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PREFACE

0.1. The main interest in the theory of partial differential equations has always been
concentrated on elliptic and normally hyperbolic equations. During the last few years
the theory of these equations has attained a very satisfactory form, at least where Dirich-
let’s and Cauchy’s problems are concerned. There is also a vivid interest in other differential
equations of physical importance, particularly in the mixed elliptic-hyperbolic equations
of the second order. Very little, however, has been written concerning differential equations
of a general type. Petrowsky ([25], p. 7, pp. 38-39) stated in 1946 that “it is unknown, even
for most of the very simplest non-analytical equations, whether even one solution exists”,
and “there is, in addition, a sizable class of equations for which we do not know any correctly

posed boundary problems. The so-called ultra-hyperbolic equation

62u+ +"2u_82u+ +82u
022 oxt Byt y?

with p = 2 appears, for example, to be one of these.”” Some important papers have appeared
since then. In particular, we wish to mention the proof by Malgrange [19] that any differen-
tial equation with constant coefficients has a fundamental solution. (Explicit constructions
of distinguished fundamental solutions have been performed for the ultra-hyperbolic
equations by de Rham [27] and others.) Apart from this result, however, no efforts to
explore the properties of general differential operators seem to have been made. The
principal aim of this paper is to make an approach to such a study. The general point of

view may perhaps illuminate the theory of elliptic and hyperbolic equations also.

0.2. A pervading characteristic of the modern theory of differential equations is the use
of the abstract theory of operators in Hilbert space. Our point of view here is also purely

operator theoretical. To facilitate the reading of this paper we have included an exposition
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of the necessary abstract theory in the first chapter, where we introduce our main problems.1
Using the abstract methods we prove that the answer to our questions depends on the
existence of so-called a priori inequalities. The later chapters are to a great extent devoted
to the proof of such inequalities. In Chapters II and IV the proofs are based on the energy
integral method in a general form, i.e. on the study of the integrals of certain quadratic
forms in the derivatives of a function. For the wave equation, where it has a physical
interpretation as the conservation of energy, this method was introduced by Friedrichs and
Lewy [6]. Recently Leray [19] has found a generalization which applies to normally hyper-
bolic equations of higher order. In Chapter II we study systematically the algebraic aspects
of the energy integral method. This chapter deals only with equations with constant coef-
ficients. The extension to a rather wide class of equations with variable coefficients is
discussed in Chapter IV.

In Chapter III we chiefly study a class of differential operators with constant coefficients,
which in several respects appears to be the natural class for the study of problems usually
treated only for elliptic operators. For example, Weyl’s lemma holds true in this class, i.e.
all (weak) solutions are infinitely differentiable. Our main arguments use a fundamental
solution which is constructed there. The results do not seem to be accessible by energy
integral arguments in the general case, although many important examples can be treated
by a method due to Friedrichs [5].

0.3. A detailed exposition of the results would not be possible without the use of the
concepts introduced in Chapter I. However, this chapter, combined with the introductions of

each of the following ones, gives a summary of the contents of the whole paper.

0.4. It is a pleasure for me to acknowledge the invaluable help which professor B. L.
van der Waerden has given me in connection with the problems of section 3.1. I also want
to thank professor A. Seidenberg, who called my attention to one of his papers, which is

very useful in section 3.4.

CrAPTER I
Differential Operators from an Abstract Point of View
1.0. Introduction

In the preface we have pointed out that the present chapter has the character of an

introduction to the whole paper. Accordingly we do not sum up the contents here, but

1 Chapter I, particularly section 1.3, overlaps on several points with a part of an important paper
by Vidix ([34]) on general boundary problems for elliptic equations of the second order.
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merely present the general plan. First, in section 1.1, we recall some well-known theorems
and definitions from functional analysis. Then in section 1.2 we define differential operators
in Hilbert space and specialize the theorems of section 1.1 to the case of differential opera-
tors. A discussion of the meaning of boundary data and boundary problems is given in
section 1.3. This study has many ideas in common with Visik [34]. It is not logically in-

dispensable for the rest of the paper but it serves as a general background.

L.1. Definitions and results from the abstract theory of operators

Let B, and B, be two complex Banach spaces, i.e. two normed and complete complex
vector spaces. A linear transformation (operator) 7' from B, to B, is a function defined in

a linear set Dy in B, with values in B, such that
(1.1.1) T(az +Py)=aTz+ LTy

for , y€ Dr and complex «, 8. It follows from (1.1.1) that the range of values Ry is a linear
set in B,.
The set B, x B, of all pairs z = [x,, x,] with z;€B; (¢ =0, 1), where we introduce

the natural vector operations and the norm?
(1.1.2) [z] = (|zo]2 + |2, | 2)F,

is also a Banach space, called the direct sum of B, and B,. If 7 is a linear transformation

from B, to B,, the set in B, x B, defined by
(1.1.3) Gr = {[z, T}, o€ Dr}

is linear and contains no element of the form [0, z,] with », =0. The set G is called the
graph of 7'. A linear set G in B, X B,, containing no element of the form [0, x,] with , +0,
is the graph of one and only one linear transformation 7.

A linear transformation 7' is said to be closed, if the graph Gr is closed. We shall also
say that a linear transformation 7' is pre-closed, if the closure G of the graph Gr is a graph,
i.e. does not contain any element of the form [0, z,] with z; & 0. The transformation with
the graph Gr is then called the closure of 7'. Thus 7 is pre-closed if and only if, whenever
z,—~0in By and Tx,—y in B, we have y = 0. We also note that any linear restriction of
a linear pre-closed operator is pre-closed.

The following theorem gives a useful form of the theorem on the closed graph, which
states that a closed transformation from B, to B, must be continuous, if D, = B,. (Cf.

Bourbaki, Espaces vectoriels topologiques, Chap. T, § 3 (Paris 1953).)

! Any equivalent norm in B, x B, can be used, but this choice has the advantage of giving a Hilbert
norm, if By and B, have Hilbert norms.
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TarEoRrREM 1.1, Let B; (¢ =0, 1, 2) be Banach spaces and T; (i =1, 2) be linear trans-
formations from By to B,. Then, if T, is closed, T, pre-closed and Dr, < Dr,, there exists a
constant C such that

(1.1.4) | Tou|2< C(| Tyul®+ |u]?), w€eDny,.
Proor. The graph Gy of T, is by assumption closed. Hence the mapping

(1.1.5) Gr, 3 [u,T\ul—T,ueB,

is defined in a Banach space. We shall prove that the mapping is closed. Thus suppose
that [u,, T)u,] converges in G, and that 7T',u, converges in B,. Since T, is closed, there
is an element we Dy, such that u,—~u and T,u,— T, . In virtue of the assumptions,
u is in Dy, and, since T, is pre-closed, the existing limit of 7,u, can only be T, u. Hence
the mapping (1.1.5) is closed and defined in the whole of a Banach space, so that it is

continuous in virtue of the theorem on the closed graph. This proves the theorem.

Theorem 1.1 is the only result we need for other spaces than Hilbert spaces; it will also
be used when some of the spaces B; are spaces of continuous functions with uniform norm.
In the rest of this section we shall only consider transformations from a Hilbert space H
toitself. In that case the graph is situated in H X H, which is also a Hilbert space, the inner
product of x =[x, 2,] and y = [y,, ¥,;] being given by

(£,y) = (@, Yo) + (21, 9,)

For the definition of adjoints, products of operators and so on, we refer thereader to Nagy
([23], p. 27 ff.).

Lemwma 1.1. The range Rr of a closed densely defined linear operator T is equal to H if

and only if T*-1 exists and is continuous, and consequently is defined in a closed subspace.

Proor. We first establish the necessity of the condition. Thus suppose that Ry = H.
Since T™u = 0 implies that (T, u) = (v, T*u) = 0 for every ve Dr, it follows that 7%« =0
only if u = 0. Hence T™-! is defined. Now for any element v in H we can find an element
w such that Tw =v. Hence we have, if u€Drs,

(u,v) = (u, Tw) = (T™ u,w),
so that for fixed v

|w,0)| = C||T*u], weDr.

Let u, be a sequence of elements in Dz« such that || 7 u, || is bounded. Since |(u,,v)| is
q n

then bounded for every fixed v, it follows from Banach-Steinhaus’ theorem (cf. Nagy (23],
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p. 9) that ||u,|| must be bounded. Hence 7™-! is continuous, and since it is obviously
closed, we conclude that 7* -1 is defined in a closed subspace.
The sufficiency of the condition is easily proved directly but follows also as a corollary

of the next lemma.

Lemma 1.2. The densely defined closed operator T has a bounded right inverse S if and

only if T*-1 exists and is continuous.!

Proovr. Since T'S = I implies that Ry = H, it follows from the part of Lemma 1.1,
which we have proved, that a bounded right inverse can only exist if 7"~ is continuous.
The remaining part of Lemma 1.1 will also follow when we have constructed the right
inverse in Lemma 1.2.

In virtue of a well-known theorem of von Neumann [24], the operator TT" is self-

adjoint and positive. Under the conditions of the lemma we have
(TT*w, w) = (T*u, T*u) = C?(uw, u), U€Drr+,

where C is a positive constant. Hence 77" = 02]. Let A be the positive square root of
TT*. Since 4% = C?1, it follows from the spectral theorem that O < A-1< C-'1. The
operator A-1 is bounded and self-adjoint, ||4-!]|<C-'. Furthermore, the operator

T*A-1 is isometric according to von Neumann’s theorem. Now we define
(1.1.6) S=T"(TT*)1=T*4-14-

Since § is the product of an isometric operator and A-1, it must be bounded, and we
have ||S|| < C-1. Finally, it is obvious that 7'S =1I.

Lemyma 1.3. The densely defined closed operator T has a completely continuous right in-

verse S if and only if T*-! exists and is completely continuous.

Proor. We first note that the operator S given by (1.1.6) is completely continuous
if 71 and consequently A1 is completely continuous. This proves one half of the lemma.
Now suppose that there exists a completely continuous right inverse S. If u €D+, We

have for any veH
(u, v) = (u, TSv) = (8* T*u, v),

and therefore u =8*7™u. Hence, if v€Rrv, we have T*1p =8*p, which proves that

T™*-1 is completely continuous, since it is a restriction of a completely continuous operator.

! This means that S is continuous and defined in the whole of H, and satisfies the equality 'S =1,
where I is the identity operator.
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1.2. The definition of differential operators

Let QO be a y-dimensional infinitely differentiable manifold. We shall denote by
C*(Q) the set of infinitely differentiable functions defined in Q, and by C§° (Q) the set of
those functions in C*°({)) which vanish outside a compact set in Q. When no confusion
seems to be possible, we also write simply C* and O§.

A transformation P from C*(Q) to itself is called a differential operator, if, in local

coordinate systems (z!, ..., 2”), it has the form

1 0 1 0
12.1 =§ PR LA ’
( ) Pu ——/a (x)z o x™ @6:1:"%“

where the sum contains only a finite number of terms =0, and the coefficients g™ - %k

are infinitely differentiable functions of # which do not change if we permute the indices
;.1 We shall denote the sequence (a,...,ax) of indices between 1 and v by « and its length
k by |a|. Furthermore, we set
10
D= —1, 5}’ I)[,(=1)%~-~D°(,c .
Formula (1.2.1) then takes a simplified form, which will be used throughout:
(1.2.2) Pu=72a*()D,u.

Here the summation shall be performed over all sequences «.

We shall say that we have a differential operator with constant coefficients, if Q is a
domain in the »-dimensional real vector space R’, and the coefficients in (1.2.2) are constant,
when the coordinates are linear.

Let ¢ be a fixed density in Q, i.e. p (x) is a positive function, defined in every local coor-
dinate system, such that g (2)da!...da" is an invariant measure, which will be denoted dz.
We require that g () shall be infinitely differentiable, and, in cases where D has constant
coefficients, we always take g (z) = constant.

The differential operators shall be studied in the Hilbert space L? of all (equivalence
classes of) square integrable functions with respect to the measure dx, the scalar product

in this space being
(1.2.3) (, )= [u(z)v () da.

With respect to this scalar product we define the algebraic adjoint {—) of D as follows.

1 We restrict ourselves to the infinitely differentiable case for simplicity in statements; most argu-
ments and results are, however, more general and will later, in Chapter IV, be used under the weaker
condition of a sufficient degree of differentiability,
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Let veC® and let u be any function in C§. Integrating (P wu, v) by parts, we find that
there is a unique differential operator ﬁ such that

(1.2.4) (Pu, v)=(u, D).

In fact, we obtain _
Pv=0"12 Dy (0d*v).

When the coefficients are constant we thus obtain ﬁ by conjugating the coefficients,

which motivates our notation.

Leuma 1.4, The operator D, defined for those functions u in C* for which w and Du

are square integrable, is pre-closed in L2,

Proor. Let u, be a sequence of functions in this domain such that «,—0and Du,—~> v

(with L%-convergence). Then we have for any feC§°
(v, f) =lim (Pw,, f) =lim (u,, Pf) =0.
Hence v =0, which proves the lemma.

ReEmMark. It follows from the trivial proof that Lemma 1.4 would also hold if, for
example, we consider D as an operator from L2 to C, the space of continuous funections

with the uniform norm.

Lemma 1.4 justifies the following important definition.

DrriniTIOoN 1.1. The closure P, of the operator in L2 with domain CY, defined by P,
is called the minimal operator defined by D. The adjoint P of the minimal operator P, defined
by ﬁ, is called the maximal operator defined by D.

The definition of the maximal operator means that uisin D, and Pu ={ if and only if

% and f are in L?, and for any ve€C§ we have

(f: 0) = (w, Po).
Operators defined in this way are often called weak extensions. In terms of the more general
concep‘b of distributions (see Schwartz [28]), we might also say that the domain consists
of those functions # in L? for which D« in the sense of the theory of distributions is a
function in L2.
If ueC> and u and Pu are square integrable, it follows from (1.2.4) that Pu exists and
equals D u. This is of course the idea underlying the definition. Since P is an adjoint operator,

it is closed and therefore an extension of P,
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It is unknown to the author whether in general P is the closure of its restriction to
D, N O=. For elliptic second order equations in domains with a smooth boundary this
follows from the results of Birman [1]. If D is a homogeneous operator with constant
coefficients and () is starshaped with respect to every point in an open set, it is also easily
proved by regularization. In section 3.9 we shall prove an affirmative result for a class

of differential operators with constant coefficients, when Q is any domain.

We now illustrate Definition 1.1 by an elementary example. Let (2 be the finite interval
(a, b) of the real axis, and let D be the differential operator d"/d". It is immediately veri-
fied that the domain of P consists of those n-1 times continuously differentiable functions
for which %7 is absolutely continuous and has a square integrable derivative. The

domain of P, consists of those functions in the domain of P for which
w(@=--=u"V@a)=0, ud)=--=u"V(b)=0,

that is, those which have vanishing Cauchy data in the classical sense at ¢ and b with
respect to the differential operator D.

The same result is true under suitable regularity conditions for any ordinary differential
operator of order n. Hence, in general, the maximal (minimal) domain of an ordinary dif-
ferential operator is contained in the maximal (minimal) domain of any ordinary differen-
tial operator of lower or equal order. For partial differential operators, this result is no
longer valid, but we shall find a satisfactory substitute. OQur results are most conveniently

described in terms of the following definition.

DerintrroN 1.2. If D, = D, , we shall say that the operator P is stronger than the
operator Q and that Q is weaker than D. If D is both weaker and stronger than Q, i.e., if
D»r, = Da,, we shall say that D and Q are equally strong.!

We now pose the problem to determine the set of those operators Q which are weaker
than a given operator D. It is clear that the answer is closely connected with the regularity
properties and the boundary properties of the functions in D = The question is reduced
to a concrete problem by the following lemma.

Lemma 1.5. The operator Q is weaker than the operator D if and only if there is a con-
stant C such that

(1.2.5) lQullz < C{lPul+ [lu]]?), weoC.
Proor. If Q is weaker than D, it follows from Theorem 1.1 that
| Qoull* < C(| Pou]2 + l|u]l®), ueD,,

I Note that these notions depend on the basic manifold (.
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which implies (1.2.5). On the other hand, suppose that (1.2.5) is valid. If ’MGDP., we_can

find a sequence u, of functions in C§° such that

u,—>u, Pu,—Pyu.

Applying (1.2.5) to the functions %, —u, we find that Qu, is a Cauchy sequence. Since
Q, is closed, it follows that u€Daq,.

We shall repeatedly use the criterion given by Lemma 1.5 in the following chapters.
In Chapter II we shall find a simple and complete description of the operators Q with
constant coefficients which are weaker than a given operator P with constant coefficients,
when Q is a bounded domain in B’. (The answer is then independent of Q.) In Chapter IV

analogous results will be proved for a class of operators with variable coefficients.

REMark. If DP.C D, it follows from Theorem 1.1 in the same way as in the proof
of Lemma 1.5 that (1.2.5) is valid. Hence D, = D,, so that Q is weaker than P. This
shows that in Definition 1.2 we might replace the condition DP'C D o by the apparently
weaker condition ‘Dl,.c Do' It should also be observed that, in Definition 1.2 and in
most of our argaments here, we use the minimal and not the maximal differential
operators in view of the fact that the relation Dpr< Dg is very exceptional for partial
differential operators, as will be proved in Chapter III.

We shall next deduce the conditions in order that Qu should be continuous after correc-
tion on a null set for every ueD p,» the operator Q being interpreted in the distribution
sense. Such results form a stepping-stone from the weak concept of a solution of a
differential equation to the classical one. Sobolev has studied similar questions (see [30]),
but our results overlap very little with his.

LeMMA 1.6. In order that Qu should equal a bounded function in the distribution sense
for every u€ Dp,, it is necessary and sufficient thot there is a constant C such that

(1.26) sup| Qult < C(| Pull + Julf), wecs.
B,

If (1.2.6) is satisfied, Qu is a uniformly o;mtinuous function in Q after correction on a null
set, if w €Dp,, and Qu tends to zero at the boundary in the sense that to every ¢ > 0 thereis a
compact set K in Q, so that |Qu(x)| < ¢ in Q- K.

ProoF. That (1.2.6) is a necessary condition follows, if we consider Q as an operator
from L? to L™ and apply Theorem 1.1, which is possible in virtue of the remark following
Lemma 1.4. Convarsely, let (1.2.6) be satisfied. If ,, is a sequence of functions in C¢° such

that u,—>wu and Pu,->Pyu, where u is an arbitrary function in D, it follows that Qu,
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is uniformly convergent. Since the limit must equal Qu a.e., the last statement of the lemma
follows.
The last assertion of the lemma may also be formulated as follows: Qu is continuous

and vanishes at infinity in the Alexandrov compactification of Q.

We now turn to another matter, the existence of solutions of differential equations.
Lemma 1.1 and the definition of P as the adjoint of P, prove the following result.

LEMMA 1.7. The equation Pu = f has, for any | € L2, at least one solution u€D,, if, and

only if, Py has a continuous inverse, i.e., if
(1.2.7) (w, w) < C*(Pu, Pu), ueCy,
where C s a constant.

In Chapters II and IV it will be proved that (1.2.7) is valid under very mild assump-
tions about PD.

1.3. Cauchy data and boundary problems

The example on page 169 makes it justifiable to say that the functions in Dp, are those
which have vanishing Cauchy data with respect to the operator P, and we are thus led
to the following definition.

DeEriNITION 1.3. The quotient space
(1.3.1) 0 =GP/GP.

with the quotient norm is called the Cauchy space of P. If u€D,, the residue class of the pair
[u, Pu] is an element of O, which is called the Cauchy datum of u and is denoted by I'u.

It follows from the definition that two functions in D - which only differ by a function
in CF(Q), have the same Cauchy data. When the coefficients are constant it is easy to
prove (Lemma 2.11) that every function in D,, which vanishes outside a compact set
in Q, is also in DP.. It then follows that two functions in D ps which are identical outside
a compact set in Q, have the same Cauchy data. It is of course natural to expect that this
is valid for very general operators though we have not obtained any proof.

The example on page 169 also suggests the following definition.

DEFINITION 1.4. Let B be a linear manifold in the Cauchy space C of P. The problem
to find a solution f of

(1.3.2) Pf=g, TfeB,
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for arbitrarily given g€L? is called a linear homogeneous boundary problem. I'f€ B is the
boundary condition.

Let P be the restriction of P to those f for which I'f€ B. Then P is linear and
(1.3.3) P,cPcP.

Conversely, any linear operator P with this property corresponds to exactly one linear
manifold B in C.

DEriNiTION 1.5. The boundary problem (1.3.2) is said to be (completely) correctly posed,

if P has a (completely) continuous inverse, defined in the whole of L2

This definition and the following result are essentially due to Viiik [34], who also

congsiders less restrictive definitions,

TrEOREM 1.2. There exist (completely) correctly posed boundary problems for the opera-

tor P if and only if P, and P, have (completely) continuous inverses.

Proor. Suppose that there exists a (completely) correctly posed boundary problem,
and let P be the corresponding operator. Since Pis (completely) continuous and Po Py,
it follows that Py' must be (completely) continuous, and since Plisa right inverse of P,
it follows from Lemma 1.2 (Lemma 1.3) that Pg* is (completely) continuous.

Now assume that Py' and P! are (completely) continuous. In virtue of the continuity
of Py', the range R p, of Py is closed. Let & be the orthogonal projection on R, . If § is
the right inverse of P constructed in Lemma 1.2 (Lemma 1.3), the operator I' defined by

T{=Py' (=f)+S((I-m)f), fel?,
is (completely) continuous. Since
PTf=nf+ (I -m)f=],
the operator 7' has an inverse ﬁ, and Pc P. Furthermore, 7> P;! and hence ﬁDPo,

so that Poc.?’c P. Since P-1 is (completely) continuous and defined in the whole of

L2, the proof is completed.

We shall next derive a description of the correctly posed boundary conditions, which
differs from Visik’s. Let U be the set of all solutions u of the homogeneous equation Pu = 0.

This is a closed subspace of L2, since P is a closed operator.

Lemwma 1.8. Suppose that Py is continuous. Then the restriction y of the boundary opera-
tor I" to U maps U topologically onto a closed subspace T'U of C.
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Proovr. Let A be a constant such that

IPofllz4 1]l feD,,
Then we have, if w€U,

lwlP=[Tulf= inf (lu—f|"+||PoflF)= inf (ju—fl*+4%F])
€Dp, €Lz

—inf {(1 ) AR/ + 43 = ulf a2/ + a2),

u
-1

This proves the lemma.

TuEOREM 1.3. Suppose that Py* and Py are continuous. Let B be a linear manifold in
C, and let P be the corresponding operator. Then P is closed if and only if B is closed. p1
exists if and only if B and I'U have only the origin in common. P-14s continuous and defined
tn the whole of L? if and only if C is the topological sum of B and I'U.

ProoF. Thefirst assertion follows at once from the definition of the topology in quotient
spaces. In fact, a set in a quotient space is by definition open (closed) if and only if its
inverse image is open (closed).

P-1has a sense if and only if f’f + 0 when 0 =+ f € D;, thatis, if nosolution u + 0 of Pu =0
satisfies the boundary condition. But this means that 0 is the only common element of
I'U and B.

Now suppose that C is the topological sum of I' U and B. From the preceding remark
it follows that P-1 exists, and we have to prove that it is bounded. The assumption means
that there exists a bounded (oblique) projection 7z of C onI' U along B. Let 8 be the bounded
right inverse of P, which was constructed in Lemma 1.2, and let ¥ be the restriction of

I' to U, which was studied in Lemma 1.7. Then the operator
Tg=81g—y1al'S 1y

is defined in the whole of L? and is a continuous operator. Obviously, Tg€Dpand PTg =

=g ~— 0. Furthermore,
[Tg=T819—-al'SgeB,

so that TgeD; and PT g=PTg=g. Hence P1= T, which proves the assertion.
On the other hand, suppose that P-1 is continuous and defined everywhere. Then the

mapping .
Gp3[f, Pfl—f—~P1PfecU

is continuous. We have f —pp { =0 if and only if feD;. The mapping

Gp3lf, Pl>T(f —P-1P})el'U
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is also continuous and, since it vanishes in G5, it defines a continuous mapping = from
Gp/Gp,=C to I'U. We have mp =0 if and only if g€ B. Now & leaves the elements of
I'U invariant. Hence x is a projection on I' U along B, and from the continuity of z our

assertion follows.

We finally sketch a similar study of the completely correctly posed boundary problems,
when P, and P, have completely continuous inverses, by introducing a new mode of conver-
gence in C. We shall say that a sequence [%,, v,] of elements in L2 X L2 is w-convergent, if
u,, converges strongly and v, converges weakly. In C we define the quotient w-convergence:
a sequence @, of elements in C is w-convergent, if there exists a w-convergent sequence
(. Pf.J€Gp such that I'f, =g,.

Weshall prove that the operatory from U toI" U transforms the L?- convergent sequences
in U and the w-convergent sequences in I' U into each other. In fact, I'u, is obviously
w-convergent if u, is convergent. Conversely, if ['«,, is w-convergent, there exist elements
f€D,, so that u, —f, converges strongly and P,f, converges weakly. Since we have
fo =P (Pyf,), it follows from the weak convergence of P,f, and the complete continuity
of Py that f, is strongly convergent. Hence u,, is strongly convergent, which proves our
assertion. Using Lemma 1.8 we now see that in I' U the w-convergence is equivalent to
strong convergence.

A slight modification of the proof of Theorem 1.3 shows that the operator ﬁ, correspond-
ing to a linear manifold B in C, has a completely continuous inverse, defined in the whole
of L?, if and only if C is the direct sum of Band " U, and the projection sz of C onI' U along
B is w-continuous in the sense that it transforms w-convergent sequences into w-convergent

(and hence strongly convergent) sequences.

CaaprTER II

Minimal Differential Operators with Constant Coefficients

2.0. Introduction

Let D be a differential operator with constant coefficients and let €2 be a domain in
R’. In Chapter I we introduced the minimal differential operator P, in L?(Q), defined by
P. The object of this chapter is to study P, more closely, We first restrict ourselves to the
case where Q is bounded, and can then obtain fairly complete results. Some remarks on
the case of non-bounded domains are given at the end of the chapter.

We first establish the boundedness of the inverse of a minimal differential operator

with constant coefficients for bounded (2 by means of the Laplace transformation, using



GENERAL PARTIAL DIFFERENTIAL OPERATORS 175

a lemma by Malgrange [20]. This result shows that Lemma 1.7 is always applicable, i.e.
that the equation Pu =f has a square integrable solution % for any feL2(Q).

We then turn to the exact determination of the differential operators which are weaker
than D. With D=(D,, ..., D,), where D=1 2/2 x*, we may write P = P (D), where P ()

is a polynomial in the vector & = (£,,...,5,). Now set
PE)=E|PY @,
where P are derivatives of P, and the summation extends over all «. Then Q is

weaker than D if and only if

Q.

4
3

To prove this result we use a generalization of the energy integral method. For equations

|

(2.0.1) <.

N

of higher order than two, this method was first used by Leray [19]. In the general case
considered here, where the lower order terms of the operators have great importance, it
has been necessary to develop an algebra of energy integrals in a systematic manner. It
may be remarked that, for some special second order equations, similar questions have
been posed and solved by Ladyzenskaja [18], even under less restrictive boundary condi-
tions.

As a consequence of our result we find that the product of a function % € Dp, and a func-
tion v, which is € in a neighbourhood of Q,isin D p,- Hence we find that the relation
ueD s has a local character. We then study this relation in the interior and at the boundary
of Q.

The inequalities derived by the energy integral method also make it possible to deter-
mine those operators Q for which Qu is continuous after correction on a null set for every

€Dy, In fact, this is the case if and only if

(2.0.2) (g (£ d&< oo,
P (&)
The inequalities (2.0.1) and (2.0.2) only involve the quotient (:2 (&) /I:’ (§). In section
2.8 we also give conditions in terms of this quotient in order that Que L? for every
ue'DP“ and in order that Qu should exist in manifolds of dimension less than .
We can also prove that the inverse of P, is completely continuous, if P (£) really depends
on all variables. More generally, we prove that the operator @, P, is completely continuous

if and only if

Lal

£)
()

|

(2.0.3)

—~0 when &— oo,

el
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2.1. Notations and formal properties of differential operators with constant coefficients

Let R’ be the real v-dimensional space with elements xz = (21,...,2") and let C, be the
complex y-dimensional space with elements { =({;,...,{,). In precisely one way we can
write { = £ +i7, where £ and #, as in the whole paper, denote real vectors. The variables

z and { will be considered as dual with respect to the bilinear form
<GD, C>=;xk Ck'
A polynomial P ({) can be written as a finite sum
(2.1.1) P()=3a%L,

where o = (o0, ..., 0;) is a sequence of indices between 1 and », the a® are complex constants
which do not change, if the indices in « are permuted, and {, = {y,--- C“k' The length & of
the sequence o is denoted by |«|. The polynomial (2.1.1) defines a differential operator
P =P (D) operating on the functions in R’,

2.1.2) P(D)=3a*D,

(see section 1.2). The polynomials in C, and the differential operators in R* are thus in
a one-to-one correspondence, and this correspondence is in fact independent of the choice

of coordinates since

P (D)e <=8 =P (L) ®0,

By § we denote the space of infinitely differentiable rapidly decreasing functions intro-

duced by L. Schwartz [28]. Denoting the Fourier transform of a function « in § by 4,
(2.1.3) @ (&)=2n) " [u(@)e "8 da,

the Fourier transform of P (D)wu is P (£)4(£), and it follows from Parseval’s formula that

(2.1.4) [1PD)yuPds~[|P@E 2@ ds

We shall repeatedly need the analogue of Leibniz’ formula for general differential
polynomials
(2.1.5) P(D)uv)=P(D, + D,)uv.

The interpretation of this formula is that, after P(D, + D,) has been expanded in powers
of D, and D,, we shall let D, operate only on « and D, operate only on ». Formula (2.1.5)
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is, of course, an immediate consequence of the rule for differentiating a product. Now we

have by Taylor’s formula

P‘“"’:Z ,%P@(s),

where
alelp o p
afa B 3§a,"'3§ak

For |a| = k the k indices in « shall run independently form 1 to ». Leibniz’ formula, (2.1.5)

now takes the more explicit form

(2.1.6) PO woy= > 2=?

[af!

P(D)u.

2.2. Estimates by Laplace transforms

Let Q be a bounded domain in R’, and let P (D) be a differential operator with constant

coefficients. We shall prove the continuity of the inverse of the minimal operator P,

THEOREM 2.1. The operator Py has a continuous inverse, i.e. there exists a constant
C such that

(2.2.1) lu|| < C||P(D)yu], w»e€C&(Q).
ProoF. We form the Laplace transform of u, defined by
W(Q)=hE+in)=Cm) " [e =y (x)da.

This is an entire analytic function since u has compact support. The Laplace trans-
form of P(D)u is P({)%({). Now the proof of (2.2.1) follows easily from the following
lemma on analytic functions of one variable, analogous to one used previously by Mal-

grange [20].

LemMmaA 2.1. If g(2) is an analytic function of a complex variable z for |2] < 1, and r(2)
is a polynomial with highest coefficient A, then

2n
(2.2.2) |AgO)F<@m) ™ [lg ) r ()P do.
0

Proor oF LEMmma 2.1. Let 2z; be the zeros of »(z) in the unit circle and sst

_ 22 )
7'(z)—q(Z)IJIz/z_1
On the unit circle we have |r(z)| = |¢(2)|, and ¢ (2) is analytic in the circle. Hence we have

@) g r @) P do=2n)" [|g(? g [Fd0=]g(0)g(0)]

12 — 553810. Acta Mathematica. 94. Tmprimé le 26 septembre 1955.
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Now ¢(0)/A is, apart from a factor +1, the product of the zeros of r(z) outside the unit

circle. Hence |g(0)] > |4 |, which proves the lemma.

We now complete the proof of the theorem. Choose a real vector &, such that p(&,) +0,
where p is the principal part of P, that is, the homogeneous part of highest degree of P.
Applying the lemma to the analytic function 4 ({ +¢&,) and the polynomial P({ - t&,),

considered as functions of the complex variable ¢, we get
|4 (@) pEI s @m) " 4G +eE) P(C+eE) 0.

Letting (=& be real and integrating with respect to £ we obtain

lpEP[la@Pdés@m) " [[[a(E+e78) PE+eE)FdEdo

=@2a) [d0[|4(E+i& sin 0) P (&+i&, sin 0)PdE.
By Parseval’s formula we can calculate the integrals with respect to &, which gives
|p €[] @) Pda<@n)™ [d0[|P(D)u(w)f et m0 gg,

Let C' be the supremum of e/<*%>!/[p(£,)| when x€Q. Then we have

[lu@)Pde<C?[|P(D)u (@)} da,
which proves (2.2.1).
By choosing &, in a suitable fashion we could get a good estimate of the magnitude of the
constant C. We shall not do so, since still better results can be obtained by a different method

later in this chapter.

2.3. The differential operators weaker than a given one

Let P(D) be a differential operator with constant coefficients and let Q be a bounded
domain. We shall determine those operators @ (D) with constant coefficients which are

weaker than P (D) in the sense of Definition 1.2, i.e. such that with some constant C
(2.3.1) l@(Dyulr = C(IPD)ufE + lulm), wetd ().

In virtue of Theorem 2.1 this is equivalent to

(2.3.1) leDyulr < C"|[P(D)ulf, uels Q)

In formulating the result it is convenient to use the function

(2:3.2) P@=C|P2 P
This notation will be retained in the whole chapter, also with P replaced by other letters.
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THEOREM 2.2. A necessary and sufficient condition in order that Q(D) should be
weaker than P (D) in a bounded domain Q is that

(2.3.3) - < O,
for every real &, where C is a constant.

REmMARK, We shall even prove that @ (D) is weaker than P (D) if |Q(§)|/13(§) <.
Hence this condition is equivalent to (2.3.3), with a different constant C.

Theorem 2.2 has a central role in this chapter. The full proof is long and will fill the next
sections. That (2.3.3) follows from (2.3.1) is proved in this section. In 2.4 we develop some
algebraic aspects of energy integrals, and the analytical consequences are given in section
2.5. Using these results we complete the proof of Theorem 2.2 in section 2.6. At the same
time we get a new proof of Theorem 2.1, that does not use Laplace transforms.

We now prove that (2.3.3) follows, if we suppose that (2.3.1) holds true. To make use of
this inequality, take a function ¢ €CF (€2), ¢ +0, and set with real constant &

(2.3.4) u () = (x) ' <%,
This function is in OF (Q), and from Leibniz’ formula (2.1.6) it follows that

(2.3.5) P(D)u(x)zei“'f)zp(“’ (f)DT:ﬂ(lx)’

and similarly with P replaced by @. If we introduce the notation

, 1 e
(2.3.6) Yap= WfDawDﬁwdx,
the inequality (2.3.1) gives

(2.3.7) > Q&) QP (£) wup = O (3 PP (£) PP (E) yup + Yoo)-

If m is the highest of the orders of P and @, the sums in (2.3.7) only contain terms with
|al<m and |B| <m. Now let t = (t,) be an “array” of complex numbers, 0 < |« | < m,

such that ¢, =t,,, when o’ is a permutation of «. The quadratic form in ¢ defined by

ty Dy 1p _ ty Eu
@389 3 Sty Hz ST HZ

is positive, unless the polynomial > f,&,/|«|! vanishes identically, i.e. every t,—0.

P& [Fde

Hence it follows that there is a constant ¢’ such that
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(2.3.9) Ialgmltalng' S S talzyag.

lelsm |Bl=m
With t,=@® (&) we now get from (2.3.9) and (2.3.7) that
212 @OP=0ZQ¥E QP @) yas=CC (S P (E) PP (€) Y+ yoo)

so that with a third constant O

Q&)=C" P(§).

2.4. The algebra of energy integrals

In this section we shall study some algebraic aspects of quadratic forms with constant

coefficients in the derivatives of a function «. Such a form can be written
(24.1) > a*¥ DyuDgu,
o g

where D, and D; are defined in section 1.2, and a*? is invariant for permutations

within « or f. With this quadratic differential form we associate the polynomial
(2.4.2) F&D=Sa* L5

where (=&+1iyn and {=§—1i7. Since the value of the form (2.4.1) for u (z)=¢'<"%>
is e7*<*"> F (£, ), the correspondence between the form (2.4.1) and the polynomial

(2.4.2) is one to one and invariant for coordinate transformations. This justifies the

following shorter notation
(2.4.3) F (D, D)uii=3 a** D,u Dyu.
a8

In section 2.1 we introduced a correspondence between the differential operators in R”
and the complex-valued polynomials in C,, considered as a y-dimensional vector space with
complex structure. We have now seen that the quadratic differential forms in R’ can be
associated with the complex-valued polynomials in O,, considered as a 2y-dimensional
vector space with real structure.

If F(£,T) is the polynomial whose coefficients are the complex conjugates of those of
F(£, ), it is readily verified that

(2.4.4) F (D, D)ui=F (D,D)ua.
Hence F(D,D)u# is real for every u if and only if

F,OD)=FEC0)=F (D),

ie. if F(,2) is always real.
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We shall need a formula for the differentiation of a quadratic differential form

F (D, D)ud. Elementary product differentiation gives
14 - . - —

Hence, if G=(G*) is a vector whose components are quadratic differential forms,

we have

(2.4.5) div (@ (D, D) u) éa% G* (D, D)ug)=F (D, D)ua
where

(2.4.6) FEGH=3@G-T06" D= —23m 0" ¢.B).

1

Lemma 2.2. A polynomial F (L, C) in {=§&+in and L =§E—in can be written in the

form

F(@0= —22% (2. 2),

where G* are polynomials, if and only if F(&, &) =0 when & is real.

Proor. That F(&, &) =0 is a necessary condition is obvious. To prove its sufficiency
we observe that if F (£ +in, & —in) =0 when 5 =0, there are no terms free from # in the

expansion of F(&+in, & —in) in powers of & and #. Hence we can write
F(g+in, E—in)= -2 9" (£, ),
1

where g* are polynomials. Returning to the variables { and ¢ in g*, the lemma is proved.
From the proof it follows that the vector (G*({, £),...,G" (L, ) is not uniquely deter-
mined in general. We shall now determine the degree of indeterminacy, that is, we shall

find all vector differential forms with divergence zero.
LEMMA 2.3. If the polynomials G*({, L) satisfy the identity
an ¢ (L, B)=0
then there exist polynomials G** (¢, T) such that G** (¢, £)= — G*(¢, T) and

G'(C )= —2§nk " (¢, D).
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Proor. If we write @ (£+in, E—in)=g (£, 7), the assumption means that

(2.4.7) g’ (& )=0.

Since the identity (2.4.7) must also be satisfied by the parts of ¢g¢(&, ), which are homo-
geneous of the same degree with respect to 7, we may suppose in the proof that the g are

all homogeneous of degree m with respect to 7. Then Euler’s identity gives

v agk
k
myg- = o
g ?niam

Differentiation of (2.4.7) with respect to 7. gives

i

7}
7 _o.
a’llk

¢+§m
Now addition of these two relations shows that

1 a gk a gi
m+1) g — F“_+
( )g 2":771 ay o
and therefore

ik 1 (agk agi)
2m+1)\om o

has the desired properties when { and [ are introduced as variables again.

From Lemma 2.3 it follows, in particular, that, although the polynomials G¥(Z, ) figur-
ing in Lemma 2.2 are not uniquely determined, the values G#(§, &) for real arguments are.
This is also easily proved directly. For differentiating (2.4.6) and putting =0 afterwards
gives
(2.4.8) ¢ (¢ 4= 2T it

Nk n=0)

This formula is most important in the application below.

2.5. Analytical properties of energy integrals

Let u be a function in § and let # be its Fourier transform. Using the definition (2.4.3)

and Parseval’s formula, we obtain
(2.5.1) [F (D, Dyuadz= [ F (& &)|4 (&) dE.

As a first application of this formula we prove
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Lemma 2.4. If for every u €C3°(Q), where Q is a fixed domain, we have

(2.5.2) | F (D, D)uadx=0,
then it follows that ’
(2.5.3) F(& &) =0, for real £.

Conversely, (2.5.3) implies (2.5.2) for any Q.

Proovr. The last statement follows at once from (2.5.1). On the other hand, let (2.5.2)
be valid. Let « 40 be a fixed function in C§°(Q). For fixed 7, the function u(z)e' <" 77 is
in C7(Q) and has the Fourier transform % (£ —%), so that it follows from (2.5.1) that

(2.5.4) [F &+, c+m)]a@Fas=o.
Denote the polynomial F (&, £) by =(£), and the principal part of (£) by 7, (£). It follows
from (2.5.4), which is valid for every #, that
7om () [| 42 dE=0
for every 7. Hence n,, and consequently s is identically zero.
Combining Lemmas 2.4 and 2.2 we obtain the following lemma.

LeMwma 2.5. A quadratic differential form F(D, D) w i is the divergence of a quadratic

differential vector form if and only if
[F (D, Dyuadz=0,

when u €C5°(Q) for some domain Q.
We could also deduce from Lemma 2.3:
Lemma 2.6. A quadratic differential vector with the components G*(D, D) u @ is the

divergence of a quadratic differential skew symmetric tensor form if and only if for any u €C®

and any closed surface S we have
[(6* (D, D) uiydSp=0.

§
The analogy between these two lemmas and the theory of exterior differential forms
is obvious. In order to show this connection we have in fact proved more results on the

energy integrals than we really need to prove Theorem 2.2.

2.6. Estimates by energy integrals
Let P(D) and @(D) be two differential operators with constant coefficients and form
(2.6.1) F(D, Dyuw = (P(D)Q(D) ~Q(D)P(D))ua.
We have F(£,&) =P (£)Q(£) ~ Q(&)P(£) =0, so that in virtue of Lemma 2.2 we can write
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F (D, D)ua= Z ai(G"(D, D) ua).

1xk

Formula (2.4.8) gives that
(2.6.2) Q" (£, &)= —i (PP (£) Q&) — Q® (§) P (8)),

where, in accordance with our general notations, P® and Q® are the partial derivatives
of P and @ with respect to &,.

Let Q be a fixed bounded domain, and let u be a function in C§°(€2). We shall in-
tegrate the identity

—ia* F(D, Dyui— —ia"*S =2 (6 (D, D) ua)
~ox

over Q. In doing so, we can integrate the right-hand side by parts, so that the
integral equals i [ G* (D, D)uadx. Now it follows from (2.6.2) and Lemma 2.4 that

|&* (D, Dyuadz= —i[ (P® (D)Q(D)— P (D) Q™ (D) uide
= —i{(P* (D), @ (D) w)— (P (D) u, @ (D) w)},
where (, ) denotes scalar product in L?(Q). Hence we get the formula
(2.63) (P (D)u, §(D)u)— (P(D)u, ¢ (D)u)
= [ —iz" (P(D)u@D)u—Q(D)uP(D)w)dz.

By estimating the right-hand side of the equality (2.6.3) we can obtain a useful

inequality. In fact, noting that it follows from (2.1.4) that
| PD)ul|=|PD)ul, [QD)ul=|QD)ul,

and denoting by  an upper bound of |2*| in Q, we obtain
(2.6.4) (PP (Dyu, @(D)w) ||| P (D) u| (| @® (D)ul|+26 || @(D)ull)
by using Schwarz’ inequality. When @ =P% this inequality reduces to
(2.6.5) | P (Dyu|P || P(D)ul| (| P* (D) | +2 ]| P® (D) u]),

where P*® (£) is the second derivative of P (£) with respect to & . The inequality
(2.6.5) gives a proof of the following lemma.

LemMma 2.7. Let B* be the breadth of Q in the direction x*, i.e.
B = sup | =yl
Then, if P(&) is of degree m with respect to &,, we have
(2.6.6) | P% (D)u| <mB*||P(D)u], u€C¥ (Q).
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Proor. After a convenient choice of the origin we may suppose that |[+*| < B¥/2in
Q, so that we may put 26= B* in inequality (2.6.5). If m = 1, the second derivative P*®
is zero, and (2.6.5) reduces to (2.6.6), if we delete a factor || P® (D)u||. Now suppose that
the inequality (2.6.6) has already been proved for all polynomials of smaller degree than

m in &,. Then we have, in particular,
| P“ (D) | < (m — 1) B*|| P* (D) u]].
If we use this estimate in the right-hand side of (2.6.5), it follows that
| P2 (D) ull=mB* || P(D)ul,

which completes the proof.

It follows from the proof that (2.6.6) remains valid for non-bounded domains  if only
B* < oo, We shall later come back to the case of infinite domains (section 2.11), but for
the moment we confine ourselves to the simpler case of a bounded domain Q.

Lemma 2.8. For any derivative P of P there s a constant C' such that
(2.6.7) |P®(Dyu|| < C||P(D)ull, »eCF(Q).

Proovw. Iteration of the result of Lemma 2.7 proves Lemma 2.8 immediately, and
also gives an estimate of the constant €, which we do not care to write out explicitly.

Since a suitable derivative of P is a constant, Lemma 2.8 contains Theorem 2.1, which
has thus been proved without the use of the Laplace transform.

We can now complete the proof of Theorem 2.2 and the remark following it. Thus
suppose that

(2.6.8) QP3| P (&)
If 4 is the Fourier transform of a function » € C5°(Q), we have in virtue of (2.1.4) and (2.6.8)
[le@)ufdz= [lQE&)Flafass S [I P2 Flaffds =2 [| P®(D)ul da.
It now follows from (2.6.7) that with a suitable constant C’
|QD)ul < C"|| P(D)ull?, =eCF(Q),
so that (2.3.1)" is proved.

2.7. Some special cases of Theorem 2.2

The problem of finding all differential operators @ (D), which are weaker than a given
differential operator P (D), has been reduced by Theorem 2.2 to the purely algebraic study
of inequality (2.3.3). In studying this inequality, it is convenient to say that the polyno-
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mial P is stronger than the polynomial @, if this inequality is valid. We shall first give two

explicit examples.

ExamerLE 1. The Schrédinger equation for a free particle corresponds to the poly-
nomial P(§) =& + .- + & —&, This polynomial is stronger than those polynomials
Q (&) for which
(2.7.1) Q&) P<CE+ - +E 1~ &)+ E+ - + & +1).

Evidently (2.7.1) requires that @ (£) is of degree two at most and not of higher degree than

one in &,, so we may write

(272 Q@)=+ Sabt 3 ankib

i,k=

where a;; =ax; and a,, =0. If we set & =£&2+4 --- +£2,, it follows from (2.7.1) that
(2.7.2) must become a polynomial of degree one at most in the remaining variables &,,...,
&,_1. Hence @ (£) must have the form

v—-1

(2.1.3) Q(§)=ao+k§1ak Exta, (&—E— - —&).

Conversely, it is obvious that every polynomial of the form (2.7.3) satisfies the inequality
(2.7.1).

ExamPLE 2. The equation of heat corresponds to the polynomial P(§) =&2 + --- +
+&2, +1&,. This polynomial is stronger than those polynomials @(£) for which

(2.7.4) [QEIE<C(E+ - +E 2+ E+ -+ 8, +E+]).
This inequality is evidently fulfilled if and only if @ (&) has the form

y—1

(2.7.5) Q&) =ay+ > ar &+ O aun ik
k=1 i o1

The two examples show clearly that the lower order terms may have a decisive influence
on the strength of an operator.! It is this fact that compelled us to develop such a strong
generalization of the usual technique of energy integrals, which essentially works with
the principal part of the operator, i.e. the homogeneous part of highest degree. The usual
technique would, however, be successful within the class of operators satisfying the

following definition.

DeriNiTION 2.1. The differential operator P (D) (and the polynomial P (£)) is said to

be of principal type, if it is equally strong as any other operator with the same principal part.

1 A similar fact has been observed by GArpina [8], who has shown that the correctness of
Cauchy’s problem can be affected by lower order terms.
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The definition only involves restrictions on the principal part. This fact is explicitly

expressed by the following theorem.
THEOREM 2.3. A necessary and sufficient condition in order that P(£) should be of
principal type is that the partial derivatives op(£)/0&; of the principal part p(£) do not

vanish simultaneously for any real & +0.

Proopr. Let P(£) be of principal type. Then the same is true of p(£), so that p(£)
is stronger than p(&) + &, and consequently stronger than &,, if |a|=m —1, where m

is the degree of p(£). Hence it follows from Theorem 2.2 that

(E 4+ &t
E |p(a) (5) |2

Suppose that all the derivatives &p(7)/0n vanish for some real 9 +0. Then we have also

(2.7.6) <.

p(n) = 0 in virtue of Euler’s formula for homogeneous polynomials. Hence, if we set & =1z
n (2.7.6), the denominator is of degree less than 2(m — 1) in ¢, which gives a contradiction
when ¢{->oo. This proves one half of the theorem.

Now suppose that P(£) satisfies the condition in Theorem 2.3 and let @ (£) have the
same principal part as P(&). Dropping positive terms in the definition of]s(é)z, we obtain

o=

where r(£) is of degree less than 2(m —1) and

n(§)= z E.

In virtue of the assumptions we have m(£)=+0, if £+0, and therefore r(&)/7(£)—>0
when £— oo, so that |r(£)|/n (&)< for large &. We note that

Q@I _1e®-P@|, 12¢).
P (&) P) P(§)
Since the last term is always less than 1 and
mle@®-P®|_ 2|Q(§)—P(5)|
E—)oo P(E) 5—)00 Vr )

it follows that @ (&) is weaker than P (&). Changing P for @ we conclude that P and @ are
equally strong.

(&) +r (&),

Our interest in differential operators of principal type is due to the fact that they have

simple properties even when the coefficients are variable. We postpone the study of this
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case to Chapter IV, and pass to another class of differential operators with constant coef-
ficients. As is well known, a differential operator P (D) is called elliptic, if the principal part
p(€) does not vanish for any real £ #0. We give an equivalent property:

TueEoREM 2.4. The differential operator P (D) is elliptic if and only if it is stronger
than any operator of order not exceeding that of P.

This is an almost obvious consequence of Theorem 2.2, so that we may omit the proof.
In particular, Theorem 2.4 shows that all elliptic operators of the same order are equally

strong.

We shall now study an operator with separable variables,

PE)=P(y, ... 86)=P (6o E) Py (Gpins oo, &) (<),

The vector & is the sum of the two components

E,:(Sl) ---’E,M)O: ---30)> ”‘_—'(O, ---’0) Eﬂ+1! '--)51’)'

Let W' be the set of polynomials @ (&), which are weaker than P, (&), and let W’ be the
set of polynomials @(£’) which are weaker than P,(£").

THEOREM 2.5. The set W of polynomials Q (&) weaker than P (&) is the linear hull of
the set W' W' of products of polynomials in W' and W".

PrROO¥. Since P(£)2=3|P@ (&)|* differs from
Py gV PP =S| PPE) P PP )

only in the magnitude of the coefficients, we have

0<ds—2E) g
Py (&) Py (E")
Hence @ (&) is weaker than P (£) if and only if
(2.7.7) M <C.

Py (&) Py (&)
It now follows that the linear hull of W’ W is in W. Inequality (2.7.7) also shows, if Qe W,

that @ (&, £’) is in W’ as a function of &', for fixed £, and in W’ as a function of &, for

fixed &'. Let p,(£'), ..., (&) be a basis in the finite dimensional vector space W' and set

Q&)= ’Zlak (&) pr (&).
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It remains to prove that the coefficients a, (&) are in W"'. Since p,(§') are linearly inde-
pendent functions, there exist values &, ..., &, such that the matrix (p,(&)) is not

singular. Then the system of equations

Q (&, 5")=k§1ak (€ pe (&), 1=1, ..., m,

can be solved for a, (&). Hence a, (&) is a linear combination of the functions @ (&/, &)
and consequently is in W',
It is obvious how the theorem can be generalized, if a polynomial decomposes in this

way into several factors.

2.8. The structure of the minimal domain

The first topic in this section concerns the continuity of the functions in D, and
their derivatives. From an abstract point of view this was already studied in Chapter I.

We shall assume in the whole section that Q is a bounded domain.

TaEOREM 2.6. If Q(D)u is a conltinuous function after correction on a null set, for

any w€Dp, then

2
(2.8.1) I%((%zl—d§< oo,

Conversely, if (2.8.1) ts valid, then @(D)u is uniformly continuous after correction on a null
set and tends to zero at the boundary of Q, for any w€Dp, in the sense that to every ¢ >0
there exists a compact set K in Q such that |Q(D)u(x)| <e in Q— K.

Proor. First suppose that @ (D)u is always continuous when € Dp,. There is then
only one obstacle to using Lemma 1.6: although the functions are continuous they need
not a priori be bounded. Therefore we take a function y(x) € C5°(Q)) and apply Lemma. 1.6
to the differential operators P (D) and

Q=y@)Q (D).
It follows that there is a constant C such that

sup lp @) QD) u@) P=C(|PD)ull+|ulf), «e0d Q).

We may suppose without restrietion that 0 €€ and that y (0)=1. Then it follows that
(2.8.2) QD) u(O)F=C(|P(D)u|+]||u]P), weCs (Q).
Now take a function ¢ (£)€$ and form

-2 —wzfi?j(ﬁ < E> g g,
v(z)=(2m) P(E)e &
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Parseval’s formula gives

2
(2.8.3) | P (D)w]|P?= I%%ZLIP‘“)(S)W% f|¢(§)|2d§.

Furthermore, v is also in §. Now take a fixed function y(x)eC§ (€2), which equals 1

in a neighbourhood of the origin, and set
u(x) =y (x)v(x).
We then have 4 e€Cg°(€)) and, in virtue of Leibniz’ formula and (2.8.3),
(2.8.4) N PDyul=C| o]l
Noting that @ (D)u(0) =Q(D)v(0), we deduce from {2.8.2) and (2.8.4) that

[(2m)—" f%(p(é) d§l2§0’2f]¢(§) Pdé.

But this inequality implies that @ (&) /}~D (£) is square integrable, which proves (2.8.1).
Now assume that (2.8.1) is valid. Estimating by Schwarz’ inequality we get for
# €05 (Q)
|Q(D)u@)[P=|2m) "2 [ Q&) a(E)e! <™ dEJ?

- ,Q<£) ‘2 7 P 2 2 o
§ 2 *".*-d P 2 d =O > P( ) D 2.
e | o ¢ [Berla@rag-cr 3| Pomul
Lemma 2.8 now shows that
(2.8.5) [QD)u(@) <O P(DyulP, uwecs (),

for any x. Hence the second half of the theorem follows from Lemma 1.6.

The formulations of Theorems 2.2 and 2.6 are closely related. This leads us to the

following theorem.

TreorEM 2.7. Q(D)u is a function in L (2<p< o) for every w€Ds,, if
Q(E)/IB(E)(—: [2PIe-2 5 R,.

Proor. In virtue of the theorem of Titchmarsh and M. Riesz on Fourier transforms
of functions in L* (cf. Zygmund [35], p. 316), we have for weCy ({2)
lRD)ull, < CllRQEEE)
where p’ is defined by p~1 + p'~1 =1, We may suppose that 2 < p < oo, since the extreme

cases have already been treated. Then we have p’ < 2, and Hélder’s inequality proves that

- 2 212-9)  \, ¥’
fl@(&)d(f)l”'dfs(flP(f)ﬁ(f)Fdf) (f}%% d) :
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Since 2p'/(2 — p') =2p/(p — 2), we obtain, if u€C§ (L),
(2.8.6) l@D)ull< || PE)aE) || < || P(D)ul],

where the last estimate follows from the proof of Theorem 2.6. It is clear that (2.8.6)
gives the asserted result. ‘
The theorem cannot be reversed since Sobolev’s results (cf. [30], p. 64) are stronger

for elliptic operators. We give two examples of non-elliptic operators.

ExaMPLE L. I P(§) =& + - +£%; — &, we have 1/P(§)e L? if and only if ¢ >».
In particular, when y =2, it follows that the functions in Dp, are in L? for every g <oo

but are not all continuous.

ExaMPLE 2. If P(&) =£+ - +&, +if, we have 1/P(§)eL? if and only if

g >3 (v +1). In particular, every function in the domain of P is continuous when » = 2.

In the proof of Theorem 2.6 we found that @ (D) is continuous for any u € Dp, if and
only if (2.8.2) is fulfilled, i.e., if the value of @ (D)u at a fixed point is a continuous function
of [u, P(D)u]eGp, (weCF(Q)). When we now pass to studying Q(D)u on varieties of
dimensions between 1 and » — 1, we examine a condition similar to (2.8.2) from the outset.

Thus let X be a variety in Q and let do be the element of area of X.1 If the inequality

2.8.7) >:fIQ D)ulfdo<O(|PD)ul?+|ulf), w€CF )

holds good, the restriction of @(D)u to £ may be defined when %€ D5», in the ususal way:
We take a sequence u,€C§ such that u,—u and P(D)u,— Pyu. In virtue of (2.8.7)
the sequence @ (D)u, is convergent in L?(X). The limit in L*(X), which does not depend
on the sequence u,, which we have have chosen, is the desired restriction of @(D)u to X.
Somewhat roughly we may say that Q(D)u exists in X for u€Dp,, when the inequality
(2.8.7) s valid.

Our methods only permit us to study the case when X is a linear variety of dimension
4, 1 <p<v—1. We may of course assume that T has points in common with Q. By X'
we denote any one of the varieties in R,, orthogonal to . The surface element in ¥’
is denoted do’.

THEOREM 2.8. A necessary and sufficient condition in order that Q(D)u should exist

in X for w€Dp, is that Q({-‘)/ﬁ(f) is uniformly square integrable in the varieties X', i.e.

1 For simplicity in statements we may suppose that R’ and R, have (dual) euclidean geometries.
Then surface elements and norms of vectors are defined.
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__|Q(§) |2dcr’< C

(2.8.8) e
4 PER.

where the constant does not depend on the choice of the variety X', orthogonal to .

The statement is still true, if £ has dimension O or ». It then reduces to Theorem 2.6

and Theorem 2.2, respectively.

Proo¥. Passing, if necessary, to another system of coordinates, we may assume that

Z is defined by the equations

First suppose that (2.8.7) is valid. In virtue of Theorem 2.1 we then also have (with a

different constant C)

(2.8.9) [1QD)uPdat-- da*<C[|P(D)ulfdat---da’ (w€CF (Q)).
= Q

By using a combination of the arguments in the proofs of Theorems 2.2 and 2.6, we shall
prove that (2.8.8) follows.
Take a function ¢(£) in § and set for fixed &,..., &,

(2.8.10) v(x)= fﬁi@d’(%&) do = ei(1151+---+r”fﬂ)fg@ei(zﬂ+1 5/‘+1+"'+IV5")CZ0",
P (&) P (&)

where do’=d&,,; -~ d&. Thus v(z) is a function with spectrum in a variety %', ortho-
gonal to X.

Differentiation under the integral sign gives

P (D)o (z)= f ?OPOE) jt> g,

P (&)
and since | P® (&)|< P (&), it follows from Parseval's formula that
(2.8.11) [1P® D)y () Pda" - da’ < @a) * [|@ (&) Pd .
Let y be a function in CF ({2) and set
(2.8.12) u(x) =v (x)p (x).

It is clear that w€C{(Q), and by virtue of (2.8.11) and Leibniz’ formula we have
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(2.8.13) [IPD)uPdz<C[|p)|tdo.

(Thus far, the argument is parallel to the proof of Theorem 2.6.)
In the plane X we have
)

. o 1 “
(2.8‘14) Q( )(D)v(xl, cees :1:”, 0, ..., 0)_81(1 Eqt e P EY
‘Z (5)

p(&)da’.
Assuming, as we may, that the function y€OF (Q) does not vanish identically in X
and that v is a function of 2!, ..., 2* only in a neighbourhood of X, we can argue

as in section 2.3. For Leibniz’ formula shows that, when z€Z,

QD@D TR D))

where >* means a sum only over sequences of the indices 1, ..., u. Setting
Q@ (8)
(2.8.15) ty= g do,
P
we deduce from (2.8.14) that
(2.8.16) [l@QD)u@)Bdat - da=5*S* yaptaly,
b o B
where

1 Do d ot
%f = |M—I'WJDuwDﬁwdx - da’.

Now we proved in section 2.3 that the quadratic form 3 *yest, s is a positive definite

form in the array {=(f,), where o only contains the indices 1, ..., #. In particular,
P SOS" 3 paptals

and this inequality combined with (2.8.16), (2.8.9), (2.8.13) and the definition (2.8.15)
of ¢ gives that

2.8.17 &d
( ) UP(E) )dd’

for any choice of the function @(£)€S$ and for any &, ..., &. (We denote by C
different constants, different times.) Hence (2.8.8) follows.
Now suppose that (2.8.8) is fulfilled. For w€C§ (Q) we have

<0f|(p(£)|2da

QD) u(at, ..., 2, 0, ..., 0)=(27) " [ Q (&) 4 (&) gt 40 g e

13 — 553810. Acta Mathematica. 94. Imprimé le 27 septembre 1955.
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80 that the Fourier transform of the function Q(D)u(zl, ..., 2% 0, ..., 0) as a func-
tion of %, ..., 2" is

27) 2 [ Q(E) 4 (8) dbur -+ &y

Schwarz’ inequality and (2.8.8) show that the square of this function of &, ..., &, is

less than

—-w [Q f)lz fﬁ 2] .4 2
& E)|*d&ur--dé,
f 5o GRAG]

:0fﬁ(§)2lzi(§)|2d£ﬂ+1-~-d§y.

It now follows from Parseval’s formula that

[lQD)ulfdo<C[dg, - dE, [P |4(E) P dEwy - dE=C [ PEF|a(E)PdE,
z

and using Lemma 2.8 as in the proof of Theorem 2.6 we obtain

[1@D)uPdosC[|P(D)ulfdz, u€CF(Q),
=

which completes the proof.

The special case of Theorem 2.8, where X is a hyperplane, is most important.

In that case @(D)u exists in X for every w€Dp, if and only if

2

(2.8.18) |Q EHNP g, <o
P (£ +tN)?
for every real &, where N is the normal of X.

LEvmwma 2.9. If p(t) s a polynomial of degree n in a real variable t, we have

. P .
(2.8.19) £ OF Iy gE =

ProoF. Logarithmic differentiation gives that

PO _ Z 1

p() t—t
1

where ¢, are the zeros of p(t). The integral (2.8.19) can be divided into two parts I, and I,,

where I, is the integral over the intervals where |Re(t —t,)| < 1 for some k, and I, is the




GENERAL PARTIAL DIFFERENTIAL OPERATORS 195

integral over the rest of the real axis. Since the integrand is < 1 everywhere, and the total

length of the intervals, over which the integral I, is extended, is at most 27, we have

th—tdz

in virtue of Cauchy’s inequality. Since lt——i,‘;C [F=|t — Ret,|? this gives

I, <2n. In the integral I, we have the estimate

lp' @) P (t)
lp@)F+]p @®F =

12§n2 = =21’L2,
1ti=1
so that I, +1I,<4n%

Using this lemma and Theorem 2.8 in the form (2.8.18) we obtain

TareorREM 2.9. If T is a hyperplane with normal N, we have f PP (Dyuldo <

=< Cf |P(Dyuldz, uweC5(Q), where PP (£)= > Ny 8 P® (£)/0 &x. Thus the restrictions to
% of all PP (D)w can be defined when u€ D,

In the case where P(£) = (&, &) is a regular quadratic form, the covariant vector N has
contravariant components also, and Py(D) is the operator of differentiating along the
contravariant normal. For operators of higher order than two, the operator Py appears to

be an appropriate substitute for the normal derivative.

An element u in DP,. is, strictly speaking, an equivalence class of square inte-
grable functions, and by the function u (z) we have always meant any representative
of this equivalence class. Thus u (x) has only been defined for almost all z. It is
then obvious that the function « (x), x€X, does not in general define the restriction
of u to X, if the restriction exists in the above sense.

A representative w (x) of an element % in 'DPo will be called distinguished, if
the restriction of u to any variety X is defined by the function u (z), x€Z, when-
ever it exists in the above sense. We shall prove that every element u in DP.. has
a distinguished representative. In fact, we can find a sequence of functions u, € C§ ()

such that
|| %n —u||=0, ||P(D)un,— Pyul]—0,
and

2.2M g~ il < 00, Z2"||P(D)up— P (D) tn]| < oo.

If the restriction of % to X exists, the inequality (2.8.7) is valid with Q@=1, and it

follows that
2.2 un —tnialg < oo.
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Denoting the open set in X where |u, (x) — %511 ()| >27" by e, we have the estimate
27" 0 (en) || 4n —Un+1||g, Where o (e;) is the Lebesgue measure in X of ¢,. Writing

wr= U e, we obtain
k=n

o0 o
o (wn) < 2 0 (ex) < 2 2% ||k — w1 ||z
n n

which tends to 0 with n~!. Hence the set w= N, has measure zero in X, and
lim u, (z) obviously exists if € £ — w. Now set « (z) = lim %, (z) for any 2 € Q such that
the limit exists, and define w(z) arbitrarily elsewhere. We have proved that the
limit exists almost everywhere in any variety X such that (2.8.7) is valid. Hence
it follows that the strong limit of w, in L?(X), which by definition is the restriction
of » to X, is defined by the function » (z), x€ZX.

The same arguments apply to the definition of @,u when w€D, and @(D) is
weaker than P (D). Thus the equivalence class @, u always contains a distinguished
function Q,u (z); the restriction of Q,u to a variety X is then defined by the func-
tion @Q,u(x), £€X, whenever it exists. Note that, in particular, the distinguished
function Q,u (z) is continuous, if (2.8.1) is valid.

More precise results have been obtained by Deny and Lions [4] for the Beppo
Levi functions. The results proved here could probably be improved in the same
direction by means of a generalized notion of capacity, but the results already proved

are sufficient for us.

We now prove a result which in particular contains a localization principle for D, .

TrEOREM 2.10. The product of a function ueDP“ and a function peC* (S—Z)1 8 in
D p, ond there is a constant C' depending on y such that

(2.8.20) [Py (pw)|| = Cl|Poul, ueD,.

Proovr. Using Leibniz’ formula and Lemma 2.8 we obtain the inequality (2.8.20) if
u €05 (2). This evidently gives the desired result.

Theorem 2.10 may seem evident at first sight, but to display its significance we give
two examples showing that, if a function u is in D, where P is the maximal operator de-
fined by P (D), and y€C¥ (f_)), it need not be true that yueD,, even for the simplest
operators.

ExAMPLE 1. Let P(D) be the Laplace operator in two variables, and let « (¢!, 22) be
a harmonic function in the circle r = (z1® + 22)} <1 such that weL? but ou/or ¢ L2

1 This means that  is C* in a neighbourhood of Q.
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A well-known example of a function with these properties is due to Hadamard. Now let

v be a function in C®° such that ¢ =r outside a neighbourhood of the origin. We have
A(pu) =ulAy + 2(grad u, grad ).
The first term is square integrable but the second is not, since it equals 20u/dr outside
a neighbourhood of the origin. Hence u€D, but pu ¢D,.
ExaMPLE 2. Let P(D)bethe wave operator ¢2/82'9a2in two variables, and let u = u(z')
be an absolutely continuous function of x!, whose derivative is not square integrable in
the neighbourhood of any point. Since we have

du dy Fy

PD)yu)= 75 o Tl a2

it follows that yu ¢ D, unless p is a function of ', although we have 4 €D,. In particular,
pugDp, if 0 FpeCy (Q).

After these two examples we leave the maximal operators, which will be discussed in
the next chapter. However, to clarify the contents of Theorem 2.10, we shall also prove
that Lemma 2.8, which was the essential tool in the proof of Theorem 2.2, is a consequence
of Theorem 2.10. In fact, if we take g (z) = €' <*7”, Theorem 2.10 shows that the polynomial
P(£) is stronger than the polynomial P (& + 7). Hence P (&) is also stronger than any linear
combination of the translated polynomials P (£ + %), with fixed #, and our assertion follows

from the following lemma.

Lemma 2.10. A linear set I of polynomials is invariant for differentiation if and only

if it is vnvariant for translation.

Proor. That invariance for differentiation implies invariance for translation follows
at once from Taylor’s formula. On the other hand, if I is invariant for translation and

PeI is of degree u, the set I contains all functions of the form

m 1 m X
g 1 P(E+7) ZP(“) l—l‘g 1 N s

la|=p
where #° are arbitrary vectors, and ¢; are arbitrary complex numbers. Now the coefficients
%1 tink, || < u, can be given arbitrary values, which are symmetric in «, by a convenient
i<
choice of m, #; and #’. For otherwise there would exist constants c., |oc| = u, symmetric

in « and not all equal to zero, such that

> cane=0 for every .

la|sp

But this is impossible. Hence I contains all P®(£), which was to be proved.
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TaroRrREM 2.11. The conditions for a function u to be in D, have a local character in Q.
More precisely, if w is a function such that to every point in Q there exists a neighbourhood U,

and a function vy€D,, so that w(x) =vy(x) a.e. in U N Q, then MEDP..'

Py’
Proo¥r. We can cover Q by a finite number of neighbourhoods U;, 7 =1,...,m, of the

type given by the theorem. Now take functions «;(x)€CF (U;) such that

m

> (x)=1, z€Q.

1
Since w(z)= > u(x)o;(x), and u(z)a (@) =vy; (x); (x) is in 'DP“ in virtue of Theorem
2.10, it follows that » is in D, .

The properties of the functions in D, in the neighbourhood of a point in Q
are described by the following theorem.

THEOREM 2.12. 4 function uin L*(Q) is equal to a function in D, in a neighbourhood of
a point z € Q if and only if all P® (D)u are square infegrable functions in a neighbourhood of x.

Proov¥. First suppose that u equals a function v in D, in a neighbourhood of the
point x. Then we have in this neighbourhood

PP (Dyu = P®(D)v

and, since P®(D)v is square integrable over Q in virtue of Theorem 2.2, the assertion of
the theorem follows.

Conversely, suppose that P (D)wu is square integrable for every « in a neighbourhood

U of 2. Let peC&(U) equal 1 in a neighbourhood V of x. Then v(x) = u(x)y(x) equals

u(x) in V, and in virtue of Leibniz’ formula we have in the weak sense

P(D)v=zp—°‘|$P(“)(D)u€L2.

o]l

Hence the proof reduces to the proof of the following lemma, already referred to in Chapter I.
Lemma 2.11. A function uwe€D,, which has compact support in Q, is in D P

Proor. Let weCF (R’) and fw(x)dx =1. We form the convolutions u,= u*xy,,
where y.(x) =& "y (x/e). When ¢ is sufficiently small, we have u,€C¥ (), and it is well

known that u,—w» in L2. Furthermore, when ¢ — 0, we have
P(D)yu,= (P(D) u)* p—~P(D) u
in L2, Hence by definition w€D,.

We shall now deduce a corresponding result for a point z on the boundary. In doing so

we restrict ourselves to a point on a plane portion of the boundary, where we can use our
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Theorem 2.9. It would no doubt be possible to treat a much more general case by genera-
lizing that theorem, but we shall refrain from studying that question here.

Let X be a plane surface with compact closure in Q. It follows from Theorem 2.12 and
Theorem 2.9 that PP (D)u exists in X and is square integrable there, if  is such that
P@(D)u is square integrable in a neighbourhood of X for every «. We can now announce

our result.

THEOREM 2.13. Letf x, be a point on a plane portion X of the boundary of Q, the distance
from x, to the rest of the boundary being positive. Then a function w in L2(Q) equals a func-
tion in D » in a neighbourhood of x, if and only if all P (D)u are square integrable func-
tions in a neighbourhood of x, in Q, and the restrictions of P (D)u to parallel surfaces to

2 tend to zero strongly in a neighbourhood of x, when the surfaces approach X.

The last statement needs perhaps some explanation. Let y be a fixed transversal direc-
tion to X, ie. {y, N> &=0. We may suppose that y points from ¥ to Q. If x is in a suitable
neighbourhood U of z; in ¥ and ¢ is a sufficiently small positive number, the function
P (D)u(x +9dy) is square integrable in U. The second half of the condition in the theo-
rem is that this function tends strongly to zero in L*(U) when 6— 0. — Note that Sobolev

[30] has given similar results in connection with elliptic operators.

PROOF OF THE THEOREM. First, let v be a function in DP..‘ For given ¢ we can find a
function v,€C¥ (Q) such that || P(D)(v —v.)|| <e. In virtue of Theorem 2.9 there is a

constant C such that on all planes X, with normal N we have
| P (D) (v — ) ||z, < Ce

for every ¢. Since v, vanishes in a neighbourhood of the boundary, we have with the nota-
tion introduced above
| PR (D)v(z+68y)|lu<Ce,

if 6 is small enough. This proves the necessity of the conditions given in the theorem.

Conversely, let the conditions of the theorem be fulfilled. Since they are still valid for
‘the function ug, where ¢ €C*° and vanishes outside a neighbourhood of 2, we may suppose
that % vanishes outside the neighbourhoods mentioned in the theorem. Let ¢ € C§° with
respect to the half space <x, N> (g, N> >0, where y is the vector mentioned above, and
ftpdw= 1. It is then easily proved that the convolution %, =u % g, Where . (x) =
=& yp(x/e), is in CF (Q) for small ¢ and that u,~u and P(D)u, = P (D)u * p—~P (D)u
when g~ 0. This completes the proof. The details may be left to the reader.

In particular we may note that a function u which is sufficiently differentiable in Q

equals a function in Dp, in a neighbourhood of a point on a plane portion of the boundary
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of Q if and only if it vanishes there together with m — I transversal derivatives, where m

is the degree of P(£ +¢N) in ¢ when £ is an indeterminate.

One of the most important results in the theory of partial differential operators is the
lemma of H. Weyl to the effect that any solution of the equation Pu =0, where P is a
maximal elliptic operator, must be infinitely differentiable (after correction on a null set).
This is only true for a certain class of differential operators P, which will be determined in
the next chapter. For that class it will turn out that, more generally, any function, which
is in the domain of P* for any », is infinitely differentiable. This result has an analogue
for general minimal differential operators, which we shall now discuss. We start with
two definitions and a lemma, showing how the strength of the powers of an operator in-

creases.

DEFINITION 2.2, The linear manifold
(2.8.21) A(P) ={n; n is real and P (& + tn) =P(&) for any & and t}
is called the lineality space of the polynomial P.

DErINITION 2.3. A polynomial P is called complete, if the lineality space consists
of the origin only.

Thus P is complete, if it really depends on all variables. The two definitions are essen-
tially borrowed from Gérding [8].

LuemMMa 2.12. The operator P (D) is stronger than any product Q. (D)...Q.(D), k < n, of

operators which are weaker than P.

Proopr. First note that for 0 <k <n we have
1P @) ulf*= i—jHP(D)"qu+ (1— ;’2) el e Q).
In fact, this inequality is equivalent to
[lrora@rae [Ip@ria@raes (1-5) [la@rae

which follows from the inequality between geometric and arithmetic means. Hence to
prove the lemma it is sufficient to show that for any %
(2.8.22) 10:(D) Qe (D)u 2 < O(|P (DY P+ +][u®), ueCT Q).

For k =1, this is only the definition of a weaker operator. Assuming as we may that (2.8.22)
has already been proved when k is replaced by k — 1, we find by substituting P (D)u
for u that

Q1(D)-+ Q1 (D)P(D)u|l? < CIP(DYulP + - + [P(D)ulP), w€C5 ().



GENERAL PARTIAL DIFFERENTIAL OPERATORS 201

Using the fact that the operators all commute, and having recourse to the definition of

a weaker operator again, we obtain (2.8.22).

THEOREM 2.14. A function u which is in the minimal domain of P (D)" for everyn, where
P is a complete polynomial, is infinitely differentiable in Q, and every derivative tends to

zero at the boundary.

Proor. Let R be the algebra generated by the polynomials which are weaker than
P. It follows from Lemma 2.12 that the function « of the theorem is in the minimal domain
of @(D), if Qe R. Now the assumption that P is complete implies that the algebra B is
the whole polynomial ring. We shall prove this assertion in section 2.10. Since to any
polynomial @ we can find another @, such that |Q(£)] /él (&) is square integrable, it follows
from Theorem 2.6 that @ (D) is continuous after correction on a null set and tends to zero
at the boundary of Q. It now easily follows (see also Schwartz [28], Tome I, p. 62) that

% is infinitely differentiable in the classical sense.

REmMARK. We can also prove that 4 € C™, if we suppose that  is in the domain of Pg
for every n. For if Q' is a bounded domain which contains Q, and we extend u to a function
%' in Q' by setting 4’ =w in Q and «’ =0 elsewhere, the assumptions of Theorem 2.14
are satisfied by «' in L2(()'). (After the above was written, the question whether the
domain of Pg always coincides with the minimal domain of P(D)" was answered in the

negative by J. L. Lions.)

2.9. Some theorems on complete continuity

Theorem 2.2 gave the necessary and sufficient conditions for the continuity of the map-
ping
(2.9.1) R, 2 Pyu—Quu€Ro,.
We shall now derive the conditions for complete continuity. Such results are important in
proving that vibration problems have a discrete spectrum. We remark that some results,
similar to the theorems which we are going to prove, have been given previously by Kon-
drachov (see Sobolev [30]) with different proofs, based on potential theory.

TarorEM 2.15. The mapping (2.9.1) is completely continuous if and only if
(2.9.2) Q)

—= >0 when &— oo,

P(£)

Proor. We first prove that the complete continuity of the mapping (2.9.1) follows
from (2.9.2). The proof is a combination of Theorem 2.2 with the proof by Gérding ([9],
p- 59) of a special case.
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Suppose that (2.9.2) is fulfilled. Then we have also |@ (£)| /15(5) < (. Take any sequence
u, €CF (QQ) such that
(2.9.8) |P(D)u,|| <1.

We shall prove that @(D)u, converges if #’ is a suitable subsequence of the sequence n.

In virtue of Theorem 2.2 we have
(2.9.4) Q(D)u, | < C.
Since all @ (D)w,, vanish outside the bounded set (2, it follows from (2.9.4), if we denote the

Fourier transform of u, by 4,, that the functions @ (&), (£) are uniformly bounded and
uniformly continuous. Hence we can find a subsequence »n’ such that @ (£)4,-(£) is uniformly

convergent on every compact set. Now we have
QD) tn: = Q (D) un|P= [1Q (&) fin: (8) — QE) o () P&
Let K be a compact set such that |Q(&)] /}; (&) <e in the complement K’ of K. Then it
follows from (2.9.3) and Lemma 2.8 (see proof at the end of section 2.6) that
JIQ@ P (&)=t (O de =2 [ P (| () — i (§) FdE AL,

where 4 is a constant. Furthermore,

[1Q(€) dbn (£) — Q(€) fim: (£) Pd£—~0, When ' and m’—> oo,
K

in virtue of the uniform convergence. Hence

Im || Q(D)un—Q(D)un|P<4e

n’, m'->o0
for every e, which proves that @ (D)wu, is convergent. This proves the complete continuity
of the mapping (2.9.1), since the functions P (D)u, u € CF (Q), are dense in R Py
Now suppose that the mapping (2.9.1) is completely continuous. We have to prove that
(2.9.2) must be valid. This can be achieved by modifying the technique of section 2.3.
It is obviously sufficient to prove that, if £, is a sequence tending to infinity, such that
é (&) /P~ (&,) tends to a limit, then the limit must be zero. Since we may, if necessary, pass

to a subsequence, it is also permitted to suppose that
(2.9.5) &, —&n—oo whenn, m—oco and n +m.

This assumption is essential in the proof.

Let y be a fixed function in CF° (Q), and form the sequence of functions

(2.9.6) U () = 1 () =
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In virtue of Leibniz’ formula there is a constant C such that

(2.9.7) 1P (D)w,|| < C.

Using (2.3.5), we can write

(2.9.8) 1Q(D)u, = QD) un |2 = |Q (D), |I* +]|Q(D)um |2 ~6rm,

where

) Q(a)(S")W) f iz,¢ > |
2 p Doc D n—Em d
ZJ P& Pén) |a|||/3|y L4 51/)6 x;

Now, since the mapping (2.9.1) is completely continuous, it is also continuous, so that
QW (&) /15 (£) is bounded in virtue of Theorem 2.2. Hence it follows from (2.9.5) and Riemann-

Lebesgue’s lemma in its very simplest form that 8,,~0 when n, m —co and n +m.

(2.9.9)  Sum=2Re {

By the assumption, thereis asequence n’ such that ¢ (D) u,-is convergent. Then it follows
from (2.9.8) that

wgn) Q(ﬁ) (Sn)

(2.9.10) |Q (D) un [P = By

% B
where y,; is defined by (2.3.6). It now follows from (2.3.9) that also

Z |9 (6 )|2 En)2 -0 when n'— oo,
B> P

Pug—>0 when n'->oo,

The proof is complete.

TrEOREM 2.16. Let X be a plane of dimension less than v. Then the mapping

(2.9.11) Rr, 3P (D)u—{Q(D)u}s € L*(Z),
where {Q (D) u}y is the restriction of Yu to Z, s completely continuous if and only if
(2.9.12) f do’ >0

>4

when the normal variety X' — co.
The reader will have no difficulty in carrying out the proof, which does not require any

ideas beyond the proofs of Theorem 2.8 and Theorem 2.15.

THEOREM 2.17. The inverse Pyt of a minimal differential operator is completely con-

tinuous if and only if P is a complete polynomial.

Proor. If P is not a complete polynomial, there exists a real vector = 0 such that
P (& +tn)=P(&). Ditferentiating repeatedly with respect to &, we obtain that 13(5 +itn) =
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=ﬁ(§), so that 13(5 +1tn) is bounded when t—co. Hence Theorem 2.15 with @ (£)=1
shows that Pg' is not completely continuous.
Now suppose that P is a complete polynomial, i.e. that A (P) ={0}, where A (P)is
defined by (2.8.21). We shall prove that ﬁ(f) — oo with £ or, equivalently, that
Mc={&; P(§)<C}

is a bounded set for every C. The polynomial P(£) can be written as the sum of its homo-

geneous parts,
P(§)=3>Pi(®).
where P, (&) is homogeneous of degree k and P, (&) = 0. It is easy to prove that, for every

polynomial P,
(2.9.13) A(P)= n A (Py).

For, if nekn A(Py), we have P, (&+tn)=P, (&) and consequently P (&+tn)=P (&),
=1
so that #€A (P). Hence N A(Px)<A(P). Now let €A (P). Then we have
k-1

S Pu(+in)=3Pu(®).

[}

Replacing & by t& and ¢ by 7¢ and identifying the powers of ¢, we obtain Py (§ +i%n)=
=P, (), so that €A (Py). Hence A(P)< n A(Px), which proves (2.9.13).
k-1
From our assumption that P is complete, it thus follows that N A (P,) ={0}. Hence it
k=1

will follow that the set M is bounded, if we only prove that M ¢is bounded modulo A (P,)

for every k. We need a simple lemma on homogeneous polynomials in the proof.

Lremma 2.13. Let Q be a homogeneous polynomial of degree m. Then a real vector 7,
such that D, Q(n) =0 for every o of length m —1, is in A(Q).

PRroor. The lemma is obvious, if m = 1, and we shall prove it in general by induction
over m. Suppose that the assumptions of the lemma are satisfied and m > 1. Then the
assumptions hold good also for the polynomials 2Q/0&;. Assuming, as we may, that the

lemma is already proved for polynomials of degree less than m, we obtain
0Q(& +1n)/06:=0Q(£)/0&:
Hence @ (& +tn) —Q(&) is independent of &, so that we have
Q& + i) —QE=Q (7).
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Setting t =1 and & =% we obtain 2@ () =2"@Q(5). Hence @(n) =0 and thus Q(£ +in) =
=@(£), which means that 5 €A (Q).

We can now prove that M is bounded modulo A (P,) for every k, if P is any polyno-
mial. Since this is obvious if the degree m of P is 1, it is sufficient to prove that it is true
for P, if it is-true for all polynomials of degree less than m.

That P(£) = € in Mo, implies that |P® (£)| < C there. In particular, this is true when
|a|=m —1, and then P®(¢) differs from P& (£) only by a constant term. Hence we
have |P{P(£)|<C" in M¢ if |a]=m — 1. In virtue of Lemma 2.13, the linear forms
PP (&) vanish simultaneously only in A(P,). Hence M. is bounded modulo A(P,).
But since P§(£) is constant modulo A (P,,) for every o, we conclude that f’m(é‘) is bounded

in M¢. Now form the polynomial
R(&)=P(&) —P,(f) =P, (&) +- +P,
R(&) is of degree m — 1, and since
RE=PE +P, ),
we have 15(5) < (" in Mc. Using the assumption that our assertion is proved for polyno-

mials of degree less than m, it follows that M is bounded modulo A (P,), k <m — 1. This
completes the proof of Theorem 2.17.

The proof also shows that, if P is complete, there exists a constant ¢ > 0 such that P (&) >
>(E + - + &)°, Hence 1 /ﬁ(f) is in L? for large ¢, which permits the use of Theorem 2.7.
A fairly precise result is given by the following lemma, which includes Theorem 2.17 but

has a much more difficult proof.

Lemwma 214, If PY(&), ..., P"(§) is a set of polynomials such that
N AP ={o},
then (P + . +P"™)} s in L0 if g>».

Note that Example 1 on page 191 shows that the constant v of the lemma cannot be re-
placed by any smaller one. We also remark, that we shall only use Lemma 2.14 whenn =1,
but the more general statement is necessary for our proof. Using this special case of Lemma
2.14 and Theorem 2.7, we obtain

TaEOREM 2.18. We have w€L?, if u is in the minimal domain of a complete differential

operator and q <2v/(v —2), if y > 2, g<oco. if p=2.

As a preparation for the proof of Lemma 2.14 we introduce a new notation, which
supplements the definition of A (P),
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(2.9.14) A(P)= nZA(Pk)=A(P—P1).
The last equality follows from (2.9.13). We shall prove that
(2.9.15) J}(P)=i§1A(8P/8§i).

First suppose that P is homogeneous of degree m>1. Since it is obvious that
A@P/o&)> A(P), we obtain by using Lemma 2.13

APIS 0 AGP/0E)= 0 ADPISAP).

|=m

Hence (2.9.15) is valid in this case. Using this result and (2.9.13), we obtain for a
general P=2X P,

NA@P/3E)= 0 h ABP/oE) = N N A@PL/a&)= 0 A(Pe)=A(P),
i=1 i=1k=1 k=1i=1 k=2 -

since all 9P /9 are constants. This proves (2.9.15).
Before the proof we also extend our terminology slightly. We shall say that a

system P!, ..., P* of polynomials is complete, if n A(P')={0}. The system @, ...,
i1
Q' will be said to be weaker than the system P!, ..., P", if we have
PPy 4 PPV Q0

Proor or LEMMa 2.14. By repeated application of the following two operations, we
shall construct a system, which is weaker than the given one and for which the assertion

of the lemma is valid:
A) If nlA(Pk)={0}, we obtain a weaker complete system by omitting P;.
ke
B) If A(P)n(n A(Py))={0}, we obtain a weaker complete system, if we replace
— P

P; by all the polynomials 8P,/¢&; (¢ =1, ...,»). This follows from formula (2.9.15).

To the system of polynomials, given in the formulation of Lemma 2.14, we first apply
operation A until this is no longer possible. Then we apply operation B-—if possible—to
one of the remaining polynomials of highest degree, and then apply the operation A again
as many times as it is possible. The new system is still complete, and either the highest degree
occurring among the polynomials in the system, or else the number of polynomials of
highest degree, has diminished. Hence we must after a finite number of steps come to a

system @',...,@', which is complete and weaker than the original system, such that A
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cannot be applied any more and B is not applicable to some of the polynomials—in fact

to none of those of highest degree. Let one of these be @!. Then we have

(2.9.16) A=A@)YNA@)n- nA@Q)+{0},
whereas
(2.9.17) AnA@4y)=1{0},

where Q'; is the linear part of Q*. Since A (@";) cannot have a co-dimension greater than one,
it follows from (2.9.16) and (2.9.17) that A is one-dimensional. Let us suppose that the
coordinates are chosen such that A is the & -axis. In virtue of (2.9.16), the polynomials
Q' —Q", @2...,¢ are then independent of &, that is, they are polynomials in &,,...,&,.
It follows from (2.9.17) that @; is not independent of &, so we can set

Q' (§) =c& + R(§),

where ¢ +0 and R is independent of &. Now we can write
72 ? A2 2 % (AL TEENR 4 2 2 2, 2
Q="+ -+ Q" =|c&+R| +21(3Q/6&) Q¥+ + Q" =|c&, +RP+ Q2

This gives, if we perform the integration over &, explicitly,

1 1 d 1
Jgaaaes ) [ [ guts s

Since ¢ >» =1, the first integral is convergent. Furthermore, since it follows from (2.9.16)
that the polynomials Q'/0¢,.. LOQL/0E,, Q2,.. .,Q form a complete system in the variables
&,,...,&,, the convergence of the last integral follows from the validity of Lemma 2.14 in
a space of dimension » — 1. Hence the lemma is true for any number of variables, since it

is true when y =1.

2.10. On some sets of polynomials

Let P be a fixed polynomial. We have studied the set of polynomials  such that @Q(D)u
exists for w€Dp, in one sense or another (Theorems 2.2, 2.6, 2.7, 2.8, 2.15, 2.16). In all
cases, the set I of polynomials @, which we have obtained, has the following two properties:

a) I is linear and invariant for translation.

b) If @ is a polynomial such that
le@)= 219

for every real &, where Q(&),...,Q,(8) €1, then it follows that Q(&)el.
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In virtue of Lemma 2.10, the property (a) is equivalent to
a’) I is linear and invariant for differentiation.

That (b) is fulfilled is evident in all the cases, so that the only thing we need to prove
is the invariance for translation. Let us verify this for the set of polynomials @ such that
Q(E)/i’(&) is in L. Let Q(E)/ﬁ(f)eLq. Then, for fixed 7, the function

QE+7) _ QE+n) P(E+y)
P@E  PE+m) PE)
is also in L9, for it follows at once from Taylor’s formula that P (& +n) /I; (&) is bounded
for fixed .

We also remark, without performing the comparatively easy proof, that, if @ (&) /P~ &)
is in L2, it follows that @ (€)/P(£)~0 when & -> oo, and hence that Q(&)/P (&) is in L' for
r >q. This can partly be deduced also from our theorems ahove.

The invariance for translation and differentiation proves the fact, already noticed in
a remark following Theorem 2.2, that, for instance, the assumption that @(£) /1; (£)—0is
equivalent to Q~ (&) /13(5) — 0 when & - co. The same remark applies to the other theorems.

We now prove a result which was already used in section 2.8.

LeEMMA 2.15. The algebra R, generated by the polynomials weaker than a polynomial P,
consists of all polynomials with the lineality manifold A (P).

Proo¥r. The statement is obvious, if P is of degree 1. To prove it for a polynomial
P= kfoPk, we may assume that it has already been proved for polynomials of degree less

than m. Now the polynomials which are weaker than 2P/0¢; are also weaker than P, and
hence R contains all polynomials with the lineality manifold A (¢P/&;). Thus R contains
all polynomials with the lineality manifold

_élA (@P/2&) = A(P)=A(P—P,).

Since R contains P and P — P,, the polynomial P; is also in R, which proves that R also
contains all polynomials with the lineality manifold A (P;). This completes the proof.

2.11. Remarks on the case of non-bounded domains

We shall here study the minimal operator P, defined by a differential operator P (D),
when  is not bounded, a case which has been excluded in all the previous theorems of
this chapter. It seems difficult to give a perfect generalization of Theorem 2.2, but we

can prove two theorems which replace Theorem 2.2 in some important cases.
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THEOREM 2.19. Let Q be a domain, which contains the direct sum of an open set Q' in the
plane a**' =--- =2’ =0 (u <v) and the space G ={(0,...,0,2"*,...,2")}. Then, if

(2.11.1) lQD)ulz < C(|P(D)ulf +|ulf), weC§(Q),
it follows that

(2.11.2) |Q(&) |2<0'(g*|P<“>(§) [2-+1),
where * means a sum only over sequences of the indices 1,...,u.

Proo¥. Let y be a function in C§° (€)' x ¢) and consequently in C§° (2). Then the for-
mula (2.3.7) must be valid. Now replace ¢ by ¢,

Pt .., @) =" (e, ..., 2" e, L., 7).

An easy calculation shows that ¢ = £¥4,4, where k is the total number of indices occurring
in « and §, which are not between 1 and u. Hence in the limit when ¢ - 0, it follows from
(2.3.7) that

(2.11.3) Z: Q@ (£)QP (&) %;aéc(az: P (£) PP (&) yop+ oo)-
Now our result follows at once from (2.3.9).

REMAREK. It is easy to see that the same result remains valid, if we replace & by an
open set in (¢, which contains arbitrarily large spheres.
The same argument also gives that, if Q satisfies the assumptions of Theorem 2.19 and

the operator Py has a continuous inverse, we must have

(2.11.4) LEC S*| P &)

THEOREM 2.20. If o1,...,2" are bounded in Q, it follows from (2.11.2) that (2.11.1) is

valid. It also follows from (2.11.4) that the inverse of P, is continuous.

Proovr. It was remarked on page 185 that Lemma 2.7 is also trueforinfinite domains.
This gives at once a proof of Theorem 2.20, if we repeat the arguments at the end of the

proof of Theorem 2.2.

If Q satisfies both the condition of Theorem 2.19 and that of Theorem 2.20, we may
of course conclude that (2.11.2) is a necessary and sufficient condition for the validity of
(2.11.1), and that (2.11.4) is a necessary and sufficient condition for the continuity of the
inverse of P,. The result concerning the continuity of P;y* could partly be obtained from

the proof of Theorem 2.1, but it is easy to give examples where that method does not work.
14— 553810. Acta Mathematica. 94. Imprimé le 27 septembre 1955.
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CrAPTER III
Maximal Differential Operators with Constant Coefficients
3.0. Introduction

Let P and @ be two maximal differential operators with constant coefficients.
Our first question is: When is it true that D,<D,? The corresponding problem
for minimal differential operators was solved by Theorem 2.2. For the maximal
operators we obtain the negative result that D,<D, implies either that Q=a P +b,
with constant a¢ and b, or else that P and ¢ are ordinary differential operators,
gsuch that the degree of  is not greater than the degree of P. This is proved in
section 3.1.

Although there exist no operators @ (except for the trivial ones), such that
Qu€L?(Q) for every u€Dp, there may be operators @, such that Qu is locally square
integrable in Q for every w€D,. There is in fact a class of operators P—the
operators of local type—Ifor which this is the case for every @ weaker than P in the
sense of Chapter I. In that case the functions in D, have the same regularity pro-
perties as the functions in 'DPO. The class of operators of local type is determined
in sections 3.3, 3.4 and 3.5. The main point is the construction of a fundamental
solution in section 3.4. Elliptic operators are of local type. The complete operators
of local type also turn out to possess all essential properties of elliptic operators.
For instance, all solutions of the equation Pu=0 are infinitely differentiable if and
only if P is complete and of local type. (Operators with this property are called
elliptic by some authors, cf. Malgrange {21]. Thus our results give simple necessary
and sufficient conditions for an operator to be elliptic in this sense.) We also esti-
mate the magnitude of high derivatives of solutions, thus generalizing Holmgren’s
results for the equation of heat. As an application this gives us a result on the
growth of null solutions. (The existence of null solutions is completely discussed for
general operators in section 3.2.) Finally, in section 3.7, we establish a spectral theory
of self-adjoint operators of local type. Examples of operators of local type are given
in section 3.8.

A study of the asymptotic properties of the eigenfunctions (or rather spectral
functions) of self-adjoint boundary problems, parallel to that given by Gérding [13]
for elliptic operators, was originally planned. However, our results were not com-
plete, since the Tauberian theorem of Ganelius [7], which was used by Gérding, is
not sufficient in our general case. The author has therefore postponed the publica-

tion to another occasion.
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3.1. Comparison of the domains of maximal differential operators

Let P and @ be two maximal differential operators with constant coefficients
in L*(Q), where Q is a bounded domain. Theorem 1.1 shows that, if D, <Dgq, we
must have

(3.L.1) lQulP<C (| PulP+{ulP), weD,,

where, as always, the norm is L*morm in Q. The condition (3.1.1) leads to the

following theorem.

TaeorEM 3.1. If the domain of P is part of the domain of Q, we have either
Q=aP+b with constant a and b, or else P (§)=1p ({z,, &) and Q (§)=q ({x,, &), where
x, 18 a fized real vector and the degree of the polynomial p is not less than the degree
of the polynomial q.

In the first case it is obvious that Dgo> Dp, with equality unless «=0. In the
second case the same result follows from well-known facts concerning ordinary dif-

ferential operators (see the example on page 169), if, for example, Q is a cylinder

with axis in the z,-direction.

To prove the theorem, we first note that (3.1.1) must hold for any infinitely
differentiable function . Hence we may set u=e'<"¢’ with arbitrary complex £, and

then obtain
(3.1.2) |Q(C)IZ§O(|P(C) ?+1).

Another necessary condition is obtained, if we set u (x)=2"¢ <" in (3.1.1):

313) [|2"QQ+i QPO Pe ™™ W da< O +]a"P Q) +i PP () [)e o da.
Q Q

Using (3.1.2) and the boundedness of z* in Q, we now obtain
(3:1.4) [P QP=C" (PP +|PP QP +1).

The inequalities (3.1.2) and (3.1.4) are independent of each other. We first examine
the consequences of (3.1.2) by algebraic methods.

Lemma 81. Let P() and Q () be two polynomials in C=((y, ..., {,) such that
(3.1.2) s fulfilled for every complex {. Then the polynomials must be algebraically de-
pendent, that is, there exists a polynomial R (s, t) in two complex wvariables s and t such
that B0 and

(3.1.5) R (P, Q)=0.
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Proor. We may suppose without restriction that the polynomials are not con-

stant, and choose the coordinate system such that in the developments

(316) P(C): %:ak (4‘2’ sees Cv) ’f, Q(C)= ;bk (52> caes Cv) le

the highest coefficients a, and b, are constants +0. Denote the resultant with re-
spect to {; of the two polynomials P—o and Q- by R(x, f, &y ..., ). The
resultant is a polynomial in «, 8, {,, ..., {,, and does not vanish identically. If the

zeros of P ({)—a for fixed {,, ..., ¢, are {;=¢,, ..., {;=1,, we have
n
RIa?I}(Q(tk, Czy vee s Cv)—ﬁ)‘

Since P (b, s, ... » &) —x=0, it follows from (3.1.2) that |Q (t, s, ..., &) F=C(L+]af?).
Hence R is bounded for fixed « and f, which proves that B is independent of
L9 «--» iy s0 that we may write B=R («, ). By definition, we have R (a, 8)=0 if
P—o and @—p have a common zero ,, that is, if a=P ({,), =0 (). Thus we

obtain

E (P (L), @ (G))=0,

which completes the proof.

To proceed further we need a lemma, which is essentially a special case of

Liiroth’s theorem (cf. van der Waerden [33], § 63).
LemMma 3.2. Let R be a ring over a field K such that K < R < K [x], where K [x]

ts the ring of polynomials in an indeterminate x with coefficients in K. Then there is

a polynomial 9 €R such that R= K [9].

Proor. Let & be a not constant polynomial in R of minimal degree. Then
the polynomial ¥ (z) — (x), considered as a polynomial in a second indeterminate z,
has coefficients in R and is irreducible in R [z]: For suppose that it decomposes in
Rz]. The factors are then polynomials in z with coefficients in R, so that a factor
which is not independent of x must be of at least the same degree in z as 9 is.
Hence all factors except one must have coefficients in K, and since it is obvious
that there are no such factors, the irreducibility follows. Hence, if #(z) is any
polynomial in R, the polynomial 7 (2) —% (x) must be divisible by & (z) — & (z) in R[2],
since both have the zero z=2. Denoting the term in the quotient, which is in-

dependent of z, by 7, (x), we have 7, €R and

7 (&) =1 (0)= (& (x) — & (0) 7, ().
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Assuming as we may that & (0)=0, we obtain
1 @)=7(0)+9 @)y (), 7, (x)ER.
Now we can apply this result to the polynomial %, and write
M (#) =1, 0) + (@) 75 (2), 7, (*)ER,

and so on. Since the degrees of the polynomials 7, 7,, ... decrease, we must after

a finite number of steps come to a constant polynomial, which proves that 7 € K [9)].

Lemuma 3.3 If two polynomials P (C) and Q () of {=(ly, ..., &) are algebrai-
cally dependent, there exists a polynomial W (C) and two polynomials p(t), ¢ (f) n one

variable, so that
3.L.7) P(Q)=p (W (0), Q(L)=q (W ().
Proor. By assumption we have

F(P(©D),@()=0,

where F (z, y) is a polynomial which may be supposed to be irreducible. Assuming
as we may that P and @ are of the form (3.1.6) and setting {,=t, (=" =(,=0,
we find that the irreducible curve F (z, y)=0 has a parametric representation z =z ®),
Y=y (t), where z(f) and y(t) are polynomials in {. Now we apply Lemma 3.2 to the
ring of polynomials generated by z (t) and y(t). It follows that there is a polynomial
@ (t) in this ring, that is, 9 (t)=f(x(t), y(t)), where f is a polynomial, so that
z(t)=p @), y(¢)=q (@ (). Hence we have for any point on the curve

z=p(f(x,9), y=q(f(z, »)),

since this is true for a generic point. Setting z=P (), y=@Q () and denoting
fP(©), () by W(), we obtain the desired result.

Combining Lemma 3.1 and Lemma 3.3, we conclude that the inequality (3.1.2)
is valid if and only if there exists a polynomial W (¢) and two polynomials p (¢) and
q (t), such that the degree of q is not greater than the degree of p and

3.1.7) PO =p(W (), Q©)=q(W ().

1 This lemama and another much deeper one, needed in an earlier version of this paper, were
proved by Professor B. L. VAN DER WAERDEN in reply to a question from the author. His proof,
which is based on Liiroth’s theorem, includes in fact both Lemma 3.2 and Lemma 3.3, and differs
only formally from the one given here,
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Polynomials of this form satisfy the inequality (3.1.4) if

2

ST g P —c g (P =0 (p N +1).

(3.1.8) o

In studying this inequality we have to distinguish between two different cases.

I) If |¢@)P—0C"|p (¢)P<0 for every complex ¢, it follows that any zero of
p’ is a zero of ¢’ with at least the same multiplicity. Now ¢’ has not higher degree
than p’, so it follows that ¢' ({)=ap’ (f) with some constant a. Hence g (t)=ap(t)+b
and @({)=aP({)+b, so that we have one of the cases mentioned in Theorem 3.1.

II) Now suppose that the open set U of all ¢ such that |¢' (¢)[F—C"|p' (£)|*>0
is not empty. Then it follows from (3.1.8), if « and S are fixed complex numbers
such that a€U, that |8 W/o(,—B|<C” when W —a=0. Since the arguments of
the proof of Lemma 3.1 apply under this weaker assumption, it follows that W and
o W/o ¢, are algebraically dependent for any k. Hence @ W /0, is constant for any
k on a piece of surface where W ({)=constant. Thus the surface is a portion of a
plane, and W must be constant in the whole plane. Since two planes, where W has
different constant values, cannot meet, it follows that W is constant in a set of
parallel planes {z,, {>=constant. Hence W is a polynomial in {z,, {>, and using
(3.1.7) we obtain

(3.1.9) P(Q)=p ({2, ), QD =19(z0: )

where p and ¢ may not be the same polynomials as in (3.1.7). Polynomials of the
form (3.1.9) satisfy both (3.1.2) and (3.1.4). To prove the remaining part of the
theorem, namely that z, must be proportional to a real vector unless g=ap+b, we
must therefore go back to the original condition (3.1.1).

Thus suppose that the polynomials P and @ are of the form (3.1.9) and that
z, is not proportional to any real vector. We shall prove that ¢’ (f)=ap’(t), or,
equivalently, that a zero 7 of p’ with multiplicity % is a zero of ¢’ with the same
multiplicity. It is sufficient to suppose that r=0. With a suitable complex vector

{ and a real vector 5 we shall set
(3.1.10) u (x) =z, ¥ <8,

It easily follows from Leibniz’ formula that
(3.1.11) P(D)u=p({zp, DD)u= z (7) (o MY <2 1,]>ka p? ((zo> ) PGS

i=0

where p” is the j™ derivative of p.
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Since z, is not proportional to a real vector, there exists a vector (o=£&,+¢7,
such that (z,, {,>=0 but {z;, 1,>+0. Denote by u; the function obtained by setting
n=1n, and {=t{, with real fixed ¢ in (3.1.10). Since we have assumed that

P (0) = =5 (0) =0,
it follows from (3.1.11) that
P (D)uy=p(0) <z, nop" €™ 2.

With the notation
k

fuy= 2 ( 7.) <29, Moy’ u* 7 49 (0)

F=0
we also obtain

Q (D) s =f (Cx, myy) <152,

and to show that ¢’ (0)=---=¢" (0)=0 we have to prove that f(u) cannot contain
any term of lower order than u”.

The inequality (3.1.1) gives when applied to the functions w,

(3.1.12) [[f(x, m))Pe 2™ da<0 A +|pO)P)[|<a, no> e 2> da.
Q Q

Translating Q, if necessary, we may suppose that

(3.1.13) inf <z, o> =0.
zeQ)

Let o (u) be the measure of the set
{z; 2€Q, {z, pe> <u}.

In virtue of (3.1.13) we have «(#)=0, if ¥<0, and «(u)>0, if »>0. Furthermore,

o (u) is constant for large values of w. The inequality (3.1.12) now takes the form

f‘f(u)lze’““doc(u)é(?"fu“e‘zt”doc(u), 0<t<oo,
0 0

Suppose that «* is not a factor of f(u). Then we can find £>0 such that
|f ()| >2C" u?* for 0<u<e. Hence

ZO’J'u“e‘Zt“doc(u)é ﬂf(u)Fe"zt"doc(u)éO' fu“e’”"doc(u),
0 0 0

and eonsequently
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fuzke_z“‘da () < fuz"e”z“‘doc ().
0 &

Estimating the two sides of this inequality in an obvious fashion, we obtain

&

3 0
e’“fuz"doc (u) ge‘“efu”doc (u),
0 g

which gives a contradiction when {—oo, since the integral on the left-hand side does
not vanish. Hence u* is a factor of f(u), so that ¢’ (t) has a zero of multiplicity %

for t=0. This completes the proof.

ReEMaRK. It also follows from the proof that there exists a uniformly con-
tinuous function u, so that P(D)w is uniformly continuous but @ (D)w is not uni-
formly continuous, unless we have one of the two exceptional cases of Theorem 3.1.
In fact, if we substitute for L?(Q) the space ' of uniformly continuous functions
in Q, we still get the conditions (3.1.2) and (3.1.4), and we can also give a modi-

fication of the discussion at the end of the proof.

Somewhat roughly, we might formulate the result of this section as follows:
Maximal partial differential operators with constant coefficients are characterized by

their domains, apart from a linear combination with the identity operator.

3.2. The existence of null solutions

We shall call a function %=0 a null solution of P, if it is infinitely differentiable,
satisfies the equation Pu =0, and vanishes in a half-space <{x, £ =0, where £ is a
given fixed vector #+0. It follows from Holmgren’s uniqueness theorem (cf. John [16])
that a null solution cannot exist, unless the plane (=, £) =0 is characteristic, that
is, p(£)=0, where p is the principal part of P. If P is homogeneous, it is obvious
that any function f ({z, &>), where 0+f€(C* and f(t)=0 for t> 0, is then a null solution.
For equations with lower order terms the existence of null solutions seems to have
been proved only for special equations, in particular, the heat equation (Tychonov
[32], Tacklind [31], see also Hille [14]). Following the proof of Hille [14] and using
some series developments from Petrowsky [26], we can prove the following general

existence theorem.

THEOREM 3.2. There exist null solutions of P for every characteristic £.1

1 For equations with variable coefficients it may happen, as has been proved by Mycrkis [22],
that a solution can only be continued in one way across the whole of some real characteristie, even
if it can be locally continued in different ways.
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Proor. Let us consider the equation P(s&+4t#)=0, where % is a fixed non-
characteristic vector and s and ¢ are complex numbers. Since p(£)=0, it easily
follows as in Petrowsky [26] that there is a root £=1£(s), such that t/s—0 when
s—>oo, and we can develop £(s) in a Puiseux series

o
t=s5P S ¢ 7P,
=0
where &k and p are positive integers and k<p. Hence ¢(s) is analytic outside a circle

|s|=M, and when |s|—>oo we have
()] =0(]s]9),

where p<1. Let o' be a number such that g <g'<1, and set with v>M

iT+o0 ,

u (%) = f T ERE @M o= o (s gt q 7).

iT—o00
Here we define (s/4)° so that it is real and positive when s is on the positive
imaginary axis, and use a fixed branch of #(s). The integral is obviously convergent
and independent of 7, for when z is in a fixed bounded set we have

. s\¢ 73 .
Relit(s) <z, n) — : <C|s|e—|s]® sin - < —c|s]¥ (Ims>M),

for large |s|, ¢ being a positive constant. This estimate also proves that the
integral is uniformly convergent after an arbitrary number of differentiations with
respect to z, so that u (z) is infinitely differentiable and solves the equation P{D)u=0.

It is also obvious that u#0. Now we have for sufficiently large 7

+ ’
lu (x)lge—ru, & J?oe—clale do.

Hence, letting 7— + oo, we conclude that u (»)=0 if (z, &> >0.

The following corollary is a theorem by Petrowsky [26], who also considered

systems of differential equations.

CororLLARrY 3.1. If y is a direction which cuts some characteristic plane of the
operator P, then there is a solution u of P(D)u=0 such that u(x+ty) is not an
analytic function of t.

In fact, a null solution u, which vanishes on one side of the characteristic plane,
will possess the required property, since we could otherwise prove by analytic con-
tinuation that »=0.



218 LARS HORMANDER

3.3. Differential operators of local type

From Theorem 3.1 it follows that, if the operator P (D) depends on more than
one variable and € is a bounded domain, we can find a function uG'DP and a func-
tion peC*” (Q) such that wu¢D,. For suppose that this were not possible, so that
whenever u€D, and y€C®(Q) we have pu€D,. With p=e <", £+0, it would
follow that any function w€D, is also in the maximal domain of the operator
P (D +£), which would contradict Theorem 3.1. This negative result, which contrasts
with Theorem 2.10, was also proved in section 2.8 by means of explicit examples,
when P is the Laplace operator or the wave operator in two variables. For the
wave operator we saw that P (D)(ypu) does not even need to be locally square
integrable in €, but for the Laplace operator we only proved that P (D)(pu) may
not be square integrable over the whole of Q. We now raise the problem to deter-
mine those operators for which only this situation can appear. More precisely, we

seek those operators P which satisfy the following definition.

DErINITION 3.1. A differential operator P (D) is said to be of local type, if
the product of amy function in D, by any function in OF (Q) is in D,, and conse-

quently, in virtue of Lemma 2.11, in D,

An equivalent definition is that P is of local type, if the functions in D, and the
functions in D, have the same local regularity properties, that is, if any function in D,
equals some function in ‘DP” in an arbitrary compact subset of (2. That this property
follows from Definition 3.1 is obvious, for we can choose y € C§° such that =1 on any
given compact set. Conversely, if P has this property, it follows from Theorem 2.10 that
Definition 3.1 is fulfilled. Thus Theorem 2.12 proves that a necessary and sufficient
condition for an operator to be of local type is that P® (D)u is a locally square
integrable function for any o and any w€D,. If Q' is a domain with compact closure

in Q, we can hence apply Theorem 1.1 to the mapping
D,3u—~P® (D)u€ L?(Q),
and then obtain the following lemma.

Levma 34. If P (D) is of local type and the domain Q' has compact closure

in Q, there exists a constant C such that

1 Observe that we require this property of the operator P for any domain Q. It will however
follow from our results that it is sufficient to assume that the definition is fulfilled for one bounded
domain €, it then follows for any domain, bounded or not bounded,



GENERAL PARTIAL DIFFERENTIAL OPERATORS 219

(3.3.1) [1P@D)uPde<C([|P(D)ulfdz+ [|uPdz), u€D,.
QO Q Q

Let Q be a bounded domain. Setting u (x) =e' <**” in (3.3.1), { =& + ¢ 7, we obtain

(3.3.2) | P9 QP [e 2P da<O@+|PQ)P) [P da.
Q Q

If § is the supremum of 2|z| when x€(Q), we have the two estimates

[er=mdg=e 1 [da=e1"m (Q), [e2=n dp<elnim (Q).
o [oX Q '

Hence it follows from (3.3.2) that

(3.3.3) | P (2) I2§OZ—@T)¢%”'”' A+ PP

()
Adding the inequalities (3.3.3) for all «, and using the notation P)=C| P @)

again, we obtain the following lemma.

LeEMMA 3.5. Let P be of local type. Then for any A there is a constant C
such that

(3-34) PELP=0Q+|PQP),
when |Im ¢|< 4.

The necessary condition for an operator to be of local type, which we have
now derived, is in fact also sufficient. Before proving this, we shall deduce other
equivalent conditions, which seem to be more natural and useful.

Lemwma 3.6. If a polynomial P satisfies (3.3.4), we have
(3.3.5) | P(&+in)|—>oo when E—co modulo A (P),

and the convergence is umiform in ), if |n|<A, where A is an arbitrary fized posi-

tive number.

Proor. Examination of the proof of Theorem 2.17 shows that

P(f)—>o> when {—>% modulo A*(P),
where A*(P) is the complex lineality space of P, defined by (2.8.21), if we omit the
word “real”. Since A:(P) is the set of real vectors in A* (P), the assertion now
follows from (3.3.4).
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We shall next prove two lemmas, which give a converse of Lemma 3.6 in a
sharp form, which will be used later. For convenience we only formulate them for

complete polynomials.

Lemma 3.7. Suppose that for any positive number A there exists a number B
such that

(3.3.6) P (£+in)=+0, when |n|<A4 and |&|> B.

Then the polynomial P is complete, and for any fixed real vector & we have

P(¢+9)

(3.3.7) e

—1 when &—co.

Proor. That P must be complete is obvious. In proving (3.3.7) we may as-
sume that the coordinates are so chosen that 9=(1,0,...,0). Now let £ be a
fixed small positive number. In virtue of the assumptions we can find a number
B such that

P(&+in)=+=0 when |y|<e ' and |&|>B.

Then the inequality |£—('|ze™! is valid, if |§}>B+¢! and P({’)=0. For setting
¢'=¢&+iy we have either |7 |=¢ ', or else |&'|<B so that |§—&|=e™". Giving
constant values to &,, ..., £, we can write

m

P (&) =E[1(5—t),

1

where (fy, &, ..., &) is a zero of P. Hence we have |t,— & |ze ! if [£|>B+e '

Using this estimate in the formula

P(E+9) m5f+1”“::ﬁ(1+ 1 )

P(£) 1 & 1 & —
we obtain
PE+9) et .
’IN& 4§msﬂ+@ , [é|>B+¢e7,

which proves the assertion.
Lemwma 38. If for every constant real vector o

P(&+9)

(3.3.7) o

—1 when E—co,

then (3.3.7) is wvalid for every complex ¥, and the convergence is uniform in ¢, if
|9| <A for some fixed A. Furthermore, we have, if |a|+0,
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P(a) (§+ 19)

(3.3.8) T

— 0 when E— oo,

uniformly in 9, if |9]|<A.

Proor. In virtue of Lemma 2.10 we can write
m

(3.3.9) P@ (&)= >4 P(E+ ),
1

where ¢; are real vectors. Since the principal parts on the right-hand side must cancel
out, if |a|+0, we have > t;=0. Hence we obtain in virtue of (3.3.7)

P(“)(f) m B
(3.3.10) P —>§ti—0 when £— oo,

From Taylor’s formula it follows that

PE+9) _y Z POE) Dy
P (&) | P (&) |al!

al+0

which proves that (3.3.7) is valid for arbitrary complex , and also exhibits the

asserted uniform convergence. Using this result and (3.3.9), we obtain

P(oc) (§+,ﬂ)
P(E+9)

PE+9+9) P(§) e
t a0 P(E+z9)_>zti_0 when &— oo,

1

M3

uniformly in &.

TurorREM 3.3. The following five conditions on a polynomial P are all equivalent:

I) For an arbitrary given A, the polynomial P (£+1in) does not vanish, if |n| <A
and the distance from & to A(P) is.sufﬁciently large.

II) For every real wvecior O we have

P(E+9)

—>1

P ()

when & is real and —>oo modulo A(P). The convergence is uniform in &, if |9| is
bounded.
III) For every o with |a|+0 we have

P(a) (5)
P

when & is real and — oo modulo A (P).
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IV) For any A there is a constant C such that when |n|<A
PE+in=C1+|PE+inP).

V) When &-—>co modulo A(P) we have |P(§+in)|—oo, and the convergence is
uniform in 7 when |n|<A.
Each of these conditions is a necessary and sufficient condition for the operator P to

be of local type.

Proor. We first prove the equivalence of the five conditions. Lemmas 3.7
and 3.8 show that I implies II and that IT implies IIT and IV. Furthermore, Lemma
3.6 proves that IV implies V, and I is obviously a consequence of V. Hence the
conditions I, II, IV, V are all equivalent. Since III follows from II, and the proof
of Lemma 3.8 shows that II follows from III, the equivalence of the conditions is
established. In virtue of Lemma 3.5 the condition IV is a necessary condition for
P to be of local type.

We note that, if P is complete, we may omit ‘“‘modulo A (P)” from the state-
ment, and that the theorem states that a polynomial is of local type, if the com-
plete polynomial which it induces in R’/A (P) is of local type. The easy but space-
consuming verification of this fact may be left to the reader. Thus in proving the
sufficiency of the conditions I -V, we may restrict ourselves to the case of complete
polynomials. In that case we shall carry out the proof in section 3.5, by means of

a fundamental solution, which will be constructed in the next section.

3.4. Construction of a fundamental solution of a complete operator of local type

In this section we shall consistently use the theory of distributions, without
explicit reference at every point. The definitions and results, which we use, can of
course be found in Schwartz [28]. Our purpose is to construct a fundamental solu-

tion, that is, a distribution E such that
(3.4.1) E#(P(D)u)=u, u€C§ (R"),

and to prove certain regularity properties of K. The results are stated in the fol-

lowing theorem.

THEOREM 3.4. Let P be complete and satisfy the conditions I-V of Theorem 3.3.
Then P (D) has a fundamental solution E with the properties:

I) In the domain x+0 the distribution E is an infinitely differentiable func-
tion E (x).
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IT) If w is square integrable and has compact support, the convolution
POD)YE*u
18 a locally square integrable function.

REMaRKS. 1. Every fundamental solution has the properties I and II. In
fact, we shall see later that the difference between two fundamental solutions is in-
finitely differentiable.

2. Schwartz [28] has ocalled a function E (x), which is infinitely differentiable
for z+0 and integrable over a neighbourhood of the origin, a ‘“noyau élémentaire”,
if the distribution E defined by

E@w= [E@)u@)ds

is a fundamental solution. He proved that all solutions of the equation Pu=0 are
infinitely differentiable if P possesses a ‘noyau élémentaire”. We shall not prove
here that the fundamental solution of a complete operator of local type is a ‘“noyau
élémentaire”, but we shall nevertheless prove that all solutions are infinitely dif-

ferentiable.

If P (&) did not vanish for any real £, we could obtain a fundamental solution

by writing
(3.4.2) E*u(x)s(2n)'”’2fei<"5>la)—((gd§, u€Cy,
or equivalently

vy o —p/2 ﬂ@ o0
(3.4.3) E@)=(2ma)" fP(E)dE’ u€Cy,

where 1 is defined by 4 (z)=u (—x). Now the polynomial P (£) has in general real
zeros, and we must then give (3.4.3) a generalized sense.

We shall define (3.4.3) as a repeated integral, first an integral in the complex
domain with respect to &, and then an integral with respect to the other real vari-
ables. We may then assume that the coordinates are chosen such that the highest
power of & in P (&) has a constant coefficient.

In virtue of the condition V in Theorem 3.3 we have |P(£)|=1, if £ is real
and |£|=C, where C is a suitable constant. Thus |P (£)|=1, if &+ +E>C2
Since the zeros of a polynomial vary continuously with parameters which do not
occur in the highest order term, we can find a second constant ¢’ such that
| P(Cyy Eap oo, &) 21, if &, -+, &, are real, &3+ - +E2< (P and [{,|=20C"
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Now we set for wu€Cy (R")

— (2 n,)-vl2 ’Il/ (E) d&

(3.4.4) E@)=@2n) " [ dg, - ¢ P

P (&)

The integral with respect to &, shall be extended over the real axis, if &&+ .-+ +E2=C?,
and over the real axis with the interval (—C’, C') replaced by a semi-circle in the lower
half-plane, if &+ - +E& <C*1 Thus we have |P(£)|=1 everywhere in the integral.

Since w€C0§, it follows that 4 is an entire analytic function, which decreases
rapidly in the real domain. Hence the integral (3.4.4) is convergent. It is plain that
the formula (3.4.2) is valid, if we interpret the integral in the way just defined.

Thus, if 4 €CY (RB’), we have
Ex(P(D)u)=Q2n) "2 §e < P(£)a(8)/P(E)dE=2n) " §<D 4 (&) dE.

Since the integrand is an analytic function of &, we may shift the integration path

back to the real axis. Hence we obtain
Ex(P(D)u)(x)=Q2r) " [P 4 () dE—u (),

which proves that E is a fundamental solution.

We now divide the integral (3.4.4) into two parts in the following manner.
If R=V(C?+ (%, we have |&|<R in the part of the integral (3.4.4), where & is not

real. Thus if we write
(3.4.5) E—E,+ B,

@ (§)

Pe

3.4.6 E, (@)= G d&, E,(d)=(2n)""
(3:4.6) L @) | Fajs Eui-ea)

1€i=zR JEI<R
the variable & only assumes real values in the integral defining E,. The distribution
E, is an entire analytic function, for when w€(Cg we obtain in virtue of the de-
finition of 4

. e - e RREN
B, ()= 2a)"" fﬁp(g fu(x)e =0 Jp—(27) fu(x)dx @ e

{§1=R 1§1=R

The change of the order of integrations is justified by the fact that both integrals

are only extended over compact sets. Hence E, equals the function

! There is a very large freedom in the choice of integration paths, and different choices give
different fundamental solutions. Note that & is here a complex variable, whereas & always denotes
a real vector elsewhere in this paper.



GENERAL FARTIAL DIFFERENTIAL OPERATORS 225

3.4.7 g fEEE
(3.4.7) BE,@)=2n) " 95 e
|€I<R

which is an entire analytic function, since the integral is uniformly convergent when
|z| is bounded.

Let w€L® have a compact support. The convolution P® (D) E,*w is then an
analytic function. Thus the assertion II of Theorem 3.4 will follow, if we prove that
P®(D)E,%u is square integrable. Let ¢€(Cg. Then the function u*¢ is also in

0%, and in virtue of (3.4.6) we obtain

POE) . s
B HOF@LL

(34.8) (P(D)E,%u)(p)=P® (D) E, *uxq(0)= f

1§1=zR

so that the Fourier transform of P® (D)E,%wu is a function which vanishes when
|&] <R and equals % (£) P (£)/P (§) when |£| = R. Noting that P (£)/P (£) is bounded
when |£]=R in virtue of condition III of Theorem 3.3, and that (&) is square
integrable, we conclude that the Fourier transform of P® (D) E,*u is a square in-
tegrable function. Hence P® (D) E,#*wu is also square integrable, which completes

the proof of the assertion II of the theorem.

We now turn to the proof of assertion I. Since we have already proved that
E, is an entire analytic function, it remains to prove that E, is an infinitely dif-
ferentiable function for x=0. We need the following algebraic lemma, which gives

a precise form of the condition I of Theorem 3.3.
LeMma 3.9. Let y=0 be a fixed vector in R’, and set
(3.4.9) M ()= inf |t~ &],
where { is a wvector in C, such that P({)=0, and & is a wvector in R, such that
|[<y, & |=7. Then there ewist positive numbers a and b such that
M (x) v %—>a when 1—>oo.

Proovr. It follows from condition I of Theorem 3.3 that the infimum in (3.4.9)
is attained, and that M (r) is a continuous function of 7. The system of equations
(3.4.10) P()=0, <y, =% |[—Ef=p?
has a solution (€C,, (€R, if and only if u = M (v). Considering C, as a 2y-

dimensional real vector space and the equation P ({)=0 as two real equations, we

can eliminate the variables { and & from (3.4.10) by means of Theorem 3 of Seiden-
15— 553810. Acta Mathematica. 94. Imprimé le 27 septembre 1955.
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berg [29].1 We then obtain a finite number of finite sets Gy, ..., G5 of polynomial
equalities and inequalities in y and 7 such that there exist vectors [ and & satisfying
(3.4.10) if and only if all equalities and inequalities of G; are satisfied by u and 7,
for at least one 7=1, ..., s. Since the existence of solutions [, & of (3.4.10) is also

equivalent to the inequality u>= M (r), we may assume that G; is of the form
Gik([u, T);O, k=1,...,ki.

u=DM (7) must make some of these inequalities to an equality. Let G (u, ) be
the product of all the polynomials Gix (u, 7), which do not vanish identically, and
let H(u, r) be the polynomial with the same irreducible factors as ¢ (u, 7) but all
with multiplicity 1. Then we have H (M (1), T)=0 for every 7. For sufficiently large
7, the degree in y of H (u, 7) is independent of 7, and the zeros u, (r) are different
continuous functions of 7, since H has no multiple factors. Thus the index k, such
that M (t)=pux (z), is independent of v, since M (1) is continuous. Hence M (7) is
an algebraic function of ¢ for large 7, and can be developed in a Puiseux series.
In virtue of condition I of Theorem 3.3, we have M (r)—co with 7. Hence the
highest power of 7 in the Puiseux series must be positive, which proves the as-

sertion.?

Lemma 3.10. There exist positive constants ¢ and d such that for sufficiently large

|&] we have

[c—¢&|zcl&]
for any real & and any [ with P ({)=0.

Proor. Choosing the vector y of Lemma 3.9 as (0, ...,0, 1,0, ..., 0), we obtain

for large |&| mtlzalal

where a; and b; are positive numbers. Hence, if ¢’=min ¢; and d=min b;, we have
|C—&]z¢ (max |&])* zc]&]"

Lemma 3.11. Let yER" and n€R, be two fixed vectors. Then there is a constant
C such that

. (k+j)! C*+ _
(3.4.11) '<D,n> (P(&))l<|§|”(1+|<y,5>|)”"’ |£|=R, j, k=1,2,...,

where b and d are the constants of the two preceding lemmas.

! The restriction in this theorem that the coefficients must be rational is removed on page 372.
2 This result bears some analogy to a lemma in GArDING [8].
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Proor. The quantity, which we shall estimate, is

k+j 1 ) — g (k+h) dk+i, ( 1 ) .
D>y (P@) YA \PETin)) im0

We can write P(é+tn)=AIl(t—¢). Since (=&t n is a zero of P and [ —&=¢ 1,
1

the numbers I, can be estimated by either of Lemma 3.9 and Lemma 3.10:

(3-4.12) I lza (L+{<y, &1, |tz |&]7, (&= R).

Now the (k-+7)™ derivative of 1/P(&+tn) for t=0 is a sum of terms which are
each of the form A~' divided by a product of &+ j+m of the zeros ¢. The number
of terms is

m+k+j—1

m(m+1) - (m+k+j—1)=(k+9')!( k+j

)< (]C‘I’?) 2m+k1] 1
Furthermore, A is independent of & as will be proved in section 3.8. Hence the
lemma follows, if we estimate j of the zeros by the first inequality in (3.4.12), k of

them by the second inequality, and the remaining m by a constant.

Let y and 7 be two fixed vectors, and let b and d be the same numbers as in

the previous lemmas. We shall prove that the distribution

(3.4.13) F=(x, p)' <y, DY* E,
is a continuous function, if
(3.4.14) = §+ ,

where r is the least integer >wv/d. This wiil complete the proof of Theorem 3.4,
and estimating the absolute value of F we shall get an interesting refinement of
this theorem.

The definition of F means that

Fa-@at [ L, e ae

1§12k

where D now denotes differentiation with respect to £. Integrating by parts, we
obtain F () =G (¢) + I (%), where

(3.4.15) G @)= (2m) v/2f (&) (< D, > (<y’ (ig) )) d&

1&1=R

and, d.S being the vectorial element of area on. the sphere |&|=R
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(341@ Ian=¢”xznyw5§ (~D 1 [<ys ©F D, V1 4(£)) <dS
o Par ) P (&) KD, n) () <48, ).

151-R :
In virtue of Lemma 3.11 we have the following estimate of the integrand in (3.4.15),

which we denote by g (&),

k l ]C . i k:fj( "'D 1-7 _L)’
) @ e o (<ot 5

lg(&)|=

I k! ; b (1—j)! ¢ _
gjgo (7) (k_j)' |<y’ 7]>| |<y’ §>| |E|Td (1+|<y’ §>|)b(l—f~7)

Now it follows from (3.4.14) that

bﬂ—j—ﬂ—wk—ﬁ=b(k—%—r)+ju—b)>a

so that we obtain

k
g@l=lelren s (Bl mro -l n e g ple .

The function |&|'? is integrable over the domain |&|> R, since rd>v. Thus the

distribution ¢ must equal the continuous function

G@)=2m)" [ g@¢Ode

1&]zR
With a new constant C we have the estimate
(3.4.17) |G )| <C L.

Using in (3.4.16) the definition of #, we find that the distribution I is defined
by the analytic function

_ -1 7,‘1-1 1-1-7 i<z, & , i _____<y’ §>k
(3.4.18) IT@)y=i'2m)* > Lz, n> e {~D, > A8, n.
=0 P(§)

{6I=R

The proof is quite parallel to the previous study of the distribution E,. Since 1/P (&)

is analytic in a complex neighbourhood of |&|=R, we have

1
‘(‘D, n>SIT§)

with some constant 4. Hence we obtain, when z is in a compact domain K, that,

’gﬁAi|ﬂ=R,

with suitable constants B and C
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-1 ‘min (k, 1) 7
|I(x)|g_200"“" 20 (S)(j—s)!Af-SB"k!/(k—s)!

X I~1
< Z Ol—l—j?-! z (I:) Aj—s Bk _ z Cl—laji! AJ’ (B—{—Aﬂl B)k
i=0

1-1
Since k<! and 3 jl<{@—1)!1=1!, we have with a new constant C
0
(3.4.19) |I(x)|<C'1L.

Now F=G+1, so that we have proved that the distribution F, defined by
(3.4.13), is a continuous function, if (3.4.14) is valid. We have also proved that the
absolute value of F has an estimate of the form (3.4.17), (3.4.19), when z is in a
compact set K. If we now choose ! as the smallest integer such that (3.4.14) is
valid, and recall that E ()= E, (x)+ E, (z), where E, (z) is an entire analytic function,

the following theorem is proved.

THEOREM 3.5. Let y be a vector in R* and b the number introduced in Lemma
3.9. Then, for any compact set K, which does not contain the origin, there exists a

constant C such that

(3.4.20) |<y, DY* B ()| < C*T" (’g) z€K,

where E (x) is the function which defines the fundamental solution of Theorem 3.4.

In constructing the fundamental solution we have used several ideas from the
literature. The idea of estimating an expression of the form (3.4.13) has been taken
over from a study of elliptic operators by Garding [10]. For references to the very

rich older literature on this subject, the reader should consult Schwartz [28)].

3.5. Proof of Theorem 3.3

Let P be complete and satisfy the conditions I-V of Theorem 3.3, and let Q
and Q' be any domains such that ' has compact closure in . The domain Q may
be bounded or not be bounded. Then there exists a positive number ¢ such that
a sphere with radius ¢ and centre at any point in Q' is contained in Q. Let p ()
be a function in C§°, which vanishes for |z|=¢ and equals 1 in a neighbourhood of
the origin. Instead of the fundamental solution constructed in Theorem 3.4, we shall

use the ‘“parametrix”
(3.5.1) F=pE.

The support of F is contained in the sphere |z|<e, and
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(3.5.2) P (D)F =6+ w (),

where §, is the Dirac measure at the origin and w (%) is an infinitely differentiable
function, which vanishes for |z|=e and also in a neighbourhood of the origin. In
fact, in a neighbourhood of the origin, where g=1, we have F=F and thus
P(D)F=P(D)E=§, Since P(D)E is infinitely differentiable for x=0, the formula
(3.5.2) follows.

Now let «€D,, which means that u and P (D)u are square integrable functions

in the sense of the theory of distributions. In Q' we have

(3.5.3) u=uxdg=u*(P(D)F—-w)=F%(P(D)u)—w*u

and consequently

(3.5.4) P9 (D) u=(P® (D) F)# (P u)— (P (D) w) % u.

Since P™ (D) w is continuous, the last term is bounded and hence square integrable
in '. To study the other term in (3.5.4), we denote by ¢ the function which equals
Pu in points with distance <¢ to ' and equals O elsewhere. ¢ is square integrable

and has compact support. In Q' we have

(P® (D) F)*(Pu)= (P (D) F)*¢=(P® (D) E)*¢+ (P (D) {(o — 1) E}) * .

Now P®@(D)E%¢ is a square integrable function in ' in virtue of the assertion
II of Theorem 3.4. Since (o —1)F is an infinitely differentiable function and ¢ has
compact support, it follows in particular that also (P (D){(o—1) E})* ¢ is square
integrable in Q. Hence P (D)u is locally square integrable in Q, for any u€D,,
and thus the remarks following Definition 3.1 show that the operator P is of lo-
cal type.

We may also note that (3.5.3) shows that all distributions u, such that P (D)u=20,

are infinitely differentiable functions. We shall refine this result in the next section.

3.6. The differentiability of the solutions of a complete operator of local type

We observed at the end of the previous section that all solutions of the equation
Pu=0, where P is complete and of local type, are infinitely differentiable. More

generally we can prove:

THEOREM 3.6. If u belongs to the domain of the operator P* for every k, where
P is a complete differential operator of local type, it follows that w is an infinitely dif- .

ferentiable function after correction on a null set.
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Proor. It follows from Theorem 3.3 (or else directly from Definition 3.1) that
P* is also complete and of local type. Hence, if € C§ (), the function ypu is in

the minimal domain of P (D)*

in any bounded domain €', containing the support
of yw. Thus pu equals an infinitely differentiable function in virtue of Theorem 2.14.

Since p is an arbitrary function in C§, we obtain the desired result.

The proof of Theorem 2.14 also gives the following more precise result: For any
differential operator @ (D) there exists an integer k such that, if Q is a bounded

domain, we have with some constant C

sup |Q (D) w (@) P = O ([(P)o w[* + [ ]f*),

when u is in the minimal domain of P (D)*. Using this result and the proof of

Theorem 3.6, we obtain the following useful estimate.

LEmMMA 3.12. Let P be complete and of local type, and let Q be any differential
operator with constant coefficients. Then there exists an integer k with the following
property: If w€D .k, the function Q(D)u is continuous in Q, and for any domain '

with compact closure in Q) there is a constant C such that

(3.6.1) sup [@ (D) w (@) P = C (| P* [P+ [l uP).

THEOREM 3.7. Let Q be a bounded domain. If all the solutions u€ L? (Q) of the
equation Pu=0 are infinitely differentiable after correction on a null set, the operator

P (D) must be complete and of local type.

Proor. We shall prove that the first condition in Theorem 3.3 is fulfilled.
This can be done my means of explicit constructions similar to those of Petrow-
sky [26]. However, we give a proof along the lines of this paper. Thus let Q' be
a domain with compact closure in Q. Since P is a closed operator, the set U of

all solutions % of the equation Pu=0 is a closed subspace of L?(Q). The mapping
Usu—>du/dox* €L (Q)

is closed, and by assumption it is defined in the whole of U. Hence it is continuous

in virtue of the theorem on the closed graph, so that

|2
!

If we apply this inequality to the function w=e¢'<"? where {=§+14% is a solution

ou

ox

2
dxéCf[uIzdx, w€U.
0

of the equation P ({)=0, we obtain
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(S10p) [ererazse [erenas
k=1 & g
Hence when 7 is bounded, |7|< 4, it follows that |¢|<(C’, which proves that P is

complete and satisfies the condition I of Theorem 3.3.

Theorems 3.6 and 3.7 show that all solutions of the equation Pu=0 are infinitely
differentiable functions if and only if P is complete and of local type. Thus we have
found the greatest class of operators, for which a generalization of Weyl’s lemma
holds true. We now turn to a more detailed study of the properties of the solutions

of the equation Pu=0.

DEriNITION 3.2. An infinitely differentiable function w, defined in a domain
Q, ts said to be of class ¢ in the direction y, if to any compact set K in € there is

a constant C, so that

(3.6.2) sup | <y, DY"u (x)|<C" T (g n).

It is well known that solutions of elliptic equations are analytic and consequently
of class 1 in every direction. There is also a classical result by Holmgren, which
states that the solutions of the equation of heat are of class 2 in the time variable.

We now state a result of this type for any equation of local type.

TaEOREM 3.8. Let P (D) be complete and of local type. Then every solution of
the equation Pu=0 is of class p(y) in the direction y, y=0, if o(y) is the inverse of

the exponent b in Lemma 3.9, that is

3.6.3 - log [C—¢])
(3.6.3) e)= tm (;;*‘;,130 log [ —¢]

Proor. Let K be a compact set in Q, and take a function y€CF (Q), which
equals 1 in a neighbourhood of K. The function v=qu is then in 0§ (Q) and equals
w in K. Furthermore, the function ¢=P (D)v€CY (Q) and vanishes in a nejgh-
bourhood of K. Denoting by ¥ the fundamental solution given by Theorem 3.4, we
have v=E *¢@ in virtue of (3.4.1). Hence

(3.6.4) u(z)= [E(@)p@—a)da/, x€K,

(3.6.5) @, DY u (@)= [ (Cy, DY B (&) g (e — ') da’, €K,

where D’ is the operator of differentiating with respect to z’. Now we can find two

positive numbers & and 4 such that @ (x)=0 in any point x with distance <g or
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>A from a point in K. Then ¢ (r—2')=0 if x€K and either |z'|<¢ or |2'|> 4.
Hence we may integrate only over the domain e<|a’'|<4 in (3.6.4) and (3.6.5).

In this domain we can use Theorem 3.5, which gives

[<y, D>”u(x)[§F(%) C*[lp@—=)|da' =T (gn) C" [| ¢ ()| da.

The proof is complete.

An interesting application of Theorem 3.8 concerns the growth of null solutions
of P. Suppose that w is a null solution in (), so that it vanishes when x€Q and
{x, £ <0, where {z, £>—=0 is a characteristic plane intersecting Q. Let y be a di-
rection which is not contained in this plane, that is, such that {y, & =0. Then, if

K is a compact set in Q, we have
(3.6.6) lu(@)|<de =% 2eK, (z, & >0,

where o is defined by a« '=p(y)—1. For in virtue of Theorem 3.8 and Taylor’s for-
mula we have for any =, if t={z, &,

(3.6.7) |u (x)] = Cnf I'(oen), z€K.

If in (3.6.7) we let » be the smallest integer larger than (C't) * and use Stirling’s

formula, we obtain the desired estimate (3.6.6).

REMARK. We pointed out at the end of section 3.5, that all distributions w,
which solve the equation Pu=0, are infinitely differentiable functions, if P is com-
plete and of local type. Using our Theorem 3.6 and Théoréeme XXI in Schwartz
[28], Chap. VI, we can also prove that a distribution u, such that P (D)"w is of

bounded order when n—oco, is an infinitely differentiable function.

3.7. Spectral theory of complete self-adjoint operators of local type

We shall call the differential operator P (D) (formally) self-adjoint, if P (D) coin-
cides with its algebraic adjoint, that is, if P (&) is real for real &.

Lemma 3.13. If P(D) is complete, formally self-adjoint and of local type, it follows
that the operator P, is semi-bounded for an arbitrary domain Q, unless P (D) is an

ordinary differential operator of odd order.

Proor. TFirst suppose that P (D) is not ordinary, that is, that the dimension
v of the space of £ is greater than 1. From condition V of Theorem 3.3 it follows

that | P (£)|—co when the real vector £—>co. If there were points where P (&) is positive
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and points where P (£) is negative outside any sphere, there would also be points where
P(§)=0, since the complement of a sphere is connected. Now this is a contradiction,
so that either P (£)— + co or else P (£)-> — co when £—co. We may restrict ourselves to
the first case. Then P (£)=¢ for some finite real ¢. If u €0 (Q), we have in virtue of

Parseval’s formula
(P(D)u, w)= [P )4 (E)Pdézc[|a(E)PdE=c(u, u).

Hence (P,u, u)=c(u, ) when € Dp, The same result is obviously valid, if P (D)

is an ordinary differential operator of even order.

Thus, if P (D) is complete, formally self-adjoint and of local type but not an
ordinary differential operator of odd order, the operator P, is symmetric and semi-
bounded. Hence there exist self-adjoint semi-bounded extensions P of P, (see Nagy
{23] or Krein [17], who gives a more detailed study). If Pis any self-adjoint exten-
sion, we have P,c P and consequently P=P*< P*—P, so that P,c P< P. Thus
P is defined by a boundary problem in the sense of section 1.3. The case where p
is the Friedrichs extension merits some comment. The degree of P(£-+tN) in ¢ for
fixed N€R, and indeterminate £ is even, since P (&) is semi-bounded. Denote this
degree by 2m (N). Using the methods of section 2.8 we could show that the boundary
conditions corresponding to P are, at least formally, the vanishing of m (N)—1 trans-
versal derivatives at a point on the boundary with normal N.

For ordinary differential operators P of odd order, the situation is different. In
fact, when Q is a semi-axis, there are no self-adjoint extensions. These exceptional

operators, which can be treated explicitly, will therefore be excluded in the sequel.

Thus for the rest of the section we assume that P (D) is complete, formally self-
adjoint and of local type, but not an ordinary differential operator of odd order. Let
P be a fixed self-adjoint extension of P,. The operator P gives rise to a resolution
of the identity X; such that

(3.7.1) P~ [1dE,

We shall study certain functions of the operator P, which will turn out to be
integral operators. Let B, be the set of all Borel measurable functions « (1),
— o0 <A< oo, such that the product « (1) A* is bounded for every integer k=0. The

supremum of |« (1)| is denoted by |x|. Now form the operator

(3.7.2) oc(f’)= fa(l)dEz> ®€B.,.
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Since

P o (P)= [ 2« (1) d B,
the operator ﬁ"oc(ﬁ) is bounded for every integer k;
(3.7.3) | P*a (P)|| < |4 |, &=0,1,2, ...

Here 2°o denotes the function A*«(A), and || || is the operator norm. Thus, if
g=oc(13) f, it follows that g€Dj, for any integer k, so that g is an infinitely dif-

ferentiable function in virtue of Theorem 3.6. Since
I1P* gl =14" el II£]],
the second part of the following: lemma also follows as a corollary of Lemma 3.12.

Lrmwma 3.14. All functions in the range of oc(f’) are infinstely differentiable, if
®€B.. Moreover, for any differential operator Q (D) we have, when K is a compact
subset of Q, ~

sup |Q (D) (x (B) @) F =€ ([l + 2% ) [ ]

Here & is the same integer as in Lemma 3.12, and C is a constant, which may depend
on K.

Applying this result to the operators @ (D)=1 and @ (D)=D;, we find that, for
a certain integer z,

7.4 sup (7@ 1+ 3 loa/ow't) <0t (ab +1zal 111

where g=oc(l3) /, and K is a compact subset of ). Hence the value g (z) at a fixed

point is a bounded linear functional of f€L? so that we may write

(3.7.5) «(P)f @)=}, u.a),
where @, ,€L? In virtue of (3.7.4) we have, if K is a compact set in Q,
(3.7.6) lpz P <C(aff+|2*a]?), z€K.

Furthermore, if K is also convex, it follows from (3.7.4) that

|, @ gu D=9 @) =g @)= o=y sup S|og/oa P

le—yP O (P + 2| £
Hence we have

(3.7.7) losa=@uoll <z —y[?C* (o +] 2 a).
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If €Dy, we can write (P*a(P))f(@)=a(P)(P*f)(z), which with the nota-
tion (3.7.5) reduces to
(F, @o12) = (P* 1, aa)s  fEDse.
Thus ., € Dpx and p¥ @z, 0= @z, 1%, for any integer k. Hence it follows from Theo-
rem 3.6 that ¢, , is an infinitely differentiable function @r o (@), *'€Q, and if K’

is a compact set in , Lemma 3.12 shows that

[gra @)+ 310000(2)/0 P2 O (lgall + s alP), # €K
Estimating the right-hand side of this inequality by means of (3.7.6), we thus obtain
(3.7.8)  |@ra(@)]P+ él|6<pz,a(x')/8x’i|2§02 (|e]P+|2*al?), z€K, 2" €K'

Now set O (2, x, &) =@, o (¥'). In virtue of the definition (3.7.5) of ¢;,, we have

(3.7.9) a(P) @)= [0, x, a) f (@) de'.
Q

We shall prove that O («, 2, «) is a continuous function of (2, ) €QxQ. Let x,
and 24 be fixed points in Q and take compact neighbourhoods K and K’ of z, and
xg. From (3.7.8) it follows that, for given e, there exists an open neighbourhood
U’'< K’ such that

|0 (@', 2, 0) =0 (¢, z, @)|<e,
if x€K and ', y' €U’. Furthermore, (3.7.7) shows that

[10 @, z, 0)— O @, zy, @) [Pda’ <mU’,
&

when z is in a neighbourhood U of z, Thus, if €U, there exists a point y' €U’
so that |® (¥, x, ) — O (¥, z,, ®)|<e. We also have

|® (@, x, x) — O (¥, z, a)| <e, if 2€U’, and |0 (¥, z,, a) — O (5, 29, )| <e.
Hence, if (z', z) €U’ ' xU, we have
|0 (@, x, &) — O (x0, z )| <3 e,
which proves the continuity of ® (', z, «).
Let B be the set of bounded Borel functions « (1) such that |A* a| < co. Noting

that we have only used the fact that |A**«|< oo, in constructing the function

@ (2, z, «) and proving its continuity, we obtain the following theorem.
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THEOREM 3.9. There exists an integer k such that o (13) is an integral operator
with a continuous Carleman kernel, if «€Br. Thus the kernel O (&, x, ) in (3.7.9)

is a continuous function of (x', x) EQXQ, and the integrals

(3.7.10) [10@, z, ) Fde, [|O @, x, a)Pde’
0 Q
exist and are continuous functions of x' and x, respectively. For compact subsets K of
Q we have
(8.7.11) |0 @, z, )| <C(|a| +|A*a]), =, 2’ €K, x€By.

Proor. With k=2x we have proved that O (2, z, «) is continuous and that
(3.7.11) is wvalid. Since, with our previous notations, the second integral in (3.7.10)

is || @z, «||?, it is finite and continuous in virtue of (3.7.6) and (3.7.7). Now we have
(3.7.12) O (', 7, ) =0 (z, =, &),
which proves the existence and continuity of the first integral (3.7.10).

We now return to the original assumption that «€B,.. Let J be the anti-linear
operator f—f in I?, and set P'—J'PJ. This means that P f-Pjf, if feDs. We
obviously have

Pyc PP,
where P, and P’ are the minimal and maximal differential operators defined by
P’ (D)=P (—D). The relation ﬁ%‘azq)z, 10» Which was proved above, now gives
(3.7.13) PO,z )=0 @, la),

since © (2, , a) = @q, o (x'). Here P operates on the variable 2’. Using (3.7.12) we
also find that

(3.7.14) PO, 0)=0 @, z, Aa),
where P operates on z. From the last two formulas we obtain for any n
(PD)+P(—-D')NV'O(@, z,)=2"O (', z, \" )

in the distribution sense. Here P (D) operates on x and P(—D') operates on z’.
Now it follows from condition IIT of Theorem 3.3 (see also the next section) that
the complete operator P (D)+ P (—D’) is of local type in QxQ. If Q' is a domain
with compact closure in (), the functions O (z', x, A" «) are square integrable in
Q'xQ’. Hence Theorem 3.6 proves that O (z', x, o) is infinitely differentiable in
Q'x€Q' and consequently in QxQ.
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If feCF (Q), we find by differentiating (3.7.9) that

QD) x(P) @)= [(QD)O W, z, ) f (&) da,
Q

where @ (D) is a differential operator with constant coefficients. Hence the integral

[1QD)® &, «, ) [Pda’
Q

is bounded on compact subsets of ), in virtue of Lemma 3.14. Since the same re-
sult is valid for the operators D; @ (D), the integral is in fact continuous. Summing

up, we have now proved the following theorem.

THEOREM 3.10. The kernel O (z', z, &) of oc(f’) is infinitely differentiable, if
a0 €B,,. Furthermore, the integrals

(3.7.15) [leD) 0@, =, a)fde!, [|QD)O @, 2 o)fd
Q Q

exist and are continuous functions of x€Q and ' €Q), respectively, if Q (D) is any

differential operator with constant coefficients.

For self-adjoint elliptic operators with variable coefficients, Theorem 3.9 and
essentially also Theorem 3.10 were proved by Browder {2, 3] and Géarding [11, 12] in
studying singular eigenfunction expansions. Our statements follow Girding’s closely.
Géarding [12] proved the existence of an eigenfunction expansion for any self-adjoint

operator P, such that a function oc(P), where a(A)=0 a.e., is a Carleman integral
operator. Hence his results apply to our case in virtue of Theorem 3.9. The precise
statement may be omitted, since it does not differ in any respect from the results

for elliptic operators in Browder [2] and Gérding [11, 12].

3.8. Examples of operators of local type

Elliptic operators are of local type, for it is easily seen that they satisfy con-
dition ITI of Theorem 3.3. Since most of our results are not new for elliptic operators,
we wish to give other examples. For convenience we shall say that a polynomial
P (&) is of local type, if the operator P (D) is of local type, that is, if P (&) satisfies
conditions I-V of Theorem 3.3. We first prove some necessary conditions for an
operator to be of local type.

Let 7 be a fixed real vector and set

(3.8.1) P(E+tn)=2t" P (& n).



GENERAL PARTIAL DIFFERENTIAL OPERATORS 239

Denote by u the degree in ¢ of P (&+t¢#) for fixed » and indeterminate £. We shall
prove that P, (£, n) must then be independent of £, if P is of local type and u>0,
that is, if ¢ A(P). In fact, if this were not true, we should have for some real

& and some sequence « of indices with |a|=+0

la|
oT P& m) n):::O.
0&a
Then we should get when {-—oo

P(a)(s_i_tn)_)ng) (5, 17)
PE+tn)  Pu& )

=0,

which would contradict condition III of Theorem 3.3. Hence our assertion follows.
Let p(£) be the principal part of P (£). Denote its order by m, and form with

fixed 7 the expansion

(3.8.2) p(E+itn) = %tk i (£, 1)

We have evidently p, (£, n)=p (). The polynomial p, (&, %) either vanishes for all
&, or else it is a homogeneous polynomial of degree m—k in &.

Now take a real vector n¢A(P) such that p(n)=0. Then the degree y of
P(+tn) in ¢ is less than m, and the degree of p(£+i7) in ¢ cannot be greater
than y. Since we have proved that the polynomial P, (&, ) must be independent
of & and we have P,(& n)=pu.(§ n)+ terms of degree less than m— g in &, it
follows that p, (&, n)=0 for all £, so that the degree of p(£+t#) in ¢ is less than u.
Thus,. if P is of local type, the polynomial p(&-+1tn) is at most of degree m—2 in i,
if p(n)=0.

If P (&) is real, we can improve this result. For we may suppose that P (£) is
not a polynomial in one variable only. Then the polynomial P (£) is semi-bounded
(Lemma 3.13), and consequently its degree m and the degrees of P(£+t7) and
p(E+tn) in t must be even. Hence y=<m—2, so that the degree of p(E+tn) in ¢
t8 al most m—4, if p(n)=0.

From these results it follows that an operator of principal type can only be of
local type, if it is elliptic. We also conclude that a homogeneous complete operator
of local type must be elliptic. Finally, the results suggest the examples of self-

adjoint operators of local type, which we shall now give.

TaeorEM 3.11. Let Q (&) be any real polynomial of order m, and let k be a
fixzed integer =2. Then the polynomial
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(3.8.3) P(E)=Q (&) +ER (&)
is of local type, if R (&) is a positive definite homogeneous polynomial of the order
2km—2(k—1).

In fact, the same result remains true, if R(£) is an inhomogeneous polynomial
of this degree and, denoting the principal parts of @ and R by ¢ and r, we have r (£) >0
for every &=+0 such that g(£)=0. Note that the principal part of the polynomial
P (&) is q(£)?F, and that g(£) is an arbitrary real homogeneous polynomial.

ProoF. We shall prove that condition ITI of Theorem 3.3 is fulfilled. Writing
Q (£)**=8 (&), we have P (§)=8" (£) + R™ (£), and since

|B= )] _ | B @]

0, when §—>oco, |a|=+0,

P& T R($)
the only difficulty is to estimate 8. Now we can write
min (2%, jo|) .
(3.8.4) S9E = 2 QEMTFQ),
i=1

where F¥(£) is a polynomial of degree jm —|a| at most. In virtue of the inequality

between geometric and arithmetic means we have
(3.8.5) Q&P REP <Q©) +R(§=P (&)
Hence we obtain the following estimates for the terms in (3.8.4)
|Q (€)**7 Ff (§)| <C P (&) B(&/F R (&)™ =P,
where p=2 (km—(k—1)) is the degree of R (). The sum of the exponents of R (£) is

1) —kle] _ x| _o
ku kup
when j<|«| and |a|+0. Hence §* (&)/P(£) 0, when {->oco, if |a|+0. Thus we

obtain
P(o:) ( 5)

P(§)

Hence the condition III of Theorem 3.3 is fulfilled.

— 0, when &—co, if |a|=0.

Finally we remark that the product of two complete operators of local type is
complete and of local type, and that the sum of two self-adjoint operators of local
type, which are bounded from below, is self-adjoint and of local type. The easy

verification may be left to the reader. It is also an immediate consequence of condition
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II of Theorem 3.3, that if P is of local type and Q (&)/P (&)~ 0 when &—>oo, then
P+tQ is of local type for any complex number t. Combining these simple remarks
with Theorem 3.11, we could construct a very wide class of differential operators of

local type.

3.9. An approximation theorem
For operators of local type we shall now answer a question raised on page 169.

TaEOREM 3.12. Let P (D) be of local type and let Q be an arbitrary domain.
Then the operator P is the closure of its restriction to D,.ncC>.

We note that the restriction of P, mentioned in the theorem, is defined for those
infinitely differentiable functions u such that w and P (D)w are square integrable.

The value of Pw is then of course calculated in the classical way.

Proor. Using an idea of Deny-Lions [4], p. 312, we shall for given £>0

and %€ Dp construct a function v €C*® such that
(3.9.1) lo—ull<e, ”P(D)v—Pu|l<s.

Since these inequalities obviously imply that v € L? and that P (D) v € L2, the theorem will
then follow. Choose a locally finite covering Qi, k=1, 2, ..., of Q such that Q,< Q
for every k, and then take functions ¢, €CF () so that 2 @k (@) =1 (cf. Schwartz
[28], Théoreme II, Chap. I). The function ur=g@ru is in Dp in virtue of Defini-

tion 3.1, and we have

w=2uy, Pu=73 Pu

(almost everywhere); the series converge since only a finite number of terms do not
vanish in a compact subset of (. (However, the second series is not L>convergent

if w¢D,.) Now Lemma 2.11 shows that ur€D,, so that we can find a function

v, €CF° (Q) such that
(3.9.2) luk—vi|| <27%e, ||Pux—Polj<2%e.
It follows from the proof of Lemma 2.11 that we may assume that v, has also its

support in ;. Since the covering €, is locally finite, the series > w,(x) converges

for every x, and the sum v(z) is in C* (Q). Using (3.9.2) we obtain
lo—wull=3lve—ucll<e, [|[P(D)v—Pu||<3 ||Pve—Pur] <e,

which proves (3.9.1).
16 ~553810. Acta Mathematica. 94. Imprimé le 28 septembre 1955.



242 LARS HORMANDER

CmaPTER IV
Differential Operators with Variable Coefiicients

4.0. Introduction

In the two preceding chapters we have exclusively studied differential operators
with constant coefficients. However, we shall see that the methods of the proof of
Theorem 2.2, which is the central theorem in Chapter II, also apply when the coef-
ficients are variable, if suitable restrictions are imposed. In order to exclude cases
where the lower order terms and the variation of the coefficients may influence the
strength of the operator, we shall only study operators D of principal type. This
means that the characteristics have no real singular points. (When the coefficients are
constant, this is equivalent to Definition 2.1 according to Theorem 2.3.) Furthermore,
we shall assume that the coefficients of the principal part are real, which means that
there is some self-adjoint operator with the same principal part as D, so that D is
approximately self-adjoint. (It is sufficient to require that D is approximately normal
in the sense that the order of D D — P D is at least two units lower than that of DPD.
We do not study this case here.) The minimal differential operator defined by D
in a sufficiently small domain is then stronger than all operators of lower order,
and has a continuous inverse. The same result is true for the algebraic adjoint ﬁ
Hence, in sufficiently small domains, the equation Pu=f has a square integrable
solution for any square integrable function f. In the sense of section 1.3 there also
exist correctly posed abstract boundary problems for the operator D. It seems that
this is the first existence proof for differential operators with non-analytic coefficients,

which are not of a special type.

4.1. Preliminaries

Let D be a differential operator of order m in a manifold Q.! In a local co-

ordinate system we may write

(4.1.1) D= S a*(2)D,

la|jsm

Now, if ¢ is an infinitely differentiable function in Q, we have for real ¢

Peie=¢" T a®g,+0(" ")

Jaj=m

! Tt is sufficient here to suppose that () is a domain in R'.
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when {—>oco, where @,=2¢/0x" and @,=@y, ... 9y, Thus the polynomial

(41.2) p (@, &)= | 2 a*(x)éa
a|=m
is a scalar, if £ is a covariant vector field. p(x, &) is called the characteristic poly-
nomial of P. The coefficients a* (|a|=m) form a symmetric contravariant tensor.
The differential operator D is called elliptic in Q, if p(z, £)=0 for every z€Q
and every real £=+0, and it is said to be of principal type in Q, if all the partial

derivatives 0 p (x, £)/2& do not vanish simultaneously for any x€Q and real £=+0.

We shall now deduce some formulas, which replace the more implicit arguments

of section 2.4 in the case considered here. Let p(z, &P, ..., &™) be the symmetric
multilinear form in the vectors &V, ..., &, which is defined by p (z, &),

P £V, By = Sat T @) ) £
If %, ..., k, are positive integers, &k, + - + k&, =m, we shall write p (z, LA G

for the multilinear form where k; arguments are equal to &?. Sometimes we also

omit the variable . Now set for indeterminate & and #

» m-1
(4'13) . kz=1le (C} Z:) 51 nkzm sz() p(cj: Z”‘717j: E)p(CM717j, Z:j, 7]),
(4.1.4) 2 ST Dime=m zp(@ T p LT E ),

and T'*=R'*— 8% TEvidently T'*=T"% (2, {,T) is a symmetric tensor which is a

homogeneous polynomial of degree m —1 in both { and . Since

p(™)=p@), "8 —;MZI 5;%

it is easy to verify the following fundamental property of the tensor 7°%

p()_2pQ)

C o p ().

(4.1.5) iZI G-G) T (D= (C)

The arguments of section 2.6 were based on the fact that, in virtue of Lemma
2.2, there exist polynomials 7% (£,7) satisfying the identity (4.1.5), even for a non-
homogeneous polynomial p. The simple explicit formulas given above for 7" in the

case of a homogeneous polynomial p, have the now essential advantage that 7" are
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homogeneous of degree m—1 in { and in Z. For second order equations the “energy”
tensor T"* was given by Hoérmander [15].
We shall also use the tensor @'/*({, f) defined by the formula

(41.6) 2 3 QU )& m
i,5, k=1
m-1

=mj§1 e @ L) e e ) - (T, ) p €L DT E b+

m—1 - o B
+m EZ G-D{p@ T p T 0,6 —p ", D) p @M, 8 6}

This tensor is symmetric in the last two indices, and we have

&p ()
% 0Lk

azp(@))_

+p(Z)aC/ack

@17 SGE-0eUHE D=84E D~ %(p @)

T

4.2, Estimates of the minimal operator

We shall now prove that an analogue of Theorems 2.1 and 2.2 is valid for cer-
tain differential operators D with variable coefficients. Since our results are not valid
in the large, we may assume from the outset that our operator D is defined in a
neighbourhood of a sphere [z|<A in R’

THEOREM 4.1. Suppose that p(w, &) is real for real & and of principal type,
that is, that all the partial derivatives dp (z, £)/2& do not vanish simultaneously for
any real £+0. Let the coefficients of p(x, &) be continuously differentiable and the other
coefficients of P be continuous. Then there exists an open neighbourhood Q of the origin,
such that

(4.2.1) ]a]zm” DyulP<C||Pul?, w€CT (Q).

Proor. It follows from (4.1.5) and the assumption that p (x, &) is real that

9
1 6:1:1

(T"* (x, D, D)ua) = 2 Im (p (x, D)up® (x, D)u)+ F* (x, D, D)u1,

M

1

[

where p® (z, £&)=0p (v, £)/0 & and

P D= 3 (0 @ 5 D).

I=1
Thus F*(z, D, D)uw is a quadratic form in the derivatives of u of order m—1 and
has continuous coefficients. Multiplying by z* and integrating over an open neigh-
bourhood Q of the origin, we obtain, if »€C0F (Q),
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(4.2.2) [T** (@, D, D)uadx
= f2x" Im (p (z, D)u p® (x, D)u)dx+ fx" F*(z, D, D)uddx.

Denote by & an upper bound of |z]| in Q. We may suppose that §<4, and shall
prove that (4.2.1) is valid, if § is sufficiently small. If we use the notations

(4.2.3) |u2= |a|z=n“D°‘”|2dx’ ||u||$,,=ialzsnf|Dau|2dx

and note that p(x, D)u only differs from D u by a sum of derivatives of u of orders
<m, the inequality (4.2.2) and Schwarz’ inequality give

(4.2.4) [{T%* (&, D, Dyua dz < Co (|| Pull || @|lm1+||%]ln-s®).

where C is a constant. (We shall denote by C different constants, different times.)
Now we have T%*=R'* - 8¥* 50 that (4.2.4) gives, after summation,

(4.2.5) fZR’”‘(O, D, D)uidx< fZ(R’”‘(O, D, D)—R** (x, D, DY) uadx+
1 1
. fzs“(x,p, Dyua dz+Co (| Pl |l s+ |2 ]lni?.
1

We shall prove (4.2.1) by estimating the terms in this inequality.
The definition (4.1.3) of R'* shows that

SREO,E 9= 3 Op0, 808

-1

This is a homogeneous positive definite polynomial, since D is of principal type.

Hence we have

S R0, & &)z o (@4 E
k=1

for some positive constant ¢, and using Parseval’s formula (cf. formula (2.5.1)), we
thus obtain
(4.2.6) c|ulni?= sz"k(o, D, D)uidz.
1
It is easy to find an estimate of the first term on the right-hand side of (4.2.5).

In fact, since the coefficients of R** (0, D, D)— R** (z, D, D) are continuously dif-
ferentiable and vanish for =0, they are O(|z|). Hence

4.2.7) f S (R** (0, D, D)~ R** (z, D, D)) ut dw < C8|u|n 1>
1
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In order to estimate the integral f S8** (x, D, Dyua dx we must first integrate

it by parts. Formula (4.1.7) with j=% shows that

(4.2.8) S** (x, D, Dyua
=Re (p (x, D)u p*? (v, D)u)+ G (x, D, D)y wii + % > %(Q“‘k (x, D, DYwii).
=1
Here
- 12 0 . -
k —_ 13 % pirk
G (z, £, 0) i 2 o0 Q" (= L, 0),

so that G*(x, D, D)u# is a sum of products of derivatives of the orders m—2 and

m—1 of u. Hence Schwarz’ inequality shows that
(4.2.9) J G @, D, Dyuidx<C|u|n 1|%|n-o

Furthermore, the integral of the last term in (4.2.8) is zero, and using again the
fact that p(x, D)u differs from P u only by derivatives of order <m of u, we thus

obtain
(4.2.10) [ 8** (2, D, Dyuadz <0 (|| Pull+|w|ln-1) | w|n-s+C|w]n1|%]|ns.

If the two sides of the inequality (4.2.5) are estimated by means of the in-
equalities (4.2.6), (4.2.7) and (4.2.10), it follows that

@21)  Julut <O (P ull <l ) @llalln i +lul ), veCH @.
To prove (4.2.1) we have now only to invoke the inequality

(4.2.12) |ule1=CO|ule, w€CF (Q), k=1, ..., m,

which is an immediate consequence of Lemma 2.7 but also well known previously
(see for example Gérding [9], p. 57). It follows from (4.2.12) that |%|n 2= 08| %|n-1=
£C6||ul|m-1, and, since §=4, that ||u|ln 1=C|w|n,. Hence (4.2.11) gives with
a constant K

lulln-?= K P ull+lwlln-)ll2lln-s
so that
(4.2.13) |w||m-1(L-KSH<KS| P ul.
Thus the inequality (4.2.1) follows, if Kd<1.

In particular, it follows from Theorem 4.1 that the operator P, in L?(Q) has
a continuous inverse, if () is a suitable neighbourhood of the origin. Now let the

coefficients of D be sufficiently differentiable, so that D also satisfies the hypotheses
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of Theorem 4.1. Then the operator Pg'is also continuous. Hence the equation Pu=f
has a solution w€L?(Q) for any f€L*(Q) in virtue of Lemma 1.7. Furthermore,

using Theorem 2.15 and Theorem 4.1 it is easy to see that Pg' and Py' are com-

pletely continuous. Thus we can apply all the results of section 1.3. In particular,

it follows that there exist completely correctly posed boundary problems for the diffe-

rential operator PD.
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