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1. Introduction

A translation surface is a compact orientable surface endowed with a flat metric with
finitely many conical singularities and a unit parallel vector field. Another equivalent
description is through complex analysis: a translation surface is a pair (M,ω), where M
is a Riemann surface and ω is an Abelian differential, that is, a complex holomorphic
1-form: the metric is then given by |ω| and a unit parallel vector field is specified by
ω ·v=i. We call the flow φt along the vector field v vertical flow. It is defined for all
times except for finitely many orbits that meet the singularities in finite time.

The space of all translation surfaces of genus g, modulo isometries preserving the
parallel vector fields, is thus identified with the moduli space of Abelian differentials Mg.
If we also specify the orders � of the zeroes of ω, the space of translation surfaces, modulo
isometry, is identified with a stratum Mg,�⊂Mg. Each such stratum is a complex affine
variety, and so is endowed with a Lebesgue measure class.

1.1. The Zorich phenomenon

Pick a typical (with respect to the Lebesgue measure class) translation surface (M,ω)
in Mg,�. Consider segments of orbit ΓT

x ={φt(x):06t6eT }, where x is chosen arbitrarily
such that the vertical flow is defined for all times, and let γT

x be a closed loop obtained
by concatenating ΓT

x with a segment of smallest possible length joining φeT (x) to x.
Then [γT

x ]∈H1(M) is asymptotic to eT c, where c∈H1(M)\{0} is the Schwartzman [Sc]
asymptotic cycle.
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If g=1 then this approximation is quite good: the deviation from the line F1 spanned
by the asymptotic cycle is bounded. When g=2, one gets a richer picture: [γT

x ] oscillates
around F1 with amplitude roughly eλ2T, where 0<λ2<1. Moreover, there is an asymp-
totic isotropic 2-plane F2: deviations from F2 are bounded. More generally, in genus
g>1, there exists an asymptotic Lagrangian flag, that is, a sequence of nested isotropic
spaces Fi of dimension i, 16i6g, and numbers 1>λ2>...>λg>0 such that [γT

x ] oscil-
lates around Fi with amplitude roughly eλi+1T, 16i6g−1, and the deviation from Fg is
bounded:

lim sup
T!∞

1
T

log dist([γT
x ], Fi) =λi+1 for every 1 6 i6 g−1,

sup dist([γT
x ], Fg)<∞.

Moreover, the deviation spectrum λ2>...>λg is universal: it depends only on the con-
nected component of the stratum to which (M,ω) belongs.

The picture we just described is called the Zorich phenomenon, and was discovered
empirically by Zorich [Zo1]. It was shown by Kontsevich and Zorich [Zo1], [Zo2], [KZ]
that this picture would follow from a statement about the Lyapunov exponents of the
Kontsevich–Zorich cocycle, that we now discuss.

1.2. The Kontsevich–Zorich cocycle

The Kontsevich–Zorich cocycle can be described roughly as follows. It is better to work
on (the cotangent bundle of) the Teichmüller space, that is, to consider translation
structures on a surface up to isometry isotopic to the identity. The moduli space is
obtained by taking the quotient by the modular group. Let (MT , ωT ) be obtained from
(M,ω) by applying the Teichmüller flow for time T , that is, we change the flat metric
by contracting (by e−T ) the vertical direction, and expanding (by eT ) the orthogonal
horizontal direction. The Riemann surface MT now looks very distorted but it can be
brought back to a fundamental domain in the Teichmüller space by applying an element
ΦT (M,ω) of the mapping class group. The action of ΦT on the cohomology H1(M) is,
essentially, the Kontsevich–Zorich cocycle.

The Kontsevich–Zorich cocycle is, thus, a linear cocycle over the Teichmüller flow.
It was shown by Masur [Ma] and Veech [Ve1] that the Teichmüller flow restricted to each
connected component of strata is ergodic, provided we normalize the area. The cocycle is
measurable (integrable), and so it has Lyapunov exponents λ1>...>λ2g. The statement
about the cocycle that implies the Zorich phenomenon is that the cocycle has simple
Lyapunov spectrum, that is, its Lyapunov exponents are all distinct:

λ1>λ2> ...>λ2g−1>λ2g (1.1)
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(see [Zo4, Theorem 2 and Conditional theorem 4]). The λi’s, 1<i6g, are the same that
appear in the description of the Zorich phenomenon, and the asymptotic flag is related
to the Oseledets decomposition. One has λi=−λ2g−i+1 for all i, because the cocycle is
symplectic. It is easy to see that λ1=1=−λ2g. The λi’s are also related to the Lyapunov
exponents of the Teichmüller flow on the corresponding connected component of strata:
the latter are, exactly,

2 > 1+λ2 > ...> 1+λg > 1 = ...=1 > 1+λg+1 > ...> 1+λ2g−1 > 0, (1.2)

together with their symmetric values. Zero is a simple exponent, corresponding to the
flow direction. There are σ−1 exponents equal to 1 (and to −1), arising from the action
on relative cycles joining the σ singularities. It is clear that (1.1) is equivalent to saying
that all the inequalities in (1.2) are strict.

It follows from the work of Veech [Ve2] that λ2<1, and so the first and the last
inequalities in (1.2) are strict. Thus, the Teichmüller flow is non-uniformly hyperbolic.
Together with Kontsevich [Ko], Zorich conjectured that the λi’s are, indeed, all distinct.
They also established formulas for the sums of Lyapunov exponents, but it has not been
possible to use them for proving this conjecture. The fundamental work of Forni [Fo]
established that λg>λg+1, which is the same as saying that no exponent vanishes. This
means that 0 does not belong to the Lyapunov spectrum, that is, the Kontsevich–Zorich
cocycle is non-uniformly hyperbolic. Besides giving substantial information on the gen-
eral case, this result settles the conjecture in the particular case g=2, and has also been
used to obtain other dynamical properties of translation flows [AF].

1.3. Main result

Previously to the introduction of the Kontsevich–Zorich cocycle, Zorich had already iden-
tified and studied a discrete time version, called the Zorich cocycle. Its precise definition
will be recalled in §3. While the base dynamics of the Kontsevich–Zorich cocycle is the
Teichmüller flow on the space of translation surfaces, the basis of the Zorich cocycle is
a renormalization dynamics in the space of interval exchange transformations. The link
between interval exchange transformations and translation flows is well known: the first
return map to a horizontal cross-section to the vertical flow is an interval exchange trans-
formation, and the translation flow can be reconstructed as a special suspension over this
1-dimensional transformation. Typical translation surfaces in the same connected com-
ponent of strata are special suspensions over interval exchange transformations whose
combinatorics belong to the same Rauzy class. The Zorich cocycle is a measurable (in-
tegrable) linear cocycle (over the renormalization dynamics) acting on a vector space H
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that can be naturally identified with H1(M). So, it has Lyapunov exponents θ1>...>θ2g.
The θi’s are linked to the λi’s by

λi =
θi

θ1
for all 1 6 i6 2g

(see [AF, §4.5] and references therein), so that properties of the θi’s can be deduced from
those of the λi’s, and conversely. The Zorich conjecture (see [Zo3, Conjecture 1] or [Zo4,
Conjecture 2]) states that the Lyapunov spectrum of the Zorich cocycle is simple, that
is, all the θi’s are distinct. By the previous discussion, it implies the full picture of the
Zorich phenomenon. Here we prove this conjecture.

Theorem 1.1. The Zorich cocycle has simple Lyapunov spectrum on every Rauzy
class.

The most important progress in this direction so far, the work of Forni [Fo], was
via the Kontsevich–Zorich cocycle. Here we address the Zorich cocycle directly. Though
many ideas can be formulated in terms of the Kontsevich–Zorich cocycle, our approach
is mostly dynamical and does not involve the extra geometrical and complex analytic
structures present in the Teichmüller flow (particularly the SL(2,R) action on the moduli
space) that were crucial in [Fo]. Our arguments contain, in particular, a new proof of
Forni’s main result.

A somewhat more extended discussion of the Zorich–Kontsevich conjecture, includ-
ing an announcement of our present results, can be found in [AV1].

Remark 1.2. Besides the Zorich phenomenon, the Lyapunov exponents of the Zorich
cocycle are also linked to the behavior of ergodic averages of interval exchange trans-
formations (a first result in this direction is given in [Zo2]) and translation flows or
area-preserving flows on surfaces [Fo]. Let us point out that it is now possible to treat
the case of interval exchange transformations in a very elegant way, using the results of
Marmi–Moussa–Yoccoz [MMY]. A result for translation flows can then be recovered by
suspension, which also implies the result for area-preserving flows.

1.4. A geometric motivation for the proof

Our proof of the Zorich conjecture has two distinct parts:
(1) a general criterion for the simplicity of the Lyapunov spectrum of locally constant

cocycles;
(2) a combinatorial analysis of Rauzy diagrams to show that the criterion can be

applied to the Zorich cocycle on any Rauzy class.
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The basic idea of the criterion is that it suffices to find orbits of the base dynamics
over which the cocycle exhibits certain forms of behavior, that we call “twisting” and
“pinching”. Roughly speaking, twisting means that certain families of subspaces are put
in general position, and pinching means that a large part of the Grassmannian (consisting
of subspaces in general position) is concentrated in a small region, by the action of the
cocycle. We will be a bit more precise in a while. We call the cocycle simple if it meets
both requirements (notice that “simple” really means that the cocycle’s behavior is quite
rich). Then, according to our criterion, the Lyapunov spectrum is simple.

It should be noted that the orbits on which these types of behavior are observed
are very particular and, a priori, correspond to zero measure subsets of the orbits. Nev-
ertheless, they are able to “persuade” almost every orbit to have a simple Lyapunov
spectrum. For this, one assumes that the base dynamics is rather chaotic (which is the
case for the Teichmüller flow). In a purely random situation, this persuasion mechanism
has been understood for quite some time, through the works of Furstenberg [Fu], Guiv-
arc’h and Raugi [GR], and Goldsheid and Margulis [GM]. That this happens also in
chaotic, but not random, situations was unveiled by the works of Ledrappier [Le] and
Bonatti, Gomez-Mont, Viana [BGV], [BV], [Vi]. The particular situation needed for our
arguments is, however, not covered in those works, and was dealt with in our twin paper
[AV].

The present paper is devoted to part (2) of the proof. However, to make the paper
self-contained, in Appendix 7.1 we also prove an instance of the criterion (1) that covers
the present situation.

The basic idea to prove that the Zorich cocycle is “rich”, in the sense described above,
is to use induction on the complexity. The geometric motivation is more transparent
when one thinks in terms of the Kontsevich–Zorich cocycle. As explained, we want to
find orbits of the Teichmüller flow inside any connected component of a stratum C with
some given behavior. To this end, we look at orbits that spend a long time near the
boundary of C. While there, these orbits pick up the behavior of the boundary dynamics
of the Teichmüller flow, which contains the dynamics of the Teichmüller flow restricted to
connected components of strata C′ with simpler combinatorics (corresponding to certain
ways to degenerate C).

This is easy to make sense of when the stratum C is not closed in the moduli space,
since the whole Teichmüller flow provides a broader ambient dynamics where everything
takes place. It is less clear how to formalize the idea when C is closed (this is the case
when there is only one singularity). In this case, the boundary dynamics corresponds to
the Teichmüller flow acting on surfaces of smaller genera, and here we will not attempt
to describe geometrically what happens. Let us point out that Kontsevich–Zorich [KZ]
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considered the inverse of such a degeneration process, that they called “bubbling a han-
dle”. It is worth noting that, though they used many different techniques, and as much
geometric reasoning as possible, this was one of the few steps that needed to be done
using combinatorics of interval exchange transformations (encoded in Rauzy diagrams).

On the other hand, our degeneration process is very simple when viewed in terms
of interval exchange transformations: we just make one interval very small. This small
interval remains untouched by the renormalization process for a very long time, while
the other intervals are acted upon by a degenerate renormalization process. This is what
allows us to put in place an inductive argument. To really control the effect, we must
choose our small interval very carefully. It is also sometimes useful to choose particular
permutations in the Rauzy class we are analyzing. A particularly sophisticated choice
is needed when we must change the genus of the underlying translation surface: at this
point we use Lemma 20 of Kontsevich–Zorich [KZ], which allowed them to obtain the
inverse process of “bubbling a handle”.

Let us say a few more words on how the Zorich cocycle will be shown to be simple.
The fact that the cocycle is symplectic is important for the arguments. By induction,
we show that it acts minimally on the space of Lagrangian flags. This is used to derive
that the cocycle is “twisting”: certain orbits can be used to put families of subspaces in
general position. In the induction, there must be some gain of information at each step,
when we must change genus: in this case, this gain regards the action of the cocycle on
lines, and it comes from the rather easy fact that this action is minimal.

Also by induction, we show that certain orbits of the cocycle are “pinching”: they
take a large amount of the Grassmannian and concentrate it into a small region. Here
the gain of information when we must change genus has to come from the action on
Lagrangian spaces, and it is far from obvious. One can use Forni’s theorem [Fo] and,
indeed, we did so in a previous version of the arguments. However, the proof we will give
is independent of his result, so that our work gives a new proof of Forni’s main theorem.
Indeed, in the (combinatorial) argument that we will give, the pinching of Lagrangian
subspaces comes from orbits that have a pair of zero Lyapunov exponents, but present
some parabolic behavior in the central subspace.

1.5. Outline of the paper

In §2 general background on linear and symplectic actions of monoids is given. In §3
we collect well-known material on interval exchange transformations. We introduce the
Zorich cocycle and discuss the combinatorics of the Rauzy diagram. The presentation
follows [MMY] closely. The matrices appearing in the Zorich cocycle can be studied
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in terms of the natural symplectic action of a combinatorial object that we call the
Rauzy monoid. We give properties of the projective action of the Rauzy monoids, and
discuss some special elements in Rauzy classes. In §4, we introduce the twisting and
pinching properties of symplectic actions of monoids, and use them to define the notion
of simplicity for monoid actions, which is our basic sufficient condition for simplicity of
the Lyapunov spectrum. In §5 and §6 we prove the twisting and pinching properties, and
thus simplicity, for the action of the Rauzy monoid. The proof involves a combinatorial
analysis of relations between different Rauzy classes, as explained before. In §7, we state
the basic sufficient criterion for simplicity of the Lyapunov spectrum (Theorem 7.1) and
show that it is satisfied by the Zorich cocycle on any Rauzy class. Theorem 1.1 follows.
For completeness, in Appendix 7.1 we give a proof of that sufficient criterion.

Acknowledgments. We would like to thank Jean-Christophe Yoccoz for several in-
spiring discussions, through which he explained to us his view of the combinatorics of
interval exchange transformations. We also thank him, Alexander Arbieto, Giovanni
Forni, Carlos Matheus and Weixiao Shen for listening to many sketchy ideas while this
work developed, and Evgeny Verbitsky for a discussion relevant to §7.

2. General background

2.1. Grassmannian structures

Throughout this paper, all vector spaces are finite-dimensional vector spaces over R.
The notation PH always represents the projective space, that is, the space of lines
(1-dimensional subspaces) of a vector space H. More generally, Grass(k,H) will repre-
sent the Grassmannian of k-planes, 16k6dimH−1, in the space H. For 06k6dimH,
we denote by Λk(H) the kth exterior product of H. If F∈Grass(k,H) is spanned by
linearly independent vectors v1,...,vk, then the exterior product of the vi’s is defined up
to multiplication by a scalar. This defines an embedding Grass(k,H)!PΛk(H).

A geometric line in ΛkH is a line that is contained in Grass(k,H). The duality
between ΛkH and Λdim H−kH allows one to define a geometric hyperplane of ΛkH as
the dual of a geometric line of Λdim H−kH. A hyperplane section is the intersection
with Grass(k,H) of the projectivization of a geometric hyperplane in ΛkH. In other
words, it is the set of all F∈Grass(k,H) having non-trivial intersection with a given
E∈Grass(dimH−k,H). Thus, hyperplane sections are closed subsets of Grass(k,H)
with empty interior. In particular, Grass(k,H) cannot be written as a finite, or even
countable, union of hyperplane sections.
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A linear arrangement in ΛkH is any finite union of finite intersections of geomet-
ric hyperplanes. The intersection of the projectivization of a linear arrangement with
Grass(k,H) will be called a linear arrangement in Grass(k,H). It will be called non-
trivial if it is neither empty nor the whole Grass(k,H).

The flag space F(H) is the set of all (Fi)dim H−1
i=1 , where Fi is a subspace of H of

dimension i, and Fi⊂Fi+1 for all i. It is useful to see F(H) as a fiber bundle F(H)!PH,
through the projection (Fi)dim H−1

i=1 7!F1. The fiber over λ∈PH is naturally isomorphic
to F(H/λ), via the isomorphism

(Fi)dim H−1
i=1 7−! (Fi+1/λ)dim H−2

i=1 .

We are going to state a few simple facts about the family of finite non-empty unions
of linear subspaces of any given vector space, and deduce corresponding statements for
the family of linear arrangements. The proofs are elementary, and we leave them to the
reader.

Lemma 2.1. Any finite union W of linear subspaces of some vector space admits
a canonical expression W=

⋃
V ∈X V which is minimal in the following sense: if W=⋃

V ∈Y V is another way to express W as a union of linear subspaces then X⊂Y.

It is clear that the family of finite unions of linear subspaces is closed under finite
unions and finite intersections. The next statement implies that it is even closed under
arbitrary intersections.

Lemma 2.2. If {V α :α∈A} is an arbitrary family of finite unions of linear subspaces
of some vector space, then

⋂
α∈A V

α coincides with the intersection of the V α’s over a
finite subfamily.

Corollary 2.3. Any totally ordered (under inclusion) family {V α :α∈A} of finite
unions of linear subspaces of some vector space is well ordered.

Corollary 2.4. If V is a finite union of linear subspaces of some vector space
and x is an isomorphism of the vector space such that x·V ⊂V , then x·V =V .

Intersections of geometric hyperplanes are (special) linear subspaces of ΛkH, and
linear arrangements in ΛkH are finite unions of those linear subspaces. So, the previous
results apply, in particular, to the family of linear arrangements in the exterior prod-
uct. Let us call a linear arrangement S in ΛkH economical if it is contained in any
other linear arrangement S′ such that PS∩Grass(k,H)=PS′∩Grass(k,H). There is a
natural bijection between economical linear arrangements of the exterior product and
linear arrangements of the Grassmannian that preserves the inclusion order. Hence, the
previous results translate immediately to linear arrangements in the Grassmannian. We
summarize this in the next corollary.
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Corollary 2.5. Both in ΛkH and in Grass(k,H),
(1) the set of all linear arrangements is closed under finite unions and arbitrary

intersections;
(2) any totally ordered (under inclusion) set of linear arrangements is well ordered ;
(3) if S is a linear arrangement and x is a linear isomorphism such that x·S⊂S,

then x·S=S.

2.2. Symplectic spaces

A symplectic form on a vector space H is a bilinear form which is antisymmetric, that is,
ω(u, v)=−ω(v, u) for all u and v, and non-degenerate, that is, for every u∈H\{0} there
exists v∈H such that ω(u, v) 6=0. We say that (H,ω) is a symplectic space. Notice that
dimH is necessarily an even number 2g. A symplectic isomorphism A: (H,ω)!(H ′, ω′) is
an isomorphism satisfying ω(u, v)=ω′(A·u,A·v). By Darboux’s theorem, all symplectic
spaces with the same dimension are symplectically isomorphic.

Given a subspace F⊂H, the symplectic orthogonal of F is the set HF of all v∈H
such that for every u∈F we have ω(u, v)=0. Its dimension is complementary to the
dimension of F , that is, dimHF =2g−dimF . Notice that if two subspaces of H intersect
non-trivially and have complementary dimensions, then their symplectic orthogonals also
intersect non-trivially.

A subspace F⊂H is called isotropic if for every u, v∈F we have ω(u, v)=0 or, in
other words, if F is contained in its symplectic orthogonal. This implies that dimF6g.
A Lagrangian subspace is an isotropic subspace of maximal possible dimension g. We
represent by Iso(k,H)⊂Grass(k,H) the space of isotropic k-planes, for 16k6g. This is
a closed, hence compact, subset of the Grassmannian. Notice that

Iso(1,H) =Grass(1,H) =PH.

Given F∈Iso(k,H), the symplectic reduction of H by F is the quotient space

HF =HF /F.

Notice that HF admits a canonical symplectic form ωF defined by ωF ([u], [v])=ω(u, v).
Let L(H) be the space of Lagrangian flags, that is, the set of (Fi)

g
i=1, where Fi is an

isotropic subspace of H of dimension i and Fi⊂Fi+1 for all i. There exists a canonical
embedding

L(H)−!F(H),

(Fi)
g
i=1 7−! (Fi)

2g−1
i=1 ,
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where Fi is the symplectic orthogonal of F2g−i. One can see L(H) as a fiber bundle over
each Iso(k,H), through the projection

Υk:L(H)−! Iso(k,H),

(Fi)
g
i=1 7−!Fk.

(2.1)

We will use mostly the particular case k=1:

Υ= Υ1:L(H)−!PH,

(Fi)
g
i=1 7−!F1.

(2.2)

The fiber over a given λ∈PH is naturally isomorphic to L(Hλ), via the isomorphism

Υ−1(λ)−!L(Hλ),

(Fi)
g
i=1 7−! (Fi+1/λ)g−1

i=1 .
(2.3)

Lemma 2.6. Let 16k6g. Every hyperplane section in Grass(k,H) intersects
Iso(k,H) in a non-empty compact subset with empty interior.

Proof. Let S be a geometric hyperplane dual to some E∈Grass(2g−k,H). It is easy
to see that S meets Iso(k,H): just pick any λ∈PH contained in E and consider any
element F of Iso(k,H) containing λ. By construction, F is in S∩Iso(k,H). Clearly, the
intersection is closed in Iso(k,H), and so it is compact. We are left to show that the
complement of S∩Iso(k,H) is dense. If k=1 the result is clear; in particular, this takes
care of the case g=1. Next, assuming that the result is true for (k−1, g−1), we deduce
that it is also true for (k, g). Indeed, for a dense subset D of lines λ∈PH, we have
that λ 6⊂E and E 6⊂Hλ. Consequently, Eλ=(E∩Hλ)/λ is a subspace of Hλ of dimension
2g−k−1. By the induction hypothesis, a dense subset Dλ of Iso(k−1,Hλ) is not in
the hyperplane section Sλ dual to Eλ. Then, in view of (2.1), the set Lλ=Υ−1

k−1(Dλ) of
Lagrangian flags whose (k−1)-dimensional subspace is contained in Dλ is dense in L(Hλ).
By (2.3), we may think of Lλ as a subset of L(H) contained in the fiber over λ. So, taking
the union of the Lλ’s over all λ∈D, we obtain a dense subset L of L(H). Using (2.1)
once more, we conclude that Υk(L) is a dense subset of Iso(k,H). It suffices to prove
that no element of this set belongs to S. Let F∈Υk(L). By definition, there exists λ⊂F
with λ 6⊂E and (F/λ)∩((E∩Hλ)/λ)={0}. Since F is contained in Hλ, as it is isotropic,
this implies that F∩E={0}, which is precisely what we wanted to prove.

2.3. Linear actions of monoids

A monoid B is a set endowed with a binary operation that is associative and admits a
neutral element (the same axioms as in the definition of group, except for the existence of
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inverse). The monoids that interest us most in this context correspond to spaces of loops
through a given vertex in a Rauzy diagram, relative to the concatenation operation. A
linear action of a monoid is an action by isomorphisms of a finite-dimensional vector
space H. It induces actions on the projective space PH, the Grassmannian spaces
Grass(k,H), and the flag space F(H). Given a subspace F⊂H, we denote by BF the
stabilizer of F , that is, the subset of x∈B such that x·F=F .

A symplectic action of a monoid is an action by symplectic isomorphisms on a
symplectic space (H,ω). It induces actions on Iso(k,H) and the space of Lagrangian
flags L(H). These actions are compatible with the fiber bundles (2.1), in the sense that
they are conjugated to each other by Υk. Given λ∈PH, the stabilizer Bλ⊂B of λ acts
symplectically on Hλ.

Let B be a monoid acting by homeomorphisms of a compact space X. By minimal
set for the action of B we mean a non-empty closed set C⊂X which is invariant, that
is x·C=C for all x∈B, and which has no proper subset with these properties.(1) We
say that the action is minimal if the whole space is the only minimal set. Detecting
minimality of actions of a monoid in fiber bundles can be reduced to detecting minimality
for the action in the basis and in the fiber. We will need the following particular case of
this idea.

Lemma 2.7. Let B be a monoid acting symplectically on (H,ω). Assume that the
action of B on PH is minimal and that there exists λ∈PH such that the stabilizer
Bλ⊂B of λ acts minimally on L(Hλ). Then B acts minimally on L(H).

Proof. Let C be a closed invariant subset of L(H). For λ′∈PH, let Cλ′ be the
intersection of C with the fiber over λ′. Notice that Cλ may be seen as a closed set
invariant for the action of Bλ on L(Hλ). So, Cλ is either empty or the whole fiber. In
the first case, let Λ be the set of λ′ such that Cλ′ is non-empty. Then Λ is a closed
invariant set which is not the whole PH, and so it is empty. This means that C itself is
empty. In the second case, let Λ be the set of λ′ such that Cλ′ coincides with the whole
fiber. This time, Λ is a non-empty invariant set and so it is the whole PH. In other
words, in this case C=L(H).

2.4. Singular values, Lyapunov exponents

If we supply a vector space H with an inner product, we identify H with the dual H∗,
and we also introduce a metric on the Grassmannians: given F, F ′∈Grass(k,H), the

(1) If B is actually a group, a minimal set can be equivalently defined as a non-empty closed set
C⊂X such that B·x is dense in C for every x∈C.
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distance between F and F ′ is defined as maxλ⊂F minλ′⊂F ′ angle(λ, λ′), taken over all
lines λ⊂F and λ′⊂F ′. We will often consider balls with respect to this metric. All balls
will be assumed to have radius less than π/2.

The inner product also allow us to speak of the singular values of a linear iso-
morphism x acting on H: those are the square roots of the eigenvalues (counted with
multiplicity) of the positive self-adjoint operator x∗x. We always order them

σ1(x) > ...>σdim H(x)> 0.

A different inner product gives singular values differing from the σi’s by bounded factors,
where the bound is independent of x.

The Lyapunov exponents of a linear isomorphism x acting on H are the logarithms
of the absolute values of its eigenvalues, counted with multiplicity. We denote and order
the Lyapunov exponents of x as

θ1(x) > ...> θdim H(x).

Alternatively, they can be defined by

θi(x) = lim
n!∞

1
n

log σi(xn).

Given a linear isomorphism x such that σk(x)>σk+1(x), we let E+
k (x) and E−

k (x) be the
orthogonal spaces of dimension k and dimH−k, respectively, such that E+

k (x) is spanned
by the eigenvectors of x∗x with eigenvalue at least σk(x)2, and E−

k (x) is spanned by those
with eigenvalue at most σk+1(x)2. For any h=h+

k +h−k ∈E
+
k (x)⊕E−

k (x),

‖x·h‖>σk(x)‖h+
k‖. (2.4)

This is useful for the following reason. If F∈Grass(k,H) is transverse to E−
k (x), then

‖x·h‖> cσk(x)‖h‖ for all h∈F , (2.5)

where c>0 does not depend on x, but only on the distance between F and the hyperplane
section dual to E−

k (x) in Grass(k,H).
We collect here several elementary facts from linear algebra that will be useful in

the sequel. Related ideas appear in [AV, §7.2].

Lemma 2.8. Let xn be a sequence of linear isomorphisms of H such that

log σk(xn)−log σk+1(xn)!∞, xn ·E+
k (xn)!Eu

k and E−
k (xn)!Es

k,

as n!∞. If K is a compact subset of Grass(k,H) which does not intersect the hyper-
plane dual to Es

k, then xn ·K!Eu
k as n!∞.
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Proof. Considering a subsequence if necessary, let Fn∈K be such that xn ·Fn con-
verges to some F ′ 6=Eu

k . Take hn∈Fn with ‖hn‖=1 such that

xn ·hn

‖xn ·hn‖
!h /∈Eu

k ,

as n!∞. By (2.5), there exists c1>0 depending only on the distance from K to the
hyperplane dual to Es

k such that

‖xn ·hn‖> c1σk(xn).

Moreover, since xn ·E+
k (xn)=E−

dim H−k(x−1
n ), there exists c2>0 depending only on the

distance from h to Eu
k such that, for n large,

1 = ‖hn‖= ‖x−1
n xn ·hn‖> c2σdim H−k(x−1

n )‖xn ·hn‖.

Consequently, since σdim H−k(x−1
n )=σk+1(xn)−1,

1 > c1c2
σk(xn)
σk+1(xn)

for all n, and this contradicts the hypothesis.

Lemma 2.9. Let xn be a sequence of linear isomorphisms of H and let 16r6

dimH−1 be such that log σk(xn)−log σk+1(xn)!∞, as n!∞, for all 16k6r. Assume
that xn ·E+

k (xn)!Eu
k and E−

k (xn)!Es
k, and that x is a linear isomorphism of H such

that (x·Eu
k )∩Es

k={0} for all 16k6r. Then there exists C>0 such that

|θk(xxn)−log σk(xn)|<C

for all 16k6r and n large.

Proof. Let Uk be an open ball around x·Eu
k such that F∩Es

k={0} for every F∈
Uk.
By the previous lemma, for n large we have xxn ·
Uk⊂Uk. In particular, there exists
Eu

k,n∈Uk such that xxn ·Eu
k,n=Eu

k,n and

‖xxn ·h‖> c1σk(xn)‖h‖ for all h∈Eu
k,n,

where c1 depends only on x and the distance from 
Uk to Es
k. Consequently,

eθk(xxn) > c1σk(xn) for all 1 6 k6 r. (2.6)

Clearly, we also have
j∏

k=1

eθk(xxn) 6
j∏

k=1

σk(xxn) 6 c−1
2

j∏
k=1

σk(xn) for all 1 6 j6 r,

where c2=c2(x). Using (2.6), we conclude that

eθj(xxn) 6 c−jσj(xn) for all 1 6 j6 r,

with c=min{c1, c2}, and the result follows.
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Lemma 2.10. Let xn be a sequence of linear isomorphisms of H. Suppose that there
is F∈Grass(k,H) such that the set {F ′∈Grass(k,H):xn ·F ′!F} is not contained in a
hyperplane section. Then log σk(xn)−log σk+1(xn)!∞, and

F = lim
n!∞

xn ·E+
k (xn).

Proof. Assume that log σk(xn)−log σk+1(xn) is bounded (along some subsequence).
Passing to a subsequence, and replacing xn by ynxnzn, with yn, y−1

n , zn and z−1
n

bounded, we may assume that there exists l6k<r such that σj(xn)=σk(xn) if l6j6r and
|log σj(xn)−log σk(xn)|!∞ otherwise, and there exists an orthonormal basis {ei}dim H

i=1 ,
independent of n, such that xn ·ei=σi(xn)ei for every i and n. Let Eu, Ec and Es

be the spans of {ei}l−1
i=1, {ei}r

i=l and {ei}dim H
i=r+1, respectively. Notice that, for any F ′∈

Grass(k,H),
(1) (Ec⊕Es)+F ′=H if and only if any limit of xn ·F ′ contains Eu;
(2) F ′∩Es={0} if and only if any limit of xn ·F ′ is contained in Eu⊕Ec;
(3) if both (1) and (2) hold, then xn ·F ′!F , where F=Eu⊕F c and F c⊂Ec is such

that F c⊕Es=F ′∩(Ec⊕Es).
Thus, if xn ·F ′!F then F ′ is contained in the hyperplane section dual to the sub-

space G∈Grass(dimH−k,H) chosen as follows. If Eu 6⊂F , then G can be any subspace
contained in Ec⊕Es. If F 6⊂Eu⊕Ec, then G can be any subspace containing Es. If
Eu⊂F⊂Ec⊕Eu, then G can be any subspace containing Es and such that

G∩F∩(Ec⊕Es) 6= {0}.

This shows that if {F ′∈Grass(k,H):xn ·F ′!F} is not contained in a hyperplane section,
then the difference log σk(xn)−log σk+1(xn)!∞. To conclude, we may assume that
E−

k (xn) converges to some Es
k. By Lemma 2.8, if {F ′∈Grass(k,H):xn ·F ′!F} is not

contained in the hyperplane section dual to Es
k, then F=limn!∞ xn ·E+(xn).

Lemma 2.11. Let xn be a sequence of linear isomorphisms of H, % be a probability
measure on Grass(k,H) and %(n) be the push-forwards of % under xn.

(1) Assume that % gives zero weight to any hyperplane section. If

log σk(xn)−log σk+1(xn)!∞ and xn ·E+
k (xn)!Eu

k ,

then %(n) converges in the weak∗ topology to a Dirac mass on Eu
k .

(2) Assume that % is not supported in a hyperplane section. If %(n) converges in the
weak∗ topology to a Dirac mass on Eu

k , then

log σk(xn)−log σk+1(xn)!∞ and xn ·E+
k (xn)!Eu

k .
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Proof. Let us first prove (1). We may assume that E−
k (xn) also converges to

some Es
k. Take a compact set K disjoint from the hyperplane section dual to Es

k, and
such that %(K)>1−ε. Then %(n)(xn ·K)>1−ε and xn ·K is close to Eu

k for all large n,
by Lemma 2.8. This shows that %(n) converges to the Dirac measure on Eu

k .
Now, let us prove (2). The hypothesis implies that, passing to a subsequence of an

arbitrary subsequence, xn ·F!Eu
k for a full measure set, and this set is not contained in

a hyperplane section. Using Lemma 2.10, we conclude that

log σk(xn)−log σk+1(xn)!∞ and xn ·E+
k (xn)!Eu

k .

Lemma 2.12. Let Fu∈Grass(k,H) and F s∈Grass(dimH−k,H) be orthogonal sub-
spaces. Assume that x is a linear isomorphism of H such that x·Fu=Fu and x·F s=F s,
and there is an open ball U around Fu such that x·
U⊂U . Then σk(x)>σk+1(x),

E+
k (x) =Fu and E−

k (x) =F s.

Proof. Up to composition with orthogonal operators preserving Fu and F s, we may
assume that x is diagonal with respect to some orthonormal basis e1, ..., edim H , and that
Fu and F s are spanned by elements of the basis. We may order the elements of the
basis so that x·ei=σi(x)ei. Let Fu be spanned by {eij}k

j=1. If σl(x)6σr(x) for some
l∈{ij}k

j=1 and r /∈{ij}k
j=1, let Fθ be spanned by the es’s which are either of the form eij ,

with ij 6=l, or of the form cos 2πθel+sin 2πθer. If σl(x)=σr(x) then x·Fθ=Fθ for every θ,
and if σl(x)<σr(x) then xn ·Fθ!Fπ/2 /∈U for every θ such that Fθ 6=F0. In both cases,
this gives a contradiction (by considering some Fθ∈∂U).

If (H,ω) is a symplectic space (with dimH=2g), the choice of an inner product
defines an antisymmetric linear isomorphism Ω on H satisfying

ω(Ω·u,Ω·v) = 〈u,Ω·v〉.

One can always choose the inner product so that Ω is also orthogonal (we call such an
inner product adapted to ω). If a linear isomorphism x is symplectic, we have, for this
particular choice of inner product,

σi(x)σ2g−i+1(x) = 1 for all i=1, ..., g,

and hence
θi(x) =−θ2g−i+1(x) for all i=1, ..., g.

Lemma 2.13. Let xn be a sequence of symplectic isomorphisms of H such that
σk(xn)!∞, σk(xn)>σk+1(xn) and such that xn ·E+

k (xn) converges to some space Eu
k .

Then Eu
k is isotropic.
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Proof. By (2.4), if hn∈xn ·E+
k (xn) then

‖x−1
n ·hn‖6σk(xn)−1‖hn‖.

Thus, if un, vn∈xn ·E+
k (xn) are such that ‖un‖=‖vn‖=1, then

|ω(un, vn)|= |ω(x−1
n ·un, x

−1
n ·vn)|6 c−1σk(xn)−2.

Passing to the limit as n!∞, we get ω(u, v)=0 for every u, v∈Eu
k .

3. Rauzy classes and the Zorich cocycle

3.1. Interval exchange transformations

We follow the presentation of [MMY]. An interval exchange transformation is defined as
follows. Let A be some fixed alphabet on d>2 symbols. All intervals will be assumed to
be closed on the left and open on the right.

� Take an interval I⊂R and break it into subintervals {Ix}x∈A.
� Rearrange the intervals in a new order, via translations, inside I.
Up to translations, we may always assume that the left endpoint of I is 0. Thus the

interval exchange transformation is entirely defined by the following data:
(1) the lengths of the intervals {Ix}x∈A;
(2) their orders before and after rearranging.
The first is called length data, and is given by a vector λ∈RA

+ . The second is called
combinatorial data, and is given by a pair of bijections π=(π0, π1) from A to {1, ..., d}
(we will sometimes call such a pair of bijections a permutation). We denote the set of
all such pairs of bijections by S(A). We view a bijection A!{1, ..., d} as a row where
the elements of A are displayed in the right order. Thus we can see an element of S(A)
as a pair of rows, the top (corresponding to π0) and the bottom (corresponding to π1)
of π. The interval exchange transformation associated with this data will be denoted
by f=f(λ, π).

Notice that if the combinatorial data is such that the set of the first k elements in
the top and bottom of π coincide for some 16k<d then, irrespective of the length data,
the interval exchange transformation splits into two simpler transformations. Thus we
will consider only combinatorial data for which this does not happen, which we will call
irreducible. Let S0(A)⊂S(A) be the set of irreducible combinatorial data.
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3.2. Translation vector

The positions of the intervals Ix before and after applying the interval exchange trans-
formation differ by translations by

δx =
∑

π1(y)<π1(x)

λy−
∑

π0(y)<π0(x)

λy.

We let δ=δ(λ, π)∈RA be the translation vector, whose coordinates are given by the δx’s.
Notice that the “average translation” 〈λ, δ〉=

∑
x∈A λxδx is zero. We can write the rela-

tion between δ and (λ, π) as
δ(λ, π) =Ω(π)·λ,

where Ω(π) is a linear operator on RA given by

〈Ω(π)·ex, ey〉=


1, if π0(x)>π0(y) and π1(x)<π1(y),
−1, if π0(x)<π0(y) and π1(x)>π1(y),
0, otherwise

(3.1)

(here ex is the canonical basis of RA, and the inner product 〈· , ·〉 is the natural one
which makes this canonical basis orthonormal). Notice that Ω(π) can be viewed as an
antisymmetric matrix with integer entries. Notice also that Ω(π) may not be invertible.

We let H(π)=Ω(π)·RA, which is the space spanned by all possible translation vec-
tors δ(λ, π). We define a symplectic form ω=ωπ on H(π) by putting

ωπ(Ω(π)·u,Ω(π)·v) = 〈u,Ω(π)·v〉.

We let 2g(π) be the dimension of H(π), where g(π) is called the genus. This terminology
is justified by the construction described in §3.10.

3.3. Rauzy diagrams and monoids

A diagram (or directed graph) consists of two kinds of objects, vertices and (oriented)
arrows joining two vertices. Thus, an arrow has a start and an end. A path of length
m>0 is a sequence v0, ..., vm of vertices and a sequence of arrows a1, ..., am such that ai

starts at vi−1 and ends in vi. If γ1 and γ2 are paths such that the end of γ1 is the start
of γ2, their concatenation is also a path, denoted by γ1γ2. The set of all paths starting
and ending at a given vertex v is a monoid with the operation of concatenation. We can
identify paths of length zero with vertices and paths of length one with arrows.

Given π∈S0(A), we consider two operations. Let x and y be the last elements of the
top and bottom rows. The top operation keeps the top row; on the other hand, it takes y
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and inserts it back in the bottom immediately to the right of the position occupied by x.
When applying this operation to π, we will say that x wins and y loses. The bottom
operation is defined in a dual way, just interchanging the words top and bottom, and the
roles of x and y. In this case we say that y wins and x loses. Notice that both operations
preserve the first elements of both the top and the bottom row.

It is easy to see that those operations give bijections of S0(A). The Rauzy diagram
associated with A has the elements of S0(A) as its vertices, and its arrows join each
vertex to the ones obtained from it through either of the operations we just described.
So, every vertex is the start and end of two arrows, one top and one bottom. Thus, every
arrow has a start, an end, a type (top/bottom), a winner and a loser.

The set of all paths is denoted by Π(A). The orbit of π under the monoid generated
by the actions of the top and bottom operations on S0(A) will be called the Rauzy class
of π, and denoted by R(π). The set of all paths inside a given Rauzy class will be denoted
by Π(R). The set of all paths that begin and end at π∈S0(A) will be denoted by Π(π).
We call Π(π) a Rauzy monoid.

In Figure 1, we present the restriction of the Rauzy diagram to the Rauzy class of
the permutation

π=
(
A B C D

D C B A

)
.

The Rauzy class has 7 elements, and there are 14 arrows in the diagram. One element
of the monoid Π(π) is, for instance, the closed path

γ:

(
A B C D

D C B A

)
−!

(
A B C D

D A C B

)
−!

(
A B C D

D B A C

)
−!

(
A B C D

D C B A

)
.

3.4. Rauzy induction

Let R⊂S0(A) be a Rauzy class, and define ∆0
R=RA

+ ×R. Given (λ, π) in ∆0
R, we say

that we can apply Rauzy induction to (λ, π) if λx 6=λy, where x, y∈A are the last elements
of the top and bottom rows of π, respectively. Then we define (λ′, π′) as follows:

(1) let γ=γ(λ, π) be a top or bottom arrow starting at π in the Rauzy diagram,
according to whether λx>λy or λy>λx;

(2) let

λ′z =
{
λz, if z is not the winner of γ,
|λx−λy|, if z is the winner of γ;

(3) let π′ be the end of γ.
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Figure 1. Rauzy class and Rauzy diagram.

We say that (λ′, π′) is obtained from (λ, π) by applying Rauzy induction, of type top
or bottom depending on whether the type of γ is top or bottom. We have that π′∈S0(A)
and λ′∈RA

+ . The interval exchange transformations f : I!I and f ′: I ′!I ′ specified by
the data (λ, π) and (λ′, π′) are related as follows. The map f ′ is the first return map
of f to a subinterval of I, obtained by cutting from I a subinterval with the same right
endpoint and of length λz, where z is the loser of γ. The map QR: (λ, π)!(λ′, π′) is
called the Rauzy induction map. Its domain of definition, the set of all (λ, π)∈∆0

R such
that λx 6=λy, will be denoted by ∆1

R.

3.5. Relation between translation vectors

Let us calculate the relation between the translation vectors δ=δ(λ, π) and δ′=δ(λ′, π′).
Let γ be the arrow that starts at π and ends at π′. We have δ′z=δz if z is not the loser
of γ, and δ′z=δx+δy if z is the loser of γ (we continue to denote by x and y the last
symbols in the top and bottom rows of π, respectively). In other words, we can write

δ(λ′, π′) =Θ(γ)·δ(λ, π),
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where Θ(γ) is the linear operator of RA defined by Θ(γ)·ez=ex+ey if z is the winner
of γ, and Θ(γ)·ez=ez otherwise. Notice that we also have

λ=Θ(γ)∗ ·λ′,

where the adjoint Θ(γ)∗ is taken with respect to the natural inner product on RA that
renders the canonical basis orthonormal. Consequently, if h∈RA and h′=Θ(γ)·h then
〈λ, h〉=〈λ′, h′〉.

Since H(π) and H(π′) are spanned by possible translation vectors, Θ(γ)·H(π)=
H(π′), and so the dimension of H(π) only depends on the Rauzy class of π. One can
check that

Θ(γ)Ω(π)Θ(γ)∗=Ω(π′), (3.2)

which implies that Θ(γ): (H(π), ωπ)!(H(π′), ωπ′) is a symplectic isomorphism. Notice
that Θ(γ) can be viewed as a matrix with non-negative integer entries and determinant 1.
We extend the definition of Θ from arrows to paths in Π(A) in the natural way, setting
Θ(γ1γ2)=Θ(γ2)Θ(γ1). In this way Θ induces a representation on SL(A,Z) of the Rauzy
monoids Π(π)⊂Π(A), π∈S0(A).

3.6. Iterates of Rauzy induction

The connected components of ∆0
R=RA

+ ×R are naturally labelled by the elements of R

or, in other words, by length-0 paths in Π(R). The connected components of the domain
∆1

R of the induction map QR are naturally labelled by arrows, that is, length-1 paths
in Π(R). One easily checks that each connected component of ∆1

R is mapped bijectively
to some connected component of ∆0

R. Now let ∆n
R be the domain of Qn

R, for each n>2.
The connected components of ∆n

R are naturally labelled by length-n paths in Π(R): if γ
is obtained by concatenation of arrows γ1, ..., γn, then

∆γ = {x∈∆0(λ, π) :Qk−1
R (x)∈∆γk

, 1 6 k6n}.

If γ is a length-n path in Π(R) ending at π∈R, then

Qγ
R =Qn

R:∆γ −!∆π

is a bijection.
The set ∆R=

⋂
n>0 ∆n

R of (λ, π), to which we can apply Rauzy induction infinitely
many times,(2) contains all (λ, π) such that the coordinates of λ are rationally inde-
pendent, and so it is a full Lebesgue measure subset of ∆0

R. Let (λ, π)∈∆R. The

(2) There is a nice explicit characterization of this set, called the Keane property. See [MMY] for
a statement.
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connected components of ∆m
R , m>0, form a nested sequence of convex cones contain-

ing the half-line {(tλ, π):t∈R+}, and their intersection is the connected component of
(λ, π) in ∆R. In general, it is not true that this connected component reduces to the
half-line {(tλ, π):t∈R+} (“combinatorial rigidity”): this happens precisely when the in-
terval exchange transformation defined by (λ, π) is uniquely ergodic, and one can find
counterexamples as soon as the genus g=dimH(π)/2 is at least 2.

3.7. The Rauzy renormalization map

Since QR commutes with dilations, it projectivizes to a map RR:P∆1
R!P∆0

R, that we
call the Rauzy renormalization map. Let Rγ

R be the projectivization of Qγ
R, for each

path γ.

Theorem 3.1. (Veech [Ve1]) The map RR has an ergodic conservative absolutely
continuous invariant infinite measure µR. The density is analytic and positive in P∆0

R.

Conservativeness means that if a measurable set contains its pre-image then the
difference between the two has zero measure. It ensures that Poincaré recurrence holds
in this context, despite the fact that the measure is infinite. This theorem is the key step
in the proof by Masur and Veech that almost every interval exchange transformation is
uniquely ergodic. Indeed, they show that if x is recurrent under RR, then the connected
component of x in P∆R reduces to a point. The latter implies unique ergodicity of the
interval exchange transformation given by the (λ, π)’s that projectivize to x.

3.8. The Zorich map

The Rauzy renormalization map does not admit an absolutely continuous invariant prob-
ability measure, because it is too slow. For instance, in the case of two intervals, the
Rauzy renormalization map is just the Farey map, which exhibits a parabolic fixed point.
Zorich introduced a way to “accelerate” Rauzy induction, that produces a new renor-
malization map, which is more expanding, and always admits an absolutely continuous
invariant probability measure. In the case of two intervals, the Zorich renormalization
map is, essentially, the Gauss map.

We say that we can apply Zorich induction to some (λ, π)∈∆0
R if there exists a

smallest m>1 such that we can apply Rauzy induction m+1 times to (λ, π), and in doing
so we use both kinds of operations, top and bottom. Then we define QZ(λ, π)=Qm

R (λ, π).
The domain of this Zorich induction map is the union of ∆γ over all paths γ of length
m+1>2 which are obtained by concatenating m arrows of one type (top or bottom)
followed by an arrow of the other type. If we can apply Rauzy induction infinitely many
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times to (λ, π) then we can also apply Zorich induction infinitely many times. The
projectivization of the Zorich induction map QZ is called the Zorich renormalization
map RZ or, simply, the Zorich map.

Theorem 3.2. (Zorich [Zo2]) The Zorich map RZ admits an ergodic absolutely
continuous invariant probability measure. The density is analytic and positive in P∆1

R.

We call the measure given by this theorem the Zorich measure µZ .

3.9. The Zorich cocycle

We define a linear cocycle (x, h) 7!(RZ(x), BZ(x)·h) over the Zorich map x 7!RZ(x) as
follows. Let x belong to a connected component P∆γ of the domain of RZ , where γ is a
path of length m+1>2, and let γ̃ be the length-m path obtained by dropping the very
last arrow in γ (the one that has type distinct from all the others). Then BZ(x)=Θ(γ̃).
To specify the linear cocycle completely we also have to specify where h is allowed to
vary. There are two natural possibilities: either H(π) for x∈P∆π, or the whole RA. In
the first case we speak of the Zorich cocycle, whereas in the second one we call this the
extended Zorich cocycle.

Theorem 3.3. (Zorich [Zo2]) The (extended) Zorich cocycle is measurable:∫
log ‖BZ(x)‖ dµZ(x)<∞.

The relation (3.2) gives that the Zorich cocycle is symplectic. Consequently, its
Lyapunov exponents θ1>...>θ2g satisfy θi=−θ2g−i+1 for all i, where g=g(R) is the
genus. We say that the Lyapunov spectrum is symmetric. The Lyapunov spectrum of
the extended Zorich cocycle consists of the Lyapunov spectrum of the Zorich cocycle
together with additional zeros.

3.10. Zippered rectangles

Let R⊂S0(A) be a Rauzy class. Let π=(π0, π1)∈R. Let Γπ⊂RA be the set of all τ
such that ∑

π0(ξ)6k

τξ > 0 and
∑

π1(ξ)6k

τξ < 0 for all 1 6 k6 d−1. (3.3)

Notice that Γπ is an open convex polyhedral cone. It is non-empty, since the vector τ
with coordinates τξ=π1(ξ)−π0(ξ) belongs to Γπ.

From the data (λ, π, τ), it is possible to define a translation surface S=S(λ, π, τ) in
some Mg,�, where g and � depend only on π (see [MMY, §3.2]). This surface is obtained,
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in the zippered rectangles construction, by gluing rectangles of horizontal sides λα and
vertical sides hα, where the height vector h∈RA is given by h=−Ω(π)·τ . From the
relations (3.3) and the definition (3.1) of Ω(π) one easily sees that all the coordinates
of h are positive. The area of the translation surface S is A(λ, π, τ)=−〈λ,Ω·τ〉. The
space H(π) may be identified with the first homology group of the surface, and so its
dimension 2g(π) coincides with twice the genus of S. The numbers λξ and τξ also admit
a geometric interpretation in terms of the surface: the zippered rectangles construction
distinguishes a basis of the homology of S relative to the singularities, whose periods are
the complex numbers λξ+iτξ, ξ∈A.

3.11. Inverse limit: renormalization for zippered rectangles

If γ is the top arrow ending at some permutation π′, let Γγ be the set of all τ∈Γπ′ such
that

∑
x∈A τx<0, and if γ is a bottom arrow ending at π′, let Γγ be the set of all τ∈Γπ′

such that
∑

x∈A τx>0. If γ is an arrow starting at π and ending at π′ then

Θ(γ)∗ ·Γγ =Γπ.

Thus, the map

Q̂γ
R:∆γ×Γπ −!∆π′×Γγ ,

(x, τ) 7−! (QR(x), (Θ(γ)−1)∗ ·τ)

is invertible. Now we can define an invertible skew-product Q̂R over QR by putting
together the Q̂γ

R’s for every arrow γ. This is a map from
⋃

∆γ×Γπ (where the union
is taken over all π∈R and all arrows γ starting at π) to

⋃
∆π′×Γγ (where the union

is taken over all π′∈R and all arrows ending at π′). Thus, Q̂R is an extension of the
renormalization operator QR to zippered rectangles. The translation surfaces S and S′

corresponding to (λ, π, τ) and Q̂R(λ, π, τ), respectively, are obtained by appropriate cut-
ting and pasting, so they correspond to the same element in the moduli space Mg,�. See
[MMY, §4.1].

Let ∆̂0
R=

⋃
π∈R ∆π×Γπ, and let ∆̂R⊂∆̂0

R be the set of all points that can be iterated
infinitely many times forward and backwards by Q̂R. Note that ((λ, π), τ)∈∆̂0

R can be
iterated infinitely many times forward/backwards by Q̂R provided the coordinates of λ/τ
are rationally independent. Projectivization in λ and τ gives a map R̂R: P̂∆R!P̂∆R.
This is an invertible map that can be seen as the inverse limit of RR: the connected
components of P̂∆R reduce to points Lebesgue almost everywhere. There is a natural
infinite ergodic conservative invariant measure µ̂R for R̂R that is equivalent to Lebesgue
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measure. The projection µR of µ̂R is the measure appearing in Theorem 3.1: this is how
µR is actually constructed in [Ve1].

Let Υ0
R=

⋃
P∆γ×PΓγ′ , where the union is taken over all pairs of arrows γ′ and γ

of distinct types (one is top and the other is bottom) such that γ′ ends at the start of γ.
Let ΥR=Υ0

R∩P̂∆R and R̂Z : ΥR!ΥR be the first return map. The choice of ΥR is so
that µ̂R(ΥR) is finite. So, we may normalize µ̂R|ΥR

to get a probability measure µ̂Z on
ΥR which is invariant under R̂Z . One checks that µ̂Z is ergodic. Moreover, the map R̂Z

is a skew-product over RZ that can be seen as the inverse limit of RR. The projection µZ

of µ̂Z is the probability measure described in Theorem 3.2: this is how µZ is constructed
in [Zo2].

The invertible Zorich cocycle is the lift (R̂Z , B̂
Z) of the Zorich cocycle to a cocycle

over the invertible Zorich map, defined by B̂Z((λ, π), τ)=BZ(λ, π).

3.12. Minimality in the projective space

The aim of this section is to prove Corollary 3.6, regarding the projective behavior
of the matrices involved in the Zorich cocycle. This result easily follows from known
constructions, but will be quite useful in the sequel .

Given x∈P̂∆R, obtained by projectivizing ((λ, π), τ), consider the subspaces Euu,
Ec and Ess of H(π) defined as follows: firstly, Euu is the line spanned by Ω(π)·τ ;
secondly, Ess is the line spanned by Ω(π)·λ; and, finally, Ec is the symplectic orthog-
onal to the plane Euu⊕Ess. Notice that Euu is not symplectically orthogonal to Ess:
〈λ,Ω(π)·τ〉<0, since both λ and h=−Ω(π)·τ have only positive coordinates. Thus, Ec

has codimension 2 in H(π) and H(π)=Euu⊕Ec⊕Ess.

Lemma 3.4. The splitting Euu⊕Ec⊕Ess is invariant under the invertible Zorich
cocycle. The spaces Euu and Ess correspond to the largest and the smallest Lyapunov
exponents, respectively , and Ec corresponds to the remaining exponents.

Proof. The invariance of Euu and Ess follows directly from the definitions and (3.2).
The invariance of Ec is a consequence, since the Zorich cocycle is symplectic. Since Euu

is the projectivization of a direction in the positive cone and the matrices of the invert-
ible Zorich cocycle have non-negative entries, Euu must be contained in the subspace
corresponding to the largest Lyapunov exponent. Since the largest Lyapunov exponent
is simple (see [Zo2]), Euu must be the Oseledets direction associated with it. This im-
plies that Ess corresponds to the smallest Lyapunov exponent, since Ess is an invariant
direction which is not contained in the symplectic orthogonal to Euu. It follows that Ec

must correspond to the other Lyapunov exponents.
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It follows from the definitions that −Ω(π)·Γπ⊂H(π)∩RA
+ and hence −Ω(π)·Γπ is

an open cone in H(π). In fact, it is the interior of the cone H+(π) of Veech [Ve1].

Lemma 3.5. For every [h]∈PH(π), the set Θ(Π(π))·[h] contains a dense subset of
P(−Ω(π)·Γπ).

Proof. For almost every x∈ΥR, [h] is not symplectically orthogonal to the span
Ess(x) of Ω(π)·λ. Consequently, [h] 6⊂Ec(x)⊕Ess(x). By the Oseledets theorem,

B̂Z(Rm−1
Z (x)) ... BZ(x)·[h] and Ω(π(m))·[τ (m)] =Euu(x(m))

are asymptotic. On the other hand, by ergodicity, the sequence

R̂m
Z (x) =x(m) =(([λ(m)], π(m)), [τ (m)])

is dense in ΥR for almost every x. This implies that Euu(x(m)) is dense in P(−Ω(π)·Γπ).
The result follows from these two observations.

Corollary 3.6. The action, via Θ, of the Rauzy monoid Π(π) on PH(π) is
minimal.

Proof. By Lemma 3.5, the closure of any orbit must intersect every other orbit. This
implies minimality, obviously.

3.13. Choices of permutations in Rauzy classes

Let us say that π is standard if the first letter in the top/bottom is the last letter in the
bottom/top. Note that a standard permutation is always irreducible.

Lemma 3.7. (Rauzy [Ra]) In every Rauzy class there exists a standard permutation.

Let π∈S0(A) be standard. Assuming d>3, we call π degenerate if there exists B∈A
which is either second of the top and bottom rows or last but one of the top and bottom
rows. Assuming d>4, we call π good if forgetting the first (and last) letters of the top and
the bottom rows give an irreducible permutation. Notice that a standard permutation
cannot be both degenerate and good.

Lemma 3.8. ([KZ, Lemma 20]) In every Rauzy class with #A>3 there exists either
a good permutation or a degenerate permutation.

Proof. We give a proof here for the convenience of the reader, and to avoid confusion
with the slightly different language of [KZ]. For d=#A=3 the result is immediate. In
what follows we suppose d>4.
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Let A be the first letter in the top and E be the first letter in the bottom. Suppose,
by contradiction, that no standard permutation in R is either degenerate or good. Let π
be a standard permutation and π′ be obtained by forgetting A and E. Then π′ is
reducible, and so there exists a maximal 16k6d−3 such that the set of the first k
symbols in the top and in the bottom of π′ coincide. Since π is non-degenerate, we must
have 26k6d−4. Assume that π has been chosen so that the resulting k is maximal.
Let x1, ..., xk be the first k letters in the top and y1, ..., yk be the first k letters in the
bottom of π′ (so {x1, ..., xk}={y1, ..., yk}). Let C be the letter in position d−1 in the top
of π, and l be its position in the bottom of π. Then k+26l6d−2. Let C ′ be the letter
preceding C in the bottom of π, and r be its position in the top of π. Then 26r6d−2.
Let us consider the following Rauzy path starting from π:

(1) apply d−r bottom iterations to π, so that C ′ becomes last in the top;
(2) apply d−l top iterations, so that C becomes last in the bottom;
(3) apply r−1 bottom iterations, so that E becomes last in the top;
(4) finally, apply 1 top iteration, so that A becomes last in the bottom.
Notice that step (1) sends C to the position d−r in the top, preceding E, and

step (2) sends A to the position d−1 in the bottom. In the end, we get a new standard
permutation π̃: A is last in the bottom and E is last in the top. Let π̃′ be obtained
from π̃ by forgetting the letters A and E. There are two cases to consider.

If l>k+2 then r>k+1. The calculation for this case is detailed in the following
formula:(

A x1 · xk · · · · C ′ · C E

E y1 · yk · C ′ C · · · · A

)

7−!
(
A · · · · · · · · C E x1 · xk · C ′

E y1 · yk · C ′ C · · · · · · · · A

)

7−!
(
A · · · · · · · · C E x1 · xk · C ′

E y1 · yk · C ′ · · · · · · · · A C

)

7−!
(
A · · · · · · · · C x1 · xk · C ′ E

E y1 · yk · C ′ · · · · · · · · A C

)

7−!
(
A · · · · · · · · C x1 · xk · C ′ E

E C y1 · yk · C ′ · · · · · · · · A

)
.

Notice that C precedes x1, ..., xk in the top and precedes y1, ..., yk in the bottom of π̃.
By assumption, π̃ is neither degenerate nor good. The first of these facts implies that C
is not the second letter in the top of π̃. The second one means that π̃′ is reducible: there
exists 16k̃6d−3 such that the first k̃ elements in the top and the bottom of π̃′ coincide.
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In view of the previous observations, this implies that the first k̃ elements in the bottom
of π̃′ include C and y1, ..., yk. Thus k̃>k, contradicting the choice of k.

If l=k+1, then C ′=yk=xr−1. The calculation for this case is detailed in the follow-
ing formula:(

A x1 · xr−1 · xk · · C E

E y1 · · · yk C · D A

)

7−!
(
A · · D · · · · C E x1 · · xr−1

E y1 · · · yk C · · · · · D A

)

7−!
(
A · · D · · · · C E x1 · · xr−1

E y1 · · · yk · · · · · D A C

)

7−!
(
A · · D · · · · C x1 · · xr−1 E

E y1 · · · yk · · · · · D A C

)

7−!
(
A · · D · · · · C x1 · · xr−1 E

E C y1 · · · yk · · · · · D A

)
.

Let D be the letter in position d−1 in the bottom of π. Notice that C 6=D, since π is
non-degenerate. After the first step, C precedes E which precedes x1, ..., xr−1=yk. In
particular, D appears before C in the top. It follows that D appears before C in the top
of π̃. On the other hand, after the second step, D precedes A in the bottom. It follows
that D is in position d−1 in the bottom of π̃. So, C is the first letter and D is the last
letter in the bottom of π̃′, and D appears before C in the top. This implies that π̃′ is
irreducible, which contradicts the hypothesis. So, this case cannot really occur.

4. Twisting and pinching

In this section we consider actions of a monoid B by linear isomorphisms of a vector
space H. We introduce certain properties of monoids that we call twisting, twisting
of isotropic spaces, pinching, strong pinching, and simplicity, and describe some logical
relations between them.

4.1. Twisting

We say that a monoid twists a subspace F if it contains enough elements to send F

outside any finite union of hyperplane sections. More precisely, we give the following
definition.
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Definition 4.1. We say that B twists some F∈Grass(k,H) if, for every finite subset
{Fi}m

i=1 of Grass(dimH−k,H), there exists x∈B such that

(x·F )∩Fi = {0}, 1 6 i6m.

In connection with the next lemma, observe that a linear arrangement S is B-
invariant (that is, x·S=S for every x∈B) if and only if it is B−1-invariant, where
B−1={x−1 :x∈B}. In particular, the lemma implies that B twists F if and only if B−1

twists F .

Lemma 4.2. A monoid B twists F∈Grass(k,H) if and only if F does not belong to
any non-trivial invariant linear arrangement in Grass(k,H).

Proof. Let S⊂Grass(k,H) be a non-trivial linear arrangement containing F . Then S
is contained in a finite union S̃ of hyperplane sections Si={F ′∈Grass(k,H):F ′∩Fi 6={0}}
for all 16i6m. If B twists F then there exists x∈B such that (x·F )∩Fi={0}, 16i6m,
that is x·F /∈S̃. Since S⊂S̃, it follows that S is not invariant. On the other hand, if B
does not twist F then there exists a finite union of hyperplane sections S̃⊂Grass(k,H)
such that x·F∈S̃ for every x∈B. From Corollary 2.5 (1) we get that S=

⋂
x∈B x

−1 ·S̃ is
a non-trivial linear arrangement containing F . It is clear that x−1 ·S⊃S for every x∈B.
From Corollary 2.5 (3) it follows that x·S=S for every x∈B.

Next, we prove that given any finite family of hyperplane sections and subspaces,
possibly with variable dimensions, there exists some isomorphism in B that sends ev-
ery subspace outside the corresponding hyperplane section (simultaneously), provided B
twists each one of the subspaces individually.

Lemma 4.3. For 16j6m, let kj satisfy 16kj 62g−1, let Fj∈Grass(kj ,H), and let
F ′j∈Grass(dimH−kj ,H). Assume that Fj is twisted by B for every j. Then there exists
x∈B such that x·Fj∩F ′j ={0} for all 16j6m.

Proof. Let Sj⊂ΛkjH be the hyperplane dual to F ′j . Consider the vector space
X=

∏m
j=1 ΛkjH and let W=

⋂
x∈B x

−1 ·Y, where

Y =
m⋃

j=1

[ ∏
i<j

ΛkiH×Sj×
∏
i>j

ΛkiH

]
⊂X.

Let uj∈ΛkjH projectivize to Fj . If the conclusion does not hold, then u={uj}m
j=1 belongs

to W . Using Lemmas 2.1 and 2.2, we may write W as a finite union (uniquely defined,
up to order) of subspaces Wl, l=1, ..., L, where L is minimal and the Wl’s are of the form

Wl =Wl,1×...×Wl,m,
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where each Wl,j is an intersection of geometric hyperplanes of ΛkjH, or else coin-
cides with the whole exterior product. Given any x∈B, we have x−1 ·W⊃W and so
x−1 ·W=W , by Corollary 2.5 (3). This means that each x∈B permutes the Wl’s and
so, for every j, it permutes the Wl,j ’s (counted with multiplicity). We have u∈Wl0 for
some l0, that is, uj∈Wl0,j for all j. Since W 6=X, there exists j0 such that Wl0,j0 6=Λkj0H,
and so Grass(kj0 ,H) is not contained in the projectivization of Wl0,j0 . Note that, by
construction, the intersection of Grass(kj0 ,H) with the projectivization of Wl0,j0 con-
tains Fj0 . LetW 0 be the union of allWl,j0 ’s whose projectivization intersects but does not
contain Grass(kj0 ,H). Then the projectivization of W 0 intersected with Grass(kj0 ,H) is
a non-trivial linear arrangement in the Grassmannian, invariant for B and containing Fj0 .
This contradicts the assumption that B twists Fj0 .

Lemma 4.4. Let B be a monoid acting symplectically on (H,ω), and assume that the
action of B on the space of Lagrangian flags L(H) is minimal. Then B twists isotropic
subspaces.

Proof. If B acts minimally on L(H), then it also acts minimally on each Iso(k,H),
16k6g (where dimH=2g). We will only use this latter property. Let F∈Iso(k,H) and S
be a non-trivial invariant linear arrangement in Grass(k,H). If F∈S then S∩Iso(k,H)
is a non-empty closed invariant set under the action of B. By minimality, it must be the
whole of Iso(k,H). This contradicts Lemma 2.6. Therefore, F /∈S. In view of Lemma 4.2,
this proves the claim.

4.2. Pinching

Assume that B acts symplectically on (H,ω), dimH=2g.

Definition 4.5. We say that B is strongly pinching if for every C>0, there exists
x∈B such that

log σg(x)>C and log σi(x)>C log σi+1(x) for all 1 6 i6 g−1. (4.1)

This is independent of the choice of the inner product used to define the singular values.

The converse statement in the next lemma says that strong pinching together with
the twisting of all isotropic spaces provide good separation of the Lyapunov exponents.

Lemma 4.6. If for every C>0 there exists x∈B such that

θg(x)> 0 and θk(x)>Cθk+1(x) for all 1 6 k6 g−1,

then B is strongly pinched. Most important , the converse holds if B twists isotropic
spaces.
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Proof. Clearly, if x has simple Lyapunov spectrum, we have

σk(xn)� enθk(x).

This gives the first assertion. For the second one, let xn∈B be such that

σg(xn)>n and log σk(xn)>n log σk+1(xn) for all 1 6 k6 g−1.

We may assume that xn ·E+
k (xn) converges to some Eu

k ∈Grass(k,H) and E−
k (Bn) con-

verges to some Es
k∈Grass(2g−k,H), 16k6g. By Lemma 2.13, the subspaces Eu

k are
isotropic. It follows from Lemma 4.3 that if B twists isotropic subspaces, there exists
x∈B such that

x·Eu
k ∩Es

k = {0} for all 1 6 k6 g.

By Lemma 2.9, there exists C>0 such that

|θk(xxn)−log σk(xn)|<C for all 1 6 k6 g,

which implies the result.

The next lemma indicates a useful special situation where one has the strong pinching
property.

Lemma 4.7. If for every C>0 there exists x∈B for which 1 is an eigenvalue of
geometric multiplicity 1 (the dimension of the eigenspace is equal to 1), and we have

θg−1(x)> 0 and θk(x)>Cθk+1(x) for all 1 6 k6 g−2,

then B is strongly pinched.

Proof. Since the action is symplectic, the eigenvalue 1 has even algebraic multiplicity.
Considering the Jordan form of x, the hypotheses imply that

σg(xn)�n, (4.2)

σk(xn)� eθk(x)n for all 1 6 k6 g−1. (4.3)

The claim follows immediately.

Lemma 4.8. Assume that B0⊂B twists isotropic subspaces and is strongly pinching.
Then for every x∈B and any C>0 there exists x0∈B0 such that

θg(x0)> 0 and θi(x0)>Cθi+1(x0) for all 1 6 i6 g−1, (4.4)

θg(xx0)> 0 and θi(xx0)>Cθi+1(xx0) for all 1 6 i6 g−1. (4.5)
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Proof. Let x2∈B0 satisfy the conditions in (4.4): θg(x2)>0 and θi(x2)>Cθi+1(x2)
for all 16i6g−1. Let Eu

k (x2)=limn!∞ xn
2 ·E+

k (xn
2 ), which is the space spanned by the k

eigenvectors with largest eigenvalues, and let Es
k(x2)=limn!∞E−

k (xn
2 ), which is the space

spanned by the 2g−k remaining eigenvectors. Using Lemma 4.3, select x1∈B0 such that
x1 ·Eu

k ∩Es
k={0} and xx1 ·Eu

k ∩Es
k={0} for all 16k6g. Then x0=x1x

n
2 satisfies all the

conditions for n large, by the same argument as in Lemma 4.6.

4.3. Simple actions

Definition 4.9. We say that B is twisting if it twists any F∈Grass(k,H) for any
16k6dimH−1.

From the observation preceding Lemma 4.2 we have that B is twisting if and only if
B−1 is twisting.

Definition 4.10. We say that B is pinching if for every C>0 there exists x∈B such
that

σi(x)>Cσi+1(x) for all 1 6 i6dimH−1.

This is independent of the choice of the inner product used to define the singular values.

Definition 4.11. We say that B is simple if it is both twisting and pinching.

Lemma 4.12. Let B be a simple monoid. Then the inverse monoid B−1 is also
simple.

Proof. Twisting follows directly from the observation preceding Lemma 4.2. Pinch-
ing follows from the fact that log σi(x)=− log σdim H−i+1(x−1) for all 16i6dimH−1.

We suspect that there could be sufficient conditions for twisting along the following
lines.

Problem 4.13. If B acts minimally on PH, is it necessarily twisting? For symplectic
actions, one can ask a weaker question: Does minimal action on PH imply twisting of
isotropic subspaces?

Lemma 4.14. Let B be a monoid acting symplectically on (H,ω). If B twists
isotropic subspaces and is strongly pinching then it is simple.

Proof. To see that strong pinching implies pinching, it is enough to consider an
adapted inner product, for which (4.1) implies also

− log σg+1(x)>C, (4.6)

− log σi+1(x)>−C log σi(x) for all g+1 6 i6 2g−1, (4.7)
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where dimH=2g. We are left to show that, under the hypotheses, B twists any F∈
Grass(k,H). It is easy to see that B twists F if and only if it twists its symplectic
orthogonal. So it is enough to consider the case 16k6g. Let S⊂Grass(k,H) be a
non-trivial invariant linear arrangement. By Lemma 4.6, there exists x1∈B with simple
Lyapunov spectrum. Let Es=limn!∞E−

g (xn
1 ) and Eu=limn!∞ xn

1 ·E+
g (xn

1 ) be the stable
and unstable eigenspaces of x1. Thus both Es and Eu are isotropic subspaces of H.
If F∈S then there exists x0∈B such that (x0 ·F )∩Es={0}. It follows that xn

1x0 ·F
converges to a subspace of Eu. Since S is closed, we conclude that S∩Iso(k,H) 6=∅.
This contradicts the assumption that B twists all elements of Iso(k,H).

Remark 4.15. An argument similar to the proof of the previous lemma shows that
if B is simple and acts symplectically, then any closed invariant set in the flag space F(H)
intersects the embedding of the space of Lagrangian flags L(H), that is, it contains some
(Fi)

2g−1
i=1 such that (Fi)

g
i=1 is a Lagrangian flag and F2g−i is the symplectic orthogonal

of Fi.

Lemma 4.16. Let B0⊂B be a large submonoid in the sense that there exists a finite
subset Y ⊂B and z∈B such that for every x∈B there is some y∈Y such that yxz∈B0.
If B is twisting or pinching then B0 also is. Assuming that the action of B is symplectic,
if B twists isotropic subspaces or is strongly pinching then the same holds for B0.

Proof. Notice that |log σi(x)−log σi(yxz)|<C, where C only depends on y, z and
the choice of the inner product used to define the singular values. Thus if B is (strongly)
pinching then B0 is also (strongly) pinching. Let S⊂Grass(k,H) be a non-trivial linear
arrangement invariant for B0. Then

⋂
x∈B

x−1 ·
⋃

y∈Y

y−1 ·S⊃
⋂

y∈Y

⋂
x0∈B0

(y−1x0z
−1)−1 ·

⋃
y∈Y

y−1 ·S⊃ z ·
⋂

y∈Y

⋂
x0∈B0

x−1
0 ·S= z ·S.

So, z ·S is contained in a non-trivial linear arrangement invariant for B. This shows that
if B is twisting then so is B0. If B acts symplectically and S intersects Iso(k,H) then
z ·S also does, so if B twists isotropic subspaces then B0 also does.

Lemma 4.17. Let B be a simple monoid. Then there exists x∈B with simple Lya-
punov spectrum θi(x)>θi+1(x), 16i6dimH−1.

Proof. Let xn∈B be such that log σi(x)−log σi+1(x)>n, 16i6dimH−1. We may
assume that E−

i (xn) and xn ·E+
i (xn) converge to spaces Es

i and Eu
i , 16i6dimH−1. Let

x∈B be such that (x·Eu
i )∩Es

i ={0}, 16i6dimH−1. By Lemma 2.9, there exists C>0
such that |θi(xxn)−log σi(xn)|<C, 16i6dimH−1. This gives the result.
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5. Twisting of Rauzy monoids

Recall that a Rauzy monoid Π(π) acts symplectically on H(π) (by γ ·h=Θ(γ)·h). In
particular, it acts on the space of Lagrangian flags L(H(π)). Our aim in this section is
to prove the following result.

Theorem 5.1. Let π be irreducible. The action of the Rauzy monoid Π(π) on the
space of Lagrangian flags L(H(π)) is minimal.

Corollary 5.2. Let π be irreducible. The action of the Rauzy monoid Π(π) on
H(π) twists isotropic subspaces.

Proof. This follows directly from Theorem 5.1 and Lemma 4.4.

5.1. Simple reduction

Let A be an alphabet on d>3 symbols, B∈A, and A′=A\{B}. Given π∈S0(A), let π′

be obtained from π by removing B from the top and bottom rows. If π′∈S0(A′), we
say that π′ is a simple reduction of π. Let 2g(π)=dimH(π)=rankΩ(π) and analogously
for π′. Let P :RA!RA′ be the natural projection, and P ∗:RA′!RA be its adjoint (the
natural inclusion). Notice that

PΩ(π)P ∗=Ω(π′). (5.1)

Lemma 5.3. Let π′ be a simple reduction of π. Then either g(π)=g(π′) or g(π)=
g(π′)+1. Moreover, the following are equivalent :

(1) g(π)=g(π′);
(2) H(π) is spanned by {Ω(π)·ex, x∈A′};
(3) eB /∈H(π);
(4) eB does not belong to the span of {Ω(π)·ex, x∈A′};
(5) P restricts to a symplectic isomorphism H(π)!H(π′).

Proof. There are two possibilities for the value of rankPΩ(π)P ∗:
(a) We may have rankPΩ(π)P ∗=rankΩ(π). Since the rank cannot increase by

composition, this implies that

rankPΩ(π)P ∗=rankPΩ(π) = rank Ω(π)P ∗=rankΩ(π).

(b) We may have rankPΩ(π)P ∗<rank Ω(π). Notice that

rankPΩ(π)P ∗> rank Ω(π)−2. (5.2)

Since rank Ω(π) and rankPΩ(π)P ∗ are even, we must have rankPΩ(π)P ∗=rankΩ(π)−2.
This implies that rankPΩ(π)=rankΩ(π)P ∗=rankΩ(π)−1.



34 a. avila and m. viana

By (5.1), in case (a) we have g(π)=g(π′) and in case (b) we have g(π)=g(π′)+1.
Notice that

(1) is equivalent to rankPΩ(π)P ∗=rankΩ(π);
(2) is equivalent to Ω(π)·RA=Ω(π)(P ∗ ·RA′), that is, rank Ω(π)=rankΩ(π)P ∗;
(3) is equivalent to (Ω(π)·RA)∩KerP={0}, that is, rankPΩ(π)=rankΩ(π);
(4) is equivalent to (Ω(π)(P ∗ ·RA′))∩KerP={0}, that is,

rankPΩ(π)P ∗=rankΩ(π)P ∗.

Thus, (1), (2), (3) and (4) are all equivalent. It is clear that (5) implies (1). Notice
that, by (5.1), we have P ·H(π)⊃H(π′). So, (1) implies that P restricts to an isomor-
phism H(π)!H(π′). To see that this isomorphism is symplectic, let ω and ω′ be the
symplectic forms on H(π) and H(π′). Then, using (5.1) and the definition of ω and ω′,

ω′(PΩ(π)·ex, PΩ(π)·ey) =ω′(Ω(π′)·ex, PΩ(π)·ey) = 〈ex, PΩ(π)·ey〉

= 〈P ∗ ·ex,Ω(π)·ey〉=ω(Ω(π)·ex,Ω(π)·ey)

for all x, y∈A′. In view of (2), this implies that P :H(π)!H(π′) is symplectic.

5.2. Simple extension

Let A′ be an alphabet on d>2 symbols and π′∈S0(A′). Let A be the first letter in the
top and E be the first letter in the bottom. If B /∈A′, let A=A′∪{B}. Let C,D∈A′ be
such that (A,E) 6=(C,D) (we allow C=D). Let π=E(π′) be obtained by inserting B in
π′ just before C in the top and before D in the bottom. This operation is described by

π′=
(
A · C · · ·
E · · · D ·

)
7−!π=

(
A · B C · · · ·
E · · · · B D ·

)
.

Lemma 5.4. π=E(π′) is irreducible.

Proof. Let k<#A. Suppose that the first k symbols in the top and the bottom of π
coincide. Note that k>2. If these symbols do not include B, then they are also the
first k symbols in the top and the bottom of π′. Otherwise, removing B, we obtain the
first k−1 symbols in the top and the bottom of π′. In either case, this contradicts the
assumption that π′ is irreducible.

This immediately extends to a map E defined (by the same rule) on the whole Rauzy
class R(π′). We are going to see that E takes values in the Rauzy class of π. Given an
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arrow γ′ in R(π′), let γ=E∗(γ′) be the path defined as follows.
(1) If C is last in the top of π′ and γ′ is a bottom arrow, then γ is the sequence of

the two bottom arrows starting at the E-image of the start of γ′. This is described by

γ′:
(
· ∗ · · · C

· · · D · ∗

)
7−!

(
· ∗ C · · · ·
· · · · D · ∗

)
,

E∗(γ′):
(
· ∗ · · · · B C

· · · B D · · ∗

)
7−!

(
· ∗ C · · · · B

· · · · B D · ∗

)

7−!
(
· ∗ B C · · · · ·
· · · · · B D · ∗

)
.

(2) If D is last in the bottom of π′ and γ′ is a top arrow, then γ is the sequence of
two bottom arrows starting at the E-image of the start of γ′. This is analogous to the
previous case.

(3) Otherwise, γ is the arrow of the same type as γ′ starting at the E-image of the
start of γ′. For example,

γ′:
(
· ∗ · · · C · · ·
· · · D · · · · ∗

)
7−!

(
· ∗ · · · · C · ·
· · · D · · · · ∗

)
,

E∗(γ′):
(
· ∗ · · · · B C · · ·
· · · B D · · · · · ∗

)

7−!
(
· ∗ · · · · · B C · ·
· · · B D · · · · · ∗

)
.

In all cases, γ starts at the image by E of the start of γ′ and ends at the image by
E of the end of γ′. This shows that γ is a path in the Rauzy class of π, and that E takes
values in R(π). We extend E∗ to a map Π(R(π′))!Π(R(π)) in the whole space of paths,
compatible with concatenation, and call E :R(π′)!R(π) and E∗: Π(R(π′))!Π(R(π))
extension maps.

Remark 5.5. If π is a simple extension of π′, then π′ is a simple reduction of π. The
converse is true if and only if the omitted letter is not the last on the top nor on the
bottom of π.

Observe that if γ′=E∗(γ) then

PΘ(γ) =Θ(γ′)P. (5.3)

Indeed, this may be rewritten as follows (recall that P (eB)=0 and P (ex)=ex for every
x 6=B):

〈Θ(γ)·ex, ey〉= 〈Θ(γ′)·P (ex), ey〉 for all x∈A and y ∈A′. (5.4)
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It is enough to check the case when γ′ is an arrow, because E∗ is compatible with con-
catenation. In case (1) of the definition above, Θ(γ′)·e∗=eC +e∗ and Θ(γ′)·ex=ex for
any x∈A′\{∗}. On the other hand, Θ(γ)·e∗=eB+eC +e∗ and Θ(γ′)·ex=ex for any
x∈A\{∗}. In particular, Θ(γ)·eB=eB . The claim (5.3) follows in this case, and the
other two are analogous.

Lemma 5.6. Let π be a simple extension of π′, and assume that g(π)=g(π′). There
exists a symplectic isomorphism H(π)!H(π′) which conjugates the actions of E∗(γ′)
on H(π) and of γ′ on H(π′), for every γ′∈Π(π′).

Proof. By Lemma 5.3, the natural projection P :RA!RA′ restricts to a symplec-
tic isomorphism H(π)!H(π′). Then (5.3) shows that this isomorphism conjugates
Θ(γ)|H(π) and Θ(γ′)|H(π′).

Lemma 5.7. Let π∈S0(A). If #A>3 then there exist B∈A and π′∈S0(A\{B})
such that π is a simple extension of π′.

Proof. Let A be the first in the top and E be the first in the bottom of π. Let
B=E, if π0(E)<π1(A),
B=A, if π0(E)>π1(A),
B ∈{A,E} be arbitrary, if π0(E) =π1(A)<#A,
B ∈A\{A,E} be arbitrary, if π0(E) =π1(A) =#A.

Let π′ be obtained by forgetting B on π. Notice that π′ is irreducible. Indeed, suppose
that the first k letters in the top coincide with the first k letters in the bottom, 16k6d−2.
In the first case, one must have k>π′1(A) and then, adding the letter E to the list, one
gets that, for π, the first k+1 letters in the top coincide with the first k+1 letters in the
bottom. This contradicts the assumption that π is irreducible. A symmetric argument
applies in the second case, and the same reasoning applies also in the third case. Finally,
admissibility is obvious in the fourth case, because the permutation is standard. In all
cases, π is a simple extension of π′.

5.3. Proof of Theorem 5.1

We prove the theorem by induction on the size #A of the alphabet. By Corollary 3.6,
the conclusion holds when #A=2, since in this case L(H(π)) is just PH(π). Assume
that it holds for #A=d−1>2, and let us show that it also does for #A=d.

By Lemma 5.7, there exists π′∈S0(A′), A′=A\{B}, such that π is a simple exten-
sion of π′. If g(π)=g(π′), the result follows immediately from the induction hypothe-
sis and Lemma 5.6. Thus, we may assume g(π)=g(π′)+1. Let H=H(π), H ′=H(π′),
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Ω=Ω(π), Ω′=Ω′(π), ω=ωπ and ω′=ωπ′ . If γ′∈Π(π′) then γ=E∗(γ′) is contained in the
stabilizer of eB , that is Θ(γ)·eB=eB (because B never wins).

Lemma 5.8. There is a symplectic isomorphism HλB!H ′ that conjugates the action
of E∗(γ′) on HλB and the action of γ′ on H ′, for every γ′∈Π(π′).

Proof. Write h∈H as
h=

∑
x∈A

ux(Ω·ex)

with ux∈R. Then the condition ω(h, eB)=0 corresponds to

ω(h, eB) =
∑
x∈A

ux〈ex, eB〉=uB =0.

In other words, h∈HλB
if and only h belongs to the span of Ω·ex, x∈A′. Using (5.1)

we obtain that P :RA!RA′ takes HλB
to H ′. The quotient P :HλB!H ′ is symplectic:

using again (5.1), the definition of ω and ω′, and (5.4),

ω′(PΩ·ex, PΩ·ey) =ω′(Ω′ ·ex,Ω′ ·ey) = 〈ex,Ω′ ·ey〉= 〈ex,Ω·ey〉=ω(Ω·ex,Ω·ey)

for all x, y∈A′. Moreover, by (5.3), this map conjugates the action of γ on HλB with
the action of γ′ on H ′.

By the induction hypothesis, we conclude that E∗(Π(π′))⊂Π(π) acts minimally on
L(HλB ). By Lemma 2.7 and Corollary 3.6, this implies that the action of Π(π) on L(H)
is minimal. .

6. Pinching of Rauzy monoids

Our aim in this section is to prove the following result.

Theorem 6.1. Let π be irreducible. The action of the Rauzy monoid Π(π) on H(π)
is strongly pinching.

Corollary 6.2. Let π be irreducible. The action of the Rauzy monoid Π(π) on
H(π) is simple.

Proof. This follows directly from Corollary 5.2, Theorem 6.1 and Lemma 4.14.

Remark 6.3. In view of Corollary 6.2, we may apply Remark 4.15 to the action of
the Rauzy monoid on the space of flags: any closed invariant set in F(H(π)) intersects
the embedding of the space L(H(π)) of Lagrangian flags. Since the action on the latter
is minimal, by Theorem 5.1, we get that the only minimal set of the action of Π(π) on
the space of flags is the embedding of Lagrangian flags.
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We start the proof of Theorem 6.1 by observing that the strong pinching property
only depends on the Rauzy class.

Lemma 6.4. If π is such that the action of Π(π) on H(π) is strongly pinching and
π̃∈R(π) then the action of Π(π̃) on H(π̃) is strongly pinching.

Proof. Let γ0∈Π(R(π)) be a path starting at π̃ and ending at π, and let γ1∈Π(R(π))
be a path starting at π and ending at π̃. Then Π(π̃)⊃γ0Π(π)γ1, and we conclude, as in
the first part of the proof of Lemma 4.16, that Π(π̃) is strongly pinching.

6.1. Minimal Rauzy classes

Let us call a Rauzy class R⊂S0(A) minimal if #A=2g(R). Recall the definitions of de-
generate permutation and good permutation in §3.13. In particular, these permutations
are standard, by definition.

Lemma 6.5. Let π∈S0(A) be a degenerate permutation. Then eB /∈H(π), where B
is the letter appearing in the second (or last but one) position of both top and bottom.

Proof. Let Ω=Ω(π). Let A be first in the top (last in the bottom) and E be the
first in the bottom (last in the top). If eB∈H(π) then, by the equivalence of (3) and (4)
in Lemma 5.3, we can write

eB =
∑
x6=B

ux(Ω·ex) with ux ∈R.

Since π is standard, with first/last letters A and E, the definition (3.1) gives 〈Ω·ex, eA〉=1
for all x 6=A, and 〈Ω·ex, eE〉=−1 for all x 6=E. Thus, the previous relation implies that

0 = 〈eB , eA〉=
∑

x6=A,B

ux and 0 = 〈eB , eE〉=−
∑

x6=E,B

ux.

This implies that uA−uE =0. On the other hand,

1 = 〈eB , eB〉=
∑
x6=B

〈Ω, eB〉=uE−uA,

because B is the second letter in both top and bottom (use (3.1) once more). This
contradicts the previous conclusion, and this contradiction proves that eB /∈H(π).

Lemma 6.6. Any minimal Rauzy class R⊂S0(A) with g(R)>2 contains a good
permutation.
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Proof. By Lemma 3.8, if R does not contain a good permutation, then it contains
some degenerate permutation π. Let B∈A be as in Lemma 6.5, and let π′ be obtained
by forgetting B in π. Then π′ is a simple reduction of π, and by the equivalence of (1)
and (3) in Lemma 5.3, g(π′)=g(π). Thus #A>2g(π′)+1=2g(π)+1, and so R is not
minimal.

Lemma 6.7. If π is good and π′′ is obtained by forgetting the first (and last) letters
of the top and bottom rows, then g(π)6g(π′′)+1. In particular , if R(π) is minimal ,
then R(π′′) is also minimal.

Proof. To prove the first claim, let A be first in the top (last in the bottom) and E
be first in the bottom (last in the top) of π. Let π′ be obtained by forgetting A in π.
Then π′′ is a simple reduction of π′, which is itself a simple reduction of π. Let Ω=Ω(π),
Ω′=Ω(π′), Ω′′=Ω(π′′), g=g(π), g′=g(π′) and g′′=g(π′′). If g=g′ then g=g′6g′′+1, by
Lemma 5.3, and the conclusion follows. Otherwise, g=g′+1 and, by the equivalence of
(1) and (4) in Lemma 5.3, we can write

eA =
∑
x6=A

ux(Ω·ex) with ux ∈R.

This implies that (recall the definition (3.1) of Ω)

0 = 〈eA, eE〉=−
∑

x6=A,E

ux and 1 = 〈eA, eA〉=
∑
x6=A

ux,

so that uE =1. From (3.1) we have that Ω′ ·ex=Ω·ex−eA for all x 6=A. Consequently,
using the previous equalities,

Ω′ ·eE =Ω·eE−
∑
x6=A

ux(Ω·ex) =−
∑

x6=A,E

ux(Ω·ex) =−
∑

x6=A,E

ux(Ω′ ·ex).

By the equivalence of (1) and (2) in Lemma 5.3, this gives g′=g′′ and so g=g′′+1.

The last claim in the lemma is an immediate consequence of the first one, because
#A=2g(π) and

#A−2 =#(A\{A,E}) > 2g(π′′),

and so the equality must hold if g(π)6g(π′′)+1.
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6.2. Reduction to the case of minimal Rauzy classes

Lemma 6.8. Let R⊂S0(A) be a Rauzy class such that #A>2g(R). Then there
exists π∈R which is a simple extension of some π′ with g(π)=g(π′).

Proof. By Lemma 3.7, we may consider some standard permutation π̃∈R. Since
#A>2g, there exists B∈A such that eB /∈H(π̃). Let A′=A\{B}. Let A be the first
letter in the top (last in the bottom) and E be the first letter in the bottom (last in the
top) of π̃. If B=A, let π be obtained from π̃ by applying a top arrow. If B=E, let π be
obtained from π̃ by applying a bottom arrow. Otherwise, let π=π̃. The first two cases
of this definition are condensed in the following formula:

π̃=
(
A · · E

E · · A

)
7−!π=

(
A · · E

E A · ·

)
or π=

(
A E · ·
E · · A

)
.

In all cases, the fact that eB /∈H(π̃) easily implies that eB /∈H(π). Let π′ be obtained
from π by forgetting B. Then π is a simple extension of π′ and, from the equivalence of
(1) and (3) in Lemma 5.3, we obtain that g(π)=g(π′).

Lemma 6.4 says that replacing any permutation by another one in the same Rauzy
class does not affect the strong pinching property. By Lemma 6.8, if a class is non-
minimal then it contains some permutation π which is a simple extension of some π′

with g(π)=g(π′). Then, Lemma 5.6 says that the action of Π(π′) is conjugate to the
action of a submonoid of Π(π). It follows that strong pinching for Π(π′) implies strong
pinching for Π(π). Repeating this procedure, one eventually reaches a permutation in
some minimal class. This means that these results reduce the proof of Theorem 6.1 to
the case of minimal Rauzy classes.

We will also need a special formulation of this reduction which has a stronger con-
clusion, since it provides properties of a specific submonoid.

Lemma 6.9. Let π′∈S0(A′) be such that E∈A′ is the last letter in the top and
the first in the bottom. Let A′′=A′\{E} and π′′ be obtained from π′ by forgetting E.
Assume that π′′ is irreducible and that g(π′)=g(π′′). Assume also that the action of
Π(π′′) on H(π′′) twists isotropic subspaces and is strongly pinching. Let Π̃(π′)⊂Π(π′)
be the submonoid of all γ such that Θ(γ)·eE =eE. Then the action of Π̃(π′) on H(π′)
twists isotropic subspaces and is strongly pinching.

Proof. Notice that π′ is not a simple extension of π′′, since E is the last letter in the
top (recall Remark 5.5), and so we cannot apply Lemma 5.6 directly. Let d=#A. Let
D be the last letter in the bottom for π′. Then D is in the kth position in the top row
for some 16k6d−1. In fact, k6d−2, because we assume that π′′ is irreducible. Let γ′0
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be the bottom arrow starting at π′, and let π̃′ be the end of γ′0. Let γ′1 be a sequence
of d−k−1 bottoms starting at π̃′. Notice that γ′1 ends at π′. This is illustrated in the
following formula:

π′=
(
· · D · · E

E · · · · D

)
γ′07−−! π̃′=

(
· · D E · ·
E · · · · D

)
γ′17−−!π′.

Then π̃′ is a simple extension of π′′. By Lemma 5.6, the action of E∗(Π(π′′))⊂Π(π̃′)
on H(π̃′) is conjugate to the action of Π(π′′) on H(π′′), and so it also twists isotropic
subspaces and is strongly pinching. Since D 6=E is the winner of all arrows of γ′0 and γ′1,
Θ(γ′0) and Θ(γ′1) preserve eE . It follows that

γ′0E∗(Π(π′′))γ′1

is contained in the submonoid Π̃(π′) that stabilizes eE . We conclude, as in the proof of
Lemma 4.16, that Π̃(π′) twists isotropic subspaces and is strongly pinching.

6.3. Proof of Theorem 6.1

The proof is by induction on #A. The case #A=2 is easy because any arrow, top or
bottom, gives a parabolic element for the action. Let us show that if strong pinching
holds for #A=d−1>2 then it holds for #A=d.

Let π∈S0(A). As explained before, if d>2g(π) then the result follows from the
induction hypothesis using Lemmas 5.6, 6.4 and 6.8. So, we may assume that d=2g(π).
Let g=g(π). Notice that g>2 because d>2. By Lemma 6.4, the conclusion does not
change if we replace π by any other permutation in the same Rauzy class. By Lemma 6.6,
the Rauzy class contains some good permutation π̃∈R(π). Hence, we may suppose from
the start that π is the permutation obtained by applying a top arrow to π̃. Lemma 4.7
reduces the proof that the action of Π(π) on H(π)=RA is strongly pinching to proving
the following result.

Lemma 6.10. For every C>0 there exists B∈Θ(Π(π)) for which 1 is an eigenvalue
of geometric multiplicity 1 (the eigenspace has dimension 1) and

θg−1(B)> 0 and θk(B)>Cθk+1(B) for all 1 6 k6 g−2. (6.1)

Proof. Let A be first in the top (last in the bottom) and E be first in the bottom
(last in the top) of π. Let π′ be obtained by forgetting A from π and A′=A\{A}. Then E
is last in the top and first in the bottom of π′, and this ensures that π′ is irreducible.
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Moreover, π is a simple extension of π′, and π′ is a simple reduction of both π and π̃.
This is illustrated in the formula that follows:

π̃=
(
A · · E

E · · A

)
, π=

(
A · · E

E A · ·

)
, π′=

(
· · E

E · ·

)
.

Let γ′0∈Π(π′) be the sequence of 2g−2 top arrows starting (and ending) at π′, and let
γ0=E∗(γ′0). Then γ0∈Π(π) is a sequence of 2g−1 top arrows starting and ending at π.
Notice that E is the winner in all these arrows, and so

Θ(γ0) =



1 0 ... 0 1
0 1 ... 0 1
... ... ... ... ...

0 0 ... 1 1
0 0 ... 0 1


,

where the column made of 1’s is the one indexed by E. More precisely,

Θ(γ0)·ex = ex for all x∈A\{E}, (6.2)

Θ(γ0)·eE =
∑
x∈A

ex. (6.3)

Now let Π̃(π′)⊂Π(π′) be the set of all γ′ such that Θ(γ′)·eE =eE . We claim that the
action of Π̃(π′) on H(π′) twists isotropic subspaces and is strongly pinching. This is
easily obtained from Lemma 6.9, as follows. Let π′′ be obtained from π′ by forgetting
the letter E. Equivalently, π′′ is obtained from the good permutation π̃ by forgetting A
and E. According to Lemma 6.7, g(π̃)=g(π′′)+1. We also have

2g(π′′) 6 2g(π′) 6#A−1 =2g(π̃)−1.

Consequently, g(π′′)=g(π′). This means that we are in a position to apply Lemma 6.9:
since the action of Π(π′′) on H(π′′) is strongly pinching and twists isotropic subspaces,
by the induction hypothesis and Corollary 5.2, the same is true for the action of Π̃(π′)
on H(π′), as claimed. Then we may apply Lemma 4.8 to find γ′∈Π̃(π′) such that (take
x=γ′0 and x0=γ′ in the lemma) 1 is not an eigenvalue of γ′ acting on H(π′), and the
Lyapunov exponents of γ′γ′0 acting on H(π′) satisfy

θg−1(γ′γ′0)> 0 and θi(γ′γ′0)>Cθi+1(γ′γ′0) for all 1 6 i6 g−2. (6.4)

Let us show that B=Θ(E∗(γ′γ′0)) has the required properties.
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Write γ=E∗(γ′), so that B=Θ(γ0)Θ(γ). Since E is never a winner for any of the
arrows that form γ′ (because γ′ is chosen in the stabilizer of eE), it is never a winner
for γ either. Moreover, noting that E is first and A is second in the bottom of π, we see
that A is never a winner nor a loser for γ. Together with (6.2) and (6.3), this gives

Θ(γ)·eA = eA and Θ(γ)·eE = eE , (6.5)

〈Θ(γ)·ex, eA〉=0 for all x∈A\{A}. (6.6)

In other words, the matrix of Θ(γ) has the form

Θ(γ) =


1 0 · 0 0
0 ∗ · ∗ 0
· · · · ·
0 ∗ · ∗ 0
0 ∗ · ∗ 1

 . (6.7)

This implies that B=Θ(γ0)Θ(γ) satisfies

B ·eA = eA, (6.8)

〈B ·ex, eE〉= 〈B ·ex, eA〉 for all x∈A\{A}. (6.9)

By (6.8), we have that 1 is an eigenvalue of B. Let us check that its geometric multiplicity
is 1. Indeed, otherwise there would exist h∈RA\{0} such that B ·h=h and 〈h, eA〉=0.
By (6.9),

〈h, eE〉= 〈B ·h, eE〉= 〈B ·h, eA〉= 〈h, eA〉=0.

Let P :RA!RA′ be the natural projection and h′=P ·h. Notice that P ∗ ·h′=h, because h
is orthogonal to eA. In particular, h′ is non-zero. We have

Θ(γ′0) =PΘ(γ0)P ∗, Θ(γ′) =PΘ(γ)P ∗ and Θ(γ′0)Θ(γ′) =PBP ∗. (6.10)

This implies that

Θ(γ′0)Θ(γ′)·h′=PBP ∗ ·h′=PB ·h=P ·h=h′. (6.11)

We also have 〈h′, eE〉=〈h, eE〉=0. Now, (6.2) and (6.10) imply that Θ(γ′0)·ex=ex for all
x∈A′\{E}. Consequently,

Θ(γ′0)·h′=h′ or, equivalently, h′=Θ(γ′0)
−1 ·h′. (6.12)

From (6.11) and (6.12) we immediately get that

Θ(γ′)·h′=h′. (6.13)
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But (6.5) implies that Θ(γ′)·eE =PΘ(γ)P ∗ ·eE =eE , and so (6.13) implies that 1 is an
eigenvalue of Θ(γ′) with geometric multiplicity at least 2. Since H(π′) has codimension 1
in RA′ , this implies that 1 is an eigenvalue of Θ(γ′) acting on H(π′), which contradicts
the choice of γ′. This proves that 1 is an eigenvalue of B with geometric multiplicity 1,
as claimed. To obtain the properties in (6.1), notice that (6.8) and (6.10) imply that the
matrix of B has a block triangular form, with the matrix of Θ(γ′0)Θ(γ′) as a diagonal
block. It follows that the eigenvalues of B are, precisely, the eigenvalues of Θ(γ′0)Θ(γ′),
together with an additional eigenvalue 1 associated with the eigenvector eA. Observe
that this eigenvalue must have algebraic multiplicity 2, since the action is symplectic.
Therefore, the Lyapunov spectrum of B consists of the Lyapunov spectrum of Θ(γ′0)Θ(γ′)
on H(π′) together with two additional zero Lyapunov exponents. Thus, (6.4) implies
(6.1). This finishes the proof of Lemma 6.10.

At this point the proof of Theorem 6.1 is complete.

Remark 6.11. In the above argument we concatenate two Rauzy paths to gener-
ate another one exhibiting some parabolic behavior. It would be interesting to find a
geometric interpretation, in terms of the Teichmüller flow, of how that behavior arises.

Remark 6.12. Some of the richness properties we have been discussing, like twist-
ing, depend only on the group generated by the monoid (because invariance under the
monoid is equivalent to invariance under the group generated), while others, such as
strong pinching, depend on the monoid itself. It is interesting to investigate how large
the generated group is. The only obvious restriction is that this group preserves the
integer lattice H(π)∩ZA. What is its Zariski closure (which plays a role in [GM])? Such
questions had already been raised by Zorich in [Zo4, Appendix A.3], where he made
some specific conjectures. We believe it is possible to proceed further in this direction
with the arguments of the present paper, particularly our induction procedure in terms
of relations between Rauzy classes.

7. Simplicity of the spectrum

7.1. A criterion for simplicity of the spectrum

Let (∆, µ0) be a probability space, and let T :∆!∆ be a transformation such that there
exists a finite or countable partition of ∆ into sets ∆(l), l∈Λ, of positive measure such
that T :∆(l)!∆ is an invertible measurable transformation and T∗(µ0|∆(l)) is equivalent
to µ0. Let Ω be the set of finite sequences of elements of Λ, including the empty sequence.
If l=(l1, ..., lm)∈Ω, let

∆l = {x∈∆ :T k(x)∈∆(lk+1) for 06 k <m},
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and T l=Tm:∆l!∆. The ∆l ’s have positive measure and T l is an invertible measurable
transformation. We say that (T, µ0) has approximate product structure if there exists
C>0 such that

1
C

6
1

µ0(∆l)
dT l

∗(µ0|∆l)
dµ0

6C for all l∈Ω. (7.1)

Notice that T is measurable with respect to the cylinder σ-algebra of T , that is, the
σ-algebra generated by the ∆l ’s, l∈Ω. It is not difficult to check, using (7.1), that T is
ergodic with respect to the cylinder σ-algebra, and there is a unique probability measure
µ on the cylinder σ-algebra which is invariant under T and is absolutely continuous with
respect to µ0. Moreover,

1
C

6
dµ

dµ0
6C

and (T, µ) has approximate product structure as well.
Let (T, µ) have approximate product structure and H be some finite-dimensional

vector space. Let A(l)∈SL(H), l∈Λ, and define A:∆!SL(H) by A(x)=A(l) if x∈∆(l).
We will say that (T,A) is a locally constant cocycle. The supporting monoid of (T,A) is
the monoid generated by the A(l)’s, l∈Λ. By ergodicity and the Oseledets theorem [Os],
if the cocycle is measurable, that is, if

∫
log ‖A(x)‖ dµ(x)<∞, then it has a well-defined

Lyapunov spectrum.

Theorem 7.1. Let (T,A) be a locally constant measurable cocycle. If the supporting
monoid is simple then the Lyapunov spectrum is simple.

This is an adaptation of the main result in [AV] to the present situation. For
completeness, a proof is provided in Appendix A.

7.2. Locally constant projective cocycles

Fix any p>2. We call PRp
+ the standard simplex. A projective contraction is a projec-

tive transformation taking the standard simplex into itself or, in other words, it is the
projectivization of some matrix B∈GL(p,R) with non-negative entries. The image of
the standard simplex by a projective contraction is called a simplex.

A projective expanding map T is a map
⋃

∆(l)!∆, where ∆ is a simplex compactly
contained in the standard simplex, the ∆(l)’s form a finite or countable family of pairwise
disjoint simplexes contained in ∆ and covering almost all of ∆, and T (l)=T :∆(l)!∆ is
a bijection such that (T (l))−1 is the restriction of a projective contraction.

Lemma 7.2. If T :
⋃

∆(l)!∆ is a projective expanding map then it has approximate
product structure with respect to Lebesgue measure.
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Proof. This follows from the well-known fact that the logarithm of the Jacobian
of a projective contraction relative to Lebesgue measure is (uniformly) Lipschitz with
respect to the projective metric. See the proof of [AF, Lemma 2.1] or [AV, Appendix]
for details.

7.3. Proof of Theorem 1.1

Let γ∈Π(R) be any path such that P∆γ is compactly contained in P∆1
R. This is easy to

satisfy: for every x∈P∆R, the connected component of x in P∆n
R is compactly contained

in P∆1
R for every n sufficiently large. Let T be the first return map to P∆γ under the

Zorich map. We define a linear skew-product (x, h) 7!(T (x), A(x)·h) over T :P∆γ!P∆γ ,
by setting A(x)=BZ(Rm−1

Z (x)) ... BZ(x), where m=m(x) is the first return time of x to
P∆γ . The map T preserves the probability measure

µ=
1

µZ(P∆γ)
µZ |P∆γ

,

and the Lyapunov exponents of (T,A) are obtained by multiplying the Lyapunov expo-
nents of the cocycle (RZ , B

Z) by 1/µZ(P∆γ). Notice that T is a projective expanding
map. So, by Lemma 7.2, (T,A) is a locally constant cocycle.

Let π′ be the start of γ. Let γ0 be an arrow ending at π′ and which is either
top or bottom according to whether γ starts by a bottom or a top arrow. Let π be
the start of γ0. Let γ1 be a path starting by γ and ending at π. Then the monoid B
generated by the A(x) contains Θ(γ1Π(π)γ0). Hence B is a submonoid of Θ(Π(π′)) con-
taining Θ(γ1γ0Π(π′)γ1γ0). Since, the action of Θ(Π(π′)) on H(π′) is simple, Lemma 4.16
gives that the monoid B generated by the A(x) is also simple. Now Theorem 1.1 is a
consequence of Theorem 7.1.

Appendix A. Proof of Theorem 7.1

In this appendix we prove our sufficient criterion for simplicity of the Lyapunov spectrum.
See also [AV].

A.1. Symbolic dynamics

Let us say that two locally constant cocycles (T,A) and (T ′, A′) are equivalent if

µ(∆l) =µ′(∆′ l) for all l∈Ω and A(l) =A′(l) for all l∈Λ.
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It is clear that two measurable locally constant cocycles have the same Lyapunov spec-
trum if they are equivalent. Any locally constant cocycle is equivalent to a symbolic
locally constant cocycle, that is, one for which the base transformation is the shift

{xi}∞i=0 7−! {xi+1}∞i=0

over ΛN, where N={n∈Z:n>0}. Thus, it is enough to prove Theorem 7.1 in the symbolic
case. Let us introduce some convenient notation to deal with this case.

Let Σ=ΛN. Given l=(l1, ..., lm)∈Ω, let Σl be the set of {xi}∞i=0 such that xi=li+1

for 06i<m. We also write |l|=m. Let f : Σ!Σ be the shift map. A cylinder on Σ
is a set of the form f−n(Σl) with n∈N. Denote by f l the restriction of fm to Σl. A
probability measure on Σ is defined once specified on cylinders. Thus, an f -invariant
probability measure is completely determined by its value on the Σl ’s. Given an f -
invariant probability measure µ, let φµ: Ω!R+ be defined by φµ(l)=µ(Σl). For l 1=
(l1, ..., lm) and l 2=(lm+1, ..., lm+n) we set l 1l 2=(l1, ..., lm+n).

We will say that µ has bounded distortion for f if it gives positive measure to all
cylinders and there exists C(µ)>0 such that

1
C(µ)

6
φµ(l 1l 2)

φµ(l 1)φµ(l 2)
6C(µ) for all l 1, l 2 ∈Ω.

Notice that this last condition is equivalent to

1
C(µ)

6
1

µ(Σl)
df l
∗(µ|Σl)
dµ

6C(µ) for all l∈Ω.

Hence, µ has bounded distortion for f if and only if (f, µ) has approximate product
structure.

A.2. The inverse limit

Let Σ−=ΛZ\N and Σ̂=ΛZ. Then, Σ̂=Σ−×Σ. Let π− and π be the coordinate projec-
tions. Let f̂ : Σ̂!Σ̂ be the shift map. Then π�f̂=f �π. Let Σ̂l=Σ−×Σl and Σ̂l

−=f̂m(Σl),
with m=|l|, and Σl

−⊂Σ− be such that Σ̂l
−=Σl

−×Σ. A cylinder on Σ̂ is a set of the form
f̂n(Σ̂l), n∈Z.

A probability measure on Σ̂ is defined once specified on cylinders. An f̂ -invariant
probability measure is, thus, completely determined by its values on the Σ̂l ’s. Thus, there
is a bijection µ̂ 7!µ between f̂ - and f -invariant probability measures given by π∗µ̂=µ.
We call µ̂ the lift of µ. We say that µ̂ has bounded distortion for f̂ if µ has bounded
distortion for f . This implies that f̂n is ergodic with respect to µ̂ for every n>1. We
also denote by µ− the projection of µ̂ to Σ−.
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A.3. Invariant section

Fix some probability measure µ with bounded distortion and let µ̂ be its lift. Given a
locally constant measurable cocycle (f,A), we may consider its lift (f̂ , Â), defined by
Â(x)=A(π(x)). It naturally acts on Σ̂×Grass(k,H), for any 16k6dimH−1. Let k be
fixed. Given l∈Ω, let ξl=Al ·E+

k (Al) if defined, otherwise choose ξl arbitrarily. For x∈Σ−

and n∈N, let l(x, n)∈Ω be such that |l(x, n)|=n and x∈Σl(x,n)
− .

Theorem A.1. Let (f,A) be a symbolic locally constant measurable cocycle, and
assume that the supporting monoid is simple. Then,

(1) there exists a measurable function

ξ: Σ−−!Grass(k,H)

such that ξ̂=ξ�π− satisfies ξ̂(f̂(x))=Â(x)·ξ̂(x);
(2) for µ−-almost all x∈Σ− we have

log σk(Al(x,n))−log σk+1(Al(x,n))!∞ and ξl(x,n)! ξ(x);

(3) for every hyperplane section S⊂Grass(k,H) there exists a positive µ−-measure
set of x∈Σ− such that ξ(x) /∈S.

The proof of this theorem will take several steps.

A.4. Measures on Grassmannians

Let m̂ be a probability measure on Σ̂×Grass(k,H). We say that m̂ is a u-state if its
projection on Σ̂ is µ̂ and there exists C(m̂)>0 such that for any Borel set X⊂Grass(k,H)
and any l 0, l, l′∈Ω, we have

1
µ(Σl′)

m̂(Σl0
− ×Σl′×X) 6C(m̂)

1
µ(Σl)

m̂(Σl0
− ×Σl×X).

It is easy to give examples of u-states: take any probability measure ν in Grass(k,H)
and let m̂=µ̂×ν (in this case C(m̂)=C(µ)2 holds). From this we can get examples of
u-states invariant under (f̂ , Â), as follows.

LetN be the space of probability measures on Σ̂×Grass(k,H) that project to µ̂ on Σ̂.
We introduce on N the smallest topology such that the map η 7!

∫
ψ dη is continuous,

for every bounded continuous function ψ: Σ̂×Grass(k,H)!R. We will call this the
weak∗ topology. Notice that N is a compact separable space. This is easy to see in the
following alternative description of the topology. Let Kn⊂Σ̂, n>1, be disjoint compact
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sets such that µ̂(Kn)>0 and
∑∞

n=1 µ̂(Kn)=1. Let Nn be the space of measures on
Kn×Grass(k,H) that project to µ̂|Kn . The usual weak∗ topology makes Nn into a
compact separable space. Given η∈N , let ηn∈Nn be obtained by restriction of η. This
identifies N with

∏∞
n=1Nn, and the weak∗ topology on N corresponds to the product

topology on
∏∞

n=1Nn.

Lemma A.2. Let m̂0 be a u-state. For every n>0,

m̂
(n)
0 =(f̂ , Â)n

∗ (m̂0)

is a u-state and C(m̂(n)
0 )6C(m̂0)C(µ)2.

Proof. We must show, for l 0, l, l′∈Ω and X⊂Grass(k,H) measurable, that

µ(Σl)
µ(Σl′)

m̂
(n)
0 (Σl0

− ×Σl′×X) 6C(m̂0)C(µ)2m̂(n)
0 (Σl0

− ×Σl×X).

It is enough to consider the case where |l 0|>n. In this case write l 0=l 1l 2 with |l 2|=n.
Then,

µ(Σl)
µ(Σl′)

m̂
(n)
0 (Σl0

− ×Σl′×X) =
µ(Σl)
µ(Σl′)

m̂0(Σ
l1
− ×Σl2l′×(Al2)−1 ·X)

6C(m̂0)
µ(Σl)
µ(Σl′)

µ(Σl2l′)
µ(Σl2l)

m̂0(Σ
l1
− ×Σl2l×(Al2)−1 ·X)

6C(m̂0)C(µ)2m̂0(Σ
l1
− ×Σl2l×(Al2)−1 ·X)

=C(m̂0)C(µ)2m̂(n)
0 (Σl0

− ×Σl×X),

as claimed.

For any fixed C>0, the space of u-states m̂ with C(m̂)6C is a convex compact
subset in the weak∗ topology. So, the next statement implies the existence of invariant
u-states.

Corollary A.3. Let m̂0 be a u-state. Let m̂ be a Cesàro weak∗ limit of the sequence

(f̂ , Â)n
∗ (m̂0).

Then m̂ is an invariant u-state with C(m̂)6C(m̂0)C(µ)2.

Lemma A.4. Let m̂ be a probability measure on Σ̂×Grass(k,H). For x∈Σ−, let
m̂(n)(x) be the probability measure on Grass(k,H) obtained by normalized projection of
m̂ restricted to Σl(x,n)

− ×Σ×Grass(k,H). Then, for µ−-almost every x, the sequence
m̂(n)(x) converges in the weak∗ topology to some probability measure m̂(x).
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Proof. Since Grass(k,H) is a compact metric space, and keeping in mind the defini-
tion of the weak∗ topology, it is enough to show that if φ: Grass(k,H)!R is continuous,
then for almost every x∈Σ− the integral φ(n)(x) of φ with respect to m̂(n)(x) converges
as n!∞. This is a simple application of the martingale convergence theorem. A direct
proof goes as follows.

We may assume that 06φ(z)61, z∈Grass(k,H). Consider the measure ν6µ− de-
fined by

ν(X) =
∫

X×Σ×Grass(k,H)

φ(z) dm̂(x, y, z).

Then, ν(Σl(x,n)
− )=φ(n)(x)µ−(Σl(x,n)

− ). Let

φ+(x) = lim sup
n!∞

φ(n)(x) and φ−(x) = lim inf
n!∞

φ(n)(x).

We have to show that for every a<b the set

Ua,b = {x∈Σ− :φ−(x)<a<b<φ+(x)}

has zero µ−-measure. To do this it is enough to show that ν(Ua,b)>bµ−(Ua,b)−ε and
ν(Ua,b)6aµ−(Ua,b)+ε for every ε>0. We will show only the first inequality, the second
one being analogous. Fix an open set U⊃Ua,b with µ−(U \Ua,b)<ε. Let

N(x) =min{n : Σl(x,n)
− ⊂U} and n(x) =min{n>N(x) :φ(n)(x)>b}.

Let UN =
⋃

x∈Ua,b
Σl(x,n(x))
− . Then Ua,b⊂UN⊂U and there exists a (finite or countable)

sequence xj∈Ua,b such that UN =
⋃

j Σl(xj ,n(xj))
− . In particular, ν(UN )−ν(Ua,b)<ε and

ν(UN ) =
∑

j

ν
(
Σl(xj ,n(xj))
−

)
>

∑
j

bµ−
(
Σl(xj ,n(xj))
−

)
> bµ−(Ua,b).

This implies that ν(Ua,b)>bµ−(Ua,b)−ε, as required.

Lemma A.5. There exist N>0, δ>0, m>0, lp, l q and l qi
, 16i6m, with the fol-

lowing properties:
(1) |lp|=|l q|=|l qi |=N ;
(2) the matrix Alp has simple Lyapunov spectrum;
(3) Alq ·F∩G={0} for every F∈Grass(k,H) and G∈Grass(dimH−k,H) which are

sums of eigenspaces of Alp ;
(4) for every F∈Grass(k,H) and G∈Grass(dimH−k,H) such that F is a sum of

eigenspaces of Alp , there exists i such that the Alqi ·F and G form angle at least δ.
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Proof. Since B is simple, there exists l p̃ such that the matrix Al p̃ has simple Lya-
punov spectrum. Let B′⊂B be the monoid consisting of the Al ’s where |l| is a mul-
tiple of |l p̃|. Then B′ is a large submonoid of B, in the sense of Lemma 4.16, and
so B′ is simple. By the definition of twisting and Lemma 4.3, there exists l q̃ such
that |l q̃| is a multiple of |l p̃| and Al q̃ ·F∩G={0} for every F∈Grass(k,H) and every
G∈Grass(dimH−k,H) which are sums of eigenspaces of Al p̃ . For the same reasons,
for every G∈Grass(dimH−k,H) there exists l q̃(G) such that |l q̃(G)| is a multiple of |l p̃|
and Al q̃(G) ·F∩G={0} for every F∈Grass(k,H) which is a sum of eigenspaces of Al p̃ .
By compactness of Grass(dimH−k,H), one can choose finitely many l q̃i

among all the
l q̃(G), so that for every G∈Grass(k,H),

max
i

min
F

angle(Al q̃i ·F,G)> 0,

where the minimum is over all F∈Grass(k,H) that are sums of eigenspaces of Al p̃ . Using
compactness once more, the expression on the left is even uniformly bounded below by
some δ>0. Let N be the maximum of |l p̃|, |l q̃| and l q̃i . Let lp, l q and l qi be obtained
from l p̃, l q̃ and l q̃i by adding at the beginning as many copies of l p̃ as necessary to get
to length N . One easily checks the required properties.

For l∈Ω, let ln be obtained by repeating l exactly n times. Given a probability
measure % on Grass(k,H), let %l be the push-forward of % under

Al : Grass(k,H)−!Grass(k,H).

Lemma A.6. Given ε>0 and any probability measure % in Grass(k,H), there is
n0=n0(ε, %) and , given any l 0∈Ω, there is i=i(l 0) such that %l(B)>1−ε for every
n>n0, where l=lnp l ql

n
p l qi l 0 and B is the ε-neighborhood of ξl.

Proof. By (2) in Lemma A.5, when n is large, most of the mass of %ln
p is concentrated

near sums of eigenspaces of Alp of dimension k. Then most of the mass of %ln
p lq is

concentrated near the Alq -image of those sums. Using (3) in Lemma A.5, it follows
that, when n is large, most of the mass of %ln

p lqln
p is concentrated near the subspace

F∈Grass(k,H) given by the sum of the eigenspaces associated with the k eigenvalues of
Alp with largest norms. Now let G(l 0)∈Grass(dimH−k,H) be spanned by eigenvectors
of (Al0)∗Al0 corresponding to dimH−k smallest singular values; if σk(Al0)>σk+1(Al0)
then the only choice is G(l 0)=E−

k (Al0). Then, in general, the family {Al0}l0 is uniformly
continuous restricted to the subset of k-dimensional subspaces whose angle to G(l 0) is
larger than any fixed δ/2. Choose δ>0 as in Lemma A.5, and let i=i(l 0) be as in (4) of
that lemma, for this choice of F and G=G(l 0). Then most of the mass of %ln

p lqln
p lqi is
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concentrated near Alqi ·F , and so most of the mass of %l is concentrated near Alqi
l0 ·F , as

long as n is large; moreover, the equicontinuity property allows us to take the condition
on n uniform on l 0. In particular, we get that %l converges to the Dirac measure at
Alqi

l0 ·F when n goes to infinity.
Now it suffices to show that ξl is close to Alqi

l0 ·F when n is large, uniformly on l 0.
This can be done applying the previous argument to the case when % is the Lebesgue
measure on Grass(k,H), and using (2) in Lemma 2.11 for xn=Aln

p lqln
p : we conclude that

log σk(Al)−log σk+1(Al)!∞ and that ξl=Al ·E+
k (Al) converges to Alqi

l0 ·F when n!∞,
as claimed.

Lemma A.7. There exist C0=C0(f,A, µ)>0 and a sequence of sets Xn⊂Ω such that
|l|>n for all l∈Xn, the Σ̂l

−’s, l∈Xn, are pairwise disjoint with
∑

l∈Xn
µ−(Σl

−)>C−1
0 and ,

given any probability measure % on Grass(k,H) and any n>n0(ε, %), we have

%l(B)> (1−ε) for all l∈Xn,

where B is an ε-neighborhood of ξl.

Proof. Let us order the elements of l∈Ω by inclusion of the Σ̂l
−’s. Let X0

n be the
collection of elements of Ω of the form lnp l ql

n
p l qi

l 0, where |l 0| is a multiple of (2n+2)N .
Let X1

n⊂X0
n be the maximal elements. Then the Σ̂l

−’s, l∈X1
n, are disjoint and (by

ergodicity of f̂ (2n+2)N ) ∑
l∈X1

n

µ−(Σl
−) = 1.

Notice that if lnp l ql
n
p l qi l 0∈X1

n for some 16i6m then lnp l ql
n
p l qi l 0∈X1

n for every 16i6m.
LetXn be the set of l∈X1

n such that l=lnp l ql
n
p l qi l 0 with i=i(l 0) as in the previous lemma.

Then ∑
l∈Xn

µ−(Σl
−) >C(µ)−2 min

16i6m
µ−(Σlqi

− ).

To conclude, apply the previous lemma.

Proof of Theorem A.1. Let m̂ be an invariant u-state, given by Corollary A.3, and let ν
be its projection on Grass(k,H). For almost every x∈Σ−, let m̂(n)(x) and m̂(x) be as in
Lemma A.4. Notice that we have, for any Borel set Y ⊂Grass(k,H),

1
C(m̂)

6
m̂(n)(x)(Y )
νl(x,n)(Y )

6C(m̂).

In particular, m̂(x) is equivalent to any limit of νl(x,n). By Lemma A.7, there is Z⊂Σ−

with µ−(Z)>C−1
0 such that νl(x,n) accumulates at a Dirac mass for all x∈Z. Using
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Lemma A.4, it follows that m̂(x) is a Dirac mass for almost every x∈Z. By ergodicity
and equivariance, m̂(x) is a Dirac mass for almost every x∈Σ−. We will denote the sup-
port of this Dirac mass by ξ(x). Hence, ξ(x) is the support of lim νl(x,n). Let ξ̂=ξ�π−.
Then ξ̂(f(x, y))=Â(x, y)·ξ̂(x, y). Notice that the push-forward of µ− by ξ is equal to ν.
In particular, the support of ν is forward invariant under the action of the support-
ing monoid B. Observe that the support of ν cannot be contained in any hyperplane
section S: otherwise,

⋂
x∈B x

−1 ·S would be a non-trivial invariant linear arrangement,
and this cannot exist because B is simple. It follows from part (2) of Lemma 2.11 that
log σk(Al(x,n))−log σk+1(Al(x,n))!∞ and ξ(x)=limn!∞ ξl(x,n).

Remark A.8. It follows that the push-forward of µ̂ by (x, y, z) 7!(x, y, ξ(x)) is an
invariant u-state. It is not difficult to see that it must coincide with m̂. Thus, the
invariant u-state is unique. See also [BV, Remark 5.4].

A.5. The inverse cocycle

Given l∈Ω, let ξ−l =E−
k (Al) if defined, otherwise choose ξ−l arbitrarily. For x∈Σ, let

l−(x, n)∈Ω be such that |l−(x, n)|=n and x∈Σl−(x,n).

Theorem A.9. Let (f,A) be a symbolic locally constant measurable cocycle, with
simple supporting monoid.

(1) There exists a measurable function ξ−: Σ!Grass(dimH−k,H) such that ξ̂−=
ξ−�π satisfies ξ̂−(f̂(x))=Â(x)·ξ̂−(x).

(2) For µ-almost every x∈Σ,

log σk(Al−(x,n))−log σk+1(Al−(x,n))!∞ and ξ−
l−(x,n)

! ξ−(x).

(3) For every hyperplane section S⊂Grass(dimH−k,H) there exists a positive µ-
measure set of x∈Σ such that ξ−(x) /∈S.

Proof. The cocycle (f̂ , Â)−1 is also measurable. Let J : Σ̂!Σ̂ be given by

J(xi)i∈Z =(x−i−1)i∈Z.

Then J conjugates (f̂ , Â)−1 to a locally constant symbolic cocycle (f̂ , B̂), where B̂ is
defined by B̂(x)=Â−1(J(x))=Â(f̂−1(J(x)))−1. The corresponding supporting monoid
is also simple, by Lemma 4.12. The result then follows by application of Theorem A.1
to (f̂ , B̂), with dimH−k in the place of k. The invariant sections are related by

ξ̂−
Â

= ξ̂B̂ �J.
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A.6. Proof of Theorem 7.1

Let 16k6dimH−1. We must show that θk(f,A)>θk+1(f,A). Let ξ: Σ−!Grass(k,H)
be as in Theorem A.1, and let ξ−: Σ!Grass(dimH−k,H) be as in Theorem A.9. We
claim that ξ(x)∩ξ−(y)={0} for µ̂-almost every (x, y)∈Σ−×Σ. Indeed, if this was not
the case then, by ergodicity, we would have ξ(x)∩ξ−(y) 6={0} for µ̂-almost every (x, y).
By Fubini’s theorem and bounded distortion, it would follow that ξ(x)∩ξ−(y) 6={0} for
µ−-almost every x∈Σ− and µ-almost every y∈Σ. This would imply that ξ(x) is con-
tained in the hyperplane section dual to ξ−(y) for µ−-almost every x∈Σ−, contradicting
Theorem A.1.

Let Fu∈Grass(k,H) and F s∈Grass(dimH−k,H) be subspaces in the support of
ξ∗µ− and ξ−∗ µ, respectively, such that Fu∩F s={0}. Choose an inner product so that
Fu and F s are orthogonal. Let ε0>0 be such that if F and F ′ belong to the balls
of radius ε0 around Fu and F s, respectively, then F∩F ′={0}. Fix 0<ε3<ε2<ε1<ε0.
Take 0<ε4<ε3 small and let X̂=X−×X be the set of (x, y) such that ξ(x) belongs to
the ball of radius ε4 around Fu and ξ−(y) belongs to the ball of radius ε4 around F s.
Let n(x, y)>0 be minimal such that Al(x,n) takes the ball of radius ε1 around Fu into
the ball of radius ε3 around Fu whenever n>n(x, y) is such that f−n(x, y)∈X̂. Then
n(x, y)<∞ for almost every (x, y)∈X−×X, by Theorems A.1, A.9 and Lemma 2.8.

Let Ẑ⊂X̂ be a positive measure set such that the minimum of the first return time
r(x, y) of f to Ẑ is bigger than the maximum of n(x, y) over (x, y)∈Ẑ. Let R denote the
return map to Ẑ. For every (x, y)∈Ẑ, choose C(x, y)∈SL(H) in a measurable fashion in
the c−1ε4-neighborhood of id, such that C(x, y)·ξ(x)=Fu and C(x, y)·ξ−(y)=F s. Let
B(x, y)=C(R(x, y))AlC(x, y)−1, where l=l−(y, r(x, y)). Then the Lyapunov exponents
of (R,B) relative to the normalized restriction of µ̂ to Ẑ are obtained by multiplying
the Lyapunov exponents of (f,A) by 1/µ̂(Ẑ). Taking ε4 sufficiently small, we guarantee
that B(x, y) takes the closure of the ball of radius ε2 around Fu into its interior. It
follows from Lemma 2.12 that σk(B(x, y))>σk+1(B(x, y)) for almost every (x, y)∈Ẑ,
and E+

k (B(x, y))=Fu and E−
k (B(x, y))=F s. We conclude that

θk(R,B)−θk+1(R,B) >
1

µ̂(Z)

∫
Z

[log σk(B(x, y))−log σk+1(B(x, y))] dµ̂(x, y)> 0,

which implies the conclusion of the theorem.

A.7. Generalizations

Theorem 7.1 may be seen as a criterion for simplicity of the Lyapunov spectrum for
products of matrices generated by a stationary stochastic process. Although we have
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stated it in the case where there is a finite or countable number of states, our method
can actually be used to prove the following more general result. Let (T,A), with

T : (∆, µ)−! (∆, µ) and A:∆−!SL(H),

be a measurable cocycle. Given k>1 and any set Z∈SL(H)k, we set

Z∧= {x∈∆ : (A(x), ..., A(T k−1(x)))∈Z}.

We say that the cocycle has approximate local product structure if there exists C>1 such
that, for any n,m>1 and any measurable sets X∈SL(H)n, Y ∈SL(H)m,

C−1µ(X∧)µ(Y ∧) 6µ ((X×Y )∧) 6Cµ(X∧)µ(Y ∧).

Theorem A.10. Let (T,A), with T : (∆, µ)!(∆, µ) and A:∆!SL(H), be a mea-
surable cocycle with approximate local product structure, and assume that the submonoid
of SL(H) generated by the support of the measure A∗µ is simple. Then the Lyapunov
spectrum of (T,A) is simple.
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