraically prim-
itive Teichmüller curves meeting the infinite collection of weighted boundary strata pro-
vided by the algorithm in the proof of Proposition 9.2.

The limiting differential in the hyperelliptic case

We want to make the cross-ratio coordinates more explicit and therefore normalize the
hyperelliptic involution on the stable curve X∞ corresponding to a Teichmüller curve in
ΩM3(4)hyp. Necessarily, X∞ is irreducible, and consequently the desingularization of
X∞ is a P1 with coordinate z, where we may normalize the hyperelliptic involution to
be z �!−z and where z=0 is the 4-fold zero. The preimages of the nodes are ±xj for
j=1, 2, 3, and we will at some points in the sequel use the full threefold transitivity of
Möbius transformations to normalize moreover x1=1. The differential ω∞ pulls back on
the normalization to

ω∞ =
3∑

j=1

( rj

z−xj
− rj

z+xj

)
dz =

Cz4∏3
j=1(z2−x2

j )
dz (14.1)

for some constant C that can obviously be expressed in the rj and xj . Since x1x2x3 �=0,
coefficient comparison yields the two equations

3∑
j=1

rjxj+1xj+2 = 0, (14.2)

3∑
j=1

rjxj(x2
j+1+x2

j+2) = 0, (14.3)

where the indices are to be read mod 3. The cross-ratio map CR as defined by equa-
tion (8.1) is given by CR=(R1, R2, R3), where

Rj =
(xj+1−xj+2

xj+1+xj+2

)2
.
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It will be convenient to use that CR factors as a composition of the squaring map and
the rational map CR0: P2!(C∗)3 defined by CR0=(R′

1, R
′
2, R

′
3), where

R′
j(x1: x2: x3) =

xj+1−xj+2

xj+1+xj+2
.

Example 14.4. Veech’s heptagon curve lies in this stratum, and we conjecture that
it is the only one. Let F =Q[v]/〈v3+v2−2v−1〉 be the cubic field of discriminant D=49.
There is a unique cusp whose cylinder widths are projectively equivalent to

r1 = 1, r2 = v2+v−2 and r3 = v2−2,

with v=2 cos 2
7π. Since

3∑
j=1

1
rj

= 0 and NF
Q (rj) = 1 for all j,

the cross-ratio exponents in (8.3) are all 1. Only one of the three non-trivial solutions to
equations (14.2) and (14.3) satisfies the cross-ratio equation

∏3
j=1 Rj =1, namely

x1 = 1, x2 =−v2−v+1 and x3 = v2+v−2.

Note in comparison with Proposition 14.7 below that here the cj , the NF
Q (rj) and

also the moduli of the cylinders are all 1. That is, all the auxiliary parameters are
arithmetically as simple as possible.

Inside the domain of CR0 the rationality condition
∑3

j=1 cj/rj =0 together with the
opposite-residue condition, i.e. equations (14.2) and (14.2), defines a curve Y =Y(c1,c2,c3).
We want to apply Theorem 13.3 to this curve and now check the necessary hypothesis.

Lemma 14.5. Let X⊂(C∗)n be an irreducible curve whose closure in Cn contains
points P1, ..., Pn, where Pj =(pj1, ..., pjn) and where for all j we have pjj =0 while pjk �=0
for k �=j. Then X is not contained in the translate of an (n−1)-dimensional algebraic
subtorus in (C∗)n.

Proof. Let zj be coordinates of Cn and suppose on the contrary that X is contained
in such a torus given by the equation

∏n
j=1 z

bj

j =t for some bj∈Z not all zero and t∈C∗.
This equation holds on X, and thus on its closure. Inserting Pj implies that bj =0. Using
all the Pj , we obtain the contradiction that all of the bj are zero.

Corollary 14.6. The curve CR0(Y ) does not lie in a translate of an algebraic
subtorus in (C∗)3.
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Proof. Normalizing x1=1 and applying the degeneration x2!0 to CR0(Y ) we obtain
the limit point (1, 0, 1)∈C3. Permuting coordinates, we obtain a limit point where any
single coordinate vanishes, so we may apply Lemma 14.5 after verifying irreducibility.

A computer algebra system with an algorithm for computing the Weierstrass normal
form (e.g. Maple, using [25]) exhibits a birational map from Y(c1,c2,c3) to the curve

Ỹ : y2 = c2
1x

6−3c2
1x

5+3c2
1x

4+(c2
2−c2

3−c2
1)x

3+3c2
3x

2−3c2
3x+c2

3.

A straightforward calculation shows that the right-hand side is not a perfect square for
any (c1, c2, c3). Consequently, Ỹ is irreducible and thus also Y(c1,c2,c3).

Proof of Proposition 14.2

The preceding lemma allows us to apply Theorem 13.3. As a consequence, the height
of any point (R1, R2, R3)∈CR0(Y ) that lies on an algebraic subtorus is bounded. This
applies in particular to the torus given by the cross-ratio equation. More precisely, since
the degree of Y is independent of the cj , we deduce from [22, Theorem 1] (applied to
X=Y and p=(R1, R2, R3)) that there is a constant C1 such that

h(R1, R2, R3) �C1(1+h(c1: c2: c3)). (14.4)

Moreover, the Rj lie in a field of degree at most 3 over F as can be checked solving
(14.2) and (14.3). Consequently, by Northcott’s theorem, there is only a finite number
of possible Rj lying on CR(Y ) and satisfying the cross-ratio equation.

Unlikely cancellations

We now show that if the finiteness conjecture fails, then there has to be a sequence of
Teichmüller curves with the admissibility coefficients cj becoming more and more compli-
cated simultaneously for all the directions on the generating flat surface, but meanwhile
there are miraculously enormous cancellations making the cross-ratio exponents much
smaller than the cj .

Proposition 14.7. Suppose that Conjecture 14.1 fails for ΩM3(4)hyp. Then there
exists a sequence of Teichmüller curves {Cn}n∈N generated by flat surfaces (Xn, ωn) such
that for every periodic direction θ on the Xn,

(i) the residues rj,n,θ have admissibility coefficients (c1,n,θ, c2,n,θ, c3,n,θ) with the
height lower bound

h(c1,n,θ, c2,n,θ, c3,n,θ) �n,
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and on the other hand
(ii) the cross-ratio exponents have upper bound

|aj |�C2(1+h(c1,n,θ, c2,n,θ, c3,n,θ))2

for some constant C2 independent of n and θ.

Note that in (ii) the height on the right is logarithmic in the cj , whereas on the left
of the inequality we have the usual absolute value.

As preparation we examine the image Z⊂(C∗)3 of ΩM3(4)hyp under CR.

Lemma 14.8. There is no translate of an algebraic subtorus of (C∗)3 contained in Z.

Proof. It suffices to prove the claim for the image Z0 of Z under CR0. The variety
Z0 is cut out by the equation

1
R′

1R
′
2

+
1

R′
1R

′
3

+
1

R′
2R

′
3

+1 = 0. (14.5)

This variety does not contain the image of y �!(α1y
n1 , α2y

n2 , α3y
n3) for any non-

zero αj and integers nj , as substituting the αjy
nj into the left-hand side of (14.5) always

yields a non-zero Laurent series in y.

Proof of Proposition 14.7

The existence of a sequence satisfying (i) follows from Proposition 14.2. That this se-
quence moreover satisfies (ii) follows from a close examination of the proof of [22, The-
orem 1]. We fix θ and n and drop these indices. We write c=(c1 :c2 :c3). We follow the
notation in [22]. The idea of Habegger is to use the geometry of numbers to construct a
subtorus Hu of (C∗)3 determined by a triple u=(u1, u2, u3) of integers depending on a
parameter T—the precise dependence is explained in (14.6) below—such that for a point
p=(R1, R2, R3) in the intersection of W =CR0(Yc) and Hu the following holds:

h(pHu) �C3(T−1/2(h(p)+1)+T ) and deg(Hu) �C4T

for some constants C3 and C4 ([22, Lemma 5]). An application of the arithmetic Bézout
theorem yields

h(p) �C5h(pHu)+C6 deg(Hu)h(W )+C7 deg(Hu).

Choosing T large enough, controlled by deg(W ) and the constants C5, C6 and C7 (i.e.
independently of h(W )), makes the contribution of T−1/2h(p) to the right-hand side
become inessential and proves the height bound

h(p) �C8(1+h(W )) �C9(1+h(c)).
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We need more precisely Lemmas 1 and 3 of [22] which construct the u. Together
they show that there exists u with

|u|�T and h(pu) �C10T
−1/2h(p). (14.6)

Combined with the previous estimate this yields

h(pu) �C11T
−1/2(1+h(c)),

where C10 and C11 depend only on the dimensions of the varieties in question, and not
on h(c). Since p lies in a field of bounded degree over F , choosing T >C12(1+h(c))2,
with C12 independent of h(c), suffices by Northcott’s theorem to conclude that h(pu)=0.

We now have two cases. In the first case u and the cross-ratio exponents (a1, a2, a3)
are proportional. In this case, (ii) holds by |u|�T and the primitivity of the triple
(a1, a2, a3). The second case is that they are not proportional, i.e. p lies on a torus of
codimension 2. Then we can apply [22, Theorem 1] to Z since the hypotheses are met by
Lemma 14.8. The conclusion of this theorem together with Northcott’s theorem is that
the second case can happen only a finite number of times.

A computer search for Teichmüller curves

We now describe the algorithm underlying Theorem 1.6 given in the introduction.
We first claim that for a given discriminant D it is possible to list all the admissible

triples (r1, r2, r3) for all lattices I with coefficient ring OI of discriminant D. To do so,
one has to first list all orders of discriminant D. Belabas [7] gave an algorithm which
enumerates all cubic fields of discriminant less than a given bound. Given a number
field F of discriminant at most D, enumerating all orders in F of discriminant D is a
finite search through all sub-Z-modules O of the maximal order OF of bounded index.
To list all O-ideals is a finite search through all Z-modules containing O up to an index
bound depending on D. Such a bound appears in the usual proofs of the finiteness
of class numbers, e.g. [12, Theorem 2.6.3]. (We do not claim that this is an efficient
algorithm.) Given a lattice I in a cubic field, an algorithm to find all admissible bases
of I is described in Appendix A. In practice we have restricted the search to maximal
orders, since maximal orders have been tabulated and representative elements of the ideal
classes are easily computed by the software Pari/GP.

Fixing a cubic order O, if there is a Teichmüller curve in EO∩PΩM3(4)hyp, then it
has a cusp whose limiting stable form ω∞ is of the form (14.1), with the triple (r1, r2, r3)
in the finite list constructed above. Normalizing x1=1, equations (14.2) and (14.3) reduce



the deligne–mumford compactification of the real multiplication locus 83

to a single cubic polynomial in x2. Solving this cubic polynomial for x2 (for each triple
(r1, r2, r3)) and verifying that none of the solutions satisfies the cross-ratio equation
allows us to verify that there are no Teichmüller curves in EO∩PΩM3(4)hyp. Applying
this algorithm to the 1778 fields of discriminant less than 40000 yields Theorem 1.6.

Appendix A. Boundary strata in genus 3:
Algorithms, examples and counting

In this appendix, we describe an algorithm for enumerating all boundary strata of a
given eigenform locus E ι

O, and we give some examples and counts of admissible boundary
strata obtained from this algorithm.

Enumerating admissible I -weighted strata from one example

Given a lattice I in a totally real cubic field, define a graph G(I) as follows. The
vertices of G(I) are the 2-dimensional admissible I -weighted boundary strata, up to
similarity. Two vertices are connected by an edge if the corresponding strata have a
common degeneration which is a 1-dimensional boundary stratum.

Proposition A.1. G(I) is connected.

Proof. By Theorem 8.1, the vertices of G(I) correspond to the 2-dimensional bound-
ary components of some cusp of some eigenform locus E ι

O. Thus it suffices to show that
the boundary in PΩM3 of each cusp of E ι

O is connected.
Now consider the normalization Y ι

O of Ē ι
O. By normality, the canonical morphism

E ι
O!XO extends to a morphism p: Y ι

O!X̂O (see [4, Theorem 8.10] for related argu-
ments). Since X̂O is normal, p−1(c) is connected by Zariski’s main theorem. The image
of p−1(c) in Ē ι

O is then connected, as desired.

It is a simple matter to enumerate all admissible I -weighted boundary strata adja-
cent to a given one: It suffices to perform all the (finitely many) possible degenerations
(as defined in §8) of the presently found boundary strata and check which of them are
admissible and I -weighted. Then one tries all the possible undegenerations and so on,
until this process adds no more admissible I -weighted boundary strata to the known list.
So Proposition A.1 allows us to enumerate all 2-dimensional I -weighted boundary strata
starting from a single one. Lower-dimensional boundary strata can be easily enumerated
from the 2-dimensional ones.
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Producing one admissible I -weighted boundary stratum

We now describe an algorithm which locates a single admissible I -weighted boundary
stratum. In practice this algorithm is fast and always succeeds, though we do not prove
this. The algorithm of Proposition 9.2 also works for lattices of the form 〈1, x, x2〉, but
not every lattice is similar to one of this form.

For an I -weighted boundary stratum S let Cone(S)⊂R3 be the R+-cone spanned
by {Q(w):w∈Weight(S)}, considered as a subset of R3 via the three field embeddings
of F . There are various possible shapes of this cone, which we call its type. It could be
all of R3, for short type (A), it could be a half-space (H), a proper cone of dimension 3
strictly contained in a half-space (C), a 2-dimensional subspace (S), or a 2-dimensional
cone (“fan”) in a subspace (F).

The idea of the algorithm is to simply start with any irreducible stratum S and
then apply a sequence of degenerations and undegenerations to S, at each stage trying
to increase, or at least not decrease, the size of Cone(S).

Algorithm A.2. Given a lattice I, compute an admissible I -weighted boundary stra-
tum S.

(i) Initialize S to be the irreducible boundary stratum with weights given by any
Z-basis of I.

(ii) While Cone(S) is neither of type (A), (H), nor (S):
• (Superfluous curves) If S has a node n which lies on the boundary of two distinct

irreducible components with Q(weight(n)) in the interior of Cone(S), then let S1 be
obtained from S by undegenerating n.

• (Try to degenerate) Else
– Loop through all degenerations S1 of S and check if S1 contains a node n with

Q(weight(n)) /∈Cone(S).
– (Got stuck) If no such degeneration was found, the algorithm is stuck. Start again

at (i) with a random new choice of initial basis.
• Let S=S1.
(iii) If the type of Cone(S) is (H), first undegenerate S until S contains only four

elements still spanning a half-space and then undegenerate the new S by removing the
node n with the property that Q(weight(n)) does not lie in the bounding hyperplane of
C. (The new S thus obtained is of type (S)).

(iv) Return S.

As far as we know, it is possible for the algorithm to either get stuck with every
choice of initial basis, or to loop infinitely, producing larger and larger cones without
ever giving a half-space or the full space. We have never seen this happen, though very
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Figure 3. The boundary of the Hilbert modular threefold of discriminant 49.

rarely it gets stuck and must be restarted with a new initial basis.
Some counts of boundary strata obtained from this algorithm are shown in Table 1.
It would be interesting to give an algorithm in the spirit of Algorithm A.2 which is

guaranteed to always find an admissible boundary stratum.

Example 1: Discriminant 49

Figure 3 presents the outcome of the preceding algorithm for the unique ideal class of
the maximal order in the field F =Q[x]/〈x3+x2−2x−1〉 of discriminant 49. There are
two 2-dimensional boundary strata. Dotted lines join each 2-dimensional stratum to its
1-dimensional degenerations.
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D h(D) regulator [6]-components total 2-dim components

49 1 0.525454 1 2
81 1 0.849287 1 6
148 1 1.662336 3 10
169 1 1.365049 1 14
229 1 2.355454 4 16
257 1 1.974593 2 19

316 1 3.913458 7 26
321 1 2.569259 3 24
...

961 1 12.195781 19 104

993 1 5.554643 5 69
...

2597 3 4.795990 5+5+6 51+47+85
...

3969 3 4.201690 0+0+1 53+57+114
3969 3 12.594188 18+13+18 132+144+152

8281 3 15.622299 12+7+12 259+224+266
8281 3 7.949577 6+6+1 148+92+179

...

11884 1 72.746005 79 1008
...

20733 5 12.114993 12+21+8+8+12 250+222+138+143+281
...

22356 1 49.555997 31 967

22356 1 32.935933 16 751
22356 1 37.348523 23 787

...

28165 5 7.935079 4+2+2+4+6 174+125+121+152+337
46548 3 17.990764 6+6+10 289+306+719
46548 3 21.437334 9+9+16 324+337+741

...

84837 1 129.205864 73 2795
84872 3 60.681694 42+42+54 1121+1064+1373

84889 1 77.482276 32 1913
84893 1 124.912555 85 2610
84905 1 73.229843 27 1723

84925 1 90.776953 37 2112
84945 1 82.760047 50 1879

...

161249 1 65.942246 16 1882
161753 2 26.530548 10+10 641+1084

...

438492 1 504.944683 228 12265

Table 1. The number of boundary components for a given discriminant D.
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Example 2: All possible types of admissible strata do occur

We give a list of examples showing that all possible types of boundary strata without
separating nodes do occur.

• If the stratum is of type [6], then dim(Span)=2 and D=49 contains an example.
• If the stratum is of type [5]×3 [3] then dim(Span)=3. Most cusps contain such an

example, for example the unique cusp of the cubic field of discriminant 81.
• If the stratum is of type [4]×4 [4] then dim(Span)=2 or dim(Span)=3. The second

case frequently appears, e.g. for D=49. The first case rarely occurs, here is an example:
For the field F =Q[x]/〈x3−x2−10x+8〉 with discriminant 961, take the ideal I=OF and
the weights r1=4− 1

2x− 1
2x2, r2=5+ 1

2x− 1
2x2, r3=1 and r4=−(r1+r2+r3).

• If the stratum is of type [4]×2 [4] then dim(Span)=2. These lie in the boundary
of every irreducible stratum, for example in discriminant 49.

• All the remaining possible types of boundary strata without separating nodes
have necessarily dim(Span)=3 and examples are easily obtained as degenerations of the
preceding examples.

Example 3: Ideal classes with no admissible bases

Consider one of the two fields of discriminant 3969, namely Q[x]/〈x3−21x−35〉. Its
ideal class group is of order 3. According to a computer search, both of the ideal classes
I1=〈7, 7x, x2−14〉 and I2=I2

1 =〈7, x, x2−3x−14〉 do not admit any irreducible boundary
strata. But I3=OF =〈1, x, x2−3x−14〉 has a single irreducible boundary stratum given
by the weights r1=1, r2=x+3 and r3=x2−2x−16.

Appendix B. Components of the eigenform locus

In this appendix we show that, in contrast to the quadratic case, the E ι
O∼=XO are not

necessarily connected for cubic orders O.

Recall from §2 that the irreducible components of XO correspond bijectively to
isomorphism classes of proper symplectic O-modules of rank 2. One example of such
a module is O⊕O∨. We will show that there is such a module M such that for no
submodule I of M the sequence

0−! I −!M −! I∨ −! 0

is split, and thus M is not isomorphic to O⊕O∨.
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We remark that such examples cannot exist for the ring of integer OF , since Dedekind
domains are projective, nor can they exist for [F :Q]=2, e.g. by structure theorems for
rings all of whose ideals are generated by two elements [6].

The calculations will be easier to do in the local situation, and if the above sequence
was split, it would also be split locally. Choose a totally real cubic number field F and
a prime p different from 2 and 3 such that the residue field k is isomorphic to Fp3 . Let
K be the completion of F at the prime p. Let RK be the ring of integers in K and let
R be the preimage of the prime field under the surjection RK!k. We will exhibit an
R-module M with the claimed properties. From there it is obvious how to construct a
module over O, the preimage of the prime field under OF!k, that also has the claimed
properties.

For simplicity, we suppose moreover that RK is monogenic, i.e. that RK =Zp[θ]/f

for some cubic polynomial f .

Lemma B.1. We have

RK = R∨
K ⊂p2 R∨ ⊂p p−1RK ,

where the subscripts denote the index. In fact,

R∨ = {r∈ p−1RK : Tr(pr)≡ 0 mod p}.

More precisely, there exists a Zp-basis {1, x, y} of RK which is orthogonal with respect
to the trace pairing. Using this basis we have

R = 〈1, px, py〉Z and R∨
K =
〈

1,
x

p
,
y

p

〉
Z

.

Proof. The ring R∨
K is generated by θj/f ′(θ) for j=0, 1, 2. Since f ′(θ) is a unit in

RK by the hypothesis on the residue field, we obtain RK =R∨
K .

Suppose that s∈p−1RK . We use that by definition any y∈R is congruent mod p to
z∈Z. Thus, since

Tr(rs)≡ z Tr(r) mod p,

we conclude that r∈R∨ if and only if Tr(pr)=0 (using p �=3).

Lemma B.2. The quotients RK/pRK , R∨/pR∨ and R/pR are 3-dimensional as Fp

vector spaces but different as R-modules:
• RK/pRK splits into a direct sum of 〈1〉 and 〈x, y〉, orthogonal with respect to the

trace pairing.
• R/pR has the irreducible R-submodule 〈px, py〉 and the corresponding sequence is

not split.
• R∨/pR∨, being the dual of R/pR, has the quotient R-module 〈x/p, y/p〉, and the

corresponding sequence is not split.
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Proof. The structure of RK/pRK is obvious. Suppose that 1+p(ax+by) generates
an R-submodule of R/pR of dimension 1 over Fp. Multiplying by px, we see that this
submodule also contains px. We thus obtain a contradiction.

Lemma B.3. We can calculate Ext-groups as follows:

Ext1R(R∨, R) = HomR(R∨, R/pR)/ HomR(R∨, R)∼= Fp,

Ext1R(R∨, RK) = HomR(R∨, RK/pRK)/ HomR(R∨, RK)∼= Fp,

Ext1R(R∨, R∨) = 0.

(B.1)

Proof. The short exact sequence of multiplication by p gives a long exact sequence

HomR(R∨,M)−!HomR(R∨,M/pM)−!Ext1(R∨,M)−!Ext1(R∨,M),

where the last map is induced by multiplication by p. Under the second map the image
of HomR(R∨,M/pM) is a p-torsion group and thus Ext1(R∨,M) is p-torsion as well.

We first deal with the case M=R. Obviously p2RK is contained in Hom(R∨, R) and
we claim that they are equal. If such a homomorphism was given by multiplication with
an element s /∈p2RK , take t=x/p∈R, where x is as above. Then ts /∈pRK and its reduc-
tion is not in the prime field, since the reductions of {1, x, y} are linearly independent
over Fp. This contradiction proves the claim.

Next we claim that

HomR(R∨, R/pR)∼= HomFp(k/Fp, Ker(Tr)),

where we consider Ker(Tr)⊂k. Note that a homomorphism from R∨ to R/pR factors
through R∨/pR∨. By Lemma B.2, there are no isomorphisms between them, in fact the
classification of quotient, resp. submodules, in this lemma shows more precisely that such
a homomorphism factors through an element in HomFp

(k/Fp, Ker(Tr)). Both on the quo-
tient module 〈x/p, y/p〉∼=k/Fp and on the submodule 〈px, py〉∼=Ker(Tr), the ring R acts
through its quotient Fp, so that indeed every Fp-homomorphism is an R-homomorphism.
Multiplication by p2R defines a subspace isomorphic to k inside HomFp(k/Fp, Ker(Tr)).
This concludes the second isomorphism of the second claim.

Then we look at the case M=RK . Now Hom(R∨, RK)∼=pR and the elements in
HomR(R∨, RK/pRK) factor through HomFp(k/Fp, Ker(Tr)) using the submodule struc-
ture of the finite R-modules determined in Lemma B.2.

The last statement follows by the same reasoning.

Proposition B.4. Let 0!R!M!R∨!0 be a symplectic extension corresponding
to a non-trivial element in Ext1R(R∨, R). Then M is a proper R-module. Moreover, M

has a unimodular symplectic structure and the R-action is by self-adjoint endomorphisms.
M is not a direct sum of two R-modules of rank 1.
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Proof. The trace pairing on R and R∨ induces a symplectic and unimodular pairing
on M . The R-submodule R of M is isotropic for this alternating pairing. Thus if M is
an R̃-module for some ring R̃ containing M and acting by self-adjoint endomorphisms,
then R is also an R̃-module. This implies that R̃=R, i.e. that M is a proper R-module.

It remains to show that M is not a direct sum. If it is, then M∼=a⊕a∨. If we apply
Hom(R∨, ·) to the extension defining M , we obtain an exact sequence

HomR(R∨, R∨)−!Ext1R(R∨, R)−!Ext1R(R∨,M)−!Ext1R(R∨, R∨).

The first map is a non-zero map R!Fp by the fact that M was constructed as a non-
trivial extension. The hypothesis on M implies that

Ext1R(R∨,M) = Ext1R(R∨, a)⊕Ext1R(R∨, a∨)∼= Fp.

As Ext1R(R∨, R∨)=0, it remains to show that at least one of the two groups Ext1R(R∨, a)
and Ext1R(R∨, a∨) is non-zero. The Ext-groups do not change if we replace a by pa.
Under this equivalence, the pair (a, a∨) is either (R,R∨), (R∨, R) or (RK , RK). Thus the
claim follows from Lemma B.3.
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