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PREFACE 

0.1. The main interest in the theory of partial differential equations has always been 

concentrated on elliptic and normally hyperbolic equations. During the last few years 

the theory of these equations has attained a very satisfactory form, at least where Dirich- 

let's and Cauchy's problems are concerned. There is also a vivid interest in other differential 

equations of physical importance, particularly in the mixed elliptic-hyperbolic equations 

of the second order. Very little, however, has been written concerning differential equations 

of a general type. Petrowsky ([25], p. 7, pp. 38-39) stated in 1946 that  "it  is unknown, even 

for most of the very simplest non-analytical equations, whether even one solution exists", 

and "there is, in addition, a sizable class of equations for which we do not know any correctly 

posed boundary problems. The so-called ultra-hyperbolic equation 

~2 U ~2 U ~2 U ~2 U 
+ ' + - + " '"  + 

with p ~ 2 appears, for example, to be one of these." Some important papers have appeared 

since then. In particular, we wish to mention the proof by Malgrange [19] that  any differen- 

tial equation with constant coefficients has a fundamental solution. (Explicit constructions 

of distinguished fundamental solutions have been performed for the ultra-hyperbolic 

equations by de Rham [27] and others.) Apart from this result, however, no efforts to 

explore the properties of general differential operators seem to have been made. The 

principal aim of this paper is to make an approach to such a study. The general point of 

view may perhaps illuminate the theory of elliptic and hyperbolic equations also. 

0.2. A pervading characteristic of the modern theory of differential equations is the use 

of the abstract theory of operators in Hilbert space. Our point of view here is also purely 

operator theoretical. To facilitate the reading of this paper we have included an exposition 



GENERAL PARTIAL DIFFERENTIAL OPERATORS 163 

of the necessary abstract  theory in the first chapter, where we introduce our main problems3 

Using the abstract  methods we prove tha t  the answer to our questions depends on the 

existence of so-called a priori inequalities. The later, chapters are to a great extent devoted 

to the proof of such inequalities. In  Chapters I I  and IV the proofs are based on the energy 

integral method in a general form, i.e. on the s tudy of the integrals of certain quadratic 

forms in the derivatives of a function. For the wave equation, where it has a physical 

interpretation as the conservation of energy, this method was introduced by  Friedrichs and 

Lewy [6]. Recently Leray [19] has found a generalization which applies to normally hyper- 

bolic equations of higher order. In  Chapter I I  we s tudy systematically the algebraic aspects 

of the energy integral method. This chapter deals only with equations with constant coef- 

ficients. The extension to a rather  wide class of equations with variable coefficients is 

discussed in Chapter IV. 

In  Chapter I I I  we chiefly s tudy a class of differential operators with constant coefficients, 

which in several respects appears to be the natural  class for the s tudy of problems usually 

treated only for elliptic operators. For example, Weyl 's  lemma holds true in this class, i.e. 

all (weak) solutions are infinitely differentiable. Our main arguments use a fundamental  

solution which is constructed there. The results do not seem to be accessible by  energy 

integral arguments in the general case, although many  important  examples can be treated 

by a method due  to Friedrichs [5]. 

0.3. A detailed exposition of the results would not be possible without the use of the 

concepts introduced in Chapter I.  However, this chapter, combined with the introductions of 

each of the following ones, gives a summary  of the contents of the whole paper. 

0.4. I t  is a pleasure for me to acknowledge the invaluable help which professor B. L. 

van der Waerden has given me in connection with the problems of section 3.1. I also want  

to thank professor A. Seidenberg, who called my  attention to one of his papers, which is 

very useful in section 3.4. 

CHAPTER I 

D i f f e r e n t i a l  O p e r a t o r s  f r o m  a n  A b s t r a c t  P o i n t  o f  V i e w  

1.0. Introduction 

In the preface we have pointed out that the present chapter has the character of an 

introduction to the whole paper. Accordingly we do not  sum up the contents here, but 

1 Chapter I, particularly section 1.3, overlaps on several points with a part  of an important  paper 
by VIw ([34]) on general boundary problems for elliptic equations of the second order. 
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mere ly  p resen t  the  general  plan.  F i r s t ,  in  sect ion 1.1, we recal l  some wel l -known theorems  

and  def ini t ions  f rom func t iona l  analysis .  Then in sect ion 1.2 we define di f ferent ia l  opera to r s  

in H i lbe r t  space and  special ize the  theorems  of sect ion 1.1 to  t he  case of d i f ferent ia l  opera-  

tors .  A discussion of the  mean ing  of b o u n d a r y  d a t a  and  b o u n d a r y  p rob lems  is g iven in 

sect ion 1.3. This s t u d y  has  m a n y  ideas  in common wi th  Vi~ik [34]. I t  is no t  logical ly  in- 

d ispensable  for the  res t  of the  pape r  b u t  i t  serves as a general  background .  

1.1. Definitions and results from the abstract theory of operators 

Le t  B o and  Bj be two complex  Banach  spaces,  i.e. two no rmed  and  comple te  complex  

vec to r  spaces. A l inear  t r ans fo rma t ion  (operator)  T f rom B 0 to B 1 is a funct ion  def ined in 

a l inear  set D r  in B 0 wi th  values  in B 1 such t h a t  

(1.1.1) T(ocx +fly) = ocTx + fl Ty  

for x, y E OT and  complex  x, ft. I t  follows f rom (1.1.1) t h a t  the  range  of values  ~T is a l inear  

set in B1; 

The  set  B 0 • B I of all  pai rs  x = [Xo, Xl] wi th  x, E B, (i = 0, 1), where we in t roduce  

the  n a t u r a l  vec tor  opera t ions  and  the  no rm 1 

(1.1.2) Ixl  = (ix01 + 

is also a Banach  space, called the  d i rec t  sum of B 0 and  B r I f  T is a l inear  t r ans fo rma t ion  

f rom B o to  B1, the  set  in B 0 • B 1 def ined b y  

(1.1.3) Gr  = {[x o, Txo], XOfiOT) 

is l inear  and  conta ins  no e lement  of t he  form [0, xl] wi th  x 1 # 0. The set  GT is called the  

g raph  of T. A l inear  set G in B o • B1, conta in ing  no e lement  of the  form [0, xl] wi th  x I # 0, 

is the  g raph  of one and  only  one l inear  t r ans fo rma t ion  T. 

A l inear  t r ans fo rma t ion  T is said to  be closed, if the  g raph  Gr  is closed. W e  shah also 

say  t h a t  a l inear  t r ans fo rma t ion  T is pre-closed, if the  closure Gr  of the  g raph  Gr  is a graph,  

i.e. does not  conta in  any  e lement  of the  form [0, x~] wi th  xl  # 0. The t r ans fo rma t ion  wi th  

the  graph  Gr  is t hen  called the  closure of T. Thus  T is pre-closed if and  only  if, whenever  

x n-+ 0 in B 0 and  Tx n-+ y in B1, we have  y = 0. W e  also no te  t h a t  a n y  hnear  res t r ic t ion  of 

a l inear  pre-closed opera to r  is pre-closed.  

The fol lowing theorem gives a useful form of the  theorem on the  closed graph,  which 

s t a tes  t h a t  a closed t r ans fo rma t ion  f rom B 0 to  B 1 m u s t  be cont inuous ,  if O r = B o. (Cf. 

Bourbak i ,  Espaces vectoriels topologiques, Chap.  I ,  w 3 (Par is  1953).) 

i A n y  e q u i v a l e n t  n o r m  i n  B o • B x c a n  b e  u s e d ,  b u t  t h i s  c h o i c e  h a s  t h e  a d v a n t a g e  of  g i v i n g  a H i l b e r t  

n o r m ,  i f  B 0 a n d  B 1 h a v e  H i l b e r t  n o r m s .  
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T H E O R E ~  1.1. Let B~ (i = 0 ,  1, 2) be Banach spaces and T~ (i =1,  2) be linear trans. 

/ormations /tom B o to B~. Then, i / T  1 is closed, Tz pre-closed and ~T, = ~T,, there exists a 

constant C such that 

(1.1.4) I T~ulz<-_ C([ TlUl2 A- lull), u e O ~ ,  

PROOF.  The graph GT, of T x is by  assumption closed. Hence the mapping 

(1.1.5) GT, ~ [u, T l u ] ~  T2uE B~ 

is defined in a Banach space. We shall prove t h a t  the mapping  is closed. Thus suppose 

tha t  [un, Tlun] converges in GT~ and tha t  T~u n converges in B~. Since T 1 is closed, there 

is an element nEt)T, such tha t  un-+u and Tlun-> TlU. :In vir tue of the assumptions,  

u is in ~0T, and, since T~ is pre-closed, the existing limit of T~un can only be T2u. Hence 

the mapping  (1.1.5) is closed and defined in the whole of a Banach space, so tha t  it is 

continuous in vir tue of the theorem on the closed graph. This proves the theorem. 

Theorem 1.1 is the only result we need for other  spaces than  Hilbert  spaces; it will also 

be used when some of the spaces B~ are spaces of continuous functions with uniform norm. 

I n  the rest of this section we shall only consider t ransformations from a Hilbert  space H 

to itself. I n  t ha t  case the graph is s i tuated in H • H,  which is also a Hilbert  space, the inner 

p roduc t  of x = [x0, xl] and y = [Y0, Yl] being given by  

(x,y)=(xo, yo)+(xl,yl) .  

For  the definition of adjoints, products  of operators and so on, we refer the reader  to N a g y  

([23], p. 27 ff.). 

L E M M A 1.1. The range ~ r o /a  closed densely de/ined linear operator T is equal to H i/ 

and only i/ T *-1 exists and is continuous, and consequently is de/ined in a closed subspace. 

PROOF. We first establish the necessity of the  condition. Thus suppose t h a t  ~T = H. 

Since T* u = 0 implies t h a t  (Tv, u) = (v, T* u) = 0 for every v E Dr ,  it follows tha t  T* u = 0 

only if u = 0. Hence T *-1 is defined. Now for any  element v in H we can find an element 

w such tha t  Tw =v. Hence we have, if n e a r . ,  

(u,v) = (u, Tw) = (T* u,w), 

so tha t  for fixed v 

I(u,v)l=< CHT*uH, 

Let  u ,  be a sequence of elements in lOT* such t h a t  II T* u nil is bounded. Since I(un, v)[ is 

then bounded for every fixed v, it follows from Banach-Ste inhaus '  theorem (cf, N a g y  [23], 
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p. 9) t h a t  Ilun[[ mus t  be bounded .  Hence  T *-1 is cont inuous,  and  since i t  is obvious ly  

closed, we conclude t h a t  T * - I  is def ined in a closed subspace.  

The suff iciency of the  condi t ion  is easi ly  p roved  d i rec t ly  b u t  follows also as a corol lary  

of the  nex t  l emma.  

L ~ M M A 1.2. The densely de/ined closed operator T has a bounded right inverse S i / a n d  

only i /  T *-1 exists and is continuous. 1 

P R  O O F. Since T S  = I impl ies  t h a t  ~T = H,  i t  follows f rom the  p a r t  of L e m m a  1.1, 

which we have  proved,  t h a t  a bounded  r igh t  inverse  can only  exis t  if T *-1 is continuous.  

The  remain ing  p a r t  of L c m m a  1.1 will also follow when we have  cons t ruc ted  the  r igh t  

inverse  in L e m m a  1.2. 

I n  v i r tue  of a wel l -known theorem of von N e u m a n n  [24], the  opera to r  T T *  is self- 

ad jo in t  and  posi t ive.  U n d e r  the  condi t ions  of the  l emma  we have  

( T T *  u, u) = ( T ' u ,  T ' u )  >= C2(u, u), UE~TT*, 

where C is a pos i t ive  cons tan t .  Hence  T T *  ~ C2I. L e t  A be the  pos i t ive  square  roo t  of 

TT* .  Since A 2 ~  C ~ I ,  i t  follows f rom the  spec t ra l  t heorem t h a t  0 < A - l =  < C-1I .  The 

opera to r  A -1 is bounded  and  self-adjoint ,  IIA-1]I<=C -1. Fur the rmore ,  the  opera to r  

T * A  -1 is i sometr ic  according to  von  N e u m a n n ' s  theorem.  Now we define 

(1.1.6) S = T * ( T T * )  -1 = T * A - 1 A  -1. 

Since S is the  p roduc t  of an  i sometr ic  ope ra to r  and  A -1, i t  m u s t  be bounded ,  and  we 

have  II S II =< C-I-  F ina l ly ,  i t  is obvious t h a t  T S  = I .  

L ]~ ~ M), 1.3. The densely de/ined closed operator T has a completely continuous right in- 

verse S i /  and only i /  T *-1 exists and is completely continuous. 

P R o O F. W e  first  note  t h a t  the  ope ra to r  S given b y  (1.1.6) is comple te ly  cont inuous  

if T *-1 and  consequent ly  A -1 is comple te ly  cont inuous.  This  proves  one half  of the  lemma.  

Now suppose  t h a t  there  exists  a comple te ly  cont inuous  r ight  inverse  S. I f  UE~T. ,  we 

have  for a n y  v E H 

(u, v) = (u, T S  v) = (S* T* u, v), 

and  therefore  u = S* T*u.  Hence,  if v E ~ r . ,  we have  T*- I  v = S* v, which proves  t h a t  

T *-1 is comple te ly  cont inuous,  since i t  is a res t r i c t ion  of a comple te ly  cont inuous  opera tor .  

1 This means that S is continuous and defined in the whole of H, and satisfies the equality T S  = I,  
where I is the identity operator. 
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1.2. The definition of differential operators 

Let  ~2 be a v-dimensional infinitely differentiable manifold. We shall denote by  

C ~ (~) the set of infinitely differentiable functions defined in ~ ,  and by  C~ (~) the set of 

those functions in C ~ (~) which vanish outside a compact  set in ~ .  When  no confusion 

seems to be possible, we also write simply C ~ and C~ r 

A t ransformat ion to f rom C a (t:l) to  itself is called a differential operator,  if, in local 

coordinate systems (x 1, . . . ,  x~), it has the form 

(1.2.1) t o u = ~ a  . . . . . .  k(x) 1 0 1 
i ~ x ~' i ~ x ~k u, 

where the sum contains only a finite number  of terms 40 ,  and the coefficients a s . . . .  ~ 

are infinitely differentiable functions of x which do no t  change if we permute  the indices 

~j.1 We shall denote the sequence (~1 . . . . .  ~k) of indices between 1 and v by  ~ and its length 

k by  l a[. Fur thermore ,  we set 

1 
D~= i ~ x "  D ~ = D ~ . . . D ~  k. 

Formula  (1.2.1) then  takes a simplified form, which will be used throughout :  

(1.2.2) to u = ~ a ~ (x) D~ u. 

Here the summat ion  shall be performed over all sequences ~. 

We shall say  tha t  we have a differential operator  with constant  coefficients, if ~ is a 

domain in the v-dimensional real vector  space R ~, and the coefficients in (1.2.2) are constant ,  

when the coordinates are linear. 

Let  Q be a fixed densi ty  in g2, i.e. e (x) is a positive function, defined in every local coor- 

dinate system, such tha t  ~ (x)dxl . . .  dx  ~ is an invar iant  measure, which will be denoted dx.  

We require tha t  ~ (x) shall be infinitely differentiable, and, in cases where tO has constant  

coefficients, we always take  Q (x) = constant .  

The differential operators shall be studied in the t t i lber t  space L 2 of all (equivalence 

classes of) square integrable functions with respect to the measure dx, the scalar product  

in this space being 

(1.2.3) (u, v) = f u (x) v (x) dx.  

With  respect to this scalar p roduc t  we define the algebraic adjoint p of tO as follows. 

1 We restr ict  ourselves to the infinitely differentiable case for simplici ty in s ta tements ;  mos t  argu- 

men t s  and results are, however,  more  general and will later, in Chapter  IV,  be used under  the weaker 

condition of a sufficient degree of differentiability. 
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Le t  vEC r162 and  le t  u be  a n y  func t ion  in C~. I n t e g r a t i n g  ( p u ,  v) b y  par ts ,  we f ind  t h a t  

there  is a unique  di f ferent ia l  ope ra to r  ~) such t h a t  

(1.2.4) (p  u, ~) = (u, ~ ~). 

I n  fact ,  we o b t a i n  
]gv=q-l yD~(qa~v). 

W h e n  the  coefficients are  cons tan t  we thus  ob t a in  ]0 b y  conjuga t ing  the  coefficients,  

which mot iva t e s  our  no ta t ion .  

L]~MMA 1.4. The operator p ,  de/ined /or those/unctions u in C ~ /or which u and D u  

are square integrable, is pre-closed in L ~. 

P R O O F. Le t  u n be a sequence of funct ions  in  th is  doma in  such t h a t  u n ~ 0 and  ]:) un ~ v 

(with L2-convergence).  Then  we have  for a n y  / E C ~  

(v, /) = lim (Pun , / )  = l im (Un, p / )  = 0. 

Hence  v = 0, which proves  the  lemma.  

R E ~ A R K .  I t  follows f rom the  t r iv ia l  proof  t h a t  L e m m a  1.4 would  also hold  if, for 

example ,  we consider  ]0 as an  opera to r  f rom L ~ to  C, the  space of cont inuous  funct ions  

wi th  the  un i form norm.  

L e m m a  1.4 just if ies  the  following i m p o r t a n t  defini t ion.  

D ]~ F I N I T I 0 ~ 1.1. The closure Po o/the operator in L ~ with domain C~, defined by p ,  

is called the minimal operator de/ined by p .  The adjoint P o/ the minimal operator Po, defined 

by ~ ,  is called the maximal operator de/ined by ]:). 

The def in i t ion  of the  m a x i m a l  ope ra to r  means  t h a t  u is in O~ and  Pu = / if and  only  if 

u and  / are in L ~, and  for a n y  v E C~ r we have  

(/, v) = (u, p v). 

Opera tors  def ined in th is  w a y  are  of ten called weak  extensions.  I n  t e rms  of the  more  genera l  

concept  of d i s t r ibu t ions  (see Schwar tz  [28]), we migh t  also say  t h a t  t he  doma in  consists 

of those  funct ions  u in L 2 for which p u  in the  sense of the  t h e o r y  of d i s t r ibu t ions  is a 

func t ion  in L ~. 

I f  u E C ~ and  u and  ]:) u are  square  in tegrable ,  i t  follows from (1.2.4) t h a t  P u  exis ts  and  

equals  ~D u. This  is of course the  idea  under ly ing  the  defini t ion.  Since P is an  ad jo in t  opera tor ,  

i t  is closed and  therefore  an  extens ion  of P0. 
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I t  is unknown to the author whether in general P is the closure of its restriction to 

~0p N C ~. For elliptic second order equations in domains with a smooth boundary this 

follows from the results of Birman [1]. I f  p is a homogeneous operator with constant 

coefficients and ~ is starshaped with respect to every point in an open set, it is also easily 

proved by  regularization. In  section 3.9 we shall prove an affirmative result for a class 

of differential operators with constant coefficients, when ~ is any domain. 

We now illustrate Definition 1.1 by an elementary example. Let  ~ be the finite interval 

(a, b) of the real axis, and let p be the differential operator d~/dx n. I t  is immediately veri- 

fied tha t  the domain of P consists of those n-1 times continuously differentiable functions 

for which u (n-l) is absolutely continuous and has a square integrable derivative. The 

domain of P0 consists of those functions in the domain of P for which 

u ( a )  . . . . .  u ( n - l )  ( a )  = 0 ,  u (b)  . . . . .  u ( n - l )  (b)  = 0 ,  

tha t  is, those which have vanishing Cauchy data  in the classical sense at  a and b with 

respect to the differential operator p .  

The same result is true under suitable regularity conditions for any ordinary differential 

operator of order n. Hence, in general, the maximal  (minimal) domain of an ordinary dif- 

ferential operator is contained in the maximal (minimal) domain of any ordinary differen- 

tial operator of lower or equal order. For partial  differential operators, this result is no 

longer valid, but  we shall find a satisfactory substitute. Our results are most  conveniently 

described in terms of the following definition. 

D E F I N I T I O N  1.2. I /  ~p  C OQ , we shall say that the operator p is stronger than the 

operator Q and that Q is weaker than p .  I /  p is both weaker and stronger than Q, i.e., i/ 

~)p. = ~Qo, we shall say that p and Q are equally strong. I 

We now pose the problem to determine the set of those operators Q which are weaker 

than  a given operator p .  I t  is clear tha t  the answer is closely connected with the regularity 

properties and the boundary properties of the functions in ~e." The question is reduced 

to a concrete problem by  the following lemma. 

LEMMA 1.5. The operator Q is weaker than the operator p i] and only i/there is a con- 

stant C such that 

(1.2.5) II cul l ,  =< c(llpull + IlulP), ueCr 

PROOF. I f  Q is weaker than p ,  i t  follows from Theorem 1.1 tha t  

II Qoull'_-< c(llPoull' + Ilull'), ,,eo,,., 
i Note that these notions depend on the basic manifold ~. 
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which implies (1.2.5). On the other hand, suppose tha t  (1.2.5) is valid. I f  uETOp~ we can 

find a sequence u~ of functions in C~ ~ such tha t  

u,~ ~ u, p u,~ -> Po u. 

Applying (1.2.5) to the functions un-urn we find tha t  (~ua is a Cauehy sequence. Since 

Q0 is closed, i t  follows tha t  uEOr 

We shall repeatedly use the criterion given by  Lemma 1.5 in the following chapters. 

I n  Chapter I I  we shall find a simple and complete description of the operators Q with 

constant coefficients which are weaker than  a given operator jO with constant coefficients, 

w h e n ~  is a bounded domain in R' .  (The answer is then independent of ~.)  In  Chapter IV  

analogous results will be proved for a class of operators with variable coefficients. 

REMARK. I f  ~ )pC  ~)Q, it  fOllOWS from Theorem 1.1 in the same way as in the proof 

of Lemma 1.5 tha t  (1.2.5) is valid. Hence OpoC OQ, so tha t  Q is weaker than  JO. This 

shows tha t  in Definition 1.2 we might  replace the condition O p ~  OQ, by  the apparent ly  

weaker condition Op. ~ OQ. I t  should also be observed that ,  in I)efinition 1.2 and in 

most  of our arguments here, we use the minimal and not the maximal  differential 

operators in view of the fact  tha t  the relation O p ~  OQ is very exceptional for partial  

differential operaters, as will be proved in Chapter I I I .  

We shall next  deduce the conditions in order tha t  (2 u should be continuous after correc- 

t ion on a null set for every U E O p ,  the operaf~r Q being interpreted in the distribution 

sense. Such results form a stepping-stone from the weak concept of a solution of a 

differential equation to the classical one. Sobolev has studied similar questions (see [30]), 

bu t  our results overlap very  little with his. 

LEMMA 1.6. In  order thai O u should equal a bounded/unction in the distribution sense 

/or every ufiOp., it is necessary and sul/icient that there is a constant C such that 

ECo (1.2.6) s u p l Q u l  <_- c(ll  P II + Ilull ), u = 

I / (1 .2 .6)  is satisfied, Q u  is a uni/ormly continuous/unction in gs alter correction on a null 

set, i / u  EOp., and Qu  tends to zero at the boundary in the sense that to every e > 0 there i sa  

compa/ct set K in ~ ,  so that [Qu(x)]  < e in ~ - K .  

P R O O F. Tha t  (1.2.6) is a necessary condition follows, if we consider Q as an operator 

from L ~ to L ~176 and apply Theorem 1.1, which is possible in virtue of the remark following 

Lemma 1.4. Conversely, let (1.2.6) be satisfied. I f  u n is a sequence of functions in C~ such 

tha t  un-+u and P u n ~ P o u  , where u is an arbi t rary function in Op ,  it  follows tha t  Qu~ 
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is nniformly convergent. Since the limit must  equal Q u  a.e., the last s ta tement  of the lemma 

follows. 

The last assertion of the lemma may  also be formulated as follows: Q u  is continuous 

and vanishes at  infinity in the Alexandrov compactification of ~ .  

We now turn to another matter ,  the existence of solutions of differential equations. 

/.,emma 1.1 and the definition of P as the adjoint of if0 prove the following result. 

L E M M A 1.7. The equation P u  = / has,/or any / EL z, at least one solution u E De, i/, and 

only il, Po has a continuous inverse, i.e., il 

(1.2.7) (u, u)<~ C~(pu ,  p u ) ,  uEC~,  

where C is a constant. 

In  Chapters I I  and IV  it  will be proved tha t  (1.2.7) is valid under very mild assump- 

tions about  p .  

1.3. Cauchy data and boundary problems 

The example on page 169 makes i t  justifiable to say tha t  the functions in DP. are those 

which have vanishing Cauchy data  with respect to the operator P,  and we are thus led 

to the following definition. 

D E F I N I T I O N  1:3. The quotient s1~ce 

(1.3,1) C = O g a ~ .  

with the quotient norm is called the Cauehy space o/ P.  I / u  E D p, the residue class o/ the pair 

In, Pu] is an element o/ C, which is called the Cauehy datum of u and is denoted by Fu.  

I t  follows from the definition tha t  two functions in De, which only differ by  a function 

in C~ (~), have the same Cauchy data.  When the coefficients are constant it  is easy to 

prove (Lemma 2.11) tha t  every function in De, which vanishes outside a compact set 

in ~ ,  is also in Dp .  I t  then follows tha t  two functions in D e, which are identical outside 

a compact  set in ~ ,  have the same Cauchy data. I t  is of course natural  to expect tha t  this 

is valid for very general operators though we have not obtained any  proof. 

The example on page 169 also suggests the following definition. 

D E F I N I T I 0 N 1.4. Le~ B be a linear mani/old in the Cauchy s t ~ e  Co/  P. The problem 

to/ ind a solution / o~ 

(1.3.2) P/=g, r/eB, 
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/or arbitrarily given g EL ~ is called a linear homogeneous boundary problem. F / E B  is the 

boundary condition. 

Let t) be the restriction of P to those / for which F / E B .  Then P is linear and 

(1.3.3) po ~ / 3 ~  p.  

Conversely, any linear operator /3 with this property corresponds to exactly one linear 

manifold B in C. 

D ]~ F I ~ I T I 01~ 1.5. The boundary problem (1.3.2) is said to be (completely) correctly posed, 

i/ P has a (completely) continuous inverse, de/ined in the whole o / L  2. 

This definition and the following result are essentially due to Vi~ik [34], who also 

considers less restrictive definitions. 

T H ~ 0 R E M 1.2. There exist (completely) correctly posed boundary problems for the opera- 

tor P if and only i / P o  and Po have (completely) continuous inverses. 

PROOF. Suppose that  there exists a (completely) correctly posed boundary problem, 

and let P be the corresponding operator. Since/3-1 is (completely) continuous and/3  ~ P0, 

i t  follows that  p~l must be (completely) continuous, and since/3-1 is a right inverse of P,  

it follows from Lemma 1.2 (Lemma 1.3) that  p~l  is (completely) continuous. 

Now assume that  Po 1 and p~l  are (completely) continuous. In virtue of the continuity 

of Po 1, the range ~p, of P0 is closed. Let re be the orthogonal projection on ~ .  If S is 

the right inverse of P constructed in Lemma 1.2 (Lemma 1.3), the operator T defined by 

T l = P ~ ( ~ l ) + S ( ( I - r e ) h ,  / e L  ~, 

is (completely) continuous. Since 

P T I  = ~ t  + (I  - r e ) l  = l, 

the operator T has an inverse P, and J S c P .  Furthermore, T D P ;  1 and hence /3DP0, 

so that  P0 C ~ C P. Since /~-1 is (completely) continuous and defined in the whole of 

L ~, the proof is completed. 

We shall next derive a description of the correctly posed boundary conditions, which 

differs from Vi~ik's. Let U be the set of all solutions u of the homogeneous equat ionPu = 0. 

This is a closed subspace of L 2, since P is a closed operator. 

L v. • 1~ A 1.8. Suppose that p~l  is continuous. Then the restriction y o/the boundary opera- 

tor F to U maps U topologically onto a closed subspace F U o/ C. 
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P R o o F. Let A be a constant such that  

iiPo/nl->_A ii/11, 
Then we have, i f  u E U, 

Ilult >llrull = inf (ll -/ll +llPolll )_>_ inf (ll -lli +A ll/li 
f e Dp, f e  L~ 

This proves the lemma. 

�9 T H E 0 R E M 1.3. Suppose that Po ~ and_P~ 1 are continuous. Let B be a linear mani/old in 

C, and let P be the corresponding operator. Then P is closed i / a n d  only il B is closed. P-~ 

exists i /and  only i / B  and P U have only the origin in common./5-1 is continuous and de[ined 

in the whole o/ L 2 i / and  only i] C is the topological sum o / B  and F U. 

F R O O F. The first assertion follows at once from the definition of the topology in quotient 

spaces. In  fact, a set in a quotient space is by definition open (closed) if and only if its 

inverse image is open (closed). 

/5-1 has a sense if and only if /5/ ~= 0 when 0 ~= / E ~ ,  that  is, if no solution u ~= 0 of P u  = 0 

satisfies the boundary condition. But this means that  0 is the only common element of 

F U and B. 

Now suppose that  C is the topological sum of F U and B. From the preceding remark 

it follows that  t5-1 exists, and we have to prove that  it is bounded. The assumption means 

that  there exists a bounded (oblique) projection ~ of C on 1" U along B. Let S be the bounded 

right inverse of P, which was constructed in Lemma 1.2, and let ~, be the restriction of 

F to U, which was studied in Lemma 1.7. Then the operator 

Tg = S- lg  - y-ly~FS-1g 

is defined in the whole of L 2 and is a continuous operator. Obviously, Tg E ~0e and P Tg = 

= g - 0. Furthermore, 
F Tg = F S- lg  - ~ F  S- lgE B, 

so that  Tg E ~ and /5 Tg = P Tg  = g. Hence /5-1 = T, which proves the assertion. 

On the other hand, suppose that  /3-1 is continuous and defined everywhere. Then the 

mapping 

Geg[/, P/] --->1 - p - 1 p / e  U 

is continuous. We have / _ / 5 - 1 p ]  : 0 if and only i f / E ~ .  The mapping 

G~ ~El, Pl] -~ r (1 - /5-~Pl)  ~r  v 
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is also continuous and, since it vanishes in Ge0, it defines a continuous mapping 7~ from 

G~,/Gpo = C to F U. We have n~ = 0 if and only if q0 E B. Now n leaves the elements of 

F U invariant. Hence n is a projection on F U along B, and from the continuity of 7~ our 

assertion follows. 

We finally sketch a similar study of the completely correctly posed boundary problems, 

when Po and D O have completely continuous inverses, by introducing a new mode of conver- 

gence in C. We shall say that a sequence [un, v~] of elements in L 2 • L 2 is w-convergent, if 

u n converges strongly and v n converges weakly. In  C we define the quotient w-convergence: 

a sequence Tn of elements in C is w-convergent, if there exists a w-convergent sequence 

[/~, P /~]cGp such that  F/~ =~n" 

We shall prove that  the operator 7 from U to P U transforms the L 2- convergent sequences 

in U and the w-convergent sequences in 1" U into each other. In  fact, F u  n is obviously 

w-convergent if u n is convergent. Conversely, if F u  n is w-convergent, there exist elements 

/nC~po, so that u ~ - / n  converges strongly and P0/~ converges weakly. Since we have 

/ ,  = p~l  (Po/~), it follows from the weak convergence of P0/n and the complete continuity 

of Po 1 that /n is strongly convergent. Hence u~ is strongly convergent, which proves our 

assertion. Using Lemma 1.8 we now see that  in 1" U the w-convergence is equivalent to 

strong convergence. 

A slight modification of the proof of Theorem 1.3 shows that the operator/3, correspond- 

ing to a linear manifold B in C, has a completely continuous inverse, defined in the whole 

of L 2, if and only if C is the direct sum of B and F U, and the projection 7c of C on F U along 

B is w-continuous in the sense that  it transforms w-convergent sequences into w-convergent 

(and hence strongly convergent) sequences. 

C H A P T E R  I I  

Minimal Differential Operators with Constant Coefficients 

2.0. Introduction 

Let p be a differential operator with constant coefficients and let ~ be a domain in 

R v. In Chapter I we introduced the minimal differential operator P0 in L 2 (s defined by 

p .  The object of this chapter is to study P0 more closely, We first restrict ourselves to the 

case where s is bounded, and can then obtain fairly complete results. Some remarks on 

the case of non-bounded domains are given at the end of the chapter. 

We first establish the boundedness of the inverse of a minimal differential operator 

with constant coefficients for bounded ~ by means of the Laplace transformation, using 
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a lemma by Malgrange [20]. This result shows tha t  Lemma 1.7 is always applicable, i.e. 

tha t  the equation P u  = /  has a square integrable solution u for any /6L~(~). 

We then turn to the exact determination of the differential operators which are weaker 

than p .  With D =  (D 1 . . . . .  Dr), where D , = i  -1 8 / 8 x  ~, we may  write p = P ( D ) ,  where P(~) 

is a polynomial in the vector 8 = (81 .. . . .  8~). Now set 

t; (8) = (z  ]P(") (8)]27, 

where P(~) are derivatives of P, and the summation extends over all ~. Then Q is 

weaker than p if and only if 

(2.0.1) Q (8) < r  
/5(8) 

To prove this result we use a generalization of the energy integral method. For equations 

of higher order than  two, this method was first used by  Leray [19]. In  the general case 

considered here, where the lower order terms of the operators have great importance, i t  

has been necessary to develop an algebra of energy integrals in a systematic manner. I t  

may  be remarked that ,  for some special second order equations, similar questions have 

been posed and solved by Ladyzenskaja [18], even under less restrictive boundary condi- 

tions. 

As a consequence of our result we find tha t  the product of a function u 60p~ and a func- 

tion % which is C ~ in a neighbourhood of ~ ,  is in Op.  Hence we find tha t  the relation 

u E ~p~ has a local character. We then study this relation in the interior and at the boundary 

of ~. 
The inequahties derived by the energy integral method also make it possible to deter- 

mine those operators Q for which Qu  is continuous after correction on a null set for every 

u 6 De~ In  fact, this is the case if and only if 

(2.0.2) ( (~ (8)-2 d 8 < 
J P(8)  ~ 

The inequalities (2.0.1) and (2.0.2) only involve the quotient Q (8)//5(8). In  section 

2.8 we also give conditions in terms of this quotient in order tha t  CluE L q for every 

u E Oe. and in order tha t  Q u should exist in manifolds of dimension less than v. 

We can also prove that  the inverse of P0 is completely continuous, if P (8) really depends 

on all variables. More generally, we prove tha t  the operator QoP0 -1 is completely continuous 

if and only if 

(2.0.3) 0 (8) ~ 0  when 8 ~  ~ .  
/5 (~) 
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2.1. Notations and formal properties of differential operators with constant coefficients 

Let  R ~ be the  real v-dimensional space with elements x = ( x  1 . . . . .  x ~) and let C, be the  

complex v-dimensional space with elements ~ = (~1 . . . . .  ~,). I n  precisely one way  we can 

write ~ = ~ + i~, where ~ and ~, as in the whole paper,  denote real vectors. The variables 

x and  $ will be considered as dual  with respect to the bilinear form 

v 
<x, ~> = ~ x ~ ~. 

1 

can be wri t ten as a finite sum A polynomial  P (~) 

(2.1.1) P ( $ ) = ~ a a $ ~ ,  

where ~ = (~1 . . . . .  c%) is a sequence of indices between 1 and v, the a a are complex constants  

which do not  change, ff the indices in :r are permuted,  and ~ = $~...  ~%. The length k of 

the  sequence ~ is denoted by  l a[. The polynomial  (2.1.1)defines a differential operator  

= P  (D) operat ing on the  functions in R ~, 

(2.1.2) P (D) = E a~ D~ 

(see section 1.2). The polynomials in C, and the differential operators in R" are thus in 

a one-to-one correspondence, and this correspondence is in fact  independent  of the  choice 

of coordinates since 

P (D) e t<~' ~> = P  (~) e i<~' ~> 

By  $ we denote the space of infinitely differentiable rapidly decreasing functions intro- 

duced by  L. Schwartz [28]. Denot ing the Fourier  t ransform of a funct ion u in $ by  ~, 

(2.1.3) ~ ($) = (2 ~)-,:2 f u (x) e -~ <x. ~ > d x, 

the Fourier  t ransform of P (D) u is P ($) ~ ($), and it follows from Parseval ' s  formula tha t  

(2.1.4) f ]P(D) u] 2 d x =  f ]P (8 )  a ( 8 ) [ 2 d 8  �9 

We shall repeatedly need the analogue of Leibniz '  formula for general differential 

polynomials  

(2.1.5) P(D)(uv)  = P ( D  u § D,~)uv. 

The interpreta t ion of this formula is that ,  after P (D u + Dr) has been expanded in powers 

of D u and Dr, we shall let D u operate only on u and D v operate only on v. Formula  (2.1.5) 



G E N E R A L  P A R T I A L  D I F F E R E N T I A L  O P E R A T O R S  177 

is, of course, an immediate consequence of the rule for differentiating a product. Now we 

have by Taylor's formula 

P ( $ + ~ ) ~  ~ p(~) (~), 
A_, 

where 

p(a) = - -  

For I~1 = k the k indices in ~ shall run independently form 1 to v. Leibniz' formula (2.1.5) 

now takes the more explicit form 

~ D ~  v p(~) 
(2.1.6) P(D) (uv)= ~ T .  (n)u.  

2.2. Estimates by Laplace transforms 

Let ~ be a bounded domain in R ~, and let P (D) be a differential operator with constant 

coefficients. We shall prove the continuity of the inverse of the minimal operator Po. 

THEOREM 2.1. The operator P• has a continuous inverse, i.e. there exists a constant 

C such that 

(2.2.1) ] [u l l<CHP(D)ul l ,  ueC~(~) .  

P R O O F. We form the Laplace transform of u, defined by 

~ ( ~ ) : ~ ( ~ + i ~ ) = ( 2 ~ ) - " / 2  f e t(z,r 

This is an entire analytic function since u has compact support. The Laplace trans- 

form of P(D)u  is P(~)6(~). Now the proof of (2.2.1) follows easily from the following 

lemma on analytic functions of one variable, analogous to one used previously by Mal- 

grange [20]. 

LEMMA 2.1. I /  g(z) is an analytic /unction o/ a complex variable z/or ]z] =< 1, and r(z) 

is a polynomial with highest coe//icient A, then 
2~ 

(2.2.2) [ A g (0)12 ~ (2 ~) -~ f [g  (d o) r (e ~ 0)]2 d 0. 
0 

PROOF OF LEMMA 2.1. Let  zj be the zeros of r(z) in the unit circle and sst 

1-i ~ - ~  

On the unit circle we have Ir(z) l = Iq(z)I, and q(z) is analytic in the circle. Hence we have 

(2 ~)-a f I g ( e~ 0) r (e' 0) [2 d 0 = (2 ~)-~ f ig  (e'~ q (e' 0)i~ d 0 ->_ I g (0) q (0)[2. 

12 - 553810. Acta Mathematica. 94. I m p r l m 6  le 26 s e p t e m b r e  1955. 
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Now q(O)/A is, apar t  from a factor •  the product of the zeros of r(z) outside the unit 

circle. Hence ]g(0) l > IA J, which proves the lemma. 

We now complete the proof of the theorem. Choose a real vector ~0 such tha t  p (~0) =4= 0, 

where p is the principal par t  of P,  that  is, the homogeneous par t  of highest degree of P.  

Applying the lemma to the analytic function ~(~ + t~0 ) and the polynomial P(~ + t$0), 

considered as functions of the complex variable t, we get 

1~ (~) p (~0)J 2 _-< (2~)-a f J~ (~ + e~~ $o) P (~ + e~~ ~0)[ s dO. 

Lett ing ~ = ~  be real and integrating with respect to ~ we obtain 

J P ($o)[2 f j fi (~)j2 d ~ < (2:7~) -1 f f  I~ (~ § r ~o) P (~ + e ~~ ~o) 12 d ~ d 0 

=(2z) - l  f dO f ld($ +i~o sin O) P (~ +i~o sin O)]2 d~. 

By Parseval ' s  formula we can calculate the integrals with respect to ~, which gives 

Iv(~o)l~ f lu(x)12dx<_(2~)-' f dO f lP(n)u(x)12e ~<x''o>s'o~ dx. 

Let C be the supremum of eI<X'~>l/lP(~o) J when x e ~ .  Then we have 

f lu(x)l~dx<=C~f IP(n)u(x)12dx, 
which proves (2.2.1). 

By choosing $0 in a suitable fashion we could get a good estimate of the magnitude of the 

constant C. We shall not do so, since still bet ter  results can be obtained by  a different method 

later in this chapter. 

2.3. The differential operators weaker  than a g iven one  

Let P (D) be a differential operator with constant coefficients and let ~ be a bounded 
domain. We shall determine those operators Q(D) with constant coefficients which are 

weaker than P(D) in the sense of Definition 1.2, i.e. such tha t  with some constant C 

(2.3.1) IlQ(D)ull ~ <= C(IIP(D)ull ~ + IlulI~), ueO~(~). 

In  virtue of Theorem 2.1 this is equivalent to 

(2.3.1)' IlQ(D)ulJ2 < c, HP(D)ujp ' ueCo(~).  

In  formulating the result it is convenient to use the function 

(2.3.2) /5 (~) = (y  i p(~) (~)j~)~. 

This notation will be retained in the whole chapter, also with P replaced by  other letters. 
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T~EORV~M 2.2. A necessary and su//ieient condition in order that Q(D) should be 

weaker than P (D) in a bounded domain ~ is that 

(2.3.3) 
(J(~) <u, 
i'(~) 

/or every real ~, where C is a constant. 

REMAR]~. We shall even prove that  Q (D) is weaker than P (D)if [Q(~)[/P(~) < C. 

Hence this condition is equivalent to (2.3.3), with a different constant C. 

Theorem 2.2 has a central role in this chapter. The full proof is long and will fill the next  

sections. That  (2.3.3) follows from (2.3.1) is proved in this section. In 2.4 we develop some 

algebraic aspects of energy integrals, and the analytical consequences are given in section 

2.5. Using these results we complete the proof of Theorem 2.2 in section 2.6. At the same 

time we get a new proof of Theorem 2.1, tha t  does not use Laplace transforms. 

We now prove that  (2.3.3) follows, if we suppose that  (2.3.1) holds true. To make use of 

this inequality, take a function ~0EC~(~), ~v 4=0, and set with real constant 

(2.3.4) u (x)=~p (x) e ~ <x, ~>. 

This function is in C~ (~), and from Leibniz' formula (2.1.6) it follows that  

P ( D )  u P(o, (2.3.5) 

and similarly with P replaced by Q. If we introduce the notation 

1 f D ~ y ~ D z ~ d x  ' (2.3.6) = I s  I ! 

the inequality (2.3.1) gives 

(2.3.7) ~ Q(~) (~) Q(~) (~) ~f~ _-< C (~ P(~) (~) P(~) (~i yJ~ + y40)- 

If m is the highest of the orders of P and Q, the sums in (2.3.7) only contain terms with 

[ ~r ] __< m and ]ill --< m. Now let t = (4) be an "ar ray"  of complex numbers, 0 g I ~ I --< m, 

such that  t~ = 4,,  when :r is a permutation of cr The quadratic form in t defined by 

(2.3.8) I~1--<~ ,~l_~ t ~ / ~ y ~ :  f t D W dx=f  al~<m ~ 1 2 1 ~  (~) '2d~ 

is positive, unless the polynomial ~ t~$~/I:r vanishes identically, i.e. every 4 - - 0 .  

Hence it  follows that  there is a constant C' such that  



1 8 0  L A R S  H O R M A N D E R  

lel<m l e l -  ~m tBlNm 

With  t.=Q(")(~) we now get f rom (2.3.9) and  (2.3.7) t h a t  

Z [ Q(~) (~) [~ --< C'~. Q'~) (~) Q(~' (~) ~0~ -<_ C C' (E P(~) (~) P(~) (~) ~0~ + ~o0), 

so t h a t  with a th i rd  cons tan t  C" 

(~) =< c"  _~ (~). 

2.4. The algebra of energy integrals 

I n  this section we shall s tudy  some algebraic aspects  of quadrat ic  forms with cons tant  

coefficients in the  der ivat ives  of a funct ion u. Such a form can be wr i t ten  

(2.4.1) ~ a~ D~uD~u, 

where D~ and D~ are defined in section 1.2, and  a ~ is invar ian t  for pe rmuta t ions  

within a or ft. Wi th  this quadrat ic  differential  form we associate the  polynomia l  

(2.4.2) F (~, ~) = ~ a ~ ~ ~ ,  

where $ = ~ + i ~  and  ~ = ~ - i ~ .  Since the  value of the  fo rm (2.4.1) for u(x)=e *<x'r 

is e -2<*'" > F ($, ~), the correspondence between the  form (2.4.1) and  the  polynomial  

(2.4.2) is one to one and  invar ian t  for coordinate  t ransformat ions .  This justifies the 

following shorter  no ta t ion  

(2.4.3) F (D,/9)  u ~ = ~ a ~ De u D~ u. 
a, fl 

In  section 2.1 we in t roduced a correspondence between the  differential  opera tors  in R ~ 

and the complex-valued polynomials  in C~, considered as a v-dimensional vec tor  space with 

complex s tructure.  We have  now seen t h a t  the  quadrat ic  differential  forms in R ~ can b e  

associated with  the complex-valued  polynomials  in C~, considered as  a 2v-dimensional  

vec tor  space with real s t ructure.  

I f  ~ (~ ,  ~) is the  polynomia l  whose coefficients are the  complex conjugates of those of 

F($ ,  ~), i t  is readily verified t ha t  

(2.4.4) F (D, D) u ~=.F (D, D) u ~. 

Hence  F (D, / ) )  u ~  is real for every  u if and only  if 

F (~, ~) = F  (~, ~) = F (~, ~), 

i.e. if F (~, ~) is a lways real. 
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We shall need a formula for the differentiation of a quadratic differential form 

F (D, 13) u a. Elementary  product differentiation gives 

(F (D, D) uge) = i  (D, - /3~) F (D, /3) u~. 
8x ~ 

Hence, if 

we have 

(2.4.5) 

where 

(2.4.6) 

G =  (G ~) is a vector whose components are quadratic differential forms, 

div (G (D,/3) u ~) = ~ ~ (O k (D,/3) u ~) = F (D, 13) u ~, 
I O X  

(~, ~)-- i ~ (r - ~+) a ~ (r ~) = - 2 2 ~+ a ~ (r 7). 
1 1 

/ o rm 

LEMMA2.2 .  A polynomial F (~, 7) in ~= ~ § i u and ~ = ~ -  i ~ can be written in the 

F (r ~) = - 2 ~ ~ a ~ (r ~), 
1 

where G k are polynomials, i/ and only i/ F(8, 8 ) =  0 when ~ is real. 

P R O O F. That  F (8, ~) = 0 is a necessary condition is obvious. To prove its sufficiency 

we observe tha t  if F (8  + i~, ~ - i~) = 0 when ~ = 0, there are no terms free from ~/in the 

expansion of F(8  + i~; 8 -  i~) in powers of 8 and ~. Hence we can write 

v 

F(~+ iv, ~ - i v ) =  -2Zv~  g~ (~, v), 
1 

where gk are polynomials. Returning to the variables ~ and ~ in gk, the lemma is proved. 

From the proof it follows tha t  the vector (GI(~, ~) . . . . .  G~(~, ~))is not uniquely deter- 

mined in general. We shall now determine the degree of indeterminacy, tha t  is, we shall 

find all vector differential forms with divergence zero. 

LEMMA 2.3. I /  the polynomials G~(~, 7) satis/y the identity 

v 

Z ,?, G ~ (~, ~)=--o, 
1 

then there exist polynomials G ~ (~, ~) such that G ik (~, 5) = - Gk~($, 7) and 

v 

G' (~, ~ ) = - 2 ~ ~ (~+~ (~, ~). 
1 
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PROOF. If  we write G~(~+i~,~--i~)=g~(~,7), the assumption means that  

v 

(2.4.7) ~ 7~ g~ (~, 7) = 0. 
1 

Since the identi ty (2.4.7) must also be satisfied by the parts of g~(~, 7), which are homo- 

geneous of the same degree with respect to 7, we may suppose in the proof tha t  the gi are 

all homogeneous of degree m with respect to 7. Then Euler's identi ty gives 

v ~ - k  

mg~= ~7~  ~ �9 
I 0 7i  

Differentiation of (2.4.7) with respect to 7k gives 

gk+ ~ a  ~ =0 .  

Now addition of these two relations shows tha t  

(Og ~ Og'~ 

and therefore 
l_ (og  og' l 

has the desired properties when ~ and ~ are introduced as variables again. 

From Lemma 2.3 it  follows, in particular, that,  although the polynomials G i (~, ~) figur- 

ing in Lemma 2.2 are not uniquely determined, the values G ~ (~, ~) for real arguments are. 

This is also easily proved directly. For  differentiating (2.4.6) and putting 7 = 0 afterwards 

gives 

(2.4.8) G k ($, ~)= -~ 8F(~+i7' ~-i7)  
O 7~ (,= o) 

This formula is most important  in the application below. 

2.5. Analytical properties of  energy integrals 

Let  u be a function in S and let ~ be its Fourier transform. Using the definition (2.4.3) 

and Parseval's formula, we obtain 

(2.5.1) f F(D, D) uadx= f F(~, ~)14(~)[~d~. 

As a first application of this formula we prove 
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LEMMA 2.4. I /  /or every u e C ~ ( ~ ) ,  where ~ is a /ixed domain, we have 

(2.5.2) f F (D, 9 )  u ~ d x = O, 

then it /ollows that 

(2.5.3) F(~, ~) = 0 , /o r  real ~. 

Conversely, (2.5.3) implies (2.5.2)/or any ~.  

P R o o F. The last  s ta tement  follows at  once from (2.5.1). On the other hand, let (2.5.2) 

be valid. Let  u ~=0 be a fixed function in C~(~) .  For fixed ~, the function u(x)e ~(~' ~> is 

in C~(~)  and has the Fourier transform ~ ( ~ - ~ ) ,  so tha t  it follows from (2.5.1) tha t  

(2.5.4) f F  (~+ ~, ~ + ~ ) [ ~ ( ~ )  [2 d ~ = 0 .  

Denote the polynomial F(~,  ~) by  ~(~), and the principal par t  of ~(~) by  ~m (~). I t  follows 

from (2.5.4), which is valid for every ~, tha t  

for every 7. Hence ~m and consequently ~ is identically zero. 

Combining Lemmas 2.4 and 2.2 we obtain the following lemma. 

L~MMA 2.5. A quadratic di//erential /orm F(D, D) u ~ is the divergence o /a  quadratic 

diHerential vector/orm # and only # 

f F(D,  9 ) u ~ d x = O ,  

when u e C~ (~) /or some domain ~.  

We could also deduce from Lemma 2.3: 

LEMMA 2.6. A quadratic d#/erential vector with the components Gk(D, D) u ~ is the 

divergence o/ a quadratic di//erential skew symmetric tensor/orm i/ and only i/  /or any u E C :~ 

and any closed sur/ace S we have 

(G ~ (D, D)u  ~) d Sk = O. 
s 

The analogy between these two lemmas and the theory of exterior differential forms 

is obvious. In  order to show this connection we have in fact proved more results on the 

energy integrals than  we really need to prove Theorem 2.2. 

2.6. Estimates by energy integrals 

Let P (D) and Q (D) be two differential operators with constant coefficients and form 

(2.6.1) F(D, 9 ) u ~  = (P(D)Q(D) - Q(D)P(D))u(e. 

We have F (~, ~) = P (~) Q (~) - Q (~)P (~) = 0, so tha t  in virtue of Lemma 2.2 we can write 
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F (D,/51 u~  = ~ ~ (~ ~ (D,/51 u~l. 
k ~ l  ~ 

Formula (2.4.8) gives that  

(2.6.2) G ~ (~, ~) = - i (p(k)(~) Q (~) _ Q(k) (~) p (~)), 

where, in accordance with our general notations, p(k) and Q(k) are the partial derivatives 

of P and Q with respect to ~ .  

Let ~ be a fixed bounded domain, and let u be a function in C~ (~). We shall in- 

tegrate the identity 

- i x ~  F (D, /5) u ~ =  - i x ~  ~ ~ ( G J  (D, /5) u~) 
] f J , ~  

over ~.  In doing so, we can integrate the right-hand side by parts, so that  the 

integral equals i fG  ~ (D, 15)u~dx. Now it follows from (2.6.2) and Lemma 2.4 that  

f G ~ (D,/5) u(e d x =  - i/(P(~) (P) Q (/5) - P (D) Q(k) (/5)) u~  dx 

= - i ( (P  (k) (D) u, Q (D) u) - (P (D) u, Q<k) (D) u)}, 

where ( , )  denotes scalar product in L 2 (s Hence we get the formula 

(2.6.3) (P(~) (D) u, Q (D) u) - (P (D) u, Q<k) (D) u) 

-- f - i x k (P (n) u Q (D) u - Q (n) u P  (D) u) d x. 

By estimating the right-hand side of the equality (2.6.3) we can obtain a useful 

inequality. In fact, noting that  it follows from (2.1.4) that  

[[P(D)uH=]lP(D)ull,  IIQ(D)uH=HQ(D)uH, 

and denoting by ~ an upper bound of [xkl in ~,  we obtain 

(2.6.4) I(P(~)(D).u, C2(D)u)]<-_HP(D)ull (IIQ<k)(D)ulI+2~]IQ(D)uH) 

by using Schwarz' inequality. When Q =P(~) this inequality reduces to 

(2.6:5) [[ P(~' (D) u II ~ =< I[P (n) u H ([1 p<kk) (D) u l[ + 2 ~ II p<k) (n) u II), 

where p(k~)(~) is the second derivative of P (~) with respect to ~ .  The inequality 

(2.6.5) gives a proof of the following lemma. 

LEMMX 2.7. Let B k be the breadth o / ~  in the direction x ~, i.e. 

B k= sup Ix ~-yk[ .  

Then, i / P  (~) is o[ degree m with respect to ~ ,  we have 

(2.6.6) [IP(~)(D)ull <=mB~IIP(D)ulI, u e C ~  (a). 
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P R o  o F. After  a convenient  choice of the origin we m a y  suppose tha t  Ixkl <= Bk/2 in 

s so tha t  we m a y  put  2~ = B k in inequali ty (2.6.5). I f  ra = 1, the second derivative p(kk) 

is zero, and (2.6.5) reduces to (2.6.6), if we delete a factor  I[ p(k)(D)u [1" Now suppose tha t  

the inequal i ty  (2.6.6) has already been proved for all polynomials of smaller degree than  

m in Sk- Then we have, in particular, 

[[ p(kk)(D) u H =< (m - 1) B ~ [I p(k)(D) u [[. 

I f  we use this est imate in the r ight -hand side of (2.6.5), it follows tha t  

IIP(k'(D) ull<~mBklIP(D)ull, 

which completes the  proof. 

I t  follows from the proof t ha t  (2.6.6) remains val id for non-bounded domains ~ if only 

B k < ~ .  We shall later come back to the case of infinite domains (section 2.11), bu t  for 

the moment  we confine ourselves to the simpler case of a bounded domain f2. 

L E ~ M A  2.8. For any derivative P(~) o] P there is a constant C such that 

(2.6.7) ]lP(a)(D)ull <= CllP(D)u[I, u eva(a) .  

P R O o F. I tera t ion of the result  of Lemma 2.7 proves L e m m a  2.8 immediately,  and 

also gives an estimate of the constant  C, which we do no t  care to write out  explicitly. 

Since a suitable derivative of P is a constant ,  Lemma 2.8 contains Theorem 2.1, which 

has thus been proved wi thout  the use of the Laplace transform. 

We can now complete the proof of Theorem 2.2 and the remark  following it. Thus 

suppose t h a t  

(2.6.8) ] Q (4)[3 _< C 2 ~ [ p(~)(~)is. 

I f  ~ is the Fourier  t ransform of a funct ion u E C~ (f2), we have in vir tue of (2.1.4) and (2.6.8) 

f [Q(n)ul2dx  = flQ(~)121412d~ <C2~ flP(~')(~)[~[~[~d~=C2~ f ]P(~')(n)ul~dx. 

I t  now follows from (2.6.7) t ha t  with a suitable constant  C'  

[[ Q(D)u[[2 <= C'[[P(D)u[[ 2, uEe~(g2), 

so tha t  (2.3.1)' is proved. 

2.7. Some special cases of  Theorem 2.2 

The problem of finding all differential operators Q (D), which are weaker than  a given 

differential operator  P (D), has been reduced by  Theorem 2.2 to the purely  algebraic s tudy  

of inequali ty (2.3.3). I n  s tudying this inequality, it is convenient  to say tha t  the polyno- 
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mial P is stronger than the polynomial Q, if this inequality is valid. We shall first give two 

explicit examples. 

E x AM P L E 1. The SchrSdinger equation for a free particle corresponds to the poly- 

nomial P(~) ~1 ~ + . . . .  + ~ - 1 -  ~.  This polynomial is stronger than those polynomials 

Q (~) for which 
2 (2 .7 .1 )  " '"-~-~:2-1--~'v)2-}-~12-~ - " '"  "~-~v , + 1 ) .  

Evidently (2.7.1) requires tha t  Q (~) is of degree two at most and not of higher degree than  

one in ~,  so we may  write 

(2.7.2) Q (~) = a o + ai ~ § ~ a~  $~ ~k, 
i = l  i ,k=l  

where a~k=ak~ and a~,,=O. I f  we set ~ ~ +  + 2 . . . .  ~ 1, it follows from (2.7.1) tha t  

(2.7.2) must  become a polynomial of degree one at most in the remaining variables ~l . . . . .  

~-1- Hence Q(~) must  have the form 

Y--1 

(2.7.3) Q (~) = a 0 + ~ ak ~k + a~ (~ - ~l 2 . . . . .  ~ 1). 
k = l  

Conversely, it is obvious tha t  every polynomial of the form (2.7.3) satisfies the inequality 

(2.7.1). 

E x AM P L E 2. The equation of heat  corresponds to the polynomial P (~) = ~ + ... + 

+ ~ - 1  + i ~ .  This polynomial is stronger than  those polynomials Q(~) for which 

(2.7.4) ]Q(~)]~<C((~I 2+  "'" + ~ - ~ ) ~ + ~ +  "'" + ~-i + ~ + 1 ) .  

This inequality is evidently fulfilled if and only if Q(~) has the form 

(2.7.5) Q (~) = a0 + ak Sk + ~ aik ~ ~ .  
k = l  i , k = l  

The two examples show clearly tha t  the lower order terms may  have a decisive influence 

on the strength of an operator3 I t  is this fact tha t  compelled us to develop such a strong 

generalization of the usual technique of energy integrals, which essentially works with 

the principal par t  of the operator, i.e. the homogeneous par t  of highest degree. The usual 

technique would, however, be successful within the class of operators satisfying the 

following definition. 

D ~ r ~ I T X O ~  2.1. The di//erential operator P(D) (and the polynomial P(~)) is said to 

be o/ principal type, if it is equally strong as any other operator with the same principal part. 

1 A s imi lar  fac t  h a s  been  obse rved  b y  G)~RDING [8], who  h a s  s h o w n  t h a t  t he  cor rec tness  of 
C a u c h y ' s  p rob l em can  be  a f fec ted  b y  lower order  t e rms .  
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The definition only involves restrictions on the principal part.  This fact is explicitly 

expressed by  the following theorem. 

T ~ E O R E M  2.3. A necessary and su//icient condition in order that P(~) should be o/ 

principal type is that the partial derivatives ~P(~)/~t o/ the principal part p(~) do not 

vanish simultaneously /or any real ~ =4 = O. 

PROOF. Let  P(~) be of principal type. Then the same is true of p(~), so tha t  p(~) 

is stronger than  p (~) + ~ and consequently stronger than  ~ ,  if I ~ I = m - 1, where m 

is the degree of p(~). Hence it follows from Theorem 2.2 tha t  

(2.7.6) (}~+ " '"  "~- ~2)m-1  C ' .  

Zip  (~)(~)]3 < 

Suppose tha t  all the derivatives ~ p ( ~ ) / ~  vanish for some real ~ 4 0 .  Then we have also 

10 (~?) = 0 in virtue of Euler 's  formula for homogeneous polynomials. Hence, if we set ~ = t~ 7 

in (2.7.6), the denominator is of degree less than 2 (m - 1) in t, which gives a contradiction 

when t-+ oo. This proves one half of the theorem. 

Now suppose tha t  P(~) satisfies the condition in Theorem 2.3 and let Q(~)have the 

same principal part  as P(~). Dropping positive terms in the definition of i5(~) ~, we obtain 

/~ (~)~ > ~ = ~ (~) + r (~), 
1 

where r(~) is of degree less than  2 ( m -  1) and 

( ~ ) = ~  0p(~) 3. 

1 

In  virtue of the assumptions we have 7~(~)~=0, if ~ 4 0 ,  and therefore r(~)/ze(~)-+O 

when ~-~ oo, so tha t  [r(~)[/~r(~)< ~ for large ~. We note tha t  

IQ(~)[ g IQ(~)-P(~)I + IP(~)I= 

P(~) t)(~) P(~) 

Since the last te rm is always less than  1 and 

l i~  [ Q ( ~ ) -  P (~)[ _ -<~  2 [ Q ( ~ ) - P ( ~ ) [  < oo, 

it follows tha t  Q(~) is weaker than P(~). Changing P for Q we conclude that  P and Q are 

equally strong. 

Our interest in differential operators of principal type is due to the fact tha t  they have 

simple properties even when the coefficients are variable. We postpone the study of this 
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case to Chapter IV, and pass to another class of differential operators with constant coef- 

ficients. As is well known, a differential operator P (D) is called elliptic, if the principal par t  

p(~) does not vanish for any real ~ =t=0. We give an equivalent property: 

THE OREM 2.4. The diJ/erential operator P(D) is elliptic i /and only i / i t  is stronger 

than any operator o/order not exceeding that o/ P. 

This is an almost obvious consequence of Theorem 2.2, so tha t  we may  omit  the proof. 

In  particular, Theorem 2.4 shows tha t  Ml elliptic operators of the same order are equally 

strong. 

We shall now study an operator with separable variables, 

P ( $ ) = P ( ~ l  . . . . .  ~)  = P i  (~1 . . . . .  ~ )  P2 (~+1 . . . . .  ~)  (/~<v)- 

The vector ~ is the sum of the two components 

~' = (~1 . . . . .  8. ,  0 . . . . .  o),  ~" = (o . . . . .  o, ~,+~ . . . . .  ~,). 

Let W' be the set of polynomials Q (~'), which are weaker than  P1 (~'), and let W" be the 

set of polynomials Q(~") which are weaker than P2(~"). 

T~ EOR EM  2.5. The set W o/polynomials Q(~) weaker than P(~) is the linear hull o/ 

the set W' W" o/ products o/ polynomials in W' and W". 

PROOF. Since p(~)2= ylp(~)(~)12 differs from 

P l  ($,)2 P2 (~,,)2 = 2 [P i ' ) ($ ' )12]Pi  ~, (U)12 

only in the magnitude of the coefficients, we have 

0 < A <  ~ /5(~)~ < B < o r  
P1 (~') P2 (~") 

Hence Q(~) is weaker than P(~) if and only if 

IQ(~', U) l  < c .  (2.7.7) /5 (~,) i 5  (~,,) 

I t  now follows tha t  the linear hull of W' W" is in W. Inequali ty (2.7.7) also shows, if Q E W, 

tha t  Q (~', ~") is in W' as a function of ~', for fixed $", and in W" as a function of ~", for 

fixed ~'. Let  Px ($') . . . . .  Pn (~') be a basis in the finite dimensional vector space W' and set 

n 

Q (~', ~") = ~ ak (~") pe (~'). 
k = l  
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I t  remains  to prove  t ha t  the  coefficients a k ($") are in W".  Since Pk (~') are l inearly inde- 

pendent  functions,  there  exist values ~'1 . . . . .  ~ such t h a t  the  ma t r ix  (Pk(~[)) is not  

singular. Then the  sys tem of equat ions 

n 

Q (~z, ~") ~ a k  " ' . . . ,  ' = ( ~ ) p k ( ~ l ) ,  1=1 ,  n, 
k = l  

t 
can be solved for ak($" ). Hence  ak(~" ) is a l inear combina t ion  of the  funct ions Q(~z, ~") 

and consequent ly  is in W".  

I t  is obvious how the theorem can be generalized, if a po lynomia l  decomposes in this 

way  into several  factors.  

2.8. The structure of  the minimal domain 

The first  topic in this section concerns the  cont inui ty  of the  funct ions in ~ ~  and 

their  der ivat ives.  F r o m  an abs t rac t  point  of view this was a l ready studied in Chapter  I.  

We shall assume in the  whole section t h a t  s is a bounded domain.  

T H E O R E M  2.6. I] Q ( D ) u  is a continuous /unction after correction on a null  set, /or 

any u E OR., then 

(2.s.1) p(~)2 

Conversely, i/ (2.8.1) is valid, then Q (D) u is uni /ormly continuous alter correction on a null 

set and tends to zero at the boundary o/ ~ ,  /or any  u E ~po, in the sense that to every ~ > 0 

there exists a compact set K in ~ such that IQ(D)u(x ) [  < s in s  

P R O O F. Firs t  suppose t ha t  Q (D) u is a lways cont inuous when u 6 OP,. There is then  

only one obstacle to using L e m m a  1.6: a l though the  functions are cont inuous they  need 

not  a priori  be bounded.  Therefore  we t ake  a funct ion ~o (x) E C3 ~ (~)  and  app ly  L e m m a  1.6 

to the  differential  opera tors  P ( D )  and 

Q = !P (x)Q (D). 

I t  follows t h a t  there  is a cons tant  C such t h a t  

sup [ V ( x ) Q ( D ) u ( x ) I ~ = C ( I I P ( D ) u l I 2 + I I  112), uEC~(F t ) .  

We m a y  suppose wi thout  restr ic t ion t h a t  0 E s and  t h a t  V (0) = 1. Then  it follows t h a t  

(2.8.2) I Q (D) u (0)12 _-< C (H e (n)  u H -~ + I] u H2), u e CF (~).  

Now take  a funct ion q ( ~ ) f i $  and  form 

v(x)  = (2~r)- '~ t" ~ (~)e  ~<~'~> de.  JP( ) 
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Parseval's formula gives 

(2.s.3) IIP(~)(D)vlI~= flv~(~)} 2P(~). ]P(~)(~)[~d~<., _ flqJ(~)l~d~. 

Furthermore, v is also in $. Now take a fixed function Z(X)EC~ (~), which equals 1 

in a neighbourhood of the origin, and set 

u (z) = Z (x) v (x). 

We then have uEC~(~) and, in virtue of Leibniz' formula and (2.8.3), 

(2.8.4) IlP(D)ull <= cl ]  vi i .  

Noting that  Q(D)u(O)=Q(D)v(O), we deduce from (2.8.2) and (2.8.4) that  

fQ(~) (~) d~[~_C '~ l (2~) -''~ J ~ v  f Iv(~)] sd~. 

But  this inequality implies that  Q(~)/P(~) is square integrable, which proves (2.8.1). 

Now assume that  (2,8.1) is valid. Estimating by Schwarz' inequality we get for 

I Q (n) u (x)[~ = [(2 ~)-"~ f Q (~) ~ (~) e ~ <~' ~> d ~ ]~ 

) f  ef (e) l (e)l'de = Xll (D)ull 
Lemma 2.8 now shows that  

~< ,3 ull ~, u e e ~ ( ~ ) ,  (2.8.5) IQ(D)u(x)] =C lIP(D) 

for any x. Hence the second half of the theorem follows from Lemma 1.6. 

The formulations of Theorems 2.2 and 2.6 are closely related. This leads us to the 

following theorem. 

Tr~v .o~ .M 2.7. Q(D)u is a /unction in L v ( 2 g p = < c ~ )  /or every ufipp,, i/ 
Q(~)/[~(~) e L 2~/(~-2) in tr 

P ~  o o F. In virtue of the theorem of Titchmarsh and M. Riesz on Fourier transforms 

of functions in L v (cf. Zygmund [35], p. 316), we have for uEC~(~)  

[[ Q (n )u  [Iv <= C I1Q (~) ~ (~)/Iv,, 

where p' is defined by p-1 + p,-1 = 1. We may suppose that  2 < p < c~, since the extreme 

cases have already been treated. Then we have p'  < 2, and HSlder's inequafity proves that  
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Since 2 p ' / ( 2  - p ' )  = 2p/(p - 2), we obta in ,  if uEC~(f~), 

(2.8.6) ]I Q (n)u  I[, ~- C' ]]/5(~)~(~) ]] <= C" I] p (n)u  II, 

where the  las t  e s t ima te  follows f rom the  proof  of Theorem 2.6. I t  is clear t h a t  (2.8.6) 

gives the  asser ted  resul t .  

The theorem canno t  be reversed  since Sobolev ' s  resu l t s  (cf. [30], p. 64) are  s t ronger  

for elliptic opera tors .  W e  give two examples  of non-e l l ip t ic  opera tors .  

E x A M P L E 1. I f  P (~) = ~ + "'" + ~v~l - ~ ,  we have  1//5 (~) E i q if and  only  if q > ~. 

I n  par t i cu la r ,  when ~ = 2, i t  follows t h a t  the  funct ions  in ~ o  are  in L q for every  q < co 

b u t  are  no t  all cont inuous.  

E X A M P L E  2. I f  P(@) =@~+ -'- + ~  1 + i ~ ,  we have  1 / /5 (~ )EL q if and  on ly  if 

q > �89 (~ + 1). I n  pa r t i cu la r ,  eve ry  funct ion  in t he  d o m a i n  of P0 is cont inuous  when v = 2. 

I n  the  proof  of Theorem 2.6 we found  t h a t  Q(D)u is cont inuous  for a n y  UEOp, if and  

only  if (2.8.2) is fulfilled, i.e., if the  va lue  of Q (D) u a t  a f ixed  po in t  is a cont inuous  funct ion  

of [u,P(D)u]EGp. (ucC~(f~)). W h e n  we now pass  to  s tudy ing  Q(D)u on var ie t ies  of 

d imensions  be tween  1 and  v - 1, we examine  a Condition s imilar  to  (2.8.2) f rom the  outset .  

Thus let  ~ be a v a r i e t y  in f~ and  le t  d~ be the  e lement  of a rea  of Z.  1 I f  the  i nequa l i t y  

(2.8.7) SlQ(D)ul~ d~<=c(llP(D)ull~ +]]ul]~), ueC~ (~), 
)2 

holds  good, the  res t r i c t ion  of Q(D)u to  E m a y  be def ined when uEDP.  in  the  ususal  way:  

W e  t a k e  a sequence unEC ~ such t h a t  u~-+u and  P(D)u~-+Pou. I n  v i r tue  of (2.8.7) 

the  sequence Q(D)u n is convergent  in  L~(E). The  l imi t  in  L~(Y,), which does no t  depend  

on the  sequence u~, which we have  have  chosen, is t he  des i red  res t r i c t ion  of Q(D)u to  Y,. 

Somewha t  roughly  we m a y  say  t h a t  Q(D)u exists in E /or uEDp,, when the inequality 

(2.8.7) is valid. 

Our me thods  on ly  pe rmi t  us to s t u d y  the  case when E is a l inear  v a r i e t y  of d imension  

/~, 1 g /~  _< ~ - 1. W e  m a y  of course assume t h a t  E has  po in ts  in  common wi th  f2. B y  E '  

we deno te  a n y  one of t he  var ie t ies  in Rv, o r thogona l  to  •. The  surface e lement  in Y/ 

is deno ted  da'. 

T H E O R E M  2.8. A necessary and su//icient condition in order that Q ( D )u should exist 

in Z /or uE~p.  is that Q(~)/iS(~) is uni/ormly square integrable in the varieties •', i.e. 

1 For simplicity in statements we may suppose that R ~ and Rv have (dual) euclidean geometries. 
Then surface elements and norms of vectors are defined. 
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(2.8.8) f I Q (~)I~d~, < c, 
~. /~ (~)~. 

where the constant does not depend on the choice o/ the variety F/, orthogonal to X. 

The s ta tement  is still true, if F~ has dimension 0 or v. I t  then  reduces to Theorem 2.6 

and Theorem 2.2, respectively. 

P ~ o o F. Passing, if necessary, to another  system of coordinates, we m a y  assume t h a t  

E is defined by  the equat ions 

x'U+l=o, . . . ,  x V = O .  

First  suppose tha t  (2.8.7) is valid. I n  vir tue of Theorem 2.1 we then also have (with a 

different constant  C) 

(2.8.9) f l Q ( D ) u [ 2 d x ~ . . . d x "  <=C f I P ( D ) u l 2 d x ~ . . . d x  ~ (uEC3r 
Z 

By using a combinat ion of the arguments  in the proofs of Theorems 2.2 and 2.6, we shall 

prove tha t  (2.8.8) follows. 

Take a funct ion ~v(~) in $ and set for fixed ~1 . . . . .  $/~ 

P(~)  J P ( ~ )  

where d a ' =  d~,+l  "" d ~ .  Thus  v (x) is a funct ion with spect rum in a var ie ty  E ' ,  ortho- 

gonal to ~.  

Differentiat ion under  the  integral  sign gives 

f P(~)(D)v(x)= q)(~) (~) e i(~'~> d~', 
P(~) 

and since ]P(~)(~)I~/ ; (~) ,  it follows f rom Parseval ' s  formula  t h a t  

(2.8.11) / ]P(~) (D) v (x)12 d x "+1... dx  ~ <: (2 ~)~ "f]~v (~)]2 d a ' .  

Le t  ~v be a funct ion in C~ (~2) and set 

(2.8.12) u (x) = v (x) yJ (x). 

I t  is clear t h a t  u E C ~ ( ~ ) ,  and by  vir tue of (2.8.11) and Leibniz '  formula  we have 
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(2.8.13) f lP (D)ul2dx  H f '. 

(Thus far,  the  a r g u m e n t  is paral lel  to  the  proof  of Theorem 2.6.) 

I n  the  plane E we have  
(~) Q (~) 

(2.8.14) Q(~)(D)v(x ~ . . . . .  X ~, 0 . . . . .  0 )  = e t ( x l r  . . .  +xu~,) j ~ -  ~ (~) d a ' .  

Assuming,  as we may ,  t h a t  the  funct ion  ~oE C~ (~) does not  vanish  identicMly in E 

and  t h a t  ~0 is a funct ion of x ~ . . . . .  x ~ only in a ne ighbourhood of E, we can argue 

as in section 2.3. Fo r  Leibniz '  fo rmula  shows tha t ,  when x fiZ, 

Q(D)u(x)=~*~Q(~')(D)v(x),  

where ~* means  a sum only over  sequences of the  indices 1, . . . ,  #. Set t ing 

f Q(~') (~) 
(2.8.]5) t~= -~(~)d~', 
we deduce f rom (2.8.14) t h a t  

(2.8.16) 

where 

f I Q (D)u(x)12 dx 1... dx"= ~* ~ * y ~ t ~ ,  

1 fD w / dx  ... dx~. 
Z 

Now we proved  in section 2.3 t h a t  the  quadra t ic  form ~*  yJ~ t~ i~ is a posi t ive definite 

fo rm in the  a r r ay  t =  (t~), where  ~ only  conta ins  the  indices 1, . . . ,  ]~. I n  par t icular ,  

a 

and  this inequal i ty  combined with  (2.8.16), (2.8.9), (2.8.13) and  the  definit ion (2.8.15) 

of t gives t h a t  

( (2.8.]7) __<cjl ( )12do ' 

for any  choice of the  funct ion ~ ( ~ ) C $  and for any  ~1, "" ,  ~,- (We denote  b y  C 

different  constants ,  different  t imes.)  Hence  (2.8.8) follows. 

Now suppose t h a t  (2.8.8) is fulfilled. For  u E e ~ ( ~ )  we have  

Q (D) u (x 1 . . . . .  xU, 0, . . . ,  0) = (2 ~z)-~/2 f Q (~) a(~) e ~(~1~1+ "'" +z,r d~, 

1 3 - 5 5 3 8 1 0 .  A c t a  M a t h e m a t l c a .  94. Impr im~  le 27 sep tembre  1955. 
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so t h a t  the Fourier  t rans form of the funct ion Q(D)u(x 1, ..., x ", 0 . . . . .  O) as a func- 

t ion of x 1, ..., x" is 

(2 ~) (~-,)/~ f Q (4) '4 (4) d 4n+1 "'" d 4,- 

Schwarz '  inequal i ty  and (2.8.8) show tha t  the  square of this funct ion of 41, -.., 4, is 

less t han  

P(4)  2 

_-< o IP(4)~ 1'4 (4)I~d&+, ... d4,. 
J 

I t  now follows f rom Parseval ' s  formula  t h a t  

f[Q (D)u[2da <= Cfd41 ... d 4 , / P  (4)~ ] ~(4)13 d4#+1 " ' "  d4, = c f P  (4)= ['4 (4)]244, 
Z 

and using L e m m a  2.8 as in the proof of Theorem 2.6 we obtain  

f IQ(D)u[2d(~Gcf [P(D)ul2dx, uEC~ (ffZ), 
z 

which completes the proof. 

The special case of Theorem 2.8, where E is a hyperplane,  is mos t  impor tant .  

I n  t h a t  case Q (D)u  exists in E for every  u EDPo if and on ly  if 

4 0 0  

(2.8.18) f IQ(4+tN)l=dt<=C 
P (4 + t N) ~ 

- o r  

for every  real 4, where N is the  normal  of E. 

L~MMA 2.9. I/  p(t) is a polynomial o/ degree n in a real variable t, we have 

(2.8.19) 

+ ~  

I p '  (t)I ~ 
f lp(t)l~+lp'(t)l 2dt G 4 n  u �9 

t )R  O OF.  Logar i thmic  differentiat ion gives t h a t  

p'(t)_ -~ 1 
p (t) t - t~ 

1 

where t k are the zeros of p (t). The integral (2.8.19) can be divided into two parts  11 and 13, 

where I 1 is the integral over the intervals where I Re (t - tk) I G 1 for some k, and 12 is the  
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integral over the rest of the real axis. Since the integrand is g 1 everywhere, and the total  

length of the intervals, over which the integral 11 is extended, is at  most  2n, we have 

11 g 2n. In  the integral 12 we have the estimate 

[p'  (t)I S V' (t) ~ ~ '  
[p (t)]2 + [p, (t)I S -< < n ~  1 

in v i r t ue  of Cauchy ' s  inequa l i ty .  Since I t -  t~ I S =>It - R e  t~ IS, th i s  gives 

12 < n 2 ~- = 2 n 2, 
I t I~1 

so tha t  I i  + I~ < 4 n ~. 

Using this lemma and Theorem 2.8 in the form (2.8.18) we obtain 

THEOREM 2.9. I/  ~ is a hyperplane with normal :N, we have f Ie(N~)(D)ul~da <= 

<= C f ] P (D) u [3 d x, u 6 C~ r (~), where P(N ~) (~) = Z Nk 0 P(~) (~)/0 ~k . Thus the restrictions to 

F, o /a l l  P~) (D) u can be de/ined when u 6 ~)p~ 

In  the case where P (~) = (~, ~) is a regular quadratic form, the covariant vector N has 

contravariant  components also, and PN(D) is the operator of differentiating along the 

contravariant  normal. For operators of higher order than two, the operator PN appears to 

be an appropriate substitute for the normal derivative. 

An element u in Op, is, strictly speaking, an equivalence class of square inte- 

grable functions, and by  the function u (x) we have always meant  any representative 

of this equivalence class. Thus u (x) has only been defined for almost all x. I t  is 

then obvious tha t  the function u (x), x 6 E ,  does not in general define the restriction 

of u to ~,  if the restriction exists in the above sense. 

A representative u(x )  of an element u in ~p~ will be called distinguished, if 

the restriction of u to any variety E is defined by  the function u (x), x6  E, when- 

ever it exists in the above sense. We shall prove tha t  every element u in Op. has 

a distinguished representative. In  fact, we can find a sequence of functions un 6 C~ (~) 

such tha t  
Ilu.-ull-+o, IlP(D)u=-Pou[]-->o, 

and 
~2'~ Ilu.-u.+~ll< ~ ,  ~2"IIP(D)u.-P(D)u.+~II<~. 

I f  the restriction of u to E exists, the inequality (2.8.7) is valid with Q=  1, and it 

follows tha t  
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Denoting the open set in Z where lu~ (x ) -un+l  (x) l>2  -~ by e~, we have the estimate 

2-na(en)<=Hu~-u~+~ilz , where a(e~) is the Lebesgue measure in Z of e~. Writing 

s U ek, we obtain 
k ~ n  r 

n n 

which tends to 0 with n -1. Hence the set co= N ~o~ has measure zero in E, and 

lira u~ (x) obviously exists if xE Z - w. Now set u (x) = lim u~ (x) for any x E ~ such that  

the limit exists, and define u (x) arbitrarily elsewhere. We have proved that  the 

limit exists almost everywhere in any variety Z such that  (2.8.7) is valid. Hence 

it follows that  the strong limit of u~ in L ~ (Z), which by definition is the restriction 

of u to Z, is defined by the function u (x), x EZ. 

The same arguments apply to the definition of Qo u when u E ~p, and Q (D) is 

weaker than P (D). Thus the equivalence class Qou always contains a distinguished 

function Qou (x); the restriction of Qou to a variety Z is then defined by the func- 

tion Qou (x), x EE, whenever it exists. Note that, in particular, the distinguished 

function Qsu(x) is continuous, if (2.8.1) is valid. 

More precise results have been obtained by Deny and Lions [4] for the Beppo 

Levi functions. The results proved here could probably be improved in the same 

direction by means of a generalized notion of capacity, but the results already proved 

are sufficient for us. 

We now prove a result which in particular contains a localization principle for ~p~ 

T H E O R ~ M 2.10. The product o/ a /unction u E ~p, and a/unction y~ E C ~0 (~) 1 is in 

~) ~~ and there is a constant C depending on y) such that 

(2.8.20) ][Po (V u) [] =< C [leo u [], u e ~ , .  

PROOF. Using Leibniz' formula and Lemma 2.8 we obtain the inequality (2.8.20)if 

u EC~(~).  This evidently gives the desired result. 

Theorem 2.10 may seem evident at first sight, but to display its significance we give 

two examples showing that, if a function u is in Oe, where P is the maximal operator de- 

fined by P(D),  and ~EC~ (~), it need not be true that  y~uE~p, even for the simplest 

operators. 

EXAmPLe. 1. Let P(D)  be the Laplace operator in two variables, and let u(x 1, x ~) be 

a harmonic function in the circle r = (x 1. § t < 1 such that  u E L  2 but ~u/~r (~ L ~. 

1 This means that y is C ~ in a neighbourhood of ~. 
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A well-known example of a function with these properties is due to Hadamard .  Now let 

be a funct ion in C a such tha t  ~0 = r outside a neighbourhood of the origin. We have 

A (yJu) = uAyj + 2 (grad u, grad y~). 

The first te rm is square integrable bu t  the second is not,  since it equals 2au/ar outside 

a neighbourhood of the origin. Hence u E D p  bu t  y~u ~Dp. 

E X A M P L E  2. L e t P  ( D) be the wave operator ~/~xl~x*in two variables, andlet u =  u(x 1) 

be an absolutely continuous funct ion of x a, whose derivative is not  square integrable in 

the neighbourhood of any  point.  Since we have 

~u ~y~ 
P (D) (yJ u) - ~ xl ~ x~ + u ~x~xx ~ , 

it follows tha t  ~ u  ~ Dp unless yJ is a funct ion of x 1, a l though we have u E Dp. I n  particular,  

yJu~Dp, if 0 ~ :~ECF (~). 

After  these two examples we leave the maximal  operators,  which will be discussed in 

the next  chapter.  However,  to  clarify the contents of Theorem 2.10, we shall also prove 

tha t  Lemma 2.8, which was the essential tool in the proof of Theorem 2.2, is a consequence 

of Theorem 2.10. I n  fact,  if we take y~ (x) = e ~ <x.,>, Theorem 2.10 shows t h a t  the polynomial  

P (~) is stronger than  the polynomial  P (~ + ~). Hence P (~) is also stronger than  any  linear 

combinat ion of the t ranslated polynomials  P (~ + ~), with fixed ~, and our assertion follows 

from the following lemma. 

L~MMA 2.10. A linear set I o] polynomials is invariant /or di//erentiation i/ and only 

i / i t  is invariant /or translation. 

P R o o F. That  invariance for differentiation implies invariance for t ranslat ion follows 

at  once from Taylor ' s  formula. On the other  hand, if I is invariant  for t ranslat ion and  

P E I is of degree #, the  set I contains all functions of the form 

s m 

where ~i are arbi t rary  vectors, and t~ are a rb i t ra ry  complex numbers.  Now the coefficients 
rn 
~t~ t ~ ,  I~r _-</t, can be given arb i t rary  values, which are symmetr ic  in ~, by  a convenient  

i = l  

choice of m, t~ and ~ .  For  otherwise there would exist constants  c~, I ~r ---- t t, symmetr ic  

in ~r and no t  all equal to zero, such tha t  

c~ ~ = 0 for every  ~. 

Bu t  this is impossible. Hence I contains all P(~)(~), which was to be proved. 
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T H E 0 R E M 2.11. The conditions/or a/unction u to be in ~ .  have a local character in ~ .  

More precisely, i/ u is a/unction such that to every point in ~ there exists a neighbourhood U, 

and a /unction vvEDp~ so that u(x)=Vu(X) a.e. in U (1 ~,  then uE~p~ 

P R O O F. W e  can cover  ~ b y  a f ini te  n u m b e r  of ne ighbourhoods  Ui, i = 1 . . . . .  m, of t he  

t y p e  given b y  the  theorem.  Now t ake  func t ions  ~ ( x ) E C ~  (U~) such t h a t  

~ ~ ( x ) =  1, x E S .  
1 

Since u (x) = ~ u (x) ~ (x), a n d  u (x) 0r (x) = vv~ (x) :r (x) is in Op~ in v i r tue  of Theorem 

2.10, i t  follows t h a t  u is in O p .  

The p roper t i e s  of the  funct ions  in ~p~ in the  ne ighbourhood  of a po in t  in 

a re  descr ibed  b y  the  fol lowing theorem.  

T ~ ~ o R ~ M 2.12. A/unct ion u in L 2 (~) is equal to a/unction in ~p~ in a neighbourhood o/ 

a point x E ~ i /and  only i /al l  P(~) (D) u are square integrable/unctions in a neiqhbourhood o/x.  

P R O O F. F i r s t  suppose  t h a t  u equals  a func t ion  v in 0~ ,  in a ne ighbourhood  of the  

po in t  x. Then  we have  in th is  ne ighbourhood  

P(~) (D) u = P(~) (D) v 

and,  since P(~)(D)v is square  in tegrab le  over  ~ in v i r tue  of Theorem 2.2, the  asser t ion of 

the  theorem follows. 

Conversely,  suppose  t h a t  P(~) (D) u is square  in tegrab le  for every  ~ in a ne ighbourhood  

U of x. Le t  ~ E C ~ ( U )  equal  1 in a ne ighbourhood  V of x. Then  v(x)=u(x)y~(x)  equals  

u (x) in V, and  in v i r tue  of Leibniz '  fo rmula  we have  in the  weak  sense 

P ( D ) v = ~ P ( ~ ) ( D ) u E L  2. 

Hence  the  proof  reduces  to the  proof  of the  following lemma,  a l r eady  referred to in Chap te r  I .  

LwMMA 2.11. A /unction uEOv,  which has compact support in ~ ,  is in Op~ 

P R O O F .  Le t  yoEC~(R ~) and fy ) (x )dx  = 1. W e  form the  convolu t ions  u~ = u*~o~, 

where ~o~(x) = e-~0(x/~) .  W h e n  ~ is suff ic ient ly  small ,  we have  u~EC~(~),  and  i t  is well 

known t h a t  u~-~ u in L 2. Fu r t he rmore ,  when ~ -+ 0, we have  

P (D) u~ = (P (D) u) * ~0~-+ P (D) u 

in L ~. Hence  b y  def in i t ion  u E ~v," 

W e  shall  now deduce  a corresponding resul t  for a po in t  x on the  bounda ry .  I n  doing so 

we res t r ic t  ourselves to  a po in t  on a p lane  por t ion  of the  bounda ry ,  where we can use our  



G E N E R A L  P A R T I A L  D I F F E R E N T I A L  OPERATORS 199 

Theorem 2.9. I t  would  no d o u b t  be possible  to t r e a t  a much  more  general  ease b y  genera-  

lizing t h a t  theorem,  b u t  we shall  ref ra in  f rom s tudy ing  t h a t  quest ion here. 

Le t  E be a p lane  surface wi th  compac t  closure in  ~ .  I t  fol lows f rom Theorem 2.12 and  

Theorem 2.9 t h a t  P(~)(D)u exists  in E and  is square  in tegrab le  there ,  if u is such t h a t  

P(~) (D) u is square  in t eg rab le  in a ne ighbourhood  of F, for eve ry  ~. W e  can now announce  

our  result .  

T ~ E 0 R E M 2.13. Let x o be a point on a plane portion E o/the boundary o /~ ,  the distance 

from x o to the rest o/ the boundary being positive. Then a/unction u in L 2 (~) equals a/unc-  

tion in ~po in a neighbourhood o/ x o i /  and only i/ all P(~)(D)u are square integrable /unc- 

tions in a neighbourhood o/ x o in ~ ,  and the restrictions o~ P~)(D)u  to parallel sur/aees to 

E tend to zero strongly in a neighbourhood o / x  o when the sur/aces approach E. 

The las t  s t a t e m e n t  needs pe rhaps  some exp lana t ion .  Le t  y be a f ixed  t r ansversa l  direc- 

t ion  to  E,  i.e. <y, N} :~ 0. W e  m a y  suppose  t h a t  y po in t s  f rom E to ~ .  I f  x is in a su i tab le  

ne ighbourhood  U of x 0 in E and  ~ is a suff ic ient ly  small  pos i t ive  number ,  t he  funct ion  

P~)(D)u(x  +~y) is square  in tegrab le  in U. The  second half  of t he  condi t ion  in the  theo-  

rem is t h a t  th is  func t ion  t ends  s t rong ly  to  zero in  L ~ (U) when 8-> 0. - -  No te  t h a t  Sobolev  

[30] has  given s imilar  resul ts  in connect ion wi th  el l ipt ic  opera tors .  

P R o o F O F T H E T H E O R E ~ .  F i r s t ,  le t  v be a func t ion  in Op.. F o r  g iven e we can f ind  a 

funct ion  v~6C~(~)  such t h a t  II P(D) (v - v~ ) l l  <s .  I n  v i r tue  of Theorem 2.9 there  is a 

cons tan t  C such t h a t  on all  p lanes  E1 wi th  no rma l  N we have  

II P ~ ) ( D ) ( v  - v~)I1~1 < Ce 

for every  e. Since v~ vanishes  in a ne ighbourhood  of the  bounda ry ,  we have  wi th  the  nota-  

t ion in t roduced  above  

HP(~='(D)v (x + 6y)[[u< Ce, 

if ~ is small  enough. This  proves  the  necess i ty  of the  condi t ions  given in the  theorem.  

Conversely,  le t  t he  condi t ions  of the  theorem be fulfi l led.  Since t h e y  are  st i l l  va l id  for 

t h e  funct ion  u~,  where ~ E C ~ and  van ishes  outs ide  a ne ighbourhood  of x, we m a y  suppose  

t h a t  u vanishes  outs ide  the  ne ighbourhoods  men t ioned  in the  theorem.  L e t  V 6 C~  wi th  

respect  to  the  half  space (x,  N> <y, N> > 0, where y is the  vec tor  men t ioned  above,  and  

f y J d x = l .  I t  is t hen  easi ly  p roved  t h a t  the  convolu t ion  u ~ = u *  ~p~, where  y ~ ( x ) =  

= e -~ 7, (x/e), is in C~ (~)  for smal l  e and  t h a t  u ~  u and  P (D) u~ = P (D) u * y~-~P  (D) u 

when e-+ 0. This completes  the  proof.  The deta i l s  m a y  be lef t  to  the  reader .  

I n  pa r t i cu l a r  we m a y  note  t h a t  a func t ion  u which is suff ic ient ly  d i f ferent iab le  in 

equals  a funct ion  in OP. in a ne ighbourhood  of a po in t  on a p lane  po r t i on  of t he  b o u n d a r y  
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of ~ if and only if it vanishes there together with m - 1 transversal derivatives~ where m 

is the degree of P(~ § tN) in t when ~ is an indeterminate. 

One of the most important results in the theory of partial differential operators is the 

lemma of H. Weyl to the effect that  any solution of the equation P u  = 0, where P is a 

maximal elliptic operator, must be infinitely differentiable (after correction on a null set). 

This is only true for a certain class of differential operators P, which will be determined in 

the next chapter. For that  class it will turn out that, more generally, any function, which 

is in the domain of pn for any n, is infinitely differentiable. This result has an analogue 

for general minimal differential operators, which we shall now discuss. We start with 

two definitions and a lemma, showing how the strength of the powers of an operator in- 

creases. 

~)  E ~ 1 lq I T I 0 N 2 . 2 .  The linear mani]old 

(2.8.21) A(P)  ={~; ~ is real and P (~ + t~l) = P ( ~ ) / o r  any ~ and t} 

is called the lineality space of the polynomial P. 

D]~FI~rXTIO~ 2.3. A polynomial P is called complete, i / the lineality space consists 

o/ the origin only. 

Thus P is complete, if it really depends on all variables. The two definitions are essen- 

tially borrowed from Gs [8]. 

L E M ~ A 2.12. The operator P (D) n is stronger than any product Q1 (D)...Qk (D), k <_ n, o/ 

operators which are weaker than P. 

P R O O F. First note that  for 0 ~< k _< n we have 

In  fact, this inequality is equivalent to 

which follows from the inequality between geometric and arithmetic means. Hence to 

prove the lemma it is sufficient to show that for any ]c 

(2.8.22) HQ,(D)...Qk(D)uII~<=C([IP(D)kuH2§ ... § u e C~ ( ~ ) .  

For k = 1, this is only the definition of a weaker operator. Assuming as we may that  (2.8.22) 

has already been proved when k is replaced by k -  1, we find by substituting P ( D ) u  

for u that  

]]Q~(D)...Qk_~(D)P(D)u]]~ <= C(l[P(n)kull 2 +. . .  + I]P(D)u]]2), uEC~  (~). 
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Using the fact tha t  the operators all commute, and having recourse to the definition of 

a weaker operator again, we obtain (2.8.22). 

T H E 0 R E M 2.14. A /unc t ion  u which is in the minimal  domain o / P  (D)n/or every n, where 

P is a complete polynomial, is in/initely di//erentiable in ~ ,  and every derivative tends to 

zero at the boundary. 

P R O O F. Let  R be the algebra generated by the polynomials which are weaker than 

P. I t  follows from Lemma 2.12 tha t  the function u of the theorem is in the minimal domain 

of Q (D), if Q E R. Now the assumption tha t  P is complete implies tha t  the algebra R is 

the whole polynomial ring. We shall prove this assertion in section 2.10. Since to any 

polynomial Q we can find another Q1 such tha t  I Q (~)I/Q1 (~) is square integrable, it follows 

from Theorem 2.6 tha t  Q (D)u is continuous after correction on a null set and tends to zero 

a t  the boundary of ~ .  I t  now easily follows (see also Schwartz [28], Tome I,  p. 62) tha t  

u is infinitely differentiable in the classical sense. 

R E M A R K. We can also prove tha t  u E C ~r if we suppose tha t  u is in the domain of P~ 

for every n. For if ~ '  is a bounded domain which contains ~ ,  and we extend u to a function 

u '  in g2' by  setting u ' =  u in s and u ' =  0 elsewhere, the assumptions of Theorem 2.14 

are satisfied by u '  in L~(~') .  (After the above  was written, the question whether the 

domain of P~ always coincides with the minimal domain of P ( D )  ~ was answered in the 

negative by  J.  L. Lions.) 

2.9. Some theorems on complete continuity 

Theorem 2.2 gave the necessary and sufficient conditions for the continuity of the map- 

ping 

(2.9.1) ~eo g Po u --->Qo u E ~Q~ . 

We shall now derive the conditions for complete continuity. Such results are important  in 

proving tha t  vibration problems have a discrete spectrum. We remark tha t  some results, 

similar to the theorems which we are going to prove, have been given previously by  Kon- 

draehov (see Sobolev [30]) with different proofs, based on potential  theory. 

THEOREM 2.15. The mapping (2.9.1) is completely continuous i / a n d  only i/  

(2.9.2) Q (~) -->0 when ~---> oo. ~(~) 
P R O O F. We first prove tha t  the complete continuity of the mapping (2.9.1) follows 

from (2.9.2). The proof is a combination of Theorem 2.2 with the proof by Gi~rding ([9], 

p. 59) of a special case. 
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Suppose t h a t  (2.9.2) is fulfilled. Then  we have  also I Q (~)I/ / ;  (~) < C. Take  any  sequence 

u n e C ~  (~2) such t h a t  

(2.9.3) IIP(D)unll <= 1. 

We shall p rove  t h a t  Q(D)un, converges if n '  is a suitable subsequence of the  sequence n. 

I n  v i r tue  of Theorem 2.2 we have  

(2.9.4) IIQ(D)u~II <= C. 

Since all Q (D)u~ vanish outside the bounded  set ~ ,  it follows f rom (2.9.4), if we denote  the  

Fourier  t r ans form of u n b y  ~ ,  t h a t  the  funct ions Q ( ~ ) ~  (~) are uni formly  bounded  and  

uni formly  continuous.  Hence  we can find a subsequence n '  such t h a t  Q ( ~ ) ~ ,  (~) is un i formly  

convergent  on every  compac t  set. Now we have  

II Q ( D ) u ~ . -  Q (D)urn, II 2 = f IQ (~)~, (~) - Q (~)~,~, (~)]2 d~. 

Let  K be a compac t  set such t h a t  IQ(~)]/P(~)<e in the  complement  K '  of K.  Then  it  

follows f rom (2.9.3) and L e m m a  2.8 (see proof a t  the  end of section 2.6) t h a t  

f [ Q (~) [2 [ 4~, (~) _ tim, (~)[~ d ~ =<- s 2 f b (~)2[ ~ ,  (~) _ ~m, (~)[2 d ~ =< A s 2, 
K" 

where A is a constant .  Fur the rmore ,  

f]Q(~)it~,(~)-Q(~y)~m,(~)l~d&->O, when n '  and m'-->or 
K 

in v i r tue  of the  uni form convergence.  Hence  

l im IIQ(D)un,-Q(D)u,,,I]2<=As 2 
n ' ,  ra '---> oo 

for every  s, which proves  t h a t  Q (D)u~, is convergent .  This proves  the  complete  cont inui ty  

of the  mapp ing  (2.9.1), since the  funct ions  P (D)u ,  u E C~ (~),  are dense in ~p~ 

Now suppose t h a t  the  mapp ing  (2.9.1) is comple te ly  continuous.  We have  to p rove  t h a t  

(2.9.2) mus t  be valid. This can be achieved b y  modify ing  the  technique of section 2.3. 

I t  is obviously sufficient to prove  tha t ,  if ~ is a sequence tending to  infinity, such t h a t  

Q($n)/.lS(~) tends to a limit, then  the  l imit  mus t  be zero. Since we may ,  if necessary,  pass 

to a subsequence,  i t  is also pe rmi t t ed  to suppose t h a t  

(2.9.5) ~n -- ~m --> ~ when n, m -+ ~ and n ~ m. 

This assumpt ion  is essential  in the  proof.  

Le t  ~p be a fixed funct ion in C~ (~), and form the  sequence of funct ions  

(2.9.6) u~ (x) = ~f (x) e~ ~ ' ~  
P ( ~ )  
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In  v i r tue  of Leibniz '  formula  there  is a cons tant  C such t h a t  

(2.9.7) IIP(D)u=N _<_ C. 

Using (2.3.5), we can wri te  

I]Q(D)un - Q(D)um I[ 2 = ]IQ(D)u~I[ ~ +HQ(D)um II 2 - (~m,  (2.9.8) 

where 

203 

_ Q (2n,) when 

The proof  is complete .  

T H E O R E M  2.16. Let F~ be a plane o/ dimension less than v. Then the mapping 

(2.9.11) ~po 9 P (D) u---> { Q (D) u}~ E L ~ (E), 

where (Q (D) u}z is the restriction o] Q (D) u to E, is completely continuous i] and only i/ 

(2.9.12) f ]Q. (2)[2 da ' - -~0 
z'  P (2)~ 

when the normal variety F/--->~. 

The reader  will have  no diff iculty in carrying out  the  proof,  which does not  require any  

ideas beyond  the  proofs of Theorem 2.8 and Theorem 2.15. 

T H E  o R~M 2.17. The inverse Po 1 o / a  minimal di//erential operator is completely con- 

tinuous i/ and only i / P  is a complete polynomial. 

P R O o F. I f  P is not  a complete  polynomial ,  there  exists a real vector  ~ 4 0 such t h a t  

P(2 + t~ )~P(2) .  Different iat ing repea ted ly  with respect  to ~, we obtain  t h a t / 5 ( 2  + t~) = 

(2.9.9) (~nm~2Re  = = D ~ y ~ e ~ X , ~ n  ~m~dx �9 

Now, since the  mapp ing  (2.9.1) is complete ly  continuous,  it is also continuous,  so t h a t  

Q(~) (2)//~(2) is bounded  in vi r tue  of Theorem 2.2. Hence  it follows f rom (2.9.5) and Riemann-  

Lebesgue 's  l e m m a  in its ve ry  simplest  form t h a t  5n~-+ 0 when n, m - +  co and n 4 m .  

B y  the  assumption,  there is a sequence n' such t h a t  Q (D) un,is convergent .  Then it follows 

f rom (2.9.8) t h a t  

(2.9.10) [IQ(Dlu~,II~= ~ Q(~) (2~'1Q(Z) (2n') /~ (2~,) ~ ~p~->0 when n'--> ~ ,  

a, fl 

where yJ~, is defined by  (2.3.6). I t  now follows f rom (2.3.9) t h a t  also 



2 0 4  L A R S  H ( ) R M A N D E R  

=/;(~) ,  so t h a t / 5 ( ~ + t ~ )  is bounded when t ~ c ~ .  Hence Theorem 2.15 with Q ( ~ ) ~ I  

shows tha t  Po ~ is not completely continuous. 

Now suppose tha t  P is a complete polynomial, i.e. tha t  A (P) = {0}, where A (P) is 

defined by  (2.8.21). We shall prove tha t /5  (~) __> ~ with ~ or, equivalently, tha t  

Mc = (~ ;/5 (~) <= C} 

is a bounded set for every C. The polynomial P(}) can be written as the sum of its homo- 

geneous parts,  
rap 

P (~) = ~. k (~), 
0 

where Pk (~) is homogeneous of degree k and Pm (~) ~ 0. I t  is easy to prove that ,  for every 

polynomial P, 
ra 

(2.9.13) A ( P ) =  N A(Pk).  
k = l  

ra 

For, if ~ 6 N  A(Pk),  we have Pk(~§ consequently P(~+t~7)~--P(~ ), 
k = l  

ra 

so tha t  ~7 E A (P). Hence N A (Pk) c A (P). Now let ~ E A (P). Then we have 
k - 1  

rnp ra 
~(~+t~)---5pk(~). 

0 0 

Replacing ~ by  ~ and t by  ~t and identifying the powers of v, we obtain P~ ( ~ §  
ra 

~ P k ( ~ ) ,  so tha t  ~EA(Pk) .  Hence A ( P ) ~  N A(Pk),  which proves (2.9.13). 
k = l  

From our assumption tha t  P is complete, it thus follows tha t  ~ A (P~) = (0}. Hence it 
k = l  

will follow tha t  the set Me is bounded, if we only prove tha t  M c  is bounded modulo A (P~) 

for every /c. We need a simple lemma on homogeneous polynomials in the proof. 

LEMMA 2.13. Let Q be a homogeneous polynomial o/degree m. Then a real vector ~], 

such that D~ Q(~) = 0 /or  every :r o/length m -  1, is in A(Q). 

P R o o F. The lemma is obvious, if m = 1, and we shall prove it in general by  induction 

over m. Suppose tha t  the assumptions of the lemma are satisfied and m > 1. Then the 

assumptions hold good also for the polynomials ~Q/~i .  Assuming, as we may, tha t  the 

lemma is already proved for polynomials of degree less than m, we obtain 

aQ (~ + tv )/~,-=~Q (~)/~,. 

Hence Q (~ § t~) - Q ( ~ )  is independent of ~, so tha t  we have 

Q(~ + t~) -Q(~)=-Q(t~7). 
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Sett ing t = 1 and ~ = ~  we obta in  2 Q ( ~ ) =  2mQ(~). Hence  Q ( ~ ) =  0 and thus  Q(~ + t ~ ) =  

= Q (~), which means  t h a t  ~ EA (Q). 

We  can now prove  t h a t  M c  is bounded  modulo  A (P~) for every/c ,  if P is any  polyno-  

mial.  Since this is obvious if the  degree m of P is 1, i t  is sufficient to prove  t h a t  it is t rue  

for P,  if i t  is . t rue for all polynomials  of degree less t h a n  m. 

That /5(~)  __< C in Me,  implies t h a t  [P(~)(~) I --< C there.  I n  par t icular ,  this  is t rue  when 

[ ~ ] = m - 1, and then  P(~)(~) differs f rom P~)  (~) only  b y  a cons tant  term.  Hence  we 

have  [P~)(~)l < C '  in M c  if I:r = m - 1 .  I n  v i r tue  of L e m m a  2.13, the  linear forms 

P(2)(~) vanish s imul taneously  only in A(Pm).  Hence  M c  is bounded modulo  A(Pm).  

But  since P~)  (~) is cons tant  modulo A (Pro) for every  ~, we conclude t h a t / 5  (~) is bounded  

in Mc.  Now form the polynomial  

R(8) = P ( 8 )  - P r o ( 8 )  =Pm- l (8 )  § "'" §  

R (~) is of degree m -  1, and  since 

R(~) =<P(~) + P~(~) ,  

we have  /~ (~) < C" in Me .  Using the  assumpt ion  t h a t  our assert ion is p roved  for polyno-  

mials of degree less t h a n  m, it  follows t h a t  M c  is bounded  modulo  A(Pk) , k =_< m - 1. This 

completes  the  proof of Theorem 2.17. 

The proof also shows tha t ,  i f P  is complete,  there  exists a cons tant  c > 0 such that /~(~)  > 

> (~12 + ... + ~)s .  Hence  1/i5(~) is in i q for large q, which permi ts  the  use of Theorem 2.7. 

A fair ly precise result  is given by  the  following lemma,  which includes Theorem 2.17 bu t  

has  a much  more  difficult proof. 

LEMMA 2.14. I] p l (~)  . . . . .  pn  (~) is a set o /polynomials  such that 

n 

A i (pk) = {0}, 
k = l  

then (t ~12 + ... + ~n~)- ~. is in L q i/ q > ~. 

Note  t h a t  E x a m p l e  1 on page 191 shows t h a t  the  constant  v of the l e m m a  cannot  be re- 

placed b y  any  smaller one. We also remark ,  t h a t  we shall only use L e m m a  2.14 when n = 1, 

bu t  the more  general s t a t emen t  is necessary for our proof. Using this special case of L e m m a  

2.14 and Theorem 2.7, we obta in  

T H E O R E M 2.18. We have u EL q, i /U i8 in the minimal  domain o / a  complete di//erential 

operator and q < 2~/(~ - 2), if v > 2, q < c~. i / v  = 2. 

As a p repara t ion  for the  proof of L e m m a  2.14 we introduce a new nota t ion,  which 

supplements  the  definit ion of A(P) ,  
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m 

(2.9.14) A ( P ) =  N A(Pk)=A(P-P1). 
- -  k ~ 2  

The last equality follows from (2.9.13). We shall prove tha t  

v 

(2.9.15) A ( P ) =  n A ( ~ P / ~ ) .  
- -  i 2 1  

First suppose tha t  P is homogeneous of degree m > l .  Since it is obvious tha t  

A(~P/~i)~A(P), we obtain by  using Lemma 2.13 

v 

A ( P ) ~  N A ( ~ P / ~ , ) c  N A ( D ~ P ) c A ( P ) .  
t = 1  ] c o l = m - 1  

Hence (2.9.15) is valid in this ease. Using this result and (2.9.13), we obtain for a 

general P = E Pk 

~, v m m ~, m 

f i A ( 0 P / ~ , ) =  Cl C~ A ( 0 P k / O ~ , ) =  C/ fi A(0Pk//O~,)= N A ( P k ) = A ( P ) ,  
t = l  i = l  k = l  k = l  i = l  k ~ 2  - -  

since all ~P1/a~ are constants. This proves (2.9.15). 

Before the proof we also extend our terminology slightly. We shall say tha t  a 
n 

system p1 . . . . .  pn of polynomials is complete, if n A ( P  ~) = (0). The system Q1 . . . .  , 

Ql will be said to be weaker than the system p1 . . . . .  P~, if we have 

P ~ o o F O F L E M ~ A 2.14. By repeated application of the following two operations, we 

shall construct a system, which is weaker than the given one and for which the assertion 

of the lemma is valid: 

A) I f  fi A ( P k ) =  (0), we obtain a weaker complete system by omitting Pl. 
k 4 l  

B) If  A (Pl) n ( N A (Pk)) = (0), we obtain a weaker complete system, if we replace 
- -  k ~ l  

Pl by  all the polynomials ~Pz/~ (i = 1 . . . . .  v). This follows from formula (2.9.15). 

To the system of polynomials, given in the formulation of Lemma 2.14, we first apply 

operation A until this is no longer possible. Then we apply operation B- - i f  possible-- to 

one of the remaining polynomials of highest degree, and then apply the operation A again 

as many  times as it is possible. The new system is still complete, and either the highest degree 

occurring among the polynomials in the system, or else the number  of polynomials of 

highest degree, has diminished. Hence we must  after a finite number  of steps come to a 

system Q~,...,Q~, which is complete and weaker than the original system, such tha t  A 
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cannot  be applied any  more  and B is not  applicable to some of the  po lynomia l s - - in  fact  

to none of those of highest  degree. Le t  one of these be Q1. Then we have  

(2.9.16) A =  A ( Q  ~) fl A(Q 2) N "-  ~ A(QZ)#  {0}, 

whereas  

(2.9.17) A A A (Q~I)= {0}, 

where Q11 is the  linear p a r t  of Q1. Since A (Qll) cannot  have  a co-dimension greater  t han  one, 

i t  follows f rom (2.9.16) and (2.9.17) t h a t  A is one-dimensional.  Le t  us suppose t h a t  the  

coordinates are chosen such t h a t  A is the  21-axis. I n  v i r tue  of (2.9.16), the polynomials  

Q1 _Qll, Q2 . . . .  ,Qt are then  independent  of 21, t h a t  is, t hey  are polynomials  in 22 . . . . .  ~,,. 

I t  follows f rom (2.9.17) t h a t  Qx I is no t  independent  of 2x, so we can set 

Q1(2) = c21 q- R(~), 

where c ~ 0 and  R is independent  of ~1. Now we can write 

i = l  

This gives, if we per fo rm the  in tegra t ion  over  ~j explicit ly,  

-~-0o 

- ic  I 
-or 

Since q > v __> 1, the  first  integral  is convergent .  Fur thermore ,  since it  follows f rom (2.9.16) 

t h a t  the  polynomials  aQ1/~2~ .... ~Q1/~2~ ' Q2 .. . . .  QZ form a complete  sys tem in the  var iables  

23 . . . . .  2~, the  convergence of the  last  integral  follows f rom the  va l id i ty  of L e m m a  2.14 in 

a space of dimension v - 1. Hence  the  l emma  is t rue  for any  number  of variables,  since it  

is t rue  when v = 1. 

2 . 1 0 .  O n  s o m e  s e t s  o f  p o l y n o m i a l s  

Let  P be a f ixed polynomial .  We have  s tudied the  set  of polynomials  Q such t h a t  Q(D) u 

exists for nEaP0  in one sense or ano ther  (Theorems 2.2, 2.6, 2.7, 2.8, 2.15, 2.16). I n  all 

eases, the  set I of polynomials  Q, which we have  obtained,  has the  following two properties:  

a) I is linear and invariant /or translation. 

b) I / Q  is a polynomial such that 

1o( )l- -<  110,( )1 

/or every real 2, where Q1 (2) .... ,Q, (2) E 1, then it/ollows that Q (2) E 1. 
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In  virtue of Lemma 2.10, the property (a) is equivalent to 

a') I is linear and invariant /or di//erentiation. 

That  (b) is fulfilled is evident in all the cases, so tha t  the only thing we need to prove 

is the invariance for translation. Let  us verify this for the set of polynomials Q such tha t  

Q(~)/t)(~) is in L q. Let  Q(~)/P(~)eL ~. Then, for fixed ~], the function 

Q ( ~ + ~ )  _ Q ( ~ + ~ ) / 5 ( ~ + ~ )  

~5(~) ~(~+~) P(~) 
is also in L q, for it follows at  once from Taylor 's  formula tha t /7 (~  + ~)/15(~) is bounded 

for fixed 7. 

We also remark, without performing the comparatively easy proof, that ,  if Q (~)//~(~) 

is in L q, it follows tha t  Q (~)//5 (_~) _> 0 when ~ -~ ~ ,  and hence tha t  Q (~)/~5(~) is in L r for 

r => q. This can par t ly  be deduced also from our theorems above. 

The invariance for translation and differentiation proves the fact, already noticed in 

a remark following Theorem 2.2, that ,  for instance, the assumption tha t  Q(~)//~(~)-> 0 is 

equivalent to ~(~)//5 (~)_~ 0 when ~-> ~ .  The same remark applies to the other theorems. 

We now prove a result which was already used in section 2.8. 

L E M MA 2.15. The algebra R, generated by the polynomials weaker than a polynomial P, 

consists o/ all polynomials with the lineality mani]old A (P). 

P R o O ~. The statement  is obvious, if P is of degree 1. To prove it for a polynomial 

P = ~ Pk, we may  assume tha t  it has already been proved for polynomials of degree less 
k=0 

than m. Now the polynomials which are weaker than  ~ P / ~  are also weaker than P,  and 

hence R contains all polynomials with the lineality manifold A ( ~ P / ~ ) .  Thus R contains 

all polynomials with the lineality manifold 

N A (~ P/~  ~) = A (P) = A (P - P~). 
~ 1  

Since R contains P and P - P 1 ,  the polynomial P~ is also in R, which proves tha t  R also 

contains all polynomials with the lineality manifold A (P1)" This completes the proof. 

2.11.  R e m a r k s  on  the  case o f  n o n - b o u n d e d  domains  

We shall here s tudy the minimal operator P0, defined by  a differential operator P (D), 

when ~ is not  bounded, a case which has been excluded in all the previous theorems of 

this chapter. I t  seems difficult to give a perfect generalization of Theorem 2.2, but  we 

can prove two theorems which replace Theorem 2.2 in some important  cases. 
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T ~ E o R E ~ 2.19. Let El be a domain, which contains the direct sum o /an  open set El' in the 

plane x ~+1 . . . . .  x" = 0  ( # < v )  and the space G = { ( 0  . . . . .  0 ,~ f fu+ i , . . . ,X~)} .  Then, i/ 

IIQ(n)ul] 2 <= C(]]P(D)u]] 2 +l]uH2), uEC~(El) ,  (2.11.1) 

i t /ollows that 

(2.11.2) I Q ($)1~ < c '  ( E * l P  ~) ($)I ~ + 11, 

where Y,* means a sum only over sequences O/the indices 1 . . . .  ,#. 

P R o o F. Let  y} be a funct ion in C~ ~ (El' x G) and consequently in C~ ~ (El). Then the for- 

mula (2.3.7) mus t  be valid. Now replace ~p by  yf, 

~ (x I . . . . .  x ~) = ~(~-~)/2 ~ (x l ,  . . . ,  x~, ~ x ~  +1 . . . . .  ~x~).  

An easy calculation shows t h a t  y/~p = sk%~, where k is the  total  number  of indices occurring 

in 0r and fi, which are not  between 1 and/~. Hence in the limit when e ~ 0, it follows from 

(2.3.7) t ha t  

(2.11.3) ~* Q(~) (~) Q(~)(~) ~ =< C ( ~* P(~) (~) P(~) (~) %~ + YJ00). 
~,~ ~,~ 

Now our result follows at  once from (2.3.9). 

RE MARK.  I t  is easy to see tha t  the  same result  remains valid, if we replace G by  an 

open set in G, which contains arbitrari ly large spheres. 

The same a rgument  also gives that ,  i /E l  satis/ies the assumptions o] Theorem 2.19 and 

the operator Po has a continuous inverse, we must  have 

(2.11.4) 1 <-_ C' ~* IF ̀~) (~) I ~. 

THEOR]~M 2.20. I /  x l , . . . ,X  ~ are bounded in El, it /ollows ~tom (2.11.2) that (2.11.1)is 

valid. I t  a l so /o l lows/rom (2.11.4) that the inverse o / P o  is continuous. 

P R o O F. I t  was remarked on page 185 tha t  L e m m a  2.7 is also t rue for infinite domains. 

This gives at  once a proof of Theorem 2.20, if we repeat  the arguments  a t  the end of the  

proof of Theorem 2.2. 

If  fl  satisfies bo th  the condition of Theorem 2.19 and tha t  of Theorem 2.20, we m a y  

of course conclude tha t  (2.11.2) is a necessary and sufficient condition for the val idi ty  of 

(2.11.1), and tha t  (2.11.4) is a necessary and sufficient condition for the cont inui ty  of the 

inverse of P0. The result concerning the cont inui ty  of P~ ~ could par t ly  be obtained from 

the proof of Theorem 2.1, bu t  it is easy to give examples where tha t  method does not  work. 

1 4 -  553810. Acta  Mathematica.  94. Imprim6 le 27 septembre 1955. 
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CHAPTER III 

Maximal Differential Operators with Constant Coefficients 

3.0. Introduction 

Let  P and @ be two maximal differential operators with constant coefficients. 

Our first question is: When is it true that  De cDQ? The corresponding problem 

for minimal differential operators was solved by Theorem 2.2. For the maximal 

operators we obtain the negative result that  D s c DQ implies either tha t  Q = a P § b, 

with constant a and b, or else tha t  P and Q are ordinary differential operators, 

such that  the degree of Q is not greater than the degree of P. This is proved in 

section 3.1. 

Although there exist no operators Q (except for the trivial ones), such that  

Qu EL 2 (~) for every u E De, there may be operators Q, such that  @u is locally square 

integrable in ~ for every te~Dp. There is in fact a class of operators P - - t h e  

operators of local type--for which this is the case for every Q weaker than P in the 

sense of Chapter I. In  tha t  case the functions in Dp have the same regularity pro- 

perties as the functions in Deo. The class of operators of local type is determined 

in sections 3.3, 3.4 and 3.5. The main point is the construction of a fundamental 

solution in section 3.4. Elliptic operators are of local type. The complete operators 

of local type also turn out to possess all essential properties of elliptic operators. 

For instance, all solutions of the equation Pu=O are infinitely differentiable if and 

only if P is complete and of local type. (Operators with this property are called 

elliptic by some authors, cf. Malgrange [21]. Thus our results give simple necessary 

and sufficient conditions for an operator to be elliptic in this sense.) We also esti- 

mate the magnitude of high derivatives of solutions, thus generalizing Holmgren's 

results for the equation of heat. As an application this gives us a result on the 

growth of null solutions. (The existence of null solutions is completely discussed for 

general operators in section 3.2.) Finally, in section 3.7, we establish a spectral theory 

of self-adjoint operators of local type. Examples of operators of local type arc given 

in section 3.8. 

A study of the asymptotic properties of the eigenfunctions (or rather spectral 

functions) of self-adjoint boundary problems, parallel to tha t  given by Gs [13] 

for elliptic operators, was originally planned. However, our results were not com- 

plete, since the Tauberian theorem of Ganelius [7], which was used by  Gs is 

not sufficient in our general case. The author has therefore postponed the publica- 

tion to another occasion. 
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3.1. Comparison of the domains of maximal differential operators 

Let P and Q be two maximal  differential operators with constant coefficients 

in L 2(~), where ~ is a bounded domain. Theorem 1.1 shows that ,  if ~ p ~ Q ,  we 

must  have 

(3.1.1) IlQull2<=c(liPull2 +tlullb, ue'O~, 
where, as always, the norm is L~-norm in ~.  The condition (3.1.1) leads to the 

following theorem. 

T ~ E O ~ E M  3.1. I /  the domain o/ P is part o/ the domain o/ Q, we have either 

Q =- a P + b with constant a and b, or else P (~) = p (<x0, ~>) and Q (~) = q (<Xo, ~>), where 

x o is a /ixed real vector and the degree o/ the polynomial p is not less than the degree 

o/ the polynomial q. 

In  the first case it is obvious t h a t  O Q ~  ~p,  with equality unless a = 0 .  In  the 

second case the same result follows from well-known facts concerning ordinary dif- 

ferential operators (see the example on page 169), if, for example, ~ is a cylinder 

with axis in the x0-direction. 

To prove the theorem, we first note tha t  (3.1.1) must  hold for any infinitely 

differentiable function u. Hence we may  set u = e  ~<~'~> with arbi trary complex $, and 

then obtain 

(3.1.2) I Q ($)[2 ~ C (IP ($)[2 + 1). 

Another necessary condition is obtained, if we set u ( x ) = x ~ e  ~<x'~> in (3.1.1): 

(3.1.3) f ] x k Q ( ~ ) + i  *Q(k)(~)12e 2 < * ' ~ > d x < C f ( l + [ x k P ( ~ ) + i - l p ( k ) ( ~ ) 1 2 ) e  2<x'~>dx. 

Using (3.1.2) and the boundedness of x k in ~ ,  we now obtain 

(3.1.4) I Q (k) ($)12 ~ C' (l P (~)12 +l  F(h) (~)] 2 + 1). 

The inequalities (3.1.2) and (3.1.4) are independent of each other. We first examine 

the consequences of (3.1.2) by  algebraic methods. 

LEMMA 3.1. Let P(~) and Q(~) be two polynomials in ~=(~ ,  . . . . .  ~) such that 

(3.1.2) is ]ul/illed /or every complex ~. Then the polynomials must be algebraically de- 

pendent, that is, there exists a polynomial R (s, t) in two complex variables s and t such 

that R~= 0 and 

(3.1.5) R (P, Q) = 0. 
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PRO o r .  We m a y  suppose wi thout  restriction t h a t  the polynomials are no t  con- 

stant ,  and choose the coordinate system such t h a t  in the  developments  

n m 

(3.1.6) P (~) = ~. ak (~2 . . . . .  $~) $~, Q ($) = ~ bk ($2 . . . . .  $~) ~ 
0 0 

the  highest coefficients an and bm are constants  # 0 .  Denote  the resul tant  with re- 

spect to ~1 of the  two polynomials  P - ~  and Q - f l  by  R(~ ,  fl, ~2 . . . . .  $~). The 

resul tant  is a polynomial  in :r fl, $2 . . . . .  ~,  and does no t  vanish identically. I f  the  

zeros of P ( ~ ) - ~  for fixed ~2 . . . . .  ~ are ~1 = tl . . . . .  ~1 = tn, we have 

n 

R = a~  1-I (Q (tk, ~2 . . . . .  ~) - fl). 
1 

Since P (tk, ~2 . . . . .  5 )  - g = 0, it follows from (3.1.2) t h a t  [Q (tk, ~ . . . . .  ~)  12 =< C (1 + ]cr 13). 

Hence R is bounded for fixed :r and fl, which proves tha t  R is independent  of 

~ . . . . .  ~,  so t h a t  we m a y  write R = R (a, 8). B y  definition, we have R (~, 8 ) =  0 if 

P - ~ r  and Q - f l  have a common zero $0, t h a t  is, if ~ = P ( $ 0 ) ,  f l=Q(~0).  Thus  we 

obtain  

R (P  ($0), Q (~0)) = 0, 

which completes the proof. 

To proceed fur ther  we need a lemma, which is essentially a special case of 

Li i roth 's  theorem (cf. van  der Waerden  [33], w 63). 

L ~ M M A  3.2. Let R be a ring over a /ield K such t h a t K ~ R ~ K [ x ] ,  where K[x] 

is the ring o/ polynomials in an indeterminate x with coe//icients in K. Then there is 

a polynomial ~ E R such that R = K  [v~]. 

P g o o It. Le t  v~ be a no t  constant  polynomial  in R of minimal degree. Then 

the polynomial  v ~ ( z ) -  v ~ (x), considered as a polynomial  in a second indeterminate  z, 

has coefficients in R and is irreducible in R [z]. For  suppose t h a t  it decomposes in 

R [z]. The factors  are then  polynomials  in z with coefficients in R, so t h a t  a factor  

which is no t  independent  of x mus t  be of at  least the  same degree in x as v ~ is. 

Hence all factors except one mus t  have coefficients in K, and since it is obvious 

t h a t  there are no such factors, the irreducibili ty follows. Hence, if ~ (x) is any  

polynomial  in R, the  polynomial  ~ (z) - ~ (x) mus t  be divisible b y  v ~ (z) - v~ (x) in R [z], 

since both  have the zero z=x .  Denoting the term in the quotient,  which is in- 

dependent  of z, by  ~1 (x), we have ~ I E R  and 

(x) - ~ (o) = (8  (x) - a (o)) ~1 (x).  
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Assuming as we m a y  t h a t  ~ (0 )=0 ,  we obtain 

~] (x) = ~] (0) § v ~ (x) ~h (x), ~1 (x) E R. 

Now we can apply  this result  to  the polynomial  ~h and  write 

~1 (x) = ~1 (0) + ~ (x) ~ (x), ~2 (x) ~ R, 

and  so on. Since the  degrees of the  polynomials  ~]1, ~]2 . . . .  decrease, we mus t  after  

a finite number  of steps come to a constant  polynomial ,  which proves t h a t  ~ E K [t?]. 

L E • M A  3.3.1 I /  tWO polynomials P(~) and Q(~) o/ ~=(~1 . . . . .  ~) are algebrai- 

cally dependent, there exists a polynomial W (~) and two polynomials p (t), q (t) in one 

variable, so that 

(3.1.7) P (~)=p (W (~)), Q (~) = q (W (~)). 

P R o o r.  B y  assumption we have 

F (P ($), Q (~)) = 0, 

where F (x, y) is a polynomial  which m a y  be supposed to  be irreducible. Assuming 

as we m a y  tha t  P and Q are of the  form (3.1.6) and sett ing ~ l = t ,  Se . . . . .  ~ , = 0 ,  

we find t h a t  the irreducible curve F (x, y) = 0 has a parametr ic  representat ion x = x (t), 

y = y  (t), where x (t) and y (t) are polynomials  in t. Now we apply  L e m m a  3.2 to the  

ring of polynomials  generated by  x (t) and y (t). I t  follows t h a t  there is a polynomial  

vq(t) in this ring, t h a t  is, ~ (t)= / (x (t), y(t)), where / is a polynomial ,  so t h a t  

x ( t )=p (t~ (t)), y ( t )=q (t? (t)). Hence we have for any  point  on the  curve 

x = p (/(x, y)), y = q (/(x, y)), 

since this is t rue for a generic point.  Set t ing x = P ( ~ ) ,  y = Q ( $ )  and denot ing 

/ ( P  (~), Q ($)) by  W (~), we obtain  the desired result. 

Combining L e m m a  3.1 and L e m m a  3.3, we conclude t h a t  the  inequal i ty  (3.1.2) 

is valid if and only if there exists a polynomial  W (~) and two polynomials  p ( t ) and  

q (t), such t h a t  the  degree of q is no t  greater  t han  the  degree of p and 

(3.1.7) P ( ~ ) = p ( W  ($)), Q ( ~ ) = q ( W  ($)). 

1 Th i s  l e m m a  a n d  a n o t h e r  m u c h  deeper  one, needed  in a n  earlier ve r s ion  of th i s  paper ,  were 
p roved  b y  Professor  B. L.  VAN DE• WAnRDEN in rep ly  to a ques t ion  f rom the  a u t h o r .  Hi s  proof,  
wh i ch  is based  on L i i ro th ' s  t heo rem,  inc ludes  in fac t  b o t h  L e m m a  3.2 a n d  L e m m a  3.3, a n d  differs 
on ly  fo rma l ly  f rom t he  one g iven  her(~, 
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Polynomia ls  of this fo rm sat isfy the  inequal i ty  (3.1.4) if 

(3.1.8) 8 ~  (l q' (W)12 - C'lP' (W)t 2) <= C' (I P (W)12 + 1). 

In  s tudying this inequal i ty  we have  to dist inguish be tween two different  cases. 

I )  I f  I q ' ( t ) [ 2 - C ' l p ' ( t ) [ 2 < = o  for every  complex t, i t  follows t h a t  a n y  zero of 

p' is a zero of q' with a t  least  the  same mult ip l ic i ty .  Now q' has not  higher degree 

t h a n  p ' ,  so it follows t h a t  q' ( t )=  a p' (t) with some cons tant  a. Hence  q (t)=ap (t)+ b 
and Q(~)=aP(~)+b, so t h a t  we have  one of the  cases ment ioned  in Theorem 3.1. 

I I )  Now suppose t h a t  the  open set  U of all t such t h a t  Iq '( t)  l 2 - C ' l p '  (t) 12>O 

is not  empty .  Then  it follows f rom (3.1.8), if cr and  fl are fixed complex numbers  

such t h a t  cceV, t h a t  I ~ W / ~ k - f l ] < C "  when W - ~ = O .  Since the  a rguments  of 

the  proof of L e m m a  3.1 app ly  under  this weaker  assumpt ion ,  i t  follows t h a t  W and 

8 W/8 ~ are algebraical ly dependen t  for any  k. Hence  8 W/8 ~k is cons tant  for any  

k on a piece of surface where W ( ~ ) = c o n s t a n t .  Thus  the  surface is a por t ion of a 

plane, and  W mus t  be cons tant  in the  whole plane.  Since two planes, where W has  

different cons tant  values, cannot  meet ,  it follows t h a t  W is cons tan t  in a set  of 

parallel  planes (z0, ~ ) =  constant .  Hence  W is a polynomial  in (z0, $), and using 

(3.1.7) we obta in  

(3.1.9) P (~) = p  ((z0, ~)), Q ( ~ ) = q  ((z0, ~)), 

where p and  q m a y  not  be the  same polynomials  as in (3.1.7). Polynomials  of the  

form (3.1.9) sat isfy bo th  (3.1.2) and  (3.1.4). To prove  the  remaining pa r t  of the  

theorem,  name ly  t h a t  z 0 mus t  be propor t ional  to a real vector  unless q=ap+b,  we 

mus t  therefore  go back  to the  original condit ion (3.1.1). 

Thus  suppose t h a t  the  polynomials  P and  Q are of the  form (3.1.9) and t h a t  

z 0 is not  propor t iona l  to any  real  vector .  We shall prove  t h a t  q' (t)=ap' (t), or, 

equivalent ly ,  t h a t  a zero v of p' with mul t ip l ic i ty  k is a zero of q' with the  same 

mult ipl ic i ty .  I t  is sufficient to suppose t h a t  3 =  0. Wi th  a suitable complex vec tor  

and a real vector  U we shall set  

(3.1.10) u (x) = (x,  U} ~ e ~<x'~>. 

I t  easily follows f rom Leibniz '  fo rmula  t h a t  

(3.1.11) 

where p(J) is the  jth der iva t ive  of p. 
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Since z o is no t  proport ional  to a real vector,  there exists a vector  $ o = ~ o + i ~ o  

such tha t  <Zo, ~o>=0 but  <Zo, ~o>#0.  Denote  by  ut the funct ion obta ined by  sett ing 

~ = ~ o  and ~ = t ~ o  with real fixed t in (3.1.10). Since we have assumed tha t  

p' (o) . . . . .  p(~) (o) = 0, 

i t  follows f rom (3.1.11) t h a t  

P (1)) ut = p (0) <x, ~o> ~ e ~<x' ~:'>. 

With  the nota t ion  

we also obtain  

Q (D) u~ = / ((x, %>) e ~<x' t Co>, 

and to show t h a t  q' (0) . . . . .  q(k) ( 0 ) = 0  we have to prove tha t  / (u)  cannot  contain 

any  term of lower order  t han  u k. 

The inequali ty (3.1.1) gives when applied to the  functions ut 

(3.1.12) fll(Ex, v0>)l~e ~<x'">dx<=C(l +lp(O)l~)fl<x, V0>l~e 2~<x'">dx. 

Translat ing ~ ,  if necessary, we m a y  suppose tha t  

(3.1.13) inf <x, ~ o ) =  0. 
x e ~  

Let  ~(u) be the measure  of the  set 

(x; x ~ ~ ,  (x, ~0> -<- u}. 

I n  vir tue of (3.1.13) we have : r  if u < 0 ,  and : r  if u > 0 .  Fur thermore ,  

(u) is constant  for large values of u. The inequal i ty  (3.1.12) now takes  the form 

7 II(u)12e ~ue~(u)<=c'f~2~e-~ud~(~), o < t < ~ .  
0 o 

Suppose t h a t  u k is not  a fac tor  of / (u ) .  Then we can find s > 0  such tha t  

I / ( u ) 1 2 > 2 C ' u  2~: for 0 < u < 8 .  Hence 

< , f u 'Zee  2 t u d o  r 2C' fu~ e-~tud~(u)< If(u)]2e-~tUd:c(u)=C (u), 
o 0 0 

and consequently 
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0 8 

Est imat ing  the two sides of this inequal i ty  in an obvious fashion, we obtain  

2 
e d (u), 

0 e 

which gives a contradict ion when t - ~ ,  since the integral  on the left-hand side does 

not  vanish. Hence u k is a factor  of / (u) ,  so t h a t  q '(t)  has a zero of mult ipl ici ty k 

for t = 0. This completes the proof. 

R E ~ A R K .  I t  also follows from the proof t ha t  there exists a uniformly con- 

t inuous funct ion u, so tha t  P ( D ) u  is uni formly continuous but  Q ( D ) u  is no t  uni- 

formly continuous,  unless we have one o~ the  two exceptional  cases of Theorem 3.1. 

I n  fact,  if we subst i tute  for L ~ (~) the space C of uniformly continuous functions 

in ~ ,  we still get  the conditions (3.1.2) and (3.1.4), and we can also give a modi- 

fication of the discussion at  the  end of the proof. 

Somewhat  roughly,  we migh t  formulate  the result  of this section as follows: 

Maximal part ial  differential operators with constant  coefficients are characterized by  

their domains, apar t  f rom a linear combinat ion with the ident i ty  operator.  

3.2. The existence of  null solutions 

We shall call a funct ion u~=0 a null solution of P, if it is infinitely differentiable, 

satisfies the equat ion Pu=O, and vanishes in a half-space (x, ~ ) ~ 0 ,  where ~ is a 

given fixed vector  4 0 .  I t  follows from Holmgren ' s  uniqueness theorem (cf. J o h n  [16]) 

t ha t  a null solution cannot  exist, unless the plane (x, ~ ) =  0 is characteristic,  t h a t  

is, p (~)= 0, where p is the  principal par t  of P.  If  P is homogeneous,  it is obvious 

tha t  any  function / ((x, ~)), where 0=~/E C ~r and / (t) = 0 for t > 0, is then  a null solution. 

For  equat ions with lower order  terms the existence of nul l  solutions seems to have 

been proved only for special equations, in particular,  the heat  equat ion (Tychonov 

[32], Tgcklind [31], see also Hille [14]). Following the  proof of Hille [14] and using 

some series developments  f rom Pe t rowsky  [26], we can prove the  following general 

existence theorem. 

T H e O R e M  3.2. There exist null solutions o/ P /or every characteristic ~.l 

1 For equations with variable coefficients it may happen, as has been proved by MYc~xIs [22], 
that a solution can only be continued in one way across the whole of some real characteristic, even 
if it can be locally continued in different ways. 
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PROOF.  Let  us consider the equat ion P ( s ~ + t ~ ) = O ,  where ~ is a fixed non- 

characterist ic vector  and  s and t are complex numbers.  Since p(~)=O, it easily 

follows as in Pe t rowsky  [26] t h a t  there is a root  t=t (s ) ,  such t h a t  t/s--->O when 

s - ->~ ,  and we can develop t (s) in a Puiseux series 

t = 8 kip ~ e 1 8-1/P~ 
J=0 

where k and p are positive integers and k < p. Hence t (s) is analyt ic  outside a circle 

Is ] = M, and when Is I---> ~ we have 

It(s)l:o([sio), 
where Q < I .  Let  ~' be a number  such tha t  Q < Q ' < I ,  and set with v > M  

iT+or 

u(x )=  f ei<Z's~+t(s)'>e (s/~)~'ds ( s = a + i ~ ) .  
i v-r 

Here we define (s/i) Q" so tha t  it is real and  positive when s is on the  positive 

imaginary  axis, and use a fixed branch of t (s). The integral is obviously  convergent  

and independent  of z, for when x is in a fixed bounded  set we have 

Rc it(s) <x, 7> - __<Clsl -Isl sin < - c l s l  (Ims>M), 

for large Is I, e being a positive constant .  This est imate also proves t h a t  the 

integral  is uniformly convergent  after an a rb i t ra ry  number  of differentiations with 

respect to x, so tha t  u (x) is infinitely differentiable and solves the  equat ion P (D) u = O. 

I t  is also obvious tha t  u # O .  Now we have for sufficiently large T 

+oo 

lu(x)l=<e f e 

Henc% lett ing ~-+ + ~ ,  we conclude tha t  u @)= 0 if (x, ~> > O. 

The following corollary is a theorem by  Pe t rowsky  [26], who also considered 

systems of differential equations.  

C O R O L L A R Y  3.1. I /  y is a direction which cuts some characteristic plane o/ the 

operator P, then there is a solution u o/ P ( D ) u = O  such that u ( x + t y )  is not an 

analytic /unction o/ t. 

I n  fact,  a null solution u, which vanishes on one side of the  characterist ic plane, 

will possess the required property,  since we could otherwise prove by  analyt ic  con- 

t inuat ion t h a t  u = O. 
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3.3. Differential operators of local type 

F r o m  Theorem 3.1 i t  follows t h a t ,  if t he  ope ra to r  P (D) depends  on more  t h a n  

one va r i ab le  and  ~ is a bounde d  domain ,  we can f ind  a func t ion  u E D e and  a func- 

t ion  ~0 E C ~ (~)  such t h a t  V u ~ Dp. F o r  suppose  t h a t  th is  were no t  possible,  so t h a t  

whenever  u E D p  and  y~EC ~ (~)  we have  v 2 u E D  e. W i t h  ~p=e '~x'r ~ 0 ,  i t  would  

follow t h a t  a n y  funct ion  u E D  e is also in t he  m a x i m a l  doma in  of the  ope ra to r  

P ( D §  which would  con t r ad i c t  Theorem 3.1. This  nega t ive  resul t ,  which con t ras t s  

wi th  Theorem 2.10, was also p roved  in sect ion 2.8 b y  means  of expl ic i t  examples ,  

when P is the  Lap lace  ope ra to r  or  the  wave  ope ra to r  in two var iables .  F o r  the  

wave  ope ra to r  we saw t h a t  P(D)(yJu) does no t  even  need  to  be loca l ly  square  

in tegrab le  in ~ ,  b u t  for the  Lap lace  o p e r a t o r  we on ly  p roved  t h a t  P (D)(~0 u) m a y  

no t  be square  in tegrab le  over  the  whole of ~ .  We now raise the  p rob lem to  de ter -  

mine  those  ope ra to r s  for which on ly  th is  s i t ua t ion  can appear .  More precisely,  we 

seek those  ope ra to r s  P which sa t i s fy  t he  fol lowing def ini t ion.  

D E F I N I T I O N  3.1. A di//erential operator P (D)  is said to be o/ local type, i/ 

the product o/ any /unction in D e by any /unction in C~ (~) is in De, and conse- 

quently, in virtue o/ Lemma 2.11, in Deo. 1 

A n  equ iva len t  def in i t ion  is t h a t  P is o/ local type, i/ t~e /unctions in D e and the 

/unctions in Deo have the same local regularity properties, t h a t  is, if a n y  func t ion  in  D e 

equals  some func t ion  in De0 in an  a r b i t r a r y  compac t  subse t  of s T h a t  th is  p r o p e r t y  

follows f rom Def in i t ion  3.1 is obvious,  for we can choose yJEC~ such t h a t  y~= 1 on a n y  

given compac t  set. Conversely,  if P has  th is  p r o p e r t y ,  i t  fo]lows f rom Theorem 2.10 t h a t  

Def in i t ion  3.1 is fulfilled. Thus  Theorem 2.12 proves  t h a t  a necessary a n d  sufficient  

condi t ion  for an  ope ra to r  to  be of local  t y p e  is t h a t  P (~) (D)u  is a loca l ly  square  

in tegrab le  funct ion  for a n y  ~ and  a n y  u E D e. I f  ~ '  is a domain  wi th  compac t  closure 

in g2, we can hence a p p l y  Theorem 1.1 to  t he  m a p p i n g  

D e 9 u--->P (~) (D) u e L 2 (~'), 

and  then  ob ta in  the  fol lowing lemma.  

L E P T A  3.4. I /  P (D) is o/ local type and the domain ~ '  has compact closure 

in ~,  there exists a constant C such that 

1 Observe that we require this property of the operator P for any domain ~.  I t  will however 
follow from our results that it is sufficient to assume that the definition is fulfilled for one bounded 
domain ~,  it then follows for any domain, bounded or not bounded. 
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(3.3.1) flP(~'(D)ul~dx<_C(flP(D)nl2dx+ f l u l ~ d x ) ,  u e V p .  
t2' t~ f~ 

Let f~ be a bounded domain. Setting u (x )=e  i<x'r in (3.3.1), r  we obtain 

(3.3.2) ]P(~) (~) 12 f e 2<x '~>dx<C( l+[P(~) l~ ) f e -~ i~ '~>dx .  

If 5 is the supremum Of 21xl when x Ef2, we have the two estimates 

f e ~<x"> dx  __>e ~ f d x : e  ~"' m (n'), f e -~<~'> dxZe~ 

Hence it follows from (3.3.2) tha t  

m (~) e2~lnl (1 + IP(~)Is). (3.3.3) I P (~) (~)12 =< C m ~  

Adding the inequalities (3.3.3) for all ~, and using the nota t ion/3  ($)= (y ip,~, (~)i~).~ 
again, we obtain the following ]emma. 

L EM~A 3.5. Let P be o/ local type. Then [or any A there is a constant C 

such that 

(3.3.4) /3 (~)2 __< C (1 + I P (~)12), 

when I Im ~1 < A. 

The necessary condition for an operator to be of local type, which we have 

now derived, is in fact also sufficient. Before proving this, we shall deduce other 

equivalent conditions, which seem to be more natural and useful. 

LEMMA 3.6. I /  a polynomial P satisfies (3.3.4), we have 

(3.3.5) I P (~ + i ~7) I -+ r162 when ~--~ ~ modulo A (P), 

and the convergence is uni/orm in ~, i~ Iv l I< A,  where A is an arbitrary fixed posi- 

tive number. 

PROOF. Examination of the proof of Theorem 2.17 shows that  

/3( r  when ~ - - ~  modulo A*(P),  

where A* (P) is the complex lineality space of P, defined by (2.8.21), if we omit the 

word "real". Since A'(P) is the set of real vectors in A* (P), the assertion now 

follows from (3.3.4). 
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We shall next  prove two lemmas, which give a converse of L e m m a  3.6 in a 

sharp form, which will he used later. For  convenience we only formulate  t hem for 

complete polynomials.  

Suppose that /or any positive number A there exists a number B L g M M A  3.7. 

such that 

(3.3.6) P(~+i~])#O, when [ ~ [ < A  and [$I>B. 

Then the polynomial P is complete, and /or any /ixed real vector 0 we have 

P($+O) 
(3.3.7) p ( $ )  +1 when ~-->oo. 

PROOF.  Tha t  P mus t  be complete is obvious. I n  proving (3.3.7) we m a y  as- 

sume t h a t  the coordinates are so chosen t h a t  0 = ( 1 ,  0 . . . . .  0). Now let s be a 

fixed small positive number .  I n  virtue of the assumptions we can f ind a number  

B such t h a t  

P(~+i~])#O when ] ~ ] < s  1 and [ $ [ > B .  

Then the  inequal i ty  [ ~ - ~ ' [ > s  -1 is valid, if [ ~ l > B + e  -1 and P ( ~ ' ) = 0 .  For  sett ing 

~ ' = ~ ' + i ~ '  we have either [ ~ ' [ > s  1, or else [~'[_<-B so t h a t  ] ~ - ~ ' [ > e  -1. Giving 

constant  values to ~ . . . . .  ~ we can write 

m 

P (~) = E 1-[ (~1 - tk), 
1 

where (tk, ~2 . . . . .  ~)  is a zero of P.  Hence we have ]t~-$xl__>e -1 if [~ [>B +~  1. 
Using this est imate in the  formula 

we obtain 

P(~+O) 

P($+O) 

which proves the  assertion. 

_ ~ 1 +  1 - t k  = 1 +  1 

P(~)  1 ~ l - t k  

1 < m s ( l + e )  z- l ,  [~]>B-i-s -1, 

LEMMA 3.8. I /  /or every constant real vector 0 

P($+O) 
(3.3.7) p(~)  +1 when ~-->~, 

then (3.3.7) is valid /or every complex O, and the convergence is uni/orm in O, i/ 

I~ I<A /or some /ixe4 A. Furthermore, we have, i/ I:r 
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(3.3.8) 
P(~) (8 + vq) 

' -+ 0 when ~--+ ~ ,  
P (~+ O )  

uniformly in o, if [ol  < A. 

P ~ o o F .  In virtue of Lemma 2.10 we can write 

(3.3.9) P(~) (~) = ~ t~ P (~ + vq~), 
1 

where Oi are real vectors. Since the principal parts on the right-hand side must cancel 

out, if ]:r we have ~ t , = O .  Hence we obtain in virtue of (3.3.7) 

p(~) (8) m 

* ~. t, = 0 when ~--> co. (3.3.1o) p (8) 
f 

From Taylor's formula it follows that  

P(8+vq) _ l + ~ P ( " ) ( 8 )  v~ 
P(8) P(8) I~l~' 

laH:o 

which proves that  (3.3.7) is valid for arbitrary complex v ~, and also exhibits the 

asserted uniform convergence. Using this result and (3.3.9), we obtain 

m 

P(a)(8+vq)-- t~ P(8+O+O~) P(s~) - -+~t i=0  when ~-->~, 
P (~ + vq) 1 P (~) P (8 + v q) 

uniformly in v q. 

TrfEOlCEM 3.3. The following five conditions on a polynomial P are all equivalent: 

I) For an arbitrary given A,  the polynomial P ( 8 + i u )  does not vanish, i/ [v/[<A 

and the distance from ~ to A (P) is'sufficiently large. 

II) For every real vector ~ we have 

P ( ~ + ~ )  *1 
P(8)  

when ~ is real and -->~ modulo A (P). The convergence is uniform in z$, i/ I~1 is 

bounded. 

III)  For every cr with [cr we have 

P(~) (8) -+ O, 
P (~) 

when ~ is real and -->~ modulo A (P). 
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IV) For any A there is a constant C such that when [~]] <=A 

/7(~+i~)2__<C (1 + [ P ( ~ + i v ) [ 8 ) .  

V) When ~-->~ modulo A ( P )  we have IP(~+i~])l--+~ , and the convergence is 

uni/orm in ~ when I~ I <= A.  

Each o/ these conditions is a necessary and su//icient condition/or the operator P to 

be o/ local type. 

P ~ o o F .  We first prove the equivalence of the five conditions. Lemmas 3.7 

and 3.8 show tha t  I implies I I  and tha t  I I  implies I I I  and IV. Furthermore,  Lemma 

3.6 proves tha t  IV implies V, and I is obviously a consequence of V. Hence the 

conditions I,  I I ,  IV, V are all equivalent. Since I I I  follows from I I ,  and the proof 

of Lemma 3.8 shows tha t  I I  follows from I I I ,  the equivalence of the conditions is 

established. In  virtue of Lemma 3.5 the condition IV is a necessary condition for 

P to be of local type. 

We note that ,  if P is complete, we may  omit  "modulo A (P)" from the state- 

ment,  and tha t  the theorem states tha t  a polynomial is of local type,  if the com- 

plete polynomial which it induces in R~/A (P) is of local type. The easy but  space- 

consuming verification of this fact may  be left to the reader. Thus in proving the 

sufficiency of the conditions I -  V, we may  restrict ourselves to the ease of complete 

polynomials. In  tha t  case we shall carry out the proof in section 3.5, by  means of 

a fundamental  solution, which will be constructed in the next  section. 

3.4. Construction o f  a fundamental  solution of  a complete operator o f  local  type 

In  this section we shall consistently use the theory of distributions, without 

explicit reference at  every point. The definitions and results, which we use, can of 

course be found in Schwartz [28]. Our purpose is to construct a fundamental  solu- 

tion, tha t  is, a distribution E such tha t  

(3.4.1) E * ( P ( D ) u ) = u ,  uEC~ r (RV), 

and to prove certain regularity properties of E. The results are stated in the fol- 

lowing theorem. 

T H ] ~ O R ~  3.4. Let P be complete and satis/y the conditions I - V  o/Theorem 3.3. 

Then P (D) has a /undamental solution E with the properties: 

I) In  the domain x~=O the distribution E is an in/initely di//erentiable /unc- 

tion E (x). 
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I I )  I /  u is square integrable and has compact support, the convolution 

P(~) (D) E * u 

is a locally square integrable /unction. 

R E M A R K S. 1. Every  fundamental  solution has the properties I and I I .  In  

fact, we shall see later tha t  the difference between two fundamental  solutions is in- 

finitely differentiable. 

2. Schwartz [28] has called a function E(x),  which is infinitely differentiable 

for x ~: 0 and integrable over a neighbourhood of the origin, a "noyau dl6mentaire", 

if the distribution E defined by 

E (u) = ] E (x) u (x) d x  

is a fundamental  solution. He proved tha t  all solutions of the equation P u = O  are 

infinitely differentiable if P possesses a "noyau dl~mentaire". We shall not prove 

here tha t  the fundamental  solution of a complete operator of local type is a "noyau 

414mentaire", but  we shall nevertheless prove tha t  all solutions are infinitely dif- 

ferentiable. 

I f  P (~) did not vanish for any real ~, we could obtain a fundamental  solution 

by  writing 

Nge , ueCr, (3.4.2) 

or equivalently 

(3.4.3) 

where 4 is defined by  ~ (x)= u ( - x ) .  Now the polynomial P (~) has in general real 

zeros, and we must  then give (3.4.3) a generalized sense. 

We shall define (3.4.3) as a repeated integral, first an integral in the complex 

domain with respect to ~1, and then an integral with respect to the other real vari- 

ables. We may  then assume tha t  the coordinates are chosen such tha t  the highest 

power of ~1 in P (~) has a constant coefficient. 

I n  virtue of the condition V in Theorem 3.3 we have I P(~)I=>I,  if $ is real 

and ]~I=>C, where C is a suitable constant. Thus I p (~) I=>l ,  if ~ § 2 4 7  2. 

Since the zeros of a polynomial vary  continuously with parameters  which do not 

occur in the highest order term, we can find a second constant C' such tha t  

I P ($1, ~2, " " ,  ~v) l ~ 1, if ~2, " " ,  ~ are real, ~ §  §  2, and I ~ I I ~ C "  
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Now we set  for u E C ~  (R ~) 

(3.4.4) E (~) = (2 ~) ~'-~ f d ~ ... d ~ ~ p(~)~ (~) d ~ = '2 f (~) 

The integral with respect to ~ shall be extended over the real axis, i /  ~ + ... + ~ >= C 2, 

and over the real axis with the interval ( - C ' ,  C') replaced by a semi-circle in the lower 

hall-plane, i/ ~ §  § ~ < C~. 1 Thus  we have  I P (~)1 => 1 everywhere  in the  integral .  

Since u EC~, i t  follows t h a t  ~ is an entire analyt ic  function,  which decreases 

rap id ly  in the  real domain.  Hence  the  integral  (3.4.4) is convergent .  I t  is plain t h a t  

the  formula  (3.4.2) is valid, if we in te rpre t  the integral  in the  way  jus t  defined. 

Thus,  if u E C~ (R'), we have  

E * (P (D) u) = (2 ~) ,/2 ~ e ~ <~, ~> p (~) ~ (~)/p (~) d ~ = (2 zr) "~ ~ e ~ ix, ~> ~ (~) d ~. 

Since the  in tegrand  is an analyt ic  funct ion of $1, we m a y  shift  the  in tegra t ion  p a t h  

back  to the  real axis. Hence  we obta in  

E �9 (P (D) u) (x) - (2 ~)-~/~ f e ~ <~' ~> ~ (~) d ~ = u (x), 

which proves  t h a t  E is a f undamen ta l  solution. 

We now divide the  in tegral  (3.4.4) into two par t s  in the  following manner .  

I f  R =  VC~§ '-2, we have  I ~ I < R  in the  p a r t  of the  integral  (3.4.4), where ~ is not  

real. Thus  if we wri te  

(3.4.5) E = E 1 + E z, 

4 (~)d~ ~ (~) (3.4.6) E 1 (4) = (2 Jr) ~/2 f - , - , ~  ~, E 2 (4)  = (2 zr)-~/2 _.~ ~ ( ~  d ~, 

the  var iable  ~ only assumes real values in the  integral  defining E 1. The  dis t r ibut ion 

E 2 is an  entire analy t ic  function,  for when u E C~ we obta in  in v i r tue  of the  de- 

f init ion of 

d~  
E2 (4) = (2 ~r) -~ ~ e-~<x'~>dx 

The change of the  order of in tegrat ions  is justif ied b y  the  fact  t h a t  bo th  integrals  

are only  ex tended  over  compac t  sets. Hence  E a equals the  funct ion 

1 There  is a ve ry  large f r eedom in the  choice of i n t eg ra t ion  pa th s ,  a n d  d i f fe ren t  choices give 
d i f ferent  f u n d a m e n t a l  so lu t ions .  No te  t h a t  ~ is here  a comp lex  var iable ,  whe reas  ~ a lways  deno te s  
a real  vec to r  e lsewhere in th i s  paper .  
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X --~' -- (3.4.7) E~()=(2~) ~d~, 

which is an entire analytic function, since the integral is uniformly convergent when 

[ x I is bounded. 

Let  u EL ~ have a compact support. The convolution P~> (D)E 2 * u is then an 

analytic function. Thus the assertion I I  of Theorem 3.4 will follow, if we prove tha t  

Pr (D) E 1 * u is square integrable. Let  ~v E C~. Then the function u * ~v is also in 

C~, and in virtue of (3.4.6) we obtain 

f (~) 

P (~)~ 
(3.4.8) (Pr (D) E 1 * u) (~) = Pr (D) E1 * u * ~v (0) = - p - ~  u (~) ~ (~) d ~, 

so tha t  the Fourier t ransform of P<~)(D)E 1 * u  is a function which vanishes when 

{~l < R and equals ~ (~) P<~) (~) /e  (~) when => R. Noting tha t  P<~> (~)/P (~) is bounded 

when I ~ ] > R  in virtue of condition I I I  of Theorem 3.3, and tha t  ~(~) is square 

integrable, we conclude tha t  the Fourier t ransform of Pr 1 * u  is a square in- 

tegrable function. Hence Pr ( D ) E l * U  is also square integrable, which completes 

the proof of the assertion I I  of the theorem. 

We now turn to the proof of assertion I. Since we have already proved tha t  

E~ is an entire analytic function, it remains to prove tha t  E 1 is an infinitely dif- 

ferentiable function for x =~ 0. We need the following algebraic lemma, which gives 

a precise form of the condition I of Theorem 3.3. 

LEMMA 3.9. Let y~=O be a ]ixed vector in R ~, and set 

(3.4.9) 

where ~ is a vector in C~ such that P(~)=O, and ~ is a vector in R~ such that 

I(Y, ~ [ =  T. Then there exist positive numbers a and b such that 

M (z)z  o-->a when z--->c~. 

PROOF. I t  follows from condition I of Theorem 3.3 tha t  the infimum in (3.4.9) 

is attained, and tha t  M (v) is a continuous function of T. The system of equations 

(3.4.10) P ( ~ ) = 0 ,  <y, ~>~=~n, [ $ - ~ ] ~ = # ~  

has a solution ~f iC. ,  ~f iR.  if and only if # => M(v).  Considering C. as a 2~- 

dimensional real vector space and the equation P (~)= 0 as two real equations, we 

can eliminate the variables ~ and ~ from (3.4.10) by means of Theorem 3 of Seiden- 

15-- 553810. Acta  Mathematica.  94. Imprim~ le 27 septembre 1955. 
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berg [29]. 1 We then obtain  a finite number  of finite sets G 1 . . . . .  Gs of polynomial  

equalities and inequalities in tt and T such t h a t  there  exist vectors ~ and  ~ satisfying 

(3.4.10) if and  only if all equalities and inequalities of G~ are satisfied by  # and T, 

for at  least one i = 1 . . . . .  s. Since the existence of solutions ~, ~ of (3.4.10) is also 

equivalent  to the inequal i ty  # => M (T), we m a y  assume t h a t  G~ is of the form 

G~ k (/z, z )  :> 0 ,  /c = 1 . . . . .  ki. 

/ z = M ( z )  must  make  some of these inequalities to  an equality.  Le t  G(/u, z) be 

the  produc t  of all the polynomials  G~k (/u, z), which do no t  vanish identically, and 

let H(# ,  ~:) be the polynomial  with the same irreducible factors as G (/u, z) bu t  all 

with mult ipl ici ty 1. Then we have H (M (T), z) : 0 for every  T. For  sufficiently large 

~, the degree in # of H (/z, z) is independent  of z, and the zeros /uk (T) are different 

continuous functions of z, since H has no multiple factors. Thus the  index k, such 

t h a t  M ( z ) = # k  (v), is independent  of T, since M (~) is continuous.  Hence M (z) is 

an algebraic funct ion of z for large T, and can be developed in a Puiseux series. 

I n  vir tue of condit ion I of Theorem 3.3, we have M(z)-->oo with z. Hence the 

highest power of T in the Puiseux series mus t  be positive, which proves the as- 

se r t ion)  

L EMMA 3.10. There exist positive constants c and d such that/.or su/./iciently large 

[ ~1 we have 

/or any real ~ and any ~ with P ( ~ ) = 0 .  

PROOF.  Choosing the vector y of L e m m a  3.9 as (0 . . . . .  0, 1, 0 . . . . .  0), we obtain 

for large I~} 
I~-~l>=a,]~,] b' 

where a~ and b~ are positive numbers.  Hence, if c ' = m i n  a~ and d = m i n  b~, we have 

LEMMA 3.11. Let y E R  ~ and ~ER~ be two fixed vectors. Then there is a constant 

C such that 

[ ~'+J/ 1 \ I  (Ic+j)'C~+i 
(3.4.11) ( n ,~ ] ) '  - '  [~:I>R'  ] , k = l , 2  . . . . .  

where b and d are the constants o/. the two preceding lemmas. 

1 The restriction in this theorem that the coefficients must be rational is removed on page 372. 
2 This result bears some analogy to a lemma in GARDING [8]. 
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P~OOF.  The quanti ty,  which we shall estimate, is 

(D,~/}k+J ~ dt k+j P(~+t~) t~o" 

We can write P ( 2 + t ~ ) = A ~ I ( t - t ~ ) .  Since ~ = ~ + t ~  is a zero of P a n d ~ - ~ = t ~ ,  
1 

the numbers t~ can be estimated by  either of Lemma 3.9 and Lemma 3.10: 

(3.4.12) ]t~i>=~'(l+l<y,~)]) ~, It~l=>c'l~] ~, (I~I=>R). 

:Now the (k+])th derivative of 1/P(~+t~l) for t = 0  is a sum of terms which are 

each of the form A -1 divided by a product of k + ] + m  of the zeros t~. The number 

of terms is 

m ( m + l ) . . - ( m + k + j - 1 ) = ( k + j ) ! (  ~ + k + j - 1 ) < ( k + j ) !  2 m+~'-~.  k+] 

Furthermore,  A is independent of ~ as will be proved in section 3.8. Hence the 

lemma follows, if we estimate j of the zeros by the first inequality in (3.4.12), k of 

them by the second inequality, and the remaining m by  a constant. 

Let  y and ~] be two fixed vectors, and let b and d be the same numbers as in 

the previous lemmas. We shall prove tha t  the distribution 

(3.4.13) F = (x, ~/}~ (y, D} ~ E~ 

is a continuous function, if 

(3.4.14) 

where r is 

and 

this theorem. 

The definition of F means tha t  

F (4) = (2 ~)-~12 ~" 

k 
l>=~+r, 

the ]east integer > v/d. This will complete the proof of Theorem 3.4, 

estimating the absolute value of F we shall get an interesting refinement of 

(y, ~)k 
p ( ~  (;D, ~7} ~ d (~)) d ~, 

where D now denotes differentiation with respect to $. Integrat ing by  parts,  we 

obtain F (4) = G (4) + I (~), where 

I~l_>n 

and, d S being the vectorial element of area o n  the sphere I ~ I = R ,  
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(3.4.16) I ( ~ ) = i  ~ (2rr)-'/'zj=02 ( - D ,  ~/)J ( ~ p ~ - ! / ( < D ,  ~/)l-a j~ (~ ) ) (d S ,  ~1). 
I~I=R 

In virtue of Lemma 3.11 we have the following estimate of the integrand in (3.4.15), 

which we denote by g (~), 

(y, iv>' (y, 

.0  ~ l ( y ,  ~>l' I(y, ~> 

Now it follows from (3.4.14) that  

( l - j )  ! C z-j 

I "~ (1 +1 <y, ~> I) ~('-j-~) 

b ( l - j - r ) - ( ] c - j ) = b  l - ~ - r  + j ( 1 - b ) > 0 ,  

so that  we obtain 

1=0 \ ? /  

The function I~] - ~  is integrable over the domain I~ l>R,  since rd>v. Thus the 

distribution G must equal the continuous function 

G ( x ) = ( 2 ~ )  -~ f g(~)d<x'~>d~ �9 

With a new constant C we have the estimate 

(3.4.17) I G (x) l <= ell!. 

Using in (3.4.16) the definition of 4, we find that  the distribution I is defined 

by the analytic function 

(3.4.18) I(x)=i-l(2re) j=o~ (x,~)l ~ je~<X.~> ( - D ,  q/ i - ~ - ~ ] } ( d S , ~ ) .  
I~I=R 

The proof is quite parallel to the previous study of the distribution E 2. Since 1/P (~) 
is analytic in a complex neighbourhood of J~ l=R,  we have 

( 8 1 - D , ~ )  ~ (~  <=s!d s, ]~[=R, 

with some constant A. Hence we obtain, when x is in a compact domain K, that ,  

with suitable constants B and C 



GENERAL PARTIAL D I F F E R E N T I A L  OPERATORS 229 

l 1 min (k,t) ( ~ )  
[I(x)[=< 5 C ~-'-j 5 ( J - s ) ! A J - S B k l c ! / ( k - s )  ! 

1=0 s=0 

< y .C  Z-t Jj! A J - " B k =  ~ C~-~-J j !AJ (B+A-~B)  k. 
/ffi0 s=0 ]--0 

l 1 
Since k < l  and ~ j ! < ( l - 1 ) ! l = l ! ,  we have with a new constant C 

0 

(3.4.19) I I (x) I _< CZl!. 

Now F = G + I ,  so that  we have proved that  the distribution F, defined by 

(3.4.13), is a continuous function, if (3.4.14) is valid. We have also proved that  the 

absolute value of F has an estimate of the form (3.4.17), (3.4.19), when x is in a 

compact set K. If  we now choose l as the smallest integer such that  (3.4.14) is 

valid, and recall that  E (x) = E 1 (x) + E 2 (x), where E 2 (x) is an entire analytic function, 

the following theorem is proved. 

THEOREM 3.5. Let y be a vector in R ~ and b the number introduced in Lemma 

3.9. Then, /or any compact set K, which does not contain the origin, there exists a 

constant C such that 

(3.4.20) [(y, D} k E(x )[<=Ckp(~) ,  x E K ,  

where E (x) is the /unction which de/ines the /undamental solution o/ Theorem 3.4. 

In  constructing the fundamental solution we have used several ideas from the 

literature. The idea of estimating an expression of the form (3.4.13) has been taken 

over from a study of elliptic operators by Gs [10]. For references to the very 

rich older literature on this subject, the reader should consult Schwartz [28]. 

3.5. Proof of Theorem 3.3 

Let P be complete and satisfy the conditions I - V  of Theorem 3.3, and let 

and ~ '  be any domains such that  ~ '  has compact closure in ~. The domain ~ may 

be bounded or not be bounded. Then there exists a positive number e such that  

a sphere with radius e and centre at any point in g2' is contained in ~. Let Q (x) 

be a function in C~, which vanishes f o r  I x l ~ e  and equals 1 in a neighbourhood of 

the origin. Instead of the fundamental solution constructed in Theorem 3.4, we shall 

use the "parametrix" 

(3.5.1) F = Q E .  

The support of F is contained in the sphere I xl g e, and 
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(3.5.2) P (D) F = ~0 + eo (x), 

where D 0 is the Dirae measure at  the origin and eo (x) is an infinitely differentiable 

function, which vanishes for Ix/_-> e and also in a neighbourhood of the origin. I n  

fact,  in a neighbourhood of the origin, where Q = I ,  we have F = E  and thus 

P (D) F = P (D) E = D 0. Since P (D) E is infinitely differentiable for x m 0, the formula 

(3.5.2) follows. 

Now let u E Oe, which means tha t  u and P (D) u are square integrable functions 

in the sense of the theory  of distributions. I n  ~ '  we have 

(3.5.3) u = u * D 0 = u * (P (D) F - ~o) = F * (P  (D) u) - o~ * u 

and consequently 

(3.5.4) P(~) (D) u = (P(~) (D) F)  * (P  u) - (P(~) (D) co) * u. 

Since P(~)(D)eo is continuous,  the last t e rm is hounded  and hence square integrable 

in ~ ' .  To s tudy  the  other  te rm in (3.5.4), we denote  by  ~ the funct ion which equals 

P u in points with distance < e to ~ '  and equals 0 elsewhere. ~ is square integrable 

and has compact  support .  I n  g2' we have 

(P(~') (D) F) * (P u) = (P(~) (D) F) * q9 = (P(~') (D) E) * cf + (P(a) (D) {(q - 1) E}) * q. 

Now P(a ) (D)E  * q is a square integrable funct ion in ~ '  in vir tue of the  assertion 

I I  of Theorem 3.4. Since ( Q - 1 ) E  is an infinitely differentiable funct ion and ~ has 

compact  support ,  it follows in par t icular  t h a t  also ( P ( ~ ) ( D ) { ( Q - 1 ) E } ) * ~  is square 

integrable in ~ ' .  Hence P(~)(D)u is locally square integrable in ~ ,  for any  u E Op, 

and thus the remarks  following Definition 3.1 show t h a t  the operator  P is of lo- 

cal type.  

We m a y  also note  t ha t  (3.5.3) shows tha t  all distributions u, such tha t  P (D)u = 0, 

are infinitely differentiable functions. We shall refine this result in the next  section. 

3.6. The differentiability of the solutions of a complete operator of local type 

We observed at the end of the previous section tha t  all solutions of the equation 

P u = O ,  where P is complete and of local type,  are infinitely differentiable. More 

generally we can prove: 

T H E O R E M  3.6. 17/ U belongs to the domain o/ the operator P~ /or every k, where 

P is a complete di//erential operator o/ local type, it /ollows that u is an in/initely di/- 

/erentiable /unction alter correction on a null set. 
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PROOF. I t  follows from Theorem 3.3 (or else directly from Definition 3 .1 ) tha t  

P~ is also complete and of local type. Hence, if yJ E C~ (~), the function y~u is in 

the minimal domain of P (D) ~ in any bounded domain ~ ' ,  containing the support  

of ~. Thus ~ u equals an infinitely differentiable function in virtue of Theorem 2.14. 

Since ~0 is an arbi t rary  function in C~, we obtain the desired result. 

The proof of Theorem 2.14 also gives the following more precise result: For any 

differential operator Q (D) there exists an integer /c such that ,  if ~2 is a bounded 

domain, we have with some constant C 

sup [Q (D) u (x)12 =< C (II (Pk)0 u [[2 + [[ u 112), 
xE$Tl 

when u is in the minimal domain of P(D)  k. Using this result and the proof of 

Theorem 3.6, we obtain the following useful estimate. 

LEMMA 3.12. Let P be complete and o/ local type, and let Q be any di//erential 

operator with constant coe//icients. Then there exists an integer ]c with the /oUowing 

property: I /  u E ~ k ,  the /unction Q (D)u is continuous in ~,  and /or any domain ~ '  

with compact closure in ~ there is a constant C such that 

(3.6.1) sup [Q (D) u (x)[2 __< C ([[ pk u II 2 + [[ u H~). 
XEkr o 

THEOREM 3.7. Let ~ be a bounded domain. I /  all the solutions u E L 2 ( ~ )  o/ the 

equation P u = O  are in/initely di//erentiable alter correction on a null set, the operator 

P (D) must be complete and o/ local type. 

PROOF. We shall prove tha t  the first condition in Theorem 3.3 is fulfilled. 

This can be done my  means of explicit constructions similar to those of Petrow- 

sky [26]. However, we give a proof along the lines of this paper. Thus let ~ '  be 

a domain with compact closure in ~.  Since P is a closed operator, the set U of 

M1 solutions u of the equation P u = O  is a closed subspace of L 2 (~). The mapping 

U ~ u--+a u/~ x ~ EL 2 (gl') 

is closed, and by  assumption it is defined in the whole of U. Hence it is continuous 

in virtue of the theorem on the closed graph, so tha t  

dx  flul2dx, 
I f  we apply this inequality to the function u = e  i(x'~>, where ~ = ~ + i r ]  is a solution 

of the equation P (~)= 0, we obtain 
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Hence when is bounded, 171< A, it follows that I 1< C', which proves that P is 

complete and satisfies the condition I of Theorem 3.3. 

Theorems 3.6 and 3.7 show that  all solutions o/ the equation P u =  0 are in/initely 

di//erentiable /unctions i/ and only i/ P is complete and o/ local type. Thus we have 

found the greatest class of operators, for which a generalization of Weyl's lemma 

holds true. We now turn to a more detailed study of the properties of the solutions 

of the equation P u = O. 

D1~FINITIO~ 3.2. An in/initely di//erentiable /unction u, de/ined in a domain 

g2, is said to be o/ class ~ in the direction y, i/ to any compact set K in ~ there is 

a constant C, so that 

(3.6.2) sup [ (y, n~"  u (x) [ < C n F (e n). 
xeK 

I t  is well known that  solutions of elliptic equations are analytic and consequently 

of class 1 in every direction. There is also a classical result by Holmgren, which 

states that  the solutions of the equation of heat are of class 2 in the time variable. 

We now state a result of this type for any equation of local type. 

THEOR1~M 3.8. Let P(D)  be complete and o/ local type. Then every solution o/ 

the equation P u = 0 is o/ class Q (y) in the direction y, y * O, i/ ~ (y) is the inverse o/ 

the exponent b in Lemma 3.9, that is 

[ log I(y, ~)I~ 
(3.6.3) ~ (y) = lim sup . . . . . . .  

PROOF. Let K be a compact set in g2, and take a function ~0EC~ (~), which 

equals 1 in a neighbourhood of K. The function v=~ou is then in C~ (~2) and equals 

u in K. Furthermore, the function ~ = P ( D ) v E C ~  (~2) and vanishes in a neigh- 

bourhood of K. Denoting by E the fundamental solution given by Theorem 3.4, we 

have v = E . ~ 0  in virtue of (3.4.1). Hence 

(3.6.4) u ( x ) =  f E(x')q~(x-x')dx', x ~ K ,  

(3.6.5) (y, D)~ u(x)  = f ((y, D')n E ( x ' ) ) q 2 ( x - x ' ) d x  ', x E K ,  

where D'  is the operator of differentiating with respect to x'. Now we can find two 

positive numbers e and A such that  ~ ( x ) = 0  in any point x with distance < e  or 
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> A  from a point  in K.  Then ~0 ( x -  x') = 0 if x E K  and either I x'] < r or I x ' l  > A. 

Hence we m a y  integrate  only over the  domain r  in (3.6.4) and (3.6.5). 

I n  this domain we can use Theorem 3.5, which gives 

The proof is complete. 

An interesting application of Theorem 3.8 concerns the growth of null solutions 

of P. Suppose that u is a null solution in ~,  so t h a t  i t  vanishes when x E ~  and 

<x, ~> < 0, where <x, ~> = 0 is a characterist ic plane intersecting ~ .  Le t  y be a di- 

rection which is not  contained in this plane, t h a t  is, such t h a t  <y, ~} =~ 0. Then, i/  

K is a compact set in ~ ,  we have 

(3.6.6) l u ( x ) i < A  e c<x,~> ~, x e K ,  <x,~>>O, 

where ~ is defined by ~ - l = ~ ( y ) - l .  For  in vi r tue  of Theorem 3.8 and Taylor ' s  for- 

mula  we have for any  n, if t = < x ,  ~:}, 

C n t n 
(3.6.7) lu(x)l< r(Qn), x e K .  

I f  in (3.6.7) we let n be the smallest integer larger than  (Ct) ~ and use Stirling's 

formula, we obtain  the desired est imate  (3.6.6). 

RV.~ARK. We pointed out  at  the  end of section 3.5, t ha t  all distr ibutions u, 

which solve the equat ion P u = 0 ,  are infinitely diffcrentiable functions, if P is com- 

plete and of local type.  Using our  Theorem 3.6 and Th6orbme X X I  in Schwartz  

[28], Chap. VI,  we can also prove tha t  a dis t r ibut ion u, such t h a t  P (D)nu is of 

bounded  order when n-->oo, is an  infinitely diffcrentiable function. 

3.7. Spectral theory of complete self-adjoint operators of local type 

We shall call the differential operator  P (D) (formally) self-adjoint, if P (D)co in-  

cides with its algebraic adjoint,  t h a t  is, if P (~) is real for real ~. 

LEMMA 3.13. I] P (D) is complete, formally sel]-adjoint and ol local type, it ]ollows 

that the operator Po is semi-bounded /or an arbitrary domain s unless P (D) is an 

ordinary dif]erential operator o I odd order. 

PRO OF. First  suppose t h a t  P (D) is no t  ordinary,  t h a t  is, t h a t  the dimension 

v of the space of ~ is greater  than  1. F rom condition V of Theorem 3.3 it follows 

tha t  I P ($) [--> ~ when the real vector  ~-+ ~ .  I f  there were points where P (~) is positive 
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and points where P (~) is negative outside any sphere, there would also be points where 

P(~) = 0, since the complement of a sphere is connected. Now this is a contradiction, 

so tha t  either P (~)--> § ~ or else P (~)-~> - ~ when $~->~. We may  restrict ourselves to 

the first case. Then P (~)~ c for some finite real c. I f  u E C~ (~), we have in virtue of 

Parseval 's  formula 

(P (D) u, u) = / P (~) 1 ~ (~)12 d ~ ~ c f [~/(~)[2 d ~ = c (u, u). 

Hence (Po u, u) => c (u, u) when u E Op.. The same result is obviously valid, if P (D) 

is an ordinary differential operator of even order. 

Thus, if P (D) is complete, formal ly  self-adjoint and of local type but  not an 

ordinary differential operator of odd order, the operator P0 is symmetric and semi- 

bounded. Hence there exist self-adjoint semi-bounded extensions /~ of P0 (see Nagy  

[23] or Krein [17], who gives a more detailed study). I f  /5 is any self-adjoint exten- 

sion, we have P0 c / 5  and consequently /5 = t5. c p* = P, so tha t  P0 c / 5  c p .  Thus 

/~ is defined by  a boundary problem in the sense of section 1.3. The case where/5  

is the Friedrichs extension merits some comment.  The degree of P (~§ t N) in t for 

fixed N ER, and indeterminate ~ is even, since P (~) is semi-bounded. Denote this 

degree by  2 m (N). Using the methods of section 2.8 we could show tha t  the boundary 

conditions corresponding to /5 are, at least formally, the vanishing of m ( N ) -  1 trans- 

versal derivatives at  a point on the boundary with normal N. 

For ordinary differential operators P of odd order, the situation is different. In  

fact, when ~ is a semi-axis, there are no self-adjoint extensions. These exceptional 

operators, which can be t reated explicitly, will therefore be excluded in the sequel. 

Thus for the rest  of the section we assume that P (D) is complete, /ormally sel/- 

ad]oint and o/ local type, but not an ordinary di//erential operator o/ odd order. Let  

/~ be a fixed self-adjoint extension of P0. The operator /5 gives rise to a resolution 

of the identi ty Ea such tha t  

(3.7.1) /5 = / 4 dE~. 

We shall s tudy certain functions of the operator /5, which will turn out to be 

integral operators. Let  B~r be the set of all Borel measurable functions ~ (4), 

- ~  < 4 <  ~ ,  such tha t  the product r162 (4)4 k is bounded for every integer ]c ~ 0. The 

supremum of ]~ (4) I is denoted by  [cr Now form the operator 

(3.7.2) :r f :c(4)dEx, :r162 
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Since 

/3~ ~ (/3) = f A ~ ( ~ ) d E ~ ,  

the  opera tor  / 3 ~  (/3) is bounded for every  integer  k; 

(3.7.3) IIb~(/3)ll=<lA~l, ~=0,  1, 2 . . . .  

Here  ) , ~  denotes the funct ion ~ ( ~ ) ,  and II lI is the operator  norm. Thus,  if 

g =  ~ (/3)/, i t  follows tha t  g E O ~  for any  integer  k, so t ha t  g is an infinitely dif- 

ferentiable funct ion in vir tue of Theorem 3.6. Since 

I I -~g l l z l~ l  Illll, 
the s e c o n d  par t  of the following lemma also follows as a corollary of Lemma 3.12. 

LE~MA 3.14. All /unctions in the range o/ ~(P)  are in/initely di//erentiable, i/ 

o: E ~r162 Moreover, /or any di//erential operator Q (D) we have, when K is a compact 

subset o/ g~, 

sup I Q (D) (e (/3) / (x))12 =< C (I ~ 12 + Ix ~ ~ 12) 111112. 
XE/~  

Here k is the same integer as in Lemma 3.12, and C is a constant, which may depend 

on K .  

Applying this result  to the operators Q ( D ) =  1 and Q (D)=  D~, we find that ,  for 

a certain integer  g, 

(3.7.4) supxoK ( [g (x) 12 + ,=l~[ag/~x'[2) <=C2([~ 

where g =  ~ (/3)/, and K is a compact  subset of ~ .  Hence the value g (x) a t  a fixed 

point  is a bounded linear funct ional  of / E L  2, so t ha t  we may  write 

(3.7.5) a (13) / (x) = (1, q0x. ~), 

where ~0~,~EL 2. In  vir tue of (3.7.4) we have,  if K is a compact  set in E~, 

(3.7.6) IIw,~l12__< c (I ~12+ [x~12), x E K .  

Fur thermore ,  if K is also convex, it  follows from (3.7.4) t ha t  

I(/, (~.~-w,~))l~:lg(x)-g(y)12<=lx-yl2~ug ~lag/ax"l  2 
1 

<= I x - y l  2C2 (I ~1~§ I ~:~12) II/112. 
Hence  we have  

(3.7.7) II Wx, ~ -  ~ ,  ~112_-< I x -  y 12 o 2 (I ~ 12 §  ~12). 
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I f  ] e ~}k, we can write (t% cr (J~)) ] (x) -- ~ (/~) ( /~  ]) (x), which with the nota- 

t ion (3.7.5) reduces to  

(1, ,px, ~k) = (~'~ 1, ,~, ~,), / e ~.~,,. 

Thus ~z, ~e ~ k  and P~ ~z, ~ = ~x, ~%, for any  integer }. Hence it follows f rom Theo- 

rem 3.6 tha t  ~x,~ is an infinitely differentJable funct ion q~:.~(x'), x ' E ~ ,  and if K '  

is a compact  set in ~ ,  L e m m a  3.12 shows t h a t  

]~x,~(x')]2+ ~ ]~q~x,~,(x')/ax'~12<=C2(]]~,,~,ll2+]]qJx,~]]~), x'eg'. 
i = l  

Est imat ing  the r ight -hand side of this inequal i ty  by  means of (3.7.6), we thus obtain  

(3.7.8) I~x,~(x')t2+ ~ I~q~x,:,(x')/~x'~]2<=c2(]o:12+];~2"~]2), xeg, x'eg'. 
i - 1  

Now set @ (x', x, :r = ~x, ~ (x'). I n  vir tue of the definition (3.7.5) of ~ .  ~ we have 

(3.7.9) o~ (P) ] (x) = f 0 (x', z, o 0 ] (x') dx ' .  

We shall prove tha t  @ (x', x, o~) is a continuous funct ion of (x', x) E ~ x ~ .  Le t  x 0 

and x0 be fixed points in ~ and take  compact  neighbourhoods K and K '  of x 0 and 

x0. F r o m  (3.7.8) it follows that ,  for given ~, there exists an open neighbourhood 

U' c K" such tha t  

]0  (x', x, or (y', x, o~)l<e, 

if x ~ K  and x', y ' ~  U'. Fur thermore ,  (3.7.7) shows t h a t  

f lO (x', x, ~ ) - O  (x', Xo, ~)l~dx' <~"mU ', 
U" 

when x is in a neighbourhood U of x 0. Thus, if x ~ U ,  there exists a point  y ' ~ U '  

so t h a t  l O (y', x, o~)- 0 (y', x o, :r < s. We also have 

IO(x ' ,  x, ~ r  x, : r  if x ' e U ' ,  and IO(y ' ,  Xo, a ) - O ( x 0 ,  x 0, :r 

Hence,  if (x', x) ~ U ' x  U, we have 

IO (x', x, ~ ) - 0  (x0, x0, or < 3 ~ ,  

which proves the  cont inui ty  of O (x', x, ~). 

Le t  B~ be the set of bounded Borel functions r162 (2)such  tha t  I~ ~ ~] < oo. Not ing  

tha t  we have only used the fact  tha t  12~*:r in construct ing the funct ion 

0 (x', x, a) and  proving its continuity,  we obtain  the following theorem. 
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T ~ E O R E M  3.9. There exists an integer k such that ~(P) is an integral operator 

with a continuous Carleman kernel, i/ ~E Bk. Thus the kernel O (x', x, r162 in (3.7.9) 

is a continuous /unction o/ (x', x ) E ~  • and the integrals 

(3.7.10) flO(x',x, )l dx, flO(x',x, )l dx ' 
t2 

exist and are continuous /unctions o/ x' and x, respectively. For compact subsets K o/ 

we have 

(3.7.11) IO(x ' , x ,  ~)[<C(l~]+[2k cr x , x ' e K , ~ e B k .  

PROOF.  Wi th  k = 2 g  we have  proved  t h a t  O (x', x, ~) is cont inuous and  t h a t  

(3.7.11) is valid. Since, wi th  our  previous  notat ions,  the second integral  in (3.7.10) 

i s  ]]~0x.~]l 2, i t  is finite and  continuous in v i r tue  of (3.7.6) and  (3.7.7). Now we have  

(3.7.12) O (x', x, ~ ) =  0 (x, x' ,  ~), 

which proves  the existence and  cont inui ty  of the  first  integral  (3.7.10). 

We now re turn  to the  original a s sumpt ion  t h a t  ~E Boo. Le t  J be the  ant i - l inear  

opera tor  /-->/ in L 2, and  set  ~ , = j - l ~ j .  This means  t h a t  / 3 ' / = P X / ,  if [ e ~ .  We 

obviously  have  

p o c p ' ~ p ' ,  

where P0 and  P '  are the  minimal  and  max ima l  differential  opera tors  defined b y  

P '  (D) = P ( - D). The relat ion /3 ~vx, a = ~0~, ~ ~, which was proved  above,  now gives 

(3.7.13) t% 0 (x', x, ~) = O (x', x, , ~ ) ,  

since O (x', x, ~ ) =  q~. a (x'). Here  /~' operates  on the  var iable  x ' .  Using (3.7.12) we 

also find t h a t  

(3.7.14) /3 0 (x', x, cr 0 (x', x, 2~), 

where /3 operates  on x. F r o m  the last  two formulas  we obta in  for a n y  n 

( P ( D ) + P ( - D ' ) ) n O ( x  ', x, : r  ', x, 2no~) 

in the  dis t r ibut ion sense. Here  P ( D )  operates  on x and  P ( - D ' )  opera tes  on x' .  

Now it follows f rom condit ion I I I  of Theorem 3.3 (see also the  nex t  section) t h a t  

the complete  opera tor  P ( D ) +  P ( - D ' )  is of local type  in ~•  I f  ~ '  is a domain  

with compac t  closure in ~ ,  the  funct ions | (x', x, 2~ 6) are square integrable  in 

~ ' •  Hence  Theorem 3.6 proves  t h a t  |  x, :r is infinitely different iable in 

~ '  • ~ '  and  consequent ly  in ~ • ~ .  
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~f /EC~ (~), we find by differentiating (3.7.9) tha t  

Q (D) :r (/3) / (x) = f (Q (D) | (x', x, :r / (x') dx',  

where Q (D) is a differential operator with constant coefficients. Hence the integral 

f l Q ( D ) |  x, ~)12dx ' 

is bounded on compact subsets of ~,  in virtue of Lemma 3.14. Since the same re- 

sult is valid for the operators D~ Q (D), the integral is in fact continuous. Summing 

up, we have now proved the following theorem. 

T H E O R E M  3.10. The kernel | x, ~) o/ :r is in/initely di//erentiable, i/ 

cr B~. Furthermore, the integrals 

(3.7.15) f ] Q ( n ) |  ", f I Q ( n ' ) O ( x ' , x , ~ ) 1 2 d x  

exist and are continuous /unctions o/ x E ~  and x 'E~ ' ,  respectively, i/ Q(D) is any 

di//erential operator with constant coe//icients. 

For self-adjoint elliptic operators with variable coefficients, Theorem 3.9 and 

essentially also Theorem 3.10 were proved by Browder [2, 3] and Gs [11, 12] in 

studying singular eigenfunction expansions. Our statements follow Gs closely. 

Gs [12] proved the existence of an eigenfunction expansion for any self-adjoint 

operator /3, such that  a function ~ (18), where cr (~)~= 0 a.e.,  is a Carleman integral 

operator. Hence his results apply to our case in virtue of Theorem 3.9. The precise 

statement may be omitted, since it does not differ in any respect from the results 

for elliptic operators in Browder [2] and G~rding [11, 12]. 

3.8. Examples of operators of local type 

Elliptic operators are of local type, for it is easily seen that  they satisfy con- 

dition I I I  of Theorem 3.3. Since most of our results are not new for elliptic operators, 

we wish to give other examples. For convenience we shall say that  a polynomial 

P (~) is of local type, if the operator P (D) is of local type, that  is, if P (~) satisfies 

conditions I -V  of Theorem 3.3. We first prove some necessary conditions for an 

operator to be of local type. 

Let  ~ be a fixed real vector and set 

(3.8.1) P (~ § t ~) = Z t~ Pk (4, ~). 
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Denote by  # the degree in t of P (~ + t ~]) for fixed ~] and indeterminate ~:. We shall 

prove tha t  P~ (~, 7) must  then be independent of ~, if P is of local type and # > 0, 

tha t  is, if ~ r  In  fact, if this were not true, we should have for some real 

and some sequence 0r of indices with I~[~=0 

Ol~' P~(~'  ~ ) * 0 .  

Then we should get when t-->oo 

P(~) (~ + t 7! __> --,P(~) (~, V) 
P(~+t~l)  P , (~ ,  7) :~0, 

which would contradict condition I I I  of Theorem 3.3. Hence our assertion follows. 

Let  p (~) be the principal par t  of P (~). Denote its order by m, and form with 

fixed ~ the expansion 
m 

(3.8.2) p (~ + t ~) = )7 t ~ Pk (~, 7). 
0 

We have evidently pm (~=, ~ )=P(7)"  The polynomial pk(~, ~) either vanishes for all 

~, or else it is a homogeneous polynomial of degree m - k  in ~. 

Now take a real vector ~ r  such tha t  p ( 7 ) = 0 .  Then the degree # of 

P ( ~ + t 7 )  in t is less than  m, and the degree of p ( ~ + t T )  in t cannot be greater 

than ft. Since we have proved tha t  the polynomial P ,  (~, ~) must  be independent 

of ~, and we have P , (~ ,  ~ ) = p , ( ~ ,  7 ) +  terms of degree less than  m - #  in ~, it 

follows tha t  p ,  (~, 7) = 0 for all $, so tha t  the degree of p (~ + t ~) in t is less than  re. 

Thus, i] P is o] local type, the polynomial p (~ + t~) is at most o] degree m - 2  in t, 

i t p (~) = O. 

I f  P (~) is real, we can improve this result. For we may  suppose tha t  P (~) is 

not a polynomial in one variable only. Then the polynomial P ($) is semi-bounded 

(Lemma 3.13), and consequently its degree m and the degrees of P ( ~ + t T ) a n d  

p ( ~ + t ~ )  in t must  be even. Hence / t_-<m-2,  so tha t  the degree o/ p ( ~ + t ~ )  in t 

is at most m - 4 ,  i/ p ( ~ ) = 0 .  

From these results it follows tha t  an operator of principal type can only be of 

local type,  if it is elliptic. We also conclude tha t  a homogeneous complete operator 

of local type must  be elliptic. Finally, the results suggest the examples of self- 

adjoint operators of local type, which we shall now give. 

T H E O R E ~  3.11. Let Q(~) be any real polynomial o/ order m, and let k be a 

/ixed integer >= 2. Then the polynomial 
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(3.8.3) p (~) = Q (~)ek + R (~) 

is o/ local type, i/ R(~) is a positive de/inite homogeneous polynomial o] the order 

2 k m - 2 ( k - 1 ) .  

In  fact,  the  same result  remains t rue,  if R (~) is an inhomogeneous polynomial  

of this degree and, denot ing the principal par ts  of Q and R by  q and r, we have r (~) > 0 

for every  ~ * 0 such tha t  q (~)= 0. Note  t ha t  the  principal pa r t  of the  polynomial  

P (~ )  is q(~)2k, and t h a t  q(~) is an a rb i t ra ry  real homogeneous polynomial.  

P ~ o o F .  We shall prove t ha t  condit ion I I I  of Theorem 3.3 is fulfilled. Writ ing 

Q (~)2k=S(~) ,  we have P (~ ) (~ )=S  (~) (~) + R  (~) (~), and since 

[ R(~) (~)l < ] R(~) (~)[ ~ O, when ~-~ c~, [ot [ .  O, 
P (~) R (~) 

the  only diff iculty is to es t imate  S (~). Now we can write 

rain (2 k, l aD  

(3.8.4) S(~) (~) = ~ Q (~)2k J 2'~ (~), 
i = 1  

where F~(~) is a polynomial  of degree ? 'm-10t  ] at  most. In  vir tue of the  inequal i ty  

be tween geometr ic  and ar i thmet ic  means we have 

(3.8.5) I Q (~)12k j R (~)j/2k <_ Q (~)2k + R (~) = P (~). 

Hence  we obta in  the following est imates for the terms in (3.8.4) 

where /~ = 2 ( k i n -  ( k -  1)) is the degree of R (~). The sum of the  exponents  of R (~) is 

i ( ~ - l ) - ~ l o t l  __< _ Io t l<0  ' 
k #  k #  

when ] < lot [ and ]ot ] * 0. Hence 5 ~:) (~) /P  (~) --~ 0, when ~-+ r162 if ]ot ] ~= 0. Thus  we 

obtain 

P(~) (~) -~ 0, when ~--> ~ if lot ] * 0. 
P (~) 

Hence the condit ion I I I  of Theorem 3.3 is fulfilled. 

Final ly  we remark  tha t  the product  of two complete operators  of local type  is 

complete and of local type,  and tha t  the sum of two self-adjoint operators of local 

type,  which are bounded from below, is self-adjoint and of local type.  The easy 

verification m a y  be left  to the  reader.  I t  is also an immedia te  consequence of condi t ion 
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I I  of Theorem 3.3, tha t  if P is of local type  and Q(~)/P(~)---> 0 when ~-->~,  then 

P + t Q is of local type for any  complex number  t. Combining these simple remarks 

with Theorem 3.11, we could construct a very  wide class of differential operators of 

local type.  

3.9. An approximation theorem 

For operators of local type we shall now answer a question raised on page 169. 

THEOREM 3.12. Let P(D) be o/ local type and let ~ be an arbitrary domain. 

Then the operator P is the closure o/ its restriction to ~9~ N C~176 

We note tha t  the restriction of P,  mentioned in the theorem, is defined for those 

infinitely differentiable functions u such tha t  u and P (D)u  are square integrable. 

The value of P u is then of course calculated in the classical way. 

PROOF. Using an idea of Deny-Lions [4], p. 312, we shall for given e > 0  

and u E OP construct a function v E C ~ such tha t  

(3.9.1) H v - u [ [ < ~ ,  [ [P(D)v -Pu[[<e .  

Since these inequalities obviously imply tha t  v E L 2 and tha t  P (D) v E L 2, the theorem will 

then follow. Choose a locally finite covering ~k, k =  1, 2 . . . . .  of ~ such tha t  ~k c ~2 

for every /c, and then take functions ~ k e C ~  (f2k) so tha t  ~ (x)= 1 (cf. Schwartz 

[28], Thgor~me I I ,  Chap. I). The function uk = ?k u is in ~Op in virtue of Defini- 

tion 3.1, and we have 

u = ~ u k ,  P u = ~ P u k  

(almost everywhere); the series converge since only a finite number  of terms do not 

vanish in a compact subset of f2. (However, the second series is not L2-convergent 

if u ~ O ~ . )  Now Lemma 2.11 shows tha t  ukE~)~,  so tha t  we can find a function 

vk e C~ (f2) such tha t  

(3.9.2) I luk-vk] l  < 2-k e, I Ipuk- -pvk l l<2-ke .  

I t  follows from the proof of Lemma 2.11 tha t  we may  assume tha t  v~ has also its 

support  in ~k- Since the covering ~k is locally finite, the series ~ vk(x) converges 

for every x, and the sum v (x) is in C ~ (~). Using (3.9.2) we obtain 

Ilv-ull--< Y IIv~-u~ll <~, IIP(n)v-Pull~llPv~-pu~[l<~, 
which proves (3.9.1). 

1 6 -  553810. Acta Mathematlea.  94. Impr im6 le 28 septembre 1955. 
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Ct~ArTE~ I V  

Differential Operators with Variable Coefficients 

4.0. Introduction 

In  the two preceding chapters we have exclusively studied differential operators 

with constant coefficients. However, we shall see that  the methods of the proof of 

Theorem 2.2, which is the central theorem in Chapter I I ,  also apply when the coef- 

ficients are variable, if suitable restrictions are imposed. In  order to exclude cases 

where the lower order terms and the variation of the coefficients may influence the 

strength of the operator, we shall only study operators tO of principal type. This 

means that  the characteristics have no real singular points. (When the coefficients are 

constant, this is equivalent to Definition 2.1 according to Theorem 2.3.) Furthermore, 

we shall assume that  the coefficients of the principal part are real, which means that  

there is some self-adjoint operator with the same principal part as tO, so that  tO is 

approximately self-adjoint. (It is sufficient to require that  tO is approximately normal 

in the sense that  the order of tO tO - tO tO is at least two units lower than that of tO ]). 

We do not study this case here.) The minimal differential operator defined by tO 

in a sufficiently small domain is then stronger than all operators of lower order, 

and has a continuous inverse. The same result is true for the algebraic adjoint ~ .  

Hence, in sufficiently small domains, the equation P u = /  has a square integrable 

solution for any square integrable function [. In  the sense of section 1.3 there also 

exist correctly posed abstract boundary problems for the operator tO. I t  seems that  

this is the first existence proof for differential operators with non-analytic coefficients, 

which are not of a special type. 

4.1. Preliminaries 

Let to be a differential operator of order m in a manifold ~.1 In  a local co- 

ordinate system we may write 

(4.1.1) t o =  ~ a ~(x) D~. 
i ztl<rn 

Now, if ~v is an infinitely differentiable function in ~,  we have for real t 

toe~t~=tm ~ aag~§ 1) 

i It is sufficient here to suppose that ~ is a domain in R ~. 
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when t-~ ~ ,  where ~vz = ~ ~v/~ x ~ and ~v~ = ~ : , . . .  ~ .  

(4.~.2) p (~, $) = Y~ a ~ (x) ~ 
l~l=m 

Thus the polynomial  

is a scalar, if ~ is a covariant  vector  field, p (x, ~) is called the  characterist ic poly- 

nomial  of p .  The coefficients a ~ (I:r = m )  form a symmetr ic  cont ravar iant  tensor. 

The differential operator  p is called elliptic in s if p (x, ~ )*  0 for every x ~ 

and every real ~ = 0 ,  and it is said to be of principal type in ~ ,  if all the part ial  

derivatives ~ p (x, ~)/~ St do not  vanish s imultaneously for any  x fi ~ and real $ .  0. 

We shall now deduce some formulas, which replace the more implicit  a rguments  

of section 2.4 in the case considered here. Le t  p (x, ~(1) . . . . .  ~(m)) be the  symmetr ic  

multilinear form in the vectors ~(1) . . . . .  ~(m), which is defined by  p (x, ~), 

�9 � 9  ~ ~ O : r n .  

I f  k 1 . . . . .  kp are positive integers, k 1 + ... + kp = m, we shall write p (x, ~ (1)k', . . . .  ~(P)%) 

for the multil inear form where /c~ arguments  are equal to ~(~). Sometimes we also 

omit  the variable x. Now set for indeterminate  ~ and r] 

r n - 1  

(4.~.3) ~ R~(r ~ ) ~ = ~  ~ p(~,-~m 1 ~, ~)p(r 1 ~, ~, ~), 
t, k = l  ] ~ 0  

(4.L4) 
m - 1  

~, k = l  j - - 1  

~nd T ~ ~ = R  ~k-S tk .  Eviden t ly  T i k=T  ~k(x, ~,~) is a symmetr ic  tensor which is a 

homogeneous polynomial  of degree m -  1 in bo th  ~ and ~. Since 

r p (~m) = p (~), p ( ~  1, ~) = 1 ~ ~ ~ p  
mt=l 8~ 

it is easy to verify the following fundamenta l  p roper ty  of the  tensor  T ~k 

~p (~) ~p(~) 
(4.1.5) t=l~ (~t-~t)T~k(~'~)=P(~) ~ ~ P(~)" 

The arguments  of section 2.6 were based on the fact  that ,  in vir tue of L e m m a  

2.2, there exist polynomials  T ik (~,~) satisfying the ident i ty  (4.1.5), even for a non- 

homogeneous polynomial  p. The simple explicit formulas given above for T ~k in the 

case of a homogeneous polynomial  p, h-uve the now essential advantage  tha t  T ~ are 
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homogeneous of degree m - 1  in $ and in ~. For second order equations the "energy" 

tensor T tk was given by HSrmander [15]. 

We shall also use the tensor QUk (~, ~) defined by the formula 

(4.1.6) 2 f Q U k ( ~ , ~ ) # t S ~  
f,j, kffil 

= m ~ i {P (r ~], ~) p (~]-1, ~m-1-1, ~, ~) _ p (r ~m-l-j ~) p (~m 1 1, ~]-1, ~, ~)} + 
t=~ 
m 1 

-[-m ~ (j-- l) {p(r ~m-J) p(~m-l-j ,  ~f-2, ~, ~, ~ )_p(~m f, ~j) p(r era-l-j, a, ~, ~)}. 
J=2 

This tensor is symmetric in the last two indices, and we have 

1 ( ~ p  (~) 
(4.1.7) ~ ($~ -~ )Q~J~(~ ,~ )=S Jk ($ ,  ~ ) - ~  p ( $ ) ~ $ . ~ a  

iffil 

~ p (~)]. 
- -  + p (~) ~ /  

4.2. Estimates of  the minimal o p e r a t o r  

We shall now prove that  an analogue of Theorems 2.1 and 2.2 is valid for cer- 

tain differential operators p with variable coefficients. Since our results are not valid 

in the large, we may assume from the outset tha t  our operator p is defined in a 

neighbourhood of a sphere [x]_-<A in R". 

THV. ORE~ 4.1. Suppose that p(x ,  ~) is real /or real ~ and o/ principal type, 

that is, that all the partial derivatives ~ p (x, ~)/~ ~t do not vanish simultaneously /or 

any real ~:~ O. Let the coe//icients o/ p (x, ~) be continuously di//erentiable and the other 

coe//icients o/ p be continuous. Then there exists an open neighbourhood ~ o/the origin, 

such that 

(4.2.1) ,~.[[D~,ul['=<c[[pull ~, u~C~' (~). 

PROOF. I t  follows from (4.1.5) and the assumption that  p(x,  ~) is real that  

~. 0 tk 
- ~ ( T  (x, D i . D ) u ~ ) = 2 I m ( p ( x , D ) u p ( k ) ( x , D ) u ) + F e ( x , D , D ) u g ,  

I=1 

where p(k) (x, ~) = 0 p (x, ~)/0 ~e and 

" 0 
F ~ (x, r ~)= - ~ I ~ ( T ~  (x, ~, ~l)- 

Thus F e (x, D , / ) )  u~  is a quadratic form in the derivatives of u of order m -  1 and 

has continuous coeffieients. Multiplying by x e and integrating over an open neigh- 

bourhood ~ of the origin, we obtain, if u EC~ (~), 
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(4.2.2) f T kk (x, D, D) u ~ d x  

= f 2x k Im (p (x, D)u p(k)(x, D)u)  d x +  : x ~ F ~ (x, D, D) u'~ dx. 

Denote by ~ an upper bound of [x] in ~.  We may suppose that  ~_-<A, and shall 

prove tha t  (4.2.1) is valid, if 5 is sufficiently small. If  we use the notations 

and note that  p (x, D)u  only differs from p u by a sum of derivatives of u of orders 

< m, the inequality (4.2.2) and Sehwarz' inequality give 

(4.2.4) f T ~ k ( x ,  D, ~ ) u ~ d ~ < = c a ( l l P u l l  Ilullm-i + II~llm-:), 

where C is a constant. (We shah denote by  C different constants, different times.) 

Now we have T ~ k = R k k - S  kk, so that  (4.2.4) gives, after summation, 

(4.2.5) 2R~(O, (0, D, ~ ) - R  ~ (~, D, D))u~dx + 
1 

f. -t- ~ S k k ( x , D ,  Z ~ ) ~  d x +  C~ (ll P ~ll [[u[lm-l+llullm-12) �9 
1 

We shall prove (4.2.1) by estimating the terms in this inequality. 

The definition (4.1.3) of R ~k shows that  

R ~ (0, ~, ~) = ~ (~ p (0, ~)/~ ~)~. 
k = l  k = l  

This is a homogeneous positive definite polynomial, since ] : ) is  of principal type. 

Hence we have 

R ~ (0, ~, ~)_-> c ( ~ +  ... + ~)m-~ 
k = l  

for some positive constant c, and using Parsevars  formul~ (cf. formula (2.5.1)), we 

thus obtain 

(4.2.6) c[u[m_,~<= f ~R~ (O, D, ~)ur~dx. 

I t  is easy to find an estimate of the first term on the right-hand side of (4.2.5). 

In fact, since the coefficients of R k k (0, D , / J )  - R g k (x, D , / ) )  are continuously dif- 

ferentiable and vanish for x = 0 ,  they are 0 (Ix[). Hence 

(4.2.7) (R ek (0, D, D ) - R  kk (x, D, .D)) uf~ d x <  C ~ [Ulm_~ ~. 
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In  order to estimate the integral f s~(x,D, ~)uadx we must  first integrate 

it  by  parts. Formula (4.1.7) with ? '=k  shows tha t  

(4.2.8) S kk (x, D, /~ )u5  

1 =1" ~x ~0 (QJkk(x'D"D)ua)" = g e  (p (x, D) u p(k k) (x, D) u) + G ~ (x, D , / ) )  u ~  + j ~  

}Iere 

1 " a -jkk 
G ~ (x, r 7 )=  - ~ j~  ~ ~2 (x, r ~), 

so tha t  G k (x, D, / ) ) u ~  is a sum of products of derivatives of the orders m - 2  and 

m -  1 of u. Hence Schwarz' inequality shows tha t  

(4.2.9) f G ~ (~, D, ~) ~a dx<=Vl~lm_, 1~1~-2. 

Furthermore,  the integral of the last term in (4.2.8) is zero, and using again the 

fact tha t  p(x, D)u differs from p u on ly  by  derivatives of order < m  of u, we thus 

obtain 

(4.2.1o) fs~(x,n,~)~adxZC(llP~ll+ll~ll~_,)lul~_~.+Cl~lm_~l~lm_~. 

I f  the two sides of the inequality (4.2.5) are estimated by  means of the in- 

equalities (4.2.6), (4.2.7) and (4.2.10), it follows tha t  

(4.2.11) lul~-,"<=c(lipull+liull,o , ) (al l~l l~ , + I ~ l ~  ~), ~ c ~ ( a ) .  

To prove (4.2.1) we have now only to invoke the inequality 

(4.2.12) I~1~ ,=<cal~l , ,  ~ e c a ( a ) ,  ~=1 . . . . .  m, 

which is an immediate consequence of Lemma 2.7 but  also well known previously 

(see for example Gs [9], p. 57). I t  follows from (4.2.12) tha t  [U[m 2 ~ CSlulm__l 
~C6]]ul[m_l,  and, since c$~A, tha t  I[ul[~ ~C[u],n-1. Hence (4.2.11)gives with 

a constant K 

so tha t  
Ilullm-?<:K(ll P~II + II ~llm=~)~ II ullm-~, 

(4.2.13) I[ u Jim-1 (1 - K 8) ~ K 6 II P u [l. 

Thus the inequality (4.2.1) follows, if K 6 <  1. 

In  particular, i t  follows from Theorem 4.1 tha t  the operator P0 in L 2 (~-~) has 

a continuous inverse, if ~ is a suitable neighbourhood of the origin. Now let the 

coefficients of p be sufficiently differentiable, so tha t  p also satisfies the hypotheses 
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of Theorem 4.1. Then  the  operator  F~  ~ is also cont inuous.  Hence the equation P u = /  

has a solution uEL2(~)) /or any /CL2(~)  in  vi r tue  of Lemm~ 1.7. Fur thermore ,  

using Theorem 2.15 and  Theorem 4.1 i t  is easy to see t ha t  Po  ~ and  P o t  are com- 

pletely continuous.  Thus  we can apply  all the results of section 1.3. I n  part icular ,  

i t  follows t h a t  there exist completely correctly posed boundary problems /or the di//e- 

rential operator D. 
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