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1. Main results

Let E be an open set in RN and for T >0 let ET denote the cylindrical domain E×(0, T ].
Consider quasi-linear, parabolic differential equations of the form

ut−div A(x, t, u,Du) =B(x, t, u,Du) weakly in ET , (1.1)

where the functions A:ET×RN+1!RN and B:ET×RN+1!R are only assumed to be
measurable and subject to the structure conditions

A(x, t, u,Du)·Du >C0|Du|p−Cp,

|A(x, t, u,Du)|6C1|Du|p−1+Cp−1,

|B(x, t, u,Du)|6C|Du|p−1+Cp−1,

a.e. in ET , (1.2)

where p>2, C0 and C1 are given positive constants, and C is a given non-negative
constant. A function

u∈Cloc(0, T ;L2
loc(E))∩Lp

loc(0, T ;W 1,p
loc (E)) (1.3)
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is a local, weak solution to (1.1) if for every compact set K⊂E and every sub-interval
[t1, t2]⊂(0, T ] one has

∫
K

uϕ dx

∣∣∣∣t2
t1

+
∫ t2

t1

∫
K

[−uϕt+A(x, t, u,Du)·Dϕ] dx dt =
∫ t2

t1

∫
K

B(x, t, u,Du)ϕ dx dt

(1.4)
for all bounded test functions

ϕ∈W 1,2
loc (0, T ;L2(K))∩Lp

loc(0, T ;W 1,p
0 (K)). (1.5)

The parameters {N, p,C0, C1, C} are the data, and we say that a generic constant γ=
γ(N, p,C0, C1, C) depends upon the data, if it can be quantitatively determined a priori
only in terms of the indicated parameters.

For %>0 let K% be the cube centered at the origin on RN with edge 2%, and for
y∈RN let K%(y) denote the homothetic cube centered at y. For θ>0 set also

Q−
% (θ) =K%×(−θ%p, 0], Q+

% (θ) =K%×(0, θ%p],

and for (y, s)∈RN×R,

(y, s)+Q−
% (θ) =K%(y)×(s−θ%p, s],

(y, s)+Q+
% (θ) =K%(y)×(s, s+θ%p].

Let u be a continuous, non-negative weak solution to (1.1)–(1.5), fix (x0, t0)∈ET such
that u(x0, t0)>0 and construct the cylinders

(x0, t0)+Q±
4%(θ), where θ =

(
c

u(x0, t0)

)p−2

(1.6)

and c is a given positive constant. These cylinders are “intrinsic” to the solution, since
their length is determined by the value of u at (x0, t0).

Theorem 1.1. (Intrinsic Harnack Inequality) Let u be a continuous, non-negative,
weak solution to (1.1)–(1.5). There exist positive constants c and γ depending only upon
the data, such that for all intrinsic cylinders (x0, t0)+Q±

4%(θ) as in (1.6), contained in
ET , either u(x0, t0)6γC%, or

u(x0, t0) 6 γ inf
K%(x0)

u(x, t0+θ%p), θ =
(

c

u(x0, t0)

)p−2

. (1.7)
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Remark 1.1. The constants γ and c deteriorate as p!∞, in the sense that

γ(p), c(p)!∞ as p!∞.

However, they are “stable” as p!2, in the sense that there exist positive constants γ(2)
and c(2), that can be determined a priori only in terms of the data, such that

lim
p!2

γ(p) = γ(2) and lim
p!2

c(p) = c(2).

Thus, by formally letting p!2 in (1.7), one recovers the classical Moser’s Harnack in-
equality of [12].

The theorem has been stated for continuous solutions, to give meaning to u(x0, t0).
However, it continues to hold for non-negative weak solutions of (1.1)–(1.2) for almost all
(x0, t0)∈ET and for corresponding cylinders (x0, t0)+Q%(θ)⊂ET . The intrinsic Harnack
inequality, in turn, can be used to prove that local solutions of (1.1) are locally Hölder
continuous within their domain of definition. This is the content of the next theorem.

Theorem 1.2. (Harnack inequality and Hölder continuity) Any locally bounded weak
solution to (1.1)–(1.2), with no sign restriction, is locally Hölder continuous in ET . A
locally quantitative Hölder estimate is established in §10.

The Hölder continuity of weak solutions of (1.1)–(1.2) was first established in [5].
The Harnack inequality (1.7) permits an independent proof. Summarizing, we have the
following result.

Corollary 1.1. Let u be a local , weak solution to (1.1)–(1.5). Then u is locally
Hölder continuous in ET . Moreover , if u is non-negative, it satisfies the intrinsic Har-
nack inequality in the form (1.7).

The proof of these theorems is flexible enough to apply, by minor changes, to local
weak solutions of equations of the porous medium type. These results are collected and
stated in §11.

The singular case 1<p<2 is still open and it will be the object of future investiga-
tions. Likewise, singular cases of quasi-linear versions of equations of the porous medium
type remain to be investigated.

2. Novelty and significance

Equation (1.1) with the structure conditions (1.2) is a quasi-linear version of the degen-
erate, homogeneous equation

ut−
N∑

i,j=1

(|Du|p−2aij(x, t)uxi)xj =0 weakly in ET , (2.1)
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where the coefficients aij are measurable and locally bounded in ET and the matrix
(aij) is almost everywhere positive definite in ET . If (aij)=I, then (2.1) reduces to the
degenerate, prototype parabolic p-Laplace equation

ut−div |Du|p−2Du =0 weakly in ET . (2.2)

Both (2.1) and (2.2) satisfy the structure conditions (1.2) with C=0. Accordingly, non-
negative, weak solutions of these equations satisfy the intrinsic Harnack inequality (1.7)
with C=0.

2.1. The linear case p=2

The Harnack inequality for local, non-negative solutions of the heat equation ((1.7), with
p=2 and C=0), was established independently by Hadamard [8] and Pini [15], by local
representation of solutions in terms of heat potentials. In [12], Moser established the
same Harnack inequality for weak solutions of (2.1) for p=2, by energy based, measure-
theoretical arguments, and relying on a fine analysis of properties of parabolic BMO
spaces. Moser’s proof is non-linear in nature, and it can be extended to the quasi-linear
versions (1.1)–(1.2) with p=2 ([17], [1]).

At almost the same time as Moser’s paper [12], Ladyzhenskaya, Solonnikov and
Uraltseva [9], established, by means of De Giorgi-type measure-theoretical arguments,
that weak solutions of such quasi-linear equations (still for p=2), are locally bounded and
locally Hölder continuous. It turns out that the Harnack inequality of Moser can be used
to establish the Hölder continuity of solutions. On the other hand, it was observed in [4]
that the Hölder continuity implies the Harnack inequality for non-negative solutions.

Thus a summary of the quasi-linear theory for the “linear” case p=2, is that Hölder
continuity and Harnack inequality for non-negative solutions, present the same order
of difficulties, and establishing either of them, requires independent measure-theoretical
arguments.

2.2. The degenerate case p>2

Consider linear elliptic equations with bounded and measurable coefficients, of the form

N∑
i,j=1

(aij(x)uxi)xj =0 weakly in E (2.3)

and their quasi-linear versions

div A(x, u, Du) =B(x, u, Du) weakly in E, (2.4)
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where A and B satisfy the structure conditions (1.2). A seminal result of Moser [11] is
that non-negative, local solutions of (2.3) satisfy the Harnack inequality. It was observed
by Serrin [16] that the same Harnack estimate continues to hold for non-negative solutions
of (2.4), for all p>1. On the other hand, De Giorgi [2] proved that solutions of (2.3) are
locally Hölder continuous, and Ladyzhenskaya and Uraltseva [10] observed that indeed
the same Hölder regularity continues to hold for solutions of (2.4), for all p>1. In either
case, the extension from the “linear” case p=2 to the “non-linear” case p 6=2 is possible
by tracking down the topology of Lp versus the topology of L2.

The parabolic theory is markedly different. Indeed, neither Moser’s nor De Giorgi’s
ideas in the version of [9], nor Nash’s approach [14] seem to apply when p 6=2, even for
the prototype case (2.2). Some progress was made in the mid 1980s, by the idea of time-
intrinsic geometry, by which the time is scaled, roughly speaking by up−2. This permits
one to establish that weak solutions of (1.1)–(1.2), for all p>1, are Hölder continuous
in ET [5, Chapters III and IV]. It was also observed that while the Harnack inequality
in Moser’s form is in general false for p>2, it might hold in this time-intrinsic geometry.
Indeed, it was shown that (1.7), with C=0, holds for non-negative solutions of (2.2):
the original results are in [3]; see [5, Chapter VI], for a complete account of the theory.
The proof is based on the maximum principle and comparison functions constructed as
variants of the Barenblatt similarity solutions

Γp(x, t) =
1

tN/λ

(
1−γp

(
|x|
t1/λ

)p/(p−1))(p−1)/(p−2)

+

, t > 0, (2.5)

where

γp =
(

1
λ

)1/(p−1)
p−2

p
, λ =N(p−2)+p. (2.6)

As p!2, this tends pointwise to the fundamental solution of the heat equation. In this
sense Γp is some sort of p-heat potential, and the approach can be regarded as paralleling
that of Hadamard and Pini for the heat equation.

The issue of the Harnack inequality for non-negative solutions of equations of the
type (1.1), with the full quasi-linear structure (1.2), while raised in [1], [17], [9] and [5],
has since remained open.

The novelty of Theorem 1.1 is in producing a proof of the Harnack inequality (1.7)
based only on measure-theoretical arguments. This bypasses any notion of maximum
principle and potentials, and permits an extension to non-negative solutions of quasi-
linear equations of the type of (1.1)–(1.2). Its significance is in paralleling Moser’s
measure-theoretical approach, in dispensing with Hadamard and Pini’s potential rep-
resentations.
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It is worth noticing that the approach in this contribution substantially differs from
the classical ideas of Moser [12], in that no properties of BMO spaces are used, nor cov-
ering arguments, nor cross-over estimates. Our arguments are only measure-theoretical
in nature, and as such hold the promise of a wider applicability.

It is worth noticing that our method also differs from the one developed by Moser
in [13], which makes no use of BMO spaces as well.

3. Main technical novelty: expansion of positivity

Let u be a non-negative, local solution of the heat equation in ET . Let (y, s)+Q−
% (1)

with p=2 be a subset of ET , and assume that

|{x∈K%(y) :u(x, s) <M}|<α|K%(y)|

for some M>0 and some α∈(0, 1). Then there exists η=η(α)∈(0, 1) such that

u > ηM in (y, s)+Q+
2%(1).

Thus, information on the measure of the “positivity set” of u at the time level s, over
the cube K%(y), translates into an expansion of the positivity set both in space (from
K%(y) to K2%(y)), and in time (from s to s+4%2). This fact continues to hold for quasi-
linear versions of the heat equation and was established in [4]. A similar fact for p>2
is in general false, as one can verify from the Barenblatt solution (2.5)–(2.6). The main
technical novelty of this investigation is that a similar fact continues to hold for the
degenerate equations (1.1)–(1.2), in a time-intrinsic geometry.

Lemma 3.1. Let u be a non-negative, local , weak solution of (1.1)–(1.2). There exist
positive constants γ and b, and η∈(0, 1), depending only upon the data and independent
of (y, s), % and M , such that if

u(x, s) >M for all x∈K%(y), (3.1)

then either M<γC%, or

u(x, t) > ηM for a.e. x∈K2%(y) (3.2)

for all

s+
b

(ηM)p−2
(2%)p 6 t 6 s+

b

(ηM)p−2
(4%)p. (3.3)

Remark 3.1. The constants b and η are “stable” as p!2, that is, there exist positive
constants b(2) and η(2), such that limp!2 b(p)=b(2) and limp!2 η(p)=η(2).
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4. Proof of Lemma 3.1—Preliminaries

4.1. Energy estimates

Let u be a local, weak solution to (1.1)–(1.2) in ET ; let k be any real number and consider
the truncation of u given by

(u−k)+≡max{(u−k), 0}, (u−k)−≡max{−(u−k), 0}.

There exists a constant γ=γ(data) such that, for every cylinder (y, s)+Q−
% (θ)⊂ET , every

k∈R and every piecewise smooth, non-negative function ζ vanishing on ∂K%(y),

ess sup
s−θ%p<t<s

∫
K%(y)

(u−k)2±ζp(x, t) dx−
∫

K%(y)

(u−k)2±ζp(x, s−θ%p) dx

+C0

∫∫
(y,s)+Q−% (θ)

|D(u−k)±ζ|p dx dτ

6 γ

∫∫
(y,s)+Q−% (θ)

[(u−k)p
±|Dζ|p+(u−k)2±|ζt|] dx dτ

+γCp

∫∫
(y,s)+Q−% (θ)

[χ{(u−k)±>0}+(u−k)p
±]ζp dx dτ,

(4.1)

where C0 and C are the constants appearing in the structure conditions (1.2). Similar
energy estimates hold for cylinders (y, s)+Q+

% (θ)⊂ET .

4.2. A De Giorgi-type lemma

Henceforth we will assume that u is non-negative, and for a fixed cylinder

(y, s)+Q−
2%(θ)⊂ET ,

denote by µ± and ω non-negative numbers such that

µ+ > ess sup
(y,s)+Q−2%(θ)

u, µ− 6 ess inf
(y,s)+Q−2%(θ)

u and ω >µ+−µ−.

Denote by ξ and a fixed numbers in (0, 1).

Lemma 4.1. There exists a number ν depending upon the data and θ, ξ, ω and a,
such that if

|{u >µ+−ξω}∩[(y, s)+Q−
2%(θ)]|6 ν|Q−

2%(θ)|, (4.2)+

then either ξω<C%, or

u 6µ+−aξω a.e. in (y, s)+Q−
% (θ). (4.3)+
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Likewise, if
|{u 6µ−+ξω}∩[(y, s)+Q−

2%(θ)]|6 ν|Q−
2%(θ)|, (4.2)−

then either ξω<C%, or

u >µ−+aξω a.e. in (y, s)+Q−
% (θ). (4.3)−

Proof. The statement is similar to Lemma 4.1 of [5, Chapter III]. We give a brief
outline of the proof of (4.2)−–(4.3)−, to trace the precise dependence of ν on θ, a, ξ

and ω. Assume that (y, s)=(0, 0) and for n=0, 1, 2, ..., set

%n = %+
%

2n
, Kn =K%n

and Qn =Kn×(−θ%p
n, 0].

Apply (4.1) over Kn and Qn to (u−kn)−, for the levels

kn =µ−+ξnω, where ξn = aξ+
1−a

2n
ξ.

The cutoff function ζ is taken of the form ζ(x, t)=ζ1(x)ζ2(t), where

ζ1 =
{

1, in Kn+1,
0, in RN \Kn,

|Dζ1|6
1

%n−%n+1
=

2n+1

%
,

ζ2 =
{

0, for t <−θ%p
n,

1, for t >−θ%p
n+1,

0 6 ζ2,t 6
1

θ(%p
n−%p

n+1)
6

2p(n+1)

θ%p
.

The energy inequality (4.1), with these stipulations, yields that

ess sup
−θ%p

n<t<0

∫
Kn

(u−kn)2−ζp(x, t) dx+
∫∫

Qn

|D(u−kn)−ζ|p dx dτ

6 γ
2np

%p

(∫∫
Qn

(u−kn)p
− dx dτ +

1
θ

∫∫
Qn

(u−kn)2− dx dτ

)
+γC

∫∫
Qn

(χ{u<kn}+(u−kn)p
−) dx dτ

6 γ
2np(ξω)p

%p

(
1+

1
θ(ξω)p−2

+
(

C%

ξω

)p

+(C%)p

)
|{u < kn}∩Qn|

6 γ
2np(ξω)p

%p

(
1+

1
θ(ξω)p−2

)
|{u < kn}∩Qn|,

provided ξω>C% and %<C−1, which we assume. Next, the first term on the left-hand
side, is estimated below by∫

Kn

[(u−kn)−ζ]p dx 6 (ξω)p−2

∫
Kn

(u−kn)2−ζp dx.
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Therefore,

ess sup
−θ%p

n<t<0

1
(ξω)p−2

∫
Kn

[(u−kn)−ζ]p(x, t) dx+
∫∫

Qn

|D(u−kn)−ζ|p dx dτ

6 γ
2np(ξω)p

%p

(
1+

1
θ(ξω)p−2

)
|An|,

(4.4)

where we have set

An = {u < kn}∩Qn.

Combining this with the embedding of Proposition 3.1 of [5, Chapter I], gives that

(
1−a

2n

)p

(ξω)p|An+1|6
∫∫

Qn+1

(u−kn)p
− dx dτ

6
∫∫

Qn

[(u−kn)−ζ]p dx dτ

6

(∫∫
Qn

[(u−kn)−ζ]p·(N+p)/N dx dτ

)N/(N+p)

|An|p/(N+p)

6 γ

(
ess sup
−θ%p

n<t<0

∫
Kn(t)

[(u−kn)−ζ]p dx

)(p/N)·N/(N+p)

×
(∫∫

Qn

|D(u−kn)−ζ|p dx dτ

)N/(N+p)

|An|p/(N+p)

6 γ
2np(ξω)p

%p

(
1+

1
θ(ξω)p−2

)
(ξω)(p−2)·p/(N+p)|An|1+p/(p+N).

To render the estimate dimensionless, set Yn=|An|/|Qn|. Then

Yn+1 6
γ4np

(1−a)p

1+θ(ξω)p−2

[θ(ξω)p−2]N/(N+p)
Y 1+p/(N+p)

n . (4.5)

By Lemma 4.1 of [5, Chapter I], Yn!0 as n!∞, provided

Y0 6

(
1−a

γ(data)

)N+p [θ(ξω)p−2]N/p

[1+θ(ξω)p−2](p+N)/p
= ν. (4.6)

Thus, this choice of ν yields Y∞=0, which is equivalent to (4.3)−. Similar arguments for
the corresponding statement (4.2)+–(4.3)+ yield the same expression in (4.6) with the
proper interpretation of Y0.
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4.3. A variant of Lemma 4.1

Assume now that some information is available on the “initial data” relative to the
cylinder (y, s)+Q+

2%(θ), say for example

u(x, s) > ξM for a.e. x∈K2%(y) (4.7)

for some M>0 and ξ∈(0, 1]. Then, writing the energy inequalities (4.1) for (u−k)−,
for k6ξM , over the cylinder (y, s)+Q+

2%(θ), the integral extended over K2% at the time
level t=s, vanishes in view of (4.7). Moreover, by taking cutoff functions ζ(x, t)=ζ1(x)
independent of t, also the integral involving ζt, on the right-hand side of (4.1) vanishes.
We may now repeat the same arguments as in the previous proof for (u−ξnM)−, over
the cylinders Q̃n, where

ξn = aξ+
1−a

2n
ξ, Q̃n =Kn×(0, θ(2%)p].

This leads to an analog of (4.4) without the factor 1+1/θ(ξω)p−2 on the right-hand side,
with Qn replaced by Q̃n, and with An replaced by

Ãn = {u < ξnM}∩Q̃n,

provided ξM>C%. Proceeding as before gives an analog of (4.5) in the form

Ỹn+1 6
γ4np

(1−a)p
[θ(ξM)p−2]p/(N+p)Ỹ 1+p/(N+p)

n ,

where Ỹn=|Ãn|/|Q̃n|. This, in turn, implies that Ỹn!0 as n!∞, provided

Ỹ0 6
δ

θ(ξM)p−2
(4.8)

for a constant δ∈(0, 1) depending only upon the data and a, and independent of ξ, M ,
% and θ. We summarize this in the following result.

Lemma 4.2. Let M and ξ be positive numbers such that both (4.7) and (4.8) hold.
Then either ξω<C%, or

u > aξM a.e. in K%(y)×(s, s+θ(2%)p]. (4.9)
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5. Proof of Lemma 3.1—Continued

5.1. Changing the time variables

By taking θ=δ(ξM)2−p, condition (4.8) is always satisfied and yields

u

(
x, s+

δ%p

(ξM)p−2

)
> aξM for a.e. x∈K%(y).

Next, observe that if (4.7) holds for some ξ∈(0, 1), it continues to hold for all ξτ 6ξ, and
the conclusion of Lemma 4.2 continues to hold with ξ replaced by ξτ , provided in (4.8)
we choose θ=δ(ξτM)2−p. For τ >0 let

ξτ =
ξ

f(τ)
, where f(τ) = eτ/(p−2), (5.1)

and let θ be chosen accordingly. Then for all τ >0,

u

(
x, s+

[
f(τ)
ξM

]p−2

δ%p

)
> a

ξM

f(τ)
for a.e. x∈K%(y).

Set

w(x, τ) def=
f(τ)
ξM

(δ%p)1/(p−2) u

(
x, s+

[
f(τ)
ξM

]p−2

δ%p

)
. (5.2)

Corollary 5.1. Let (4.7) hold. Then for a.e. x∈K%(y) and all τ >0,

w(x, τ) > a(δ%p)1/(p−2) def= k0. (5.3)

5.2. Relating w to the evolution equation

Since u>0, by formal calculations, we get that

wτ =
(

f(τ)
ξM

(δ%p)1/(p−2)

)p−1

ut+
1

p−2
f(τ)
ξM

(δ%p)1/(p−2) u

>

(
f(τ)
ξM

(δ%p)1/(p−2)

)p−1

[div A(x, t, u,Du)+B(x, t, u,Du)]

=div Ã(x, τ, w,Dw)+B̃(x, τ, w,Dw),

(5.4)

where Ã:ET×RN+1!RN and B̃:ET×RN+1!R satisfy the structure conditions
Ã(x, τ, w,Dw)·Dw >C0|Dw|p−C̃p,

|Ã(x, τ, w,Dw)|6C1|Dw|p−1+C̃p−1,

|B̃(x, τ, w,Dw)|6C|Dw|p−1+C̃p−1,

a.e. in ET , (5.5)
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where C0, C1 and C are the constants appearing in the structure condition (1.2), and

C̃(τ) =C
f(τ)
ξM

(δ%p)1/(p−2). (5.6)

The formal differential inequality (5.4) can be made rigorous by starting from the weak
formulation (1.4), by operating the corresponding change of variables from t into τ , and
by taking test functions ϕ>0. We will be using (5.4) in space-time domains contained
in K8%(y)×R+, where y∈E is a point for which (4.7) holds. In what follows we assume
that y coincides with the origin and write energy estimates for (w−k)−, of the type of
(4.1), over cylinders Q+

8%(θ)⊂ET . Precisely

ess sup
0<τ<θ(8%)p

∫
K8%

(w−k)2−ζp(x, τ) dx+
∫∫

Q+
8%(θ)

|D(w−k)−ζ|p dx dτ

6 γ

∫∫
Q+

8%(θ)

[(w−k)p
−|Dζ|p+(w−k)2−|ζt|] dx dτ

+γC̃p(θ)
∫∫

Q+
8%(θ)

[χ{(w−k)−>0}+(w−k)p
−]ζp dx dτ

(5.7)

for a non-negative, piecewise smooth cutoff function that vanishes on the parabolic
boundary of Q+

8%(θ).

6. Proof of Lemma 3.1—Concluded

6.1. Expanding the positivity of w

The bound from below of Corollary 5.1, valid for all τ >0, will be expanded in the space
variables over the cube K2% for “times” τ sufficiently large. For this, set

Q4%(θ) =K4%×((4%)pθ, (8%)pθ].

Proposition 6.1. Let (4.7) hold and let k0 be defined by (5.3). Then for every
ν>0, there exist σ∈(0, 1) depending only upon the data, γ=γ(σ) depending only upon σ

and the data, and θ=θ(k0, σ) depending only upon k0, σ and the data, such that either
ξM<γ(σ)C%, or

|{w < σk0}∩Q4%(θ)|6 ν|Q4%(θ)|. (6.1)

Proof. In (5.7) take ζ that equals 1 on Q4%(θ), and such that |Dζ|6(4%)−1 and
|ζt|6[θ(4%)p]−1. Take also levels

kj =
1
2j

k0 for j =0, 1, ..., j∗, where j∗ ∈N is to be chosen.
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Discarding the first term on the left-hand side gives∫∫
Q4%(θ)

|D(w−kj)−|p dx dτ 6
γkp

j

(4%)p
|Q4%(θ)|(1+θ−1k2−p

j +C̃p(4%)pk−p
j ).

Choose

θ = k2−p
j∗

=
(

2j∗

k0

)p−2

.

From the definition (5.6) of C̃ and the definition (5.3) of k0, we estimate

C̃p(4%)pk−p
j 6 γ(j∗; data)

(
%C

ξM

)p

.

Therefore, if ξM>γ(j∗)C%, the last term is majorized by an absolute constant depending
only upon the data, and the previous inequality becomes∫∫

Q4%(θ)

|D(w−kj)−|p dx dτ 6
γkp

j

(4%)p

∣∣Q4%(θ)
∣∣ (6.2)

for a constant γ depending only upon the data and independent of j∗. Set

Aj(τ) = {w( · , τ) <kj}∩K4%, Aj = {w < kj}∩Q4%(θ).

Therefore

|Aj |=
∫ θ(8%)p

θ(4%)p

|Aj(τ)| dτ.

By the measure-theoretical Lemma 2.2 of [5, Chapter I],

(kj−kj+1)|Aj+1(τ)|6 γ%N+1

|K4%\Aj(τ)|

∫
kj+1<w( · ,τ)<kj

|Dw| dx

for all τ∈(θ(4%)p, θ(8%)p]. For all such τ , by Corollary 5.1, one has

|K4%\Aj(τ)|> |K%|.

Therefore
1
2
kj |Aj+1(τ)|6 γ%

∫
kj+1<w( · ,τ)<kj

|Dw| dx.

Integrate this in dτ over (θ(4%)p, θ(8%)p) and majorize the resulting integral on the right-
hand side by Hölder’s inequality and by means of (6.2), to obtain that

1
2
kj |Aj+1|6 γ%

(∫∫
Aj\Aj+1

|Dw|p dx dτ

)1/p

|Aj\Aj+1|(p−1)/p

6 γ%

(∫∫
Q4%(θ)

|D(w−kj)−|p dx dτ

)1/p

|Aj\Aj+1|(p−1)/p

6 γkj |Q4%(θ)|1/p|Aj\Aj+1|(p−1)/p.
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From this, by taking the p/(p−1)-power of both sides, we get the recursive inequalities

|Aj+1|p/(p−1) 6 γ|Q4%(θ)|1/(p−1)|Aj\Aj+1|.

Now add these for j=0, 1, ..., j∗−1, and majorize the sum on the right-hand side by the
corresponding telescopic series. This gives

(j∗−1)|Aj∗ |p/(p−1) 6 γ|Q4%(θ)|p/(p−1).

Rewrite this as

|Aj∗ |6
(

γ

j∗

)(p−1)/p

|Q4%(θ)|. (6.3)

This proves the proposition for the choices

σ =
1

2j∗
and ν =

(
γ

j∗

)(p−1)/p

. (6.4)

Proposition 6.2. Assume that (4.7) holds. There exist σ∈(0, 1) and γ(σ)>1, that
can be determined a priori only in terms of the data, such that either ξM<γ(σ)C%, or

w( · , τ) >
1
2
σk0 a.e. in K2%×

(
(6%)p

(σk0)p−2
,

(8%)p

(σk0)p−2

]
. (6.5)

Proof. Apply (4.2)−–(4.3)− of Lemma 4.1 to w over the cylinder

Q4%(θ) = (0, τ∗)+Q−
4%(θ) for τ∗ = θ(8%)p.

The parameter ξω is replaced by σk0 and µ−>0 is neglected. Taking into account (4.6),
and choosing a= 1

2 gives

w(x, τ) > 1
2σk0 for a.e. (x, τ)∈ (0, τ∗)+Q−

2%(θ),

provided ξM>γ(σ)C% and

|{w < σk0}∩Q4%(θ)|
|Q4%(θ)|

6 γ−(N+p) [θ(σk0)p−2]N/p

[1+θ(σk0)p−2](p+N)/p
= δ∗,

where δ∗ depends only upon the data. Choosing now ν=δ∗ from (6.4) determines σ and
therefore θ quantitatively.
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6.2. Expanding the positivity of u

Return to the definitions (5.1)–(5.3) of f( ·), w and k0. As τ ranges over the interval in
(6.5), f(τ) ranges over

b1
def= exp

(
2p−26p

(p−2)σp−2δ

)
6 f(τ) 6 exp

(
2p−28p

(p−2)σp−2δ

)
def= b2,

where b1 and b2 are constants that can be determined a priori only in terms of the data
and are independent of %, M and u. Translating Proposition 6.2 in terms of u and t gives

u(x, t) >
σξM

4b2

def= ηM for a.e. x∈K2%(y)

for all times

s+
(

b̄

ηM

)p−2

(2%)p 6 t 6 s+
(

b̄

ηM

)p−2

(4%)p

for a proper b̄ depending only upon the data. Lemma 3.1 then follows with b=b̄p−2.

7. Stabilizing η in Lemma 3.1, as p!2

The proof shows that the constants b and η in (3.2)–(3.3) depend on p as

b̄≈ exp
(

γb
hp−2

p−2

)
and η≈ exp

(
−γη

kp−2

p−2

)
for constants γb, γη, h, k>1 depending only upon the data and independent of p. Thus
the ratio (b̄/η)p−2 that determines the “waiting time” needed to preserve positivity,
deteriorates as p!∞. However it is “stable” as p!2 and (3.3) remains meaningful for
p near 2. On the other hand, η(p)!0, as p!2, and (3.2) becomes vacuous. The next
lemma realizes a stable dependence of η(p) for p near 2.

Lemma 7.1. Let u be a non-negative, local , weak solution of (1.1)–(1.2) in ET .
There exist constants γ∗>1, b∗, η∗∈(0, 1) and p∗>2, depending only upon the data and
independent of (y, s), %, M and p, such that if

u(x, s) >M for all x∈K%(y) (7.1)

and 2<p6p∗, then either M<Cγ∗%, or

u(x, t) > η∗M for all x∈K2%(y) (7.2)

for all

s+
b∗

Mp−2
(4%)p 6 t 6 s+

b∗
Mp−2

(8%)p. (7.3)



196 e. dibenedetto, u. gianazza and v. vespri

Remark 7.1. The constants γ∗, b∗ and η∗ are “stable” as p!2, that is there exist
positive constants b(2), η(2) and γ(2) such that

lim
p!2

b∗(p) = b(2), lim
p!2

η∗(p) = η(2) and lim
p!2

γ∗(p) = γ(2).

In particular, the same conclusion continues to hold for the “linear case” p=2.

7.1. Proof of Lemma 7.1

Assume that (y, s) is the origin of RN+1. The assumption (7.1) implies that

|{u( · , 0) <M}∩K8%|< (1−8−N )|K8%|. (7.4)

Proposition 7.1. There exist numbers b∗, ξ∗∈(0, 1) depending only upon the data,
and independent of u, M , % and p, such that either M6C%, or

|{u(·, t) <ξ∗M}∩K8%|< (1−32−N )|K8%|

for all 0<t<b∗M
2−p(8%)p.

Proof. Write the energy inequality (4.1) for (u−M)− over Q+
8%(θ) for θ=b∗M

2−p,
where b∗ is to be chosen. The cutoff function ζ is taken independent of t, equals 1 on
Kσ∗8%, for some σ∗∈(0, 1) to be chosen, vanishes on the boundary of K8% and

|Dζ|6 1
8%(1−σ∗)

.

These choices in (4.1) give that∫
Kσ∗8%

(u−M)2−(x, t) dx 6
∫

K8%

(u−M)2−(x, 0) dx+
γMp

(1−σ∗)p%p
|Q+

8%(θ)|

for all 0<t<b∗M
2−p(8%)p, provided M>C%. Estimate from below∫

Kσ∗8%

(u−M)2−(x, t) dx >
∫

Kσ∗8%∩{u( · ,t)<ξ∗M}
(u−M)2−(x, t) dx

> (1−ξ∗)2M2|{u( · , t) <ξ∗M}∩Kσ∗8%|.

Next, by using (7.1), estimate from above∫
K8%

(u−M)2−(x, 0) dx 6M2(1−8−N )|K8%|.
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By the definition of Q+
8%(θ), with θ=b∗M

2−p, the last term is majorized by

γb∗M
2

(1−σ∗)p
|K8%|.

Combining these estimates yields

|{u( · , t) <ξ∗M}∩Kσ∗8%|6
[

1−8−N

(1−ξ∗)2
+

γb∗
(1−σ∗)p(1−ξ∗)2

]
|K8%|.

Finally,

|{u( · , t) <ξ∗M}∩K8%|6 |{u( · , t) <ξ∗M}∩Kσ∗8%|+|K8%\Kσ∗8%|

6

[
1−8−N

(1−ξ∗)2
+

γb∗
(1−σ∗)p(1−ξ∗)2

+(1−σN
∗ )

]
|K8%|

for all 0<t<b∗M
2−p(8%)p. Choose ξ∗ so small that

1−8−N

(1−ξ∗)2
6 1−16−N .

Then, ξ∗ being fixed, choose σ∗ and b∗ so small that the term in square brackets on the
right-hand side is majorized by 1−32−N .

To proceed, set t∗=θ(8%)p and consider the cylinder with “vertex” at (0, t∗):

Q∗
8%(θ) = (0, t∗)+Q−

8%(θ), where θ = b∗M
2−p.

Proposition 7.2. For every ν∗∈(0, 1) there exist constants p∗>2, η∗∈(0, 1) and
γ∗>1, depending only upon the data and independent of u, M and %, such that for all
2<p<p∗, either M6Cγ∗%, or

|{u < 2η∗M}∩Q∗
4%(θ)|6 ν∗|Q∗

4%(θ)|.

Proof. Write down the energy inequalities in (4.1), for (u−kj)−, over the cylinder
Q∗

8%(θ) for a cutoff function ζ that equals 1 on Q∗
4%(θ), and is such that |Dζ|6(4%)−1 and

|ζt|6[θ(4%)p]−1. The levels kj are taken as

kj =
ξ∗M

2j
for j =0, 1, ..., j∗, where j∗ ∈N is to be chosen.

Discarding the first term on the left-hand side gives∫∫
Q∗4%(θ)

|D(u−kj)−|p dx dτ 6
γkp

j

(2%)p
(1+k2−p

j Mp−2b−1
∗ )|Q∗

4%(θ)|

6
γkp

j

(2%)p

(
1+

(
2j∗

ξ∗

)p−2 1
b∗

)
|Q∗

4%(θ)|,
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provided M>C2j∗%. Such a j∗ will be chosen shortly depending only upon the data and
independent of u, M , % and p. Assuming momentarily that such a choice has been made,
choose p∗ such that 2<p∗<2+j−1

∗ and let 2<p6p∗. This yields the energy estimates∫∫
Q∗4%(θ)

|D(u−kj)−|p dx dτ 6
γkp

j

(2%)p
|Q∗

4%(θ)| (7.5)

for a constant γ depending only upon the data and independent of u, M , % and p, pro-
vided M>Cγ∗% for γ∗=2j∗ . The energy estimate (7.5), derived for 2<p6p∗, is formally
analogous to the energy estimates (6.2), valid for all p>2. They only differ in the meaning
of the parameter θ that determines the time-length of the cylinders Q4%(θ) and Q∗

4%(θ),
respectively. In the former, θ was taken “large” of the order of k2−p

j∗
so that θ−1k2−p

j∗
≈1.

This is precisely the effect of the intrinsic geometry. In the latter, since p≈2, it suffices to
take θ≈M2−p, since 2j∗(p−2)≈1 for p sufficiently close to 2. The proof of Proposition 7.2
can now be concluded as in Proposition 6.1. Precisely, setting

Aj = {u < kj}∩Q∗
4%(θ) for θ = b∗M

2−p

and proceeding as in that context, we arrive at the analog of (6.3):

|Aj∗ |6
(

γ

j∗

)(p−1)/p

|Q∗
4%(θ)|

for a constant γ depending only upon the data and independent of u, M , % and p. This
proves the proposition for the choices

2η∗ =
ξ∗
2j∗

and ν∗ =
(

γ

j∗

)(p−1)/p

.

7.2. Proof of Lemma 7.1—Concluded

It suffices to show that ν∗∈(0, 1) can be chosen a priori, depending only upon the data
and independent of u, M , % and p, such that

u(x, t) >η∗M for all (x, t)∈Q∗
2%(θ), with θ = b∗M

2−p. (7.6)

This follows from (4.2)−–(4.3)− of Lemma 4.1, with µ−=0, ξ=2η∗, a= 1
2 , ω=M and %

replaced by 2%. Set

Y0 =
|{u < 2η∗M}∩Q∗

4%(θ)|
|Q∗

4%(θ)|
=

|Aj∗ |
|Q∗

4%(θ)|
.

Then, by virtue of Lemma 4.1, and (4.6), the conclusion (7.6) holds true if

Y0 6
1

γ(data)
(b∗η

p−2
∗ )N/p

(1+b∗η
p−2
∗ )(N+p)/p

= ν∗.
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8. Proof of Theorem 1.1

Fix (x0, t0)⊂ET , assume that u(x0, t0)>0, and construct the cylinders

(x0, t0)+Q±
4%(θ)⊂ET

as in (1.6), where the constant c>1 is to be determined. The change of variables

x 7−! x−x0

%
, t 7−!u(x0, t0)p−2 t−t0

%p
,

maps these cylinders into Q±, where

Q+ =K4×(0, 4pcp−2] and Q− =K4×(−4pcp−2, 0].

Denoting again by (x, t) the transformed variables, the rescaled function

v(x, t) =
1

u(x0, t0)
u

(
x0+%x, t0+

t%p

u(x0, t0)p−2

)
is a bounded, non-negative, weak solution of{

vt−div Ā(x, t, v, Dv) = 
B(x, t, v, Dv) weakly in Q=Q+∪Q−,
v(0, 0) =1,

(8.1)

where Ā and 
B satisfy the structure conditions
Ā(x, t, v, Dv)·Dv >C0|Dv|p−
Cp,

|Ā(x, t, v, Dv)|6C1|Dv|p−1+
Cp−1,

|
B(x, t, v, Dv)|6C%|Dv|p−1+%
Cp−1,

where 
C =
C%

u(x0, t0)
(8.2)

and C0, C1 and C are as in (1.2). Theorem 1.1 is a consequence of the following result.

Proposition 8.1. There exist constants γ0∈(0, 1) and γ1, γ2>1 that can be quan-
titatively determined a priori only in terms of the data, and independent of u(x0, t0),
such that either u(x0, t0)6γ2C%, or

v(x, γ1) > γ0 for all x∈K1.

Proof. For τ∈[0, 1), introduce the family of nested cylinders {Qτ}τ with the same
“vertex” (0, 0), and the families of non-negative numbers {mτ}τ and {nτ}τ , defined by

Qτ =Q−
τ (1)= Kτ×(−τp, 0], mτ =sup

Qτ

v and nτ =(1−τ)−β ,
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where β>1 is to be chosen. Let τ0 be the largest root of the equation mτ =nτ . Such a
largest root exists since m0=n0=1, nτ!∞ as τ!1 and mτ remains bounded. By the
continuity of v, there exists (x̄, t̄ )∈
Qτ0 such that

v(x̄, t̄ ) =nτ0 =(1−τ0)−β . (8.3)

Moreover, (x̄, t̄ )+Q(1−τ0)/2⊂Q(1+τ0)/2⊂Q1. Therefore, by the definition of mτ and nτ ,

sup
(x̄,t̄ )+Q(1−τ0)/2

v 6 sup
Q(1+τ0)/2

v 6 2β(1−τ0)−β .

The parameter τ0 is only known qualitatively, and β has to be chosen. The arguments
below have the role of eliminating the qualitative knowledge of τ0 by a quantitative choice
of β.

8.1. Local largeness of v near (x̄, t̄ )

The largeness of v at (x̄, t̄ ) as expressed by (8.3), propagates to a full space-time neigh-
borhood nearby (x̄, t̄ ). To render this quantitative, set

M0 =2β(1−τ0)−β , R0 =
1−τ0

2
and θ0 =M2−p

0 ,

and consider the cylinder (x̄, t̄ )+Q−
R0

(θ0). Set also

ξ =1− 1
2β+1

and a=
1− 3

2
1

2β+1

1− 1
2β+1

.

Proposition 8.2. Either 
C>1, or

|{v > 2−(1+β)M0}∩[(x̄, t̄ )+Q−
R0

(θ0)]|>ν|Q−
R0

(θ0)|, (8.4)

where

ν =
(

1−a

γ(data)

)N+p
ξN(p−2)/p

(1+ξp−2)(p+N)/p
.

Proof. Assume that 
C<1. If (8.4) is violated, apply Lemma 4.1 in the form (4.2)+–
(4.3)+, with the choices µ+=ω=M0, θ=θ0=M2−p

0 and %=R0, to conclude that

v(x̄, t̄ ) 6M0(1−aξ) = 3
4 (1−τ0)−β ,

contradicting (8.3). The condition for this to occur is in (4.6), with the proper meaning
of the symbols, and it coincides with (8.4) being violated.
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Remark 8.1. The indicated expressions of ξ, a and ν imply that ν is bounded below
by a quantitative positive constant ν(data), independent of τ0, and “stable” as p!2. We
continue to denote such a constant by ν.

Proposition 8.3. Assume that (8.4) holds. Then for every λ∈(0, 1) and every
ν0∈(0, 1), there exist (y, s)∈(x̄, t̄ )+Q−

R0
(θ0), a number η0∈(0, 1) and a cylinder

(y, s)+Q−
2η0R0

(θ0)⊂ (x̄, t̄ )+Q−
R0

(θ0)

such that either 
C>1, or

|{v < λ2−(β+1)M0}∩[(y, s)+Q−
η0R0

(θ0)]|6 ν0|Q−
η0R0

(θ0)|. (8.5)

The number η0 depends only upon ν0 and the data, and is independent of τ0, %, M , u

and p. In particular , it is “stable” as p!2.

We assume Proposition 8.3 for the moment and proceed to prove Theorem 1.1.

Corollary 8.1. Assume that (8.4) holds. There exist (y, s)∈(x̄, t̄ )+Q−
R0

(θ0) and
a number η0∈(0, 1) such that either 
C>1, or

v(x, s) > 1
8 (1−τ0)−β for all x∈Kr(y), where r = η0R0 = 1

2η0(1−τ0).

Proof. In Proposition 8.3, choose λ= 1
2 and let ν0 be determined by (4.6) of Lem-

ma 4.1, with the choices µ−=0, ω=M0, ξ=2−(β+2), a= 1
2 and %=η0R0. Then Propo-

sition 8.3 identifies a cylinder (y, s)+Q−
2η0R0

(θ0) for which (8.5) holds. The conclusion
then follows from Lemma 4.1.

8.2. Proof of Theorem 1.1, assuming Proposition 8.3

Apply Lemma 3.1 to the weak solution v of (8.1) with the structure conditions (8.2), for
the choices M= 1

8 (1−τ0)−β and %=r. Then either

(1−τ0)−βu(x0, t0) 6 2γC%,

or
v(x, t) > ηM for all x∈K2r(y)

for all t in the range

t0
def= s+

b

(ηM)p−2
(2r)p 6 t 6 s+

b

(ηM)p−2
(4r)p def= t1.
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By iteration, for all n=2, 3, ..., either

ηn(1−τ0)−βu(x0, t0) 6 2γC%,

or
v(x, t) > ηnM for all x∈K2nr(y)

for all t in the range

tn−1+
b

(ηnM)p−2
(2n+1r)p 6 t 6 tn−1+

b

(ηnM)p−2
(2n+2r)p = tn.

Without loss of generality we may assume that η0(1−τ0) is a negative, integral power
of 2. Then choosing n so that 2nr=2, the cube K2(y) covers the cube K1 centered at
x=0, and

v(x, t) > ηnM for all x∈K1 and all tn−1 <t < tn.

For the indicated choice of n,

ηnM = 1
8ηn(1−τ0)−β =2−3β−1(2βη)nηβ

0 = γ0

for the choices of β so that 2βη=1 and γ0=2−3β−1ηβ
0 . On the other hand, since t̄, and

hence s, ranges over (−1, 0), the range of t includes the time level

t∗ =4pbγ2−p
0

def= c.

9. Proof of Proposition 8.3

Write down the energy estimate (4.1) for (v−k)+ for k= 1
2 (1−τ0)−β , over the pair of

coaxial cylinders with the same “vertex”

(x̄, t̄ )+Q−
R0/2(θ)⊂ (x̄, t̄ )+Q−

R0
(θ)⊂Q(1+τ0)/2.

The non-negative, piecewise smooth cutoff ζ is taken to be equal to 1 on the smallest of
these cylinders, to vanish on the parabolic boundary of the largest, and such that

0 6 ζt 6
4p

θRp
0

and |Dζ|6 4p

Rp
0

, where θ =M2−p
0 .

Recalling that v solves (8.1) with the structure conditions (8.2) gives∫∫
(x̄,t̄ )+Q−R0/2(θ)

|D(v−k)+|p dx dτ 6 γ
kp

Rp
0

|Q−
R0

(θ)|,
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provided 
C61. Introduce the change of variables

x 7−! 2(x−x̄)
R0

, t 7−! 2p(t− t̄)
θRp

0

, w =
v

k
.

This maps (x̄, t̄ )+Q−
R0/2(θ) into Q1=K1×(−1, 0], and the previous energy estimate takes

the form ∫∫
Q1

|Dw|p dx dτ 6 γ and |{w > 1}∩Q1|>ν

for a constant γ depending only upon the data.

Lemma 9.1. There exists a time level s̄∈
(
−1,− 1

4ν
]

such that∫
K1

|Dw( · , s̄)|p dx 6
2γ

ν
and |{w( · , s̄) > 1}∩K1|> 1

2ν. (9.1)

Proof. Introduce the two subsets of (−1, 0],

T1 =
{

t∈ (−1, 0] :
∫

K1

|Dw( · , t)|p dx >
4γ

ν

}
,

T2 =
{
t∈ (−1, 0] : |{w( · , t) > 1}∩K1|> 1

2ν
}
.

From the definition of T1,

4γ

ν
|T1|<

∫∫
Q1

|Dw|p dx dt 6 γ.

Therefore |T1|< 1
4ν. From the definition of T2,

ν < |{w > 1}∩Q1|=
∫ 0

−1

|{w( · , t) > 1}∩K1| dt

=
∫

T2

|{w( · , t) > 1}∩K1| dt+
∫

(−1,0]−T2

|{w( · , t) > 1}∩K1| dt 6 |T2|+ 1
2ν.

Therefore |T2|> 1
2ν.

By the results of [7], (9.1) implies that for every fixed λ̄, ν̄∈(0, 1), there exist at least
one point ȳ∈K1 and a constant ε̄∈(0, 1), that can be determined a priori only in terms
of γ and ν, such that

Kε̄(ȳ)⊂K1 and |{w( · , s̄) > λ̄}∩Kε̄|> (1−ν̄)|Kε̄|.

Returning to the original coordinates, and the original function v, there exists ȳ∈KR0

such that Kε̄R0(ȳ)⊂KR0(x̄), and

|{v( · , s̄) < λ̄2−(β+1)M0}∩Kε̄R0(ȳ)|< ν̄|Kε̄R0 |. (9.2)
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9.1. Proof of Proposition 8.3—Concluded

The estimate in (9.2), established for some time level s̄, can be extended to a cylinder by
suitably modifying the various constants. Set s=s̄+θ̄(ε̄R0)p, and write down the energy
estimates (4.1) over the pair of cylinders

(ȳ, s)+Q−
ε̄R0/2(θ̄)⊂ (ȳ, s)+Q−

ε̄R0
(θ̄) for θ̄ = ν̄pM2−p

0 ,

where ν̄ is the number appearing in (9.2), and we may assume that s<t without loss of
generality. The estimate is written for (v−λ̄k)−, where λ̄ is the number appearing in
(9.2), and

k = 1
2 (1−τ0)−β =2−(β+1)M0.

The cutoff function is taken to be independent of t, equal to 1 on the smaller cylinder,
vanishing on the lateral boundary of the larger cylinder and such that |Dζ|64(ε̄R0)−1.
Recalling that v solves (8.1) with the structure conditions (8.2), and neglecting the term
involving Dv, gives that∫

Kε̄R0/2(ȳ)

(v−λ̄k)2−(x, t) dx 6
∫

Kε̄R0 (ȳ)

(v−λ̄k)2−(x, s̄) dx+
γkp

(ε̄R0)p
|Q−

ε̄R0
(θ̄)|

for all −θ̄(ε̄R0)p<t<s. The constant γ depends only upon the data and is independent
of k, ε̄ and M0, provided 
C61. Having fixed λ∈(0, 1), set λ̄= 1

2 (1+λ) and estimate the
left-hand side from below, by extending the integration over the smaller sets

{v( · , t) <λk}.

Thus ∫
Kε̄R0/2(ȳ)

(v−λ̄k)2−(x, t) dx >
∫

Kε̄R0/2(ȳ)∩{v( · ,t)<λk}
(v−λ̄k)2−(x, t) dx

> 1
4 (1−λ)2k2|{v( · , t) <λk}∩Kε̄R0/2(ȳ)|

for all −θ̄(ε̄R0)p<t<s. The right-hand side is estimated above by using (9.2) and the
expression of θ̄. An upper bound is given by γk2ν̄|Kε̄R0/2| for a constant γ depending
only upon the data and independent of ν̄ and k. Combining these estimates, we get that

|{v( · , t) <λk}∩Kε̄R0/2(ȳ)|6 γν̄|Kε̄R0/2| (9.3)

for all −θ̄(ε̄R0)p<t<s. Having fixed ν0∈(0, 1), choose ν̄6ν0. By choosing a smaller ν̄ if
necessary, we may assume that ν̄−1 is an integer. Then, partition the cube Kε̄R0/2(ȳ),
up to a set of measure zero, into ν̄−N pairwise disjoint cubes congruent to Kν̄ε̄R0/2, and
let yj , for j=1, ..., ν̄−N , be the center of such cubes. The collection of cylinders

(yj , s)+Q−
η0R0

(θ) for j =1, ..., ν̄−N , where η0 = 1
2 ν̄ε̄,

is a partition, up to a set of measure zero, of the cylinder (ȳ, s)+Q−
ε̄R0/2(θ̄), into ν̄−N

sub-cylinders each congruent to Q−
η0R0

(θ). By virtue of (9.3), for γν̄=ν0, (8.5) holds true
for at least one of these sub-cylinders.
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10. The intrinsic Harnack inequality implies Hölder continuity

Local weak solutions u of (1.1), with no sign restrictions, are locally Hölder continuous.
Such a local behavior was established in [5, Chapter III], along with locally quantitative
Hölder estimates.

The intrinsic Harnack inequality of Theorem 1.1 can be used to establish locally
quantitative Hölder estimates for local, weak solutions u of (1.1), thereby providing an
alternative proof to [5].

Fix a point in ET , which, up to a translation, we take to be the origin of RN+1, and
for %0>0 consider the cylinder Qp−2=K%0×(−%2

0, 0], with “vertex” at (0, 0), and set

M0 = sup
Qp−2

u, m0 = inf
Qp−2

u and ω0 = osc
Qp−2

u =M0−m0.

With ω0 at hand, construct now the cylinder of intrinsic geometry

Q0 =K%0×(−θ0%
p
0, 0], where θ0 =

( c

ω0

)p−2

and c is a constant to be determined later in terms only of the data and independent of
u and %0. If ω0>c%0, then Q0⊂Qp−2.

Proposition 10.1. Either ω06c%0, or there exist numbers γ>1, δ and ε∈(0, 1),
that can be quantitatively determined only in terms of the data and independent of u

and %0, such that setting

ωn = δωn−1, θn =
( c

ωn

)p−2

, %n = ε%n−1 and Qn =Q−
%n

(θn),

for n∈N, it holds that Qn+1⊂Qn, and either

osc
Qn

u 6
4γ

ε
C%n or osc

Qn

u 6ωn.

Proof. We exhibit constants c, δ and ε depending only upon the data, such that if
the statement holds for n, it continues to hold for n+1. Thus assume that Qn has been
constructed and that the statement holds up to n. Set

Mn =sup
Qn

u, mn = inf
Qn

u and P0 =
(
0,− 1

2θn%p
n

)
.

The point P0 is roughly speaking the “mid-point” of Qn. The two functions Mn−u

and u−mn are non-negative weak solutions of (1.1) in Qn. Either of these satisfies the
intrinsic Harnack inequality with respect to P0, if its “intrinsic waiting time”,(

c

Mn−u(P0)

)p−2

%p
n or

(
c

u(P0)−mn

)p−2

%p
n,
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is of the order of θn%p
n. At least one of the two inequalities

Mn−u(P0) > 1
4ωn and u(P0)−mn > 1

4ωn

must hold. Assuming that the first holds true, apply Theorem 1.1. By possibly modifying
the constant c appearing in (1.7) that determines the “waiting time”, either

γC%n >Mn−u(P0) > 1
4ωn, (10.1)

or
inf

Q−%n/4(θn)
(Mn−u) >

1
γ

(Mn−u(P0))>
1
4γ

ωn. (10.2)

Choosing

δ =1− 1
4γ

and ε =
1
4
δ(p−2)/p,

one verifies that Qn+1⊂Q−
%n/4(θn)⊂Qn. Then, if (10.1) occurs,

osc
Qn+1

u 6 γ̃C%n+1 for γ̃ =
4γ

ε
.

If (10.2) occurs, then

Mn > sup
Qn+1

u+
1
4γ

ωn.

From this, subtracting infQn+1 u from both sides yields that

ωn > osc
Qn+1

u+
1
4γ

ωn.

Thus
osc

Qn+1
u 6 δωn =ωn+1.

11. Further results: Equations of the porous media type

Consider quasi-linear, degenerate, parabolic differential equations of the form

ut−div A(x, t, u,Du) =B(x, t, u,Du) weakly in ET , (11.1)

where the functions A:ET×RN+1!RN and B:ET×RN+1!R are only assumed to be
measurable and subject to the structure conditions

A(x, t, u,Du)·Du >C0|u|m−1|Du|2−C2,

|A(x, t, u,Du)|6C1|u|m−1|Du|+C,

|B(x, t, u,Du)|6C|u|m−1|Du|+C,

a.e. in ET , (11.2)
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where m>1, C0 and C1 are given positive constants, and C is a given non-negative
constant. A function

u∈Cloc(0, T ;L2
loc(E)) such that |u|(m+1)/2 ∈L2

loc(0, T ;W 1,2
loc (E)) (11.3)

is a local, weak solution to (11.1) if for every compact set K⊂E and every sub-interval
[t1, t2]⊂(0, T ] the integral equality (1.4) holds for all ϕ as in (1.5) for p=2. For (x0, t0)∈
ET , assume that u(x0, t0)>0, and consider cylinders of the type

(x0, t0)+Q±
% (θ) for p =2 and θ =

(
c

u(x0, t0)

)m−1

. (11.4)

Local, weak solutions to (11.1)–(11.2) are locally bounded and locally Hölder continuous
in ET [6]. Therefore, they have pointwise values in ET and the boxes in (11.4) are well
defined. These cylinders are intrinsic to the solution, since their length is determined by
the value of u at (x0, t0).

Theorem 11.1. (Intrinsic Harnack inequality) Let u be a continuous, non-negative,
weak solution to (11.1)–(11.2). There exist positive constants c and γ depending only
upon the data, such that for all intrinsic cylinders (x0, t0)+Q±

4%(θ) as in (11.4), contained
in ET , either u(x0, t0)6γC% or

u(x0, t0) 6 γ inf
K%(x0)

u(x, t0+θ%2), θ =
(

c

u(x0, t0)

)m−1

. (11.5)

The theorem has been stated for continuous solutions, to give meaning to u(x0, t0).
However, it continues to hold for non-negative, weak solutions of (11.1)–(11.2) for al-
most all (x0, t0)∈ET and for corresponding cylinders (x0, t0)+Q%(θ)⊂ET . The intrinsic
Harnack inequality, in turn, can be used to prove that local solutions of (11.1) are locally
Hölder continuous.

Theorem 11.2. (Harnack inequality and Hölder continuity) Any locally bounded
weak solution to (11.1)–(11.2), with no sign restriction, is locally Hölder continuous
in ET .

A locally quantitative Hölder estimate can be established as a minor variant of the ar-
guments of §10. The only difference is that Mn−u and u−mn are not solutions of (11.1).
However, the proof in §§3–9, only uses De Giorgi-type lemmas (such as Lemma 4.1) for
the truncations (u−k)±, and the corresponding Harnack estimates can be restated as
local bounds for Mn−u and u−mn.
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