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C o n t e n t s  

w Introduction. 

w CON(a>0) .  We prove the consistency of the inequality mentioned in the title, 

relying on the theory of CS-iteration of nep forcing (from [$8], this proof is a concise 

version). 

w On C ON(a> 0)  revisited with FS, non-transitive memory of non-well-ordered 

length. This does not depend on w We define "FSI~ a depth on the subsets 

on which we shall do induction; we are interested just  in the cases where the depth is 

some ordinal (and not ~ ) .  Now the iteration is defined and its properties are proved 

simultaneously by induction on the depth. After we have understood such iterations 

sufficiently well, we proceed to prove the consistency in details. 

w Eliminating the measurable. In w for checking the criterion which appears  there 

for having "a large", we have used ultrapower by some z-comple te  ultrafilter. Here we 

construct templates  of cardinality, e.g. R3, which satisfy the criterion; by constructing 

them such that  any sequence of w-tuples of appropriate  length has a (big) subsequence 

which is "convergent", so some complete z -comple te  filter behaves for an appropriate  x -  

sequence of names of reals as if it is an ultrafilter and as if the sequence has appropriate  

limit. 

w On related cardinal invariants. We prove, e.g., the consistency of u<a .  Here the 

forcing notions are not so definable, so this gives a third proof of the main theorem (but 

the points which repeat  w are not repeated).  

I would like to thank Alice Leonhardt for the beautiful typing of the original manuscript, and the 
Israel Science Foundation for partially supporting this research (Publication 700). 
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0. In tro d u c t io n  

We deal with the theory of iteration of forcing notions for the continuum, and prove 

CON(a>~)  and related results. We present it in several perspectives; so w167 2 and 3 do 

not depend on w and w does not depend on w167 1, 2 and 3. In w we introduce and 

investigate iterations which are of finite support but with non-transitive memory and 

linear, non-well-ordered length, and prove CON(a>D) using a measurable. In w we also 

answer related questions (u< a); in w relying on w we eliminate the use of a measurable, 

and in w we rely heavily on [$8]. 

Very basically, the difference we use between a on one hand and b and ~ on the other 

hand is that  a speaks on a set, whereas b is witnessed by a sequence and ~ by a quite 

directed family; it essentially deals with cofinality; so every unbounded subsequence is 

a witness as well, i.e. the relevant relation is transitive; when b=O things are smooth, 

otherwise the situation is still similar. This manifests itself by using ultrapowers for some 

x-complete ultrafilter (in model-theoretic outlook), and by using "convergent sequences" 

(see IS1], or the existence of Av, the average, in [$3]) in w167 2 and 3, respectively. The 

meaning of "model-theoretic outlook" is that  by experience set theorists starting to hear 

an explanation of the forcing tend to think of an elementary embedding j: V - ~ M ,  and 

then the limit practically does not make sense (though of course we can translate). Note 

that  ultrapowers by, e.g., an ultrafilter on x, preserve any witness for a cofinality of a 

linear order being /> x + (or the cofinality of a x+-directed partial order), as the set of 

old elements is cofinal and a cofinal subset of a cofinal subset is a cofinal subset. On 

the other hand, the ultrapower always "increases" a set of cardinality at least x,  the 

completeness of the ultrafilter. 

"Is a~<O?" is one of the oldest problems and well known on cardinal invariants of the 

continuum (see [D]). It was mostly thought (certainly by me) that  consistently a>O and 

that  the natural way to proceed is by CS-iteration (Pi,  Qi:i<~v2) of proper ~w-bounding 

forcing notions, starting with V ~  GCH, and IPil =~1 for i<~2 and Qi "deal" with one 
N 

MAD family Ai  EV P~, A~ c [~]~o, adding an infinite subset of ~v almost disjoint to every 

ACA~. The needed iteration theorem holds by [$4, Chapter V, w saying that  in V P~2, 

O=b=R1 and no cardinal is collapsed, but  the single step forcing is not known to exist. 

This has been explained in details in [$5]. 

We do not proceed in this way but  in a totally different direction involving making 

the continuum large, so we still do not know the answer to the following problem. 

Problem 0.1. Is ZFC +2 ~~ +R2 + a > ~  consistent? 

To clarify our idea, let D be a normal ultrafilter on ~, a measurable cardinal, and 

consider a c.c.c. (countable chain condition) forcing notion P and 
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(a) a sequence f i = ( f a : a < x  +) of P-names such that  ]F-l~"(fa:a<x +} is <*- 

increasing cofinal in ~w" (so that  f exemplifies H-p " b - - - - ~ l : X + " ) ,  and 

"-rA "a<a*}  is MAD, that  is, (b) a sequence (Aa :a<a*}  of P-names such that  ]F-p l_  a. 

a ~ f l  ~ A ~ n A z  is finite and A~E[w] ~~ 

Now P1 =PX/D also is a c.c.c, forcing notion by Log' theorem for Lx,~; let j: P--+P1 

be the canonical embedding; moreover, under the canonical identification we have 

P-~Lx, P1. So also ]~-Pl "f~ C~w'', recalling that  f~ actually consists of w maximal 

antichains of P (or think of (7-/(X), e)X/D, X large enough). Similarly ]~-P1 " f~<*fz  if 

a < / 3 < x  +'' 

Now, if IF-p1 "g E ~w", then g =  (gr :r < x)/D, l t-p "g~ E ~w", so for some a < a~ + we have 

IF-p "g~<*f~ for r  Hence by Log' theorem IF-p I "g<*f~" (so before the identification 

this means IF-p~ "g<*j(f~)") ,  so ( f ~ : a < x  +} exemplifies also I~-p~ " b = ~ = x  +''. 

On the other hand, (A~ :a<a*}  cannot exemplify that  a~<~c + in V P~ because a* ~>x + 

(as ZFC ~ b ~< a), so (As: a < a,c)/D exemplifies that  I[-p1 "'rAt_~." a < a* } is not MAD". 

Our original idea here is to start with an FS-iteration (~0_gp0 QO: i<a~+} of nep "~ - - \  i ,  

c.c.c, forcing notions, Q0 adding a dominating real (e.g. dominating real = Hechler forc- 

ing), for ar a measurable cardinal, and let D be a :<-complete uniform ultrafilter on 

x and X>>x. Then let L 0 = x  +, and let Q I = ( P ~ , Q ~ : i e L 1 }  be ~o as interpreted in 
* ~ D ~ 0  x +  (7-/(X), C, <x) / �9 It looks like replacing by (x+)~/D. We look at L im(Q~ 

[Ji P i  as a subforcing of Lim(Q l) identifying Qi with Q j0(i), j0 being the canonical 

elementary embedding of x + into (x+)X/D (no Mostowski collapse!). We continue to 

define O n and then Q~ as the following limit: for the original i E x  +, we use the def- 

inition, otherwise we use direct limit ("founding father's privilege" you may say). So 

P i = L i m ( Q  i) is <-increasing, continuous when cf(i)>lq0; so now we have a kind of iter- 

ation with non-transitive memory and a non-well-founded base. We continue >c ++ times. 

Now i n  V Lim(~++), the original x + generic reals exemplify b = 0 = x  +, so we know that  

a~>x +. To finish assume that  pl~-"{A~:~<x+}C_[w] ~o is a MAD family". Each name 

A~ is a "countable object" and so depends on countably many conditions, so all of them 

are in Lim(Q i) for some i < x  ++. In the next stage, 0 i+1, (A~: 7<x) /D is a name of an 

infinite subset of w almost disjoint to A Z for each t3< x +, a contradiction. 

All this is a reasonable scheme. This is done in w but rely on "nep forcing" from [$8]. 

But another self-contained approach is in w167 2 and 3, where the meaning of the iteration 

is more on the surface (and also, in w help to eliminate the use of large cardinals). In 

w we deal with the case of an additional cardinal invariant, u. 

Note that  just using FS-iteration on a non-well-ordered linear order L (instead of an 

ordinal) is impossible by a theorem of Hjorth. On non-linear orders for iterations (history 

and background) see IS10]. On iteration with non-transitive memory see [$6], [S7], and 
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in particular [$7, w Continuing this work J. Brendle has proved the consistency of 

a=l% (note that  in Lemma 3.5 we have assumed that  A=A ~~ in V, and hence cf(A)>R0 
even in v P ) .  

I thank Heike Mildenberger and Juris Steprans for their helpful comments. 

1. On  Con(a>O)  

In this section, we look at it in the context of [S8] and we use a measurable. 

Definition 1.1. (1) Given sets At of ordinals for l<n, we say that  T is an 

(Ao,..., An-1)-tree if T =  Uk<~ Tk, where 

Tk C_ {(r/o,---, rh, ..., r/n-l) : r}t E k(Al) for l < n} 

and T is ordered by f] ~<7-P ** A t<n rh ~ ut, and we let f]] kl := (rh F kl:l <n} and demand 

that  ~]ET~ & k l<k ~ 01klETkl. We call T locally countable if kE[1,w) & qETk 

I{PcTk+l: q<~T #}1 <~ No. Let 

lim(T) = {(r/z : l < n}: r h �9 ~(Az) for l < k and m < co =~ (r/t Ira: l < n} �9 7-}. 

Lastly for nl ~<n we let 

prj l imnl(T ) = {(r/l : I < n l ) :  for some ~nl, " " ,  ?'In--1 we have (r/t: 1 < n) E lim(T)}; 

and if nl is omitted we mean n l = n - 1 .  
(2) We let 

J~ = {T: for some sets A and B of ordinals we have 

(i) T =  (T1, %); 
(ii) T1 is a locally countable (A, B)-tree; 

(iii) T2 is a locally countable (A, A, B)-tree; 

(iv) QF := (prj lim(T1), prj lim(T2)) is a c.c.c, forcing notion 

absolutely under c.c.c, forcing notions (see below)}. 

(2A) We say that  QF  is c.c.e, absolutely for c.c.c, forcing if: for c.c.c, forcing 
V P V R notions P <  R we have P * Q ~  < R * Q ~  (though not necessarily QF  < Q F  in VR), so 

that  membership, order, non-order, compatibility, non-compatibility, and being predense 

over p in the universe V P are preserved in passing to v R ;  note that  the predense 

sets belong to V P (the QF's  are snep, from [$8] with slight restriction). Similarly we 



TWO CARDINAL INVARIANTS OF THE CONTINUUM (~l<fl) 191 

define " Q ~ < Q F  absolutely under c.c.c, forcing" (compare with clause (A)(a)(iii) in 

Definition 2.6). 

(3) For a set or class A of ordinals, ~ is the family of TEJ~ which are a pair of 

objects, the first an (A, B)-tree and the second an (A, A, B)-tree for some B such that 

]~I~<x and ]T2[~x. For a cardinal x and a pairing function pr with inverses p q  and pr2, 

let ~ --~: and ~ - ~  Let ]'T]=I~I+['T~]. prl /T--~ '{oe:Prl((X)=7} J~Prl,<" T -  {o~:Pr l (a)<7} '  

(4) Let T, T'eR. We say that f is an isomorphism from T onto T '  when f= ( fx ,  f~) 

and for m = 1, 2 we have: f,~ is a one-to-one function from T,~ onto 7 "  preserving the level 

(in the respective trees), preserving the relations x=yl  k, x ~ y l  k, and if f2((r/1, r/a, r/3))= 

(r/~, ~ ,  r/~), f~((,~, ~2))=(/2~, z4) , then [/11=/21 g::> /1~=/2~] and [r~u=/2~ r r/~=/2~]. 

In this case let t" be the isomorphism induced by f from QF onto Q~,. 

Definition 1.2. For T' ,  T " E R  let T '  ~<nT" mean: 

(a) T~'CT~" (as trees) for l=1,2;  

(b) if l~{1, 2}, f /ETt" \T  z' and ~]kET~' then k~<l; 

(c) QF, <Q'r, ,  (absolutely under c.c.c, forcing); note that  by (a) and (b) we have: 

xEQ~-, ~ x E Q F , ,  and Q F , ~ x < < . y ~ Q ~ , , ~ x < . y .  

Remark. The definition is tailored such that the union of an increasing chain will 

give a forcing notion which is the union. 

CLAIM/DEFINITION 1.3. (0) The relation <~ is a partial order of ~. 

(1) Assume that (T[i]: i<5} is <<.h-increasing and that T is defined by T =  Ui T[i], 

that is, Tm=U~<~ Tin[i] for m = l , 2 .  Then 

(a) i<~ ~ [ i ] . < ~ ;  
(b) Q~ = Ui<~ Q~[~]- 

(2) Assume T ' , T E ~ .  Then there is T"EYt such that T'<<.s~T" and Q~,, is iso- 

morphic to Q'/- '*QF, and this is absolute by e.c.c, forcing. Moreover, there is such an 

isomorphism extending the identity map from QF' into QF,,. 

(3) There is T E ~  ~ such that QF is the trivial forcing. 

(4) There is T E ~  ~ such that QF is the dominating real forcing. 

Proof. See [$8]. [] 

CLAIM 1.4. (1) Assume that T[Y]E~ffprl,~ for 7<7(*) .  Then for each a<~7(*) 

there is T(O~)EJ~pr,,<a such that QT<~> is Pa, where (P-y,Q_z:'y~<'y(*),/3<7(*)) is an 

FS-iteration, Q~=(Q~[~i)v[P~], T(~} ~.Rp~><~, T(~l} ~<~T((~:) for at <~a2<~'y(*) and 

7-[7]~<nT<c~> for 7<c~<7(*).  We write T<c~>=E~<e , T[7]- 
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(2) In part (1), for each +<7(*) there is "T'~-~-prl,+ such that T '  and T are iso- 

morphic over T[7]- Hence QT' and Q ~  are isomorphic over QT[-~]" 

(3) /f  in addition T[~] ~<~T'[7] eJ~pr 1,-~ for 7<~(*),  and (P~, Q~: 7<V(*), ~<7(*)) 
is an FS-iteration as above with P~ _c~_, then we find such a T~ with T ~ n T ' .  ~ ( . ) -  ~ T  , 

Proof. This is straightforward. [] 

THEOREM 1.5. Assume that 

(a) ~ is a measurable cardinal; 

(b) >c<#=cf(#) < ~ = c f ( ~ ) = ~  and (Va<p)(]a] ~~ <#) for simplicity. 

Then for some c.c.c, forcing notion P of cardinality )% in V P we have 2~~ ~ = b = #  

and a=)~. 

Proof. We choose by induction on (~<A the following objects satisfying the following 

conditions: 

(a) a sequence (T[V, ~]: 7<#}; 
( b )  ; '  �9 ~] e J~Prl,-y, 
( c )  

(d) if ( is limit then T[~/, (] =U~<r T[7, ~]; 
(e) if 7 < #  and ~=1, then QT[7, (] is the dominating real forcing = Hechler forcing; 
(f) if 7<# ,  r  and ~ is even, then T[V, r is isomorphic to T (7+ l ,~ )  over 

T[V, ~], say by j~,~, where T('~+ 1, ~):= ~-]~Z~<~ T[fl' ~]; let J-r,~ be the isomorphism induced 

from Q'r(~+l,~) onto QF[% (] over QF[~,~]; 
(g) if 7<# ,  ( = ~ + 1  and ~ is odd, then T[~,, 4] is almost isomorphic to (7-[% ~])X/D 

over ~,~],  say that j~,~ is an isomorphism from (T[% ~])'~/D onto T[~,, ~] such that 

(x: e < ~ ) / D  is mapped onto x by j-~,~. 
There is no problem to carry out the induction. Let PI=QF( , , r  where we have 

T(# '  r T[~/' 4] for ~<A, P = P ~  and P~,r162 Now the following holds. 

[~1 It is true that ]PI~<A. (Why? As we prove by induction on ~ A  that each 
T[7, 4] and ~-]~<,T[7, A] has cardinality <~A. Hence for 7<i t  we have that the forcing 

notion Q~[~,~] in the universe vQ~,~> has cardinality ~<A~0 =A.) 
~2 In V P we have b=~=A. (Why? Let ~ be the Q~[~,l]-name of the dominating 

real (see clause (e)). As T[7, 1] ~<~T[7, A], clearly ~ is also a Q~[z,~]-name of a dominat- 
ing real. This is preserved by P~, so I~-p~+~ " ~  dominate (~~ But (P~,~:7<#) 
is <-increasing with union P and cf(#)=#>R0, so I~p " ( ~ : 7 < # )  is <*-increasing and 

dominating". The conclusion follows.) 
We shall prove below that a~>)~, and together this finishes the proof. (Note that it 

implies 2 ~~ ~>)~, and hence as ~=)~o by ~ l  we get 2 ~~ =A.) 

[~3 It is true that I[-p"a~>A". 
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So assume that  pl~-"A={Ai: i<O} is a MAD family, i.e. (0~>N0 and) 

(i) AiE [w]~~ 

(ii) i~ j  ~ ] A i N A j I < R 0 ;  

(iii) A is maximal under (i) and (ii)". 

Without  loss of generality I•p "A~ E [w] u~ 

As always a>b, by ~2 we know that  0~>#, and toward contradiction assume 8<A. 

For each i<0  and m<w there is a maximal antichain (pi,m,n:n<w) of P and a se- 

quence (ti,m,n:n<w) of t ru th  values such that  Pi,m,n IF-p "nEAi if and only if t~ . . . .  is 

t ruth".  We can find a countable wiC#  such that  [Um,n<~ D~ p,,m,nE 
QZ{T[V,~]:VEw~}; moreover, ?EDom(pi,m,n) ~ p i  . . . .  (~) is a QE{T[Z,~]:~Evn~} -name' 

Note that  QE{~[~,~]:~E~n~,~<0} <QE{T~:~<~}, see [$8]. 

Clearly for some even ~<A, we have {Pi,m,n: i<O, m<w and n<w} CQE{T[z,r 

Now for some stationary S_C{5<#:c f (5 )=x}  and w* we have 5eS ~whMh=w* and 

a<hES ~ w~ C5. Let (5~: ~ < x )  be an increasing sequence of members of S, and 5*= 

U~<,  5~. The definition of (T[7, ~+1]: 7 < # ) ,  (T[7, ~+2]: 7<#> was made to get a name 

of an infinite AC_w almost disjoint to every AZ for f l<0 (in fact, (~-~.~<, Q~[v,r can 

be <-embedded into ~-~v<, Q~[~,r [] 

Remark. In later proofs in w we give more details. 

2. On  C o n ( a > 0 )  r e v i s i t e d  w i t h  FS,  w i t h  

n o n - t r a n s i t i v e  m e m o r y  o f  n o n - w e l l - o r d e r e d  l e n g t h  

We first define the FSI-templates, telling us how to iterate along a linear order L; we think 

of having for each tEL, a forcing notion Qt, say adding a generic ~t, and Qt will really 

be U{QV[<~:seA>]:AEIt}, where It is an ideal of subsets of { S : S<L t } ;  SO Q t  in the 

nice case is a definition. In our application this definition is constant, but we treat  a 

more general case, so Qt  may be defined using parameters from V[(~s: sEKt)], Kt being 

a subset of {S:S<Lt}, and so the reader may consider only the case tEL ~ K t = ~ .  

In part (3), instead of distinguishing "~ successor, ~ limit" we can consider the two cases 

for each ~. The depth of L is the ordinal on which our induction rests (as order type of 

L is inadequate). 

Definition 2.1. (1) An FSI-template (= finite support iteration template) t is a se- 

quence (It: t E L> -- (Itt: t E L t> = (It [t]: t E L[t]) such that  

(a) L is a linear order (but we may write x E t  instead of xEL and x<ty instead 

of X<Ly); 
(b) It is an ideal of subsets of {s:L~s<t}. 
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We say that  t is locally countable if tELt&(VBE[A]~~ ~ A E I t ,  we say that  
t 1 t 2 {1 and t 2 are equivalent if L t l = L  t~ and tELtl&[A]<~Ro ~ (AEI~ -AEI~  ), and we say 

that  t is globally countable if tELt&AEIt t  ~ [AI~R0. 

(2) Let t be an FSI-template. 

(c) We say that  K = ( K t : t E L  t) is a t-memory choice if 

(i) Kt EItt is countable; 

(it) sEKt  ~ K~C_K,. 
(d) We say that  LC_L t is K-closed if tEL ~ KtC_L. 

(e) For K a t-memory choice and LC_L t which is K-closed, we say that  K I = K I L  

if D o m ( K ' ) = L  and K~ is Kt for tEL (it is a ( t [L)-memory choice, see part  (5)). 

(3) For an FSI-template t, t-memory choice K and K-closed LC_L t, we define 

Dpt(L, K) ,  the t-depth (or (t, R)-depth)  of L, by defining by induction on the ordinal 

when Dpt(L , K)  ~ .  

For ~=0: Dpt(L,K)~< 4 when L = O .  

For 4 a successor ordinal: Dpt(L , K ) ~  4 if and only if 
* ~  (a) there is L* such that  L*C_L, IL I.~1, (VtEL)(VAEI~)(AAL*=O); hence 

L\L* is K-closed, Dpt(L\L* , R ) <  4 and for every tEL* we have 

[]t,L L\L*EI~ and(1) it is K-closed. 

For 4>0  a limit ordinal: Dpt(L , K ) ~  4 if and only if 

(b) there is a directed partial order M and a sequence tL~: hEM} with union 

L such that  the sequence is increasing, i.e. M ~ a ~ b  ~ L a C L b ,  each Lb is K-closed, 

(VbEM)(4>Dpt(Lb , K))  and tEL & AE It & AC L ~ ( 3 h E M ) A C L ~ .  

So we have Dp~(L, K ) - - 4  if and only if Dpt(L, K)~>4 & (V~ <4) Dpt(L, K ) ~ ,  and 

Dpt(L, K ) = c ~  if and only if (Vordinals 4) [Dpt(L, R ) ~ 4 ] .  

(c) If a~EM, WaE[La] <~~ and A~,tC_L~ is from It t for a<w~ and tEw~, then 

there are an unbounded S E w  I and bEM such that  {U{A~,tU{t}\Lb: tCwa}:~ES}  is 

a sequence of pairwise disjoint sets (we can waive this if we use only a-linked forcing 

notions below (where for each of the w parts, membership is absolute too)). 

(4) We say that  R is a smooth t-memory choice if Dpt(Lt,  K ) < c ~  and K is a t- 

memory choice. 

(5) If R is omitted we mean that  it is the trivial K,  that  is, K t = O  for tEL  ~. 

We say that t is smooth if the trivial K is a smooth t-memory choice. For L C L  t let 

tIL={ItMP(L): tEL}. 

(6) Let LI ~t L2 mean L1CL2C_L t and tEL1 & AEItt ~ AML2C_L1. 

(1) We can use less, but it seems not needed at the moment. We can go deeper to names of depth 
~<r inductively on r as in [$7, w or in a more particular way to make the point that is used here 
true, and/or make I~ only closed under unions (but not subsets), etc. Note that, e.g., Limt(~=:~) is well 
defined when L t is well ordered. 
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Definition 2.2. Let t=(It: teLt> be an FS-iteration template and K a t-memory 
choice. 

(1) We say that L is a (t, K)-representation of L if (c) of Definition 2.1 (3) is valid 
and 

(a) LC_L t is K-closed; 

(b) L=(L~:aEM}; 

(c) M is a directed partial order; 

(d) L is increasing, that is, a<Mb ~L~C_Lb; 

(e) L=U~cM L~; 
(f) each L~ is K-closed; 
(g) if t eL ,  AeI~t, A C L  then (3aeM)(ACL~) .  

(2) We say that L* is a (t, K)-*representation of L if 
(a) LC_L t is K-closed; 

(b) L*C_L, L* a singleton; 

(c) if t e l  and AeItt then A n n * = o  (so L\L*<~tL); 

(d) if teL* then L\L*eI : .  

CLAIM 2.3. Let t be an FSI-template and K a t-memory choice. 

(0) The family of K-closed sets is closed under (arbitrary) unions and intersections. 

Also if L C L  t then Lu[J{Kt : tCL}  is K-closed. 

(1) If L2CL t is K-closed and L1 is an initial segment of L2, then L1 is K-closed. 

(2) If  L I C L 2 C L  t are K-closed then 

(a) Dpt(L1, K) ~<Dpt(L2 , K); moreover, 

(/3) (3tcL2)[LIEI~] implies that D p ~ ( / 1 , K ) < D p t ( / 2 , K  ) or both are oc. 

(3) If  L1C_L2CL t are K-closed then trL2 is an FSI-template, Lx is (trL2)-closed 

and Dptr/2 ( i l ,  K FL2)=Dpt(L1, K). 

Proof. (0) and (1) are trivial--read the definitions. 

(2) We prove by induction on the ordinal ~ that 

(*)r (a) if Dpt(L2, K ) = ~  (and L1 and L2 are K-closed) then Dpt(L1, R )4~ ;  
(f0 if in addition (3tei2)(L1EI~) then Dpt(L1, R)<~ .  

So assume Dpt (L2, -K) = ~, so that Dpt (L2, K) ~ ~ + 1, and hence one of the following 
cases occurs. 

First case: ~=0. This is trivial; note that clause (t3) is empty. 

Second case: ~ is a successor. It follows that L2 has a (t, K)-*representation L* 
such that Dp~(L2\L*, K ) < ( ;  see Definition 2.2 (2). 

Let L~ := L2\L*; if L1 c L~ then by the induction hypothesis we have Dpt(L1, K) 
Dp~(L2, K)<~;  so assume that L1 ~L~, and so only clause (a) is relevant. Now letting 
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L~=LI\L* we have [L~ and L~ are K-closed] & L ; C L  2 & D p t ( L ~ , K ) < 4 ,  and hence 

Dpt(L1, K ) < 4  by the induction hypothesis. Let L~=LIML*, so that  L~ C_L1, L1 is K- 

closed, LI\LI  = (L2\L~) NL1 is K-closed, Dpt (LI \L  ~, K)  =Dpt(L{,  K)  < 4 and necessarily 

L~ has exactly one element. Also easily tEL~ implies L{EI~, so that  LI is a ( t ,K)-  

*representation of L~. So clearly Dp~(L1, K)~<Dpt(L{, K)+l , .<4.  

Third case: 4 is limit and (La:aEM} is a (t,K)-representation of L2 such that 

hEM ~ Dpt(La, K)  <4- 
L a -  L1 , each Let L2a:--La and L~:=L,  ML1, so that  (L~:aEM) is increasing, U,eM 1_ 

L~ is _~-closed (as L~ and L1 are K-closed, see part (0)), and tEL1 &AEI~ &ACL1 

(3aEM)(AC_L~AL1 =L~). Also by the induction hypothesis, bEM ~ Dpt(L ~, K ) < 4 .  

By the last two sentences (and Definition 2.1) we get Dpt (L1 ,K)E4,  as required in 

clause (a). For clause (/3) we know that  there is tEL2 such that  LIEI~. Hence by clause 

(f) of Definition 2.2(1) for some bEM we have L1CL b, and we can use the induction 

hypothesis on 4 for L1, Lb. 

(3) This is easy. [] 

CLAIM 2.4. (1) If for l=1 ,2  we have that L t is a (t,K)-representation of L, L l-= 

(n~: aE Ml) and M=M1 • M2, then L= (g~ NLb: (a, b) E M) is a (t, K)-representation 

of L. 
(2) If L~ is a (t,K)-*representation of L for l=1 ,2  then g~=g~. 

Proof. (1) This is straightforward. 

(2) This is easy, too. [] 

Discussion 2.5. (1) Our next aim is to define iteration for any K-smooth FSI- 

template t; for this we define and prove the relevant things; of course, by induction 

on the depth. In the following Definition 2.6, in clause (A)(a), we avoid relying on [$8]; 

moreover the reader may consider only the case Kt=O, omit ~t and have Q t ,~ be the 

dominating real forcing = Hechler forcing. 

(2) We may more generally than here allow r/t to be, e.g., a sequence of ordinals, 

and members of Q t,~,~_, be C_7-L<~l(Ord), and even Kt large but increasing L; we then 

need more "information" from r h tLimt(Q IL). We may change to: Q t is a definition of 

nep e.e.c, forcing ([$8]) or just "Souslin c.c.c, forcing (=snep)" or just absolute enough 

c.c.c, forcing notion. All those eases do not make real problems (but when the parameter 

rh have length ~>x it changes in the ultrapower!, i.e. j(r/t) has length greater than the 

length of ~t). 

(3) If we restrict ourselves to a-centered forcing notions (which is quite reasonable), 

maybe we can in Definition 2.1 (3)(a) omit Nt,L if in Definition 2.6 below in (A)(b), 

second case, we add that  tEL* ~ p I(L\L*) forces a value to f t(p(t)) where ft :  Q t--+w 
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witnessed a-centerness and is absolute enough (or just assume that Qt c_ w x Q~ and that 

ft(p(t)) is the first coordinate). More carefully, probably we can do this with a-linked 

instead of a-centered. 

Definition/Claim 2.6. Let t be an FSI-template and K--(Kt:tEL ~) be a smooth 

t-memory choice. 

By induction on the ordinal ~ we shall define and prove: 

(A) (Definition) For LC_L t which is K-closed of (t, K)-depth ~<~ we define: 

(a) when Q =  (Qt,~,v~ : tEL) is a (t, K)-iteration of def-c.c.c, forcing notions, but 

we can let ~t code ~t so that we may omit ~t; 

(b) Lime(0) for Q as in (A)(a). 
(n) (Claim) For LIC_L2CL t which are K-closed of (t,K)-depth ~<~ and a (t ,K)- 

iteration of def-c.c.c, forcing notions Q=(Qt ,~,m : tcL2) we prove: 

(a) Q ILl is a (t, R FL1)-iteration of def-e.c.e, forcing notions. 

(b) Limt(Q ILl) CLime(Q) as quasi-orders. 

(c) If LI<~L2 (see Definition 2.1 (6)) and pELimt(Q), then pFL1ELimt(QrL1) 
and Lime(Q) ~ "p F L1 ~p". 

(d) If L1 <t L:, peLimt(Q) and Limt(Q rL1) ~ "(p FL1)<q", then q U (p r(L2\L1)) 

is a least upper bound of {p, q} in Lime(Q); hence Limt(Q ILl)<Lime(Q). 

(e) Limt(Q ILl) <Lime(Q), i.e.(z) 

(i) peLimt(QIL1)~pELimt(Q) ;  

(ii) Limt(Q ILl) ~p<q ~ Lime(0) ~p<~q; 
(iii) if ZC_Limt(QIL1) is predense in Limt(QIL1), then 2: is predense in 

Lim(Q) (hence if p, qeLimt(Q) are incompatible in Limt(QIL1) then they are incom- 

patible in Lim(Q)). 

(f) Assume that LoC_L2 is K-closed and L=LoML~; if pELimt(QIL0) and qE 

Limt(Q IL) satisfies (Vr eLimt(Q IL))[q<.r-+p and r are compatible in Limt(Q IL0)], then 

(VrELimt(QIL1))[q<~r--+p and r are compatible in Limt(QIL2)]. (Explanation: this 

means that if q forces for I~-Lim,(OrL ) that pcLimt(Q IL0)/Limt(Q IL), then q forces for 

H-Lim~(QIL1) that peLimt(Q)/Limt(Q ILl).) 
(g) If (L~: heM1) is a ( t, K)-representation of L1 then we have Limt(Q ILl)= 

U~cM, Limt (Q ILl). 

(h) If L* is a (t,K)-*representation of L1, then Limt(QIL1) is as defined in 

(A) (b) of our definition below, second case, from L*. 

(i) (c 0 If pl,p2eLimt(Q) and teDom(pl)ADom(p2)~pl(t)=p2(t), then q= 

plUp2 (i.e. plU(p2\Dom(pl))) belongs to Lime(0) and is a least upper bound of Pl,P2; 

(2) Here we do not assume L1 ~L2. 
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(/~) pELimt(Q) if and only i fp  is a function with domain a finite subset of L2 

such that for every tEDom(p) ,  for some A~I[,  A is K-closed, K t C A  and  H-Limt(OtA ) 

"PC t) ~Qt,n~" (so if p~Lim~(Q) then for some countable LC_L: we have p~Lim~(Q I / )) ;  

(7) Limt (Q) ~p<~ q if and only if p, q ~ Limt (Q), for every t ~ Dora(p) we have 

t~Dom(q),  and for some K-closed A~I[ we have q[A~Limt((~[A) and qIAIF-Limt(OtA ) 
"p(t)~q(t) in Qt,nt (as interpreted in V Limdo~A) of course)". 

(j) Limt((~) is a c.c.c, forcing notion and Lim~(Q)= U{Lim~(Q IL): L~ [Lu]~<s~ 

(k) Limt(Q) has cardinality ~IL:I s~ (here we use the assumption that zlt and 

members of Q t,n~ are reals; see definition in (A)(a)(i) and (ii)) below). 

Let us carry out the induction. 

Part (A) (Definition). Assume Dpt(L,R)~< ~. If D p t ( L , K ) <  4 we have already 

defined (t, K)-iteration and Limt(Q IL), so assume Dpt(L, K ) = 4 .  

Clause (A)(a). (i) 7/t is a Limt(Q IKt)-name of a real (i.e. from "~2, used as a pa- 

rameter) (legal as K t C L & K t C I t  & t c L ,  hence by Claim 2.3(2), clause (~), we have 

Dpt(Kt,  K)<DPt(KtU{t} ,  K ) ~ D p t ( L ,  K ) ~ ( ,  and so Limt(Q FLt) is a well-defined forc- 

ing notion by the induction hypothesis and Claim 2.3 C2), clause (j~)). 

(ii) ~t is a pair of formulas with the parameters r/t defining in V Limt(orKt) a forcing 

notion denoted by Qt,~t,m whose elements are contained in 7t(~1). 

(iii) In  V l = V  Limt(0rKt), if P ~ < P "  are c.c.c, forcing notions then Q = Q t , ~ , w  as 

interpreted in V2=(V1)  p' is a c.c.c, forcing notion there, and P~*Qt,~t,nt is a *~- 

subforcing of P '*Qt,@,m, where Q t,4,n, means as interpreted in (vLimt(QIKt)) P' or in 

(vLimt((:~IKt)) PH respectively (i.e. "p~q", "p and q incompatible" and " (pn :n<w)  is 

predense" (so the sequence is from the smaller universe) are preserved). 

(iv) Assume that Limt (Q IKt) ~ Po < Pl  < P3 are c.c.c, forcing notions for I = 1, 2, 

P ~ n P 2  =Po ,  P~ is a forcing notion, Pz < P~ for l=  1, 2 (in fact, P~ =P~*p0 P2 is all right) 

and G3 * G 3 is a generic subset of P3 * Q t,~,,nt, and let Gt * G l = (G3 * G 3) n (Pz * Q t,~,n, ). 

If (pz,ql)cGz.G z for l=1,2 ,  then for some p~CPz satisfying Pl~p~<~pl for l=1 ,2  we 

have: if p*EP3 is above p~ and above p~, then p*lF-p3"ql and q2 are compatible in 

9t,@~,~". 

Clause (A)(b). 

First case: ~=0. This is trivial. 

Second case: ~ is a successor. So let L* be a (t ,K)-*representation of L. Define: 

p E Limt (Q) if and only if p is a finite function, Dora (p) C_ L, p t CL\L * ) C Limt CQ [ (L\L*)),  

and if tEL* nDom(p) ,  then p(t) is a Limt(Q F(L\L*))-name of a member of Qt,~,nt ; and 
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the order is Limt(Q)~p<~q if and only if 

(i) Limt(Q F(L\L*)) ~ "(pF(L\L*)) ~ (q F(L\L*))", and 

(ii) if tEL* r]Dom(p) then q F(L\L*)IF-Lim,(O r(L\L*))"p(t) ~<q(t)". 
Clearly Lime(0) is a quasi-order. But we should prove that Limt(Q) is well defined, 

which means that the definition does not depend on the representation. So we prove 

that 

[]1 if Dpt(L , K)=~,  and for /=1,  2 we have that L~ is a (t, K)-*representation of L 

with Dpt(L\L~, K)<4 ,  and Q1 is Limt(Q [L) as defined by L~ above, then Q l=  Q2. 

This is immediate by Claim 2.4 (2) and the induction hypothesis clause (B)(h). 

Third case: ~ is limit. There are a directed partial order M and L=(La:aEM>, 
a (t, K)-representation of L, such that hEM ~ Dpt(La,K)<4.  By the induction hy- 

pothesis, a<M b ~ L~ c nb ~ Limt(Q [La) CLimt(Q ILb). 
We let Limt(Q In)=  UaeM Limt(Q IL,), so we have to prove that 

[]2 the choice of/~ is immaterial. 

So we just assume that for l= l ,  2 we have that Mz is a directed partial order, L t-- 
: . (  l C l (L~ aEMz), L~CL, Mz~a..~b~L~_L b and (VtEL)(VAEIt)[ACL--+(3aEML)(ACL~) 

and Dpt(n~, K) <~]. 

We should prove that U~EMiLimt(Qrn 1) and U~EM2Limt(QFL2a) are equal, as 

quasi-orders of course. 

Now let M:=M1 • M2, with (al, a2) ~ (bl, b2) <=~ al ~ M l b l  &: a2 ~M2 b2, be a directed 

partial order. We let L(~I,~2)=L~r]L~2, so clearly L(a~,~)CL t, Dpt(L(a~,a2),K)<~, 

(el, a2) <M (bl, 52) ~ n(a 1,a2) c--n(bl,b2) and (n(a ~,a2): (al, a2) EM) is a (t, K)-representa- 
tion of L by Claim 2.4 (1). So by transitivity of equality, it is enough to prove for l--l ,  2 

that U~eMz Limt(0 IL~) and U(a,b)eM Limt((~IL(~,b)) are equal as quasi-orders. By the 

symmetry in the situation, without loss of generality, l= 1. 

Now for every hEM1, L=(L(~,b):bEM2) satisfies: LIC_L, Dp(L~)<~, L(~,b)CL 1, 
1__ L~--UbEM~ L(a,b) and bl~<M2 b2 ~ L(~,b~) C_L(a,b~). Also we know that (VtEL)(VAEItt) 

(3bEM2)(AC_L-+ AC_L~), and hence (VtEL1)(VAEI~)(ACL~-+(3bEM2)(AC_L(~,b))). 
Hence by the induction hypothesis for clause (B)(g) we have that Limt(0IL 1) and 

Ub~M2 Limt(Q IL(~,b)) are equal as quasi-orders. As this holds for every hEM1 and M1 

is directed, we get that U~cM~ Limt(Q IL~) and UaeM~UbeM~ Limt(Q IL(a,b)) are equal 

as quasi-orders. But the second is equal t o  U(a,b)EM Limt(0 IL(a,b)), and so we are done. 

Part (B). 

First case: 4=0. This is trivial. 

Second case: ~ is a successor. Similar to usual iteration, and easy using the definition 

and the induction hypothesis, except for clause (f), which we prove in detail. 
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Clause (f). Let p, q, L and Lo be as in the assumption of clause (f). Let r e  

Limt(QFL1) be above q there (and we should prove that p and r are compatible in 

Limt(QrL2)).  Let t be the maximal member of L2, and set L[:=Lt\t and L-:=L\t .  If 

(t~Lo V t~L1) or just t~Dom(p)nDom(r), then by the induction hypothesis applied to 

L~, L2, L-, Lo, ptLo, qIL- and rtL 2 we can find a common upper bound r* of pIL 0 
and r I L 1 in L imt (Q I L2), and r*Upr{t} u r F{t} is a common upper bound of p and r as 

required. 

So assume that tEDom(p)nDom(r)CLonL1, and let P : = L i m t ( Q F L - )  and P t : =  

Limt(QFL~-) for l=0 ,1 ,2 .  Let P~ be P0*PP1 ,  and let G2*G 2 be a generic subset of 

e~*Qt,~,:, to which p and r belong. Now we get p' and r' by applying clause (A)(a)(iv) 

for t with 

P,  e0,  P1, e2,  P~, (p[Lo,p(t)), (rti~,r(t)), p~ and p~ 

here standing for 

P0, P1, P2, P3, P~, ql, q2, P' and r '  

there, respectively. 

By the induction hypothesis in Pu for the conditions p' and r' we can find a common 

upper bound p*. So clearly p*lkp 2 "p(t) and q(t) are compatible inside Q~,~,m", and we 

can finish. 

Third case: ~ is limit. Let (L~: aEM) be a (t, K)-representation of L2 with aEM 
Dpt(La,-K)<~,  and let L~=L~NLa. 

Clause (B)(a). This is trivial. 

Clause (B)(b). Clearly Dpt(L1, F.) ~ by Claim 2.3 (2)(~). Hence Lime(Q ILl) 
is well defined by ( i ) (b ) ,  which we have already above, i.e. Limt(Q)=Limt(QIi2)= 

U~cM2 Limt(Q IL2a) as quasi-orders. 
Clearly (L al -L1- NL~2 : aEM) is a (t, K)-representation of L1. Hence by the induction 

hypothesis (if Dpt(L1, _K)<~) or by the uniqueness proved in (h)(b) (if Dpt( /~,  K ) = ~ ) ,  

we know that Limt(Q I51)--Ua~M Lim~(Q ILia) as quasi-orders, and by the induction hy- 

pothesis for (B)(b) we know that Limt(Q I i~ )CLimt (Q  IL 2) as quasi-orders (for aEM), 
and we can easily finish. 

Clause (B)(c), (d). Use the proof of clause (B)(b) noting that Lla.~tL~, and so we 

can use the induction hypothesis (i.e. if pCLimt(Q IL2), as M is directed there is aCM 
such that Dom(p)C_L2; now a~Mb ~ p I L ~ -  1 - p  IL~, and we can finish easily). 

Clause (B)(e). The statements (i) and (ii) hold by clause (b). The statement (iii) 

holds: let 2: be a predense subset of Limt(Q ILl) and let pcLimt (Q) ,  so that  for some 
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a c M  we have pELimt(Q IL2a). By the induction hypothesis, applying clause (B)(e) to 

Lla and L 2, we have Limt(Q IL 1) <Limt(Q IL~). Hence as p e L i m t ( Q  ILia) clearly there is 

qeLimt (Q IL~) such that p is compatible with r in Limt(Q IL~) whenever Limt(Q IL~) 

"q<r".  Now by the assumption on " ICLimt (QIL1)  is dense", as qELimt(QIL1)  (by 

clause (B)(b)) we can find qoEI  and ql such that Limt(Q IL l )~qo<ql  & q<~ql, and so 

for some bEM we have q, qo,qlCL~ and a~Mb (as M is directed). Now we consider 
r2  f l  r2  and apply clause (B)(f). p, q, L~, ~a, ~ b '  ~"b 

L a s, which holds by Clause (B)(f). This is easy to check using clause (f) for the 2, 

the induction hypothesis. 

Clause (B)(g). Let M2:=M (and recall M1 that is from clause (B)(g)). For each 

alEM1, clearly Dpt(La , K ) ~ (  as L~C_L2, ( / ,~ML~:  a2EM2} is a (t, K)-representation 
2 - -  .<  2 - -  

o f  La and mpt(L~lMLa~ , K).~Dpt(L~2, K)<{. Hence by (A)(b) we know that 

Limt(Q IL~)  -- U Limt (0  I(La~NL~2))" 
a2 E M2 

The rest should be clear. 

Clause (B)(h). This is easy. 

Clause (B)(i). This is easy. 

Clause (B)(j). So let p ,  ELimt(Q) for a<Wl; let w~=Oom(p~) ,  and without loss of 

generality assume that <wa:a<wl} is a A-system with heart w. So for some hEM we 

have wCL2a . For each (~, for some a, EM, we have a~Maa and p ,  ELimt(QIL~,) .  

We can choose a countable set A~,tcI~ such that A~,tC_La, for tEw~ and p~(t) is 

a Limt(Q ILa~)-name. So by clause (c) of Definition 2.1 there are an unbounded SC_Wl 

and bEM such that (U{A~,tU{t}\Lb : tCw~}: c~CS> is a sequence of pairwise disjoint 

sets. Without  loss of generality, (~CS ::~ bC_aa. By clause (B)(e), for each (~ES there 

is * " - p~cLlmt(QILb) such that if p*~<~qELimt(QrLb) then p~ and q are compatible. By 

clause (B)(j) of the induction hypothesis, for some a < ~  from S the conditions p~ and p~ 

are compatible in Limt(O FLb). Let q exemplify this, and by clause (B)(f) we can finish 

easily. 

Clause (k). This is easy. [] 

CLAIM 2.7.  (1) Assume that 
(a) t is an FSI-template, Dpt(L, K ) < o c ,  i.e. K is a smooth t-memory choice; 

(b) Q=<Qt ,w: tGL} is a (t, K)-iteration of def-e.c.c, forcing notions; 

(el) L1,L2C_L, L I < L 2  (i.e. (VtlEL1)(Vt2EL2)(LtNtl<t2)) and tEL2 ~ LICI~, 

or at least tcL2 &L~CL1 & IL~l~<No ~ L'EI~ and L=LIOL2. 



202 S. SHELAH 

Then 

(a) Limt(Q) is actually a definition of a forcing (in fact a c.c.c, one), and so 

meaningful in bigger universes; moreover, for extensions V1C_V2 of V--Vo (with the 

same ordinals of course), we get [Limt(Q)]vlc  [Limt(Q)]V2,(3) and every maximal anti- 

chain Z of aimt(Q) from V1 is a maximal antichain of Limt(Q) (in V2); 

(fl) a imt(Q) is in fact the composition QI*Q2,  where QI=Limt (QrL1)  and 

Q2 = [Limt (Q IL2)] v[qol ]. 

(2) Assume clauses (a) and (b) of part (1), and 

(c2) suppose that L has a last element t* and let L - = L \ { t * } .  

Then for any G - C L i m t ( Q [ L - )  generic over V ,  letting ~t*--~?t*[G-] in V[G-] we 

' ' ~nv[c~] :AeI~ .  is K-closed}, have: the forcing notion Limt(Q) /G-  is equivalent to ut '~t*,m. 

where G A := G- MLimt(Q F A ) and ~?t~ = ~t* [G-]. 

(3) Assume clauses (a) and (b) of part (1), and 

(c3) suppose that <Li:i<5} is an increasing continuous sequence of initial seg- 

ments of L with union L, and that 5 is a limit ordinal. 

Then Limt(Q) is Ui<~Lim~(Q[L~); moreover, (Limt(QFni):i<5> is <-increasing 

continuous. 

(4) Assume that t 1 and t 2 are FSI-templates, that Ld-:L  t2, call it L, that for 

d It2N[L 1<~~ that K is a smooth tZ-memory choice, and that every tEL,  I~ M[L]~<~~ t t J , 
O----(Qt,~,w:tEL} is a (tt ,K)-iteration of def-c.c.c, forcing notions for l--1,2. Then 

Limtl (0)  =Lim~2 (0) .  

Proof. This is straightforward (or read [$8]). [] 

We now give sufficient conditions for: "if we force by Limt(Q) from Definition 2.6, 

then some cardinal invariants are small or equal/bigger than some #". The necessity of 

such a claim in our framework is obvious; we deal with two-place relations only as this 

is the case in the popular cardinal invariants, in particular those we deal with. 

CLAIM 2.8. Assume that t is a smooth FSI-template, that ~ .=(Kt:  fELt> and Q-- 

(Qt,~_~:tEL t) are as in Definition 2.6 and that P=Limt (Q) .  

(1) Assume that 

(a) R is a Borel(4) two-place relation on ~w (we shall use <*); 
(b) L*C_Lt; 

(c) for every countable K-closed AC_L t, for some tEL*, we have AEI~; 

(d) for tEL* and K-closed AEI~ which includes Kt,  in V Limt(OrA) we have 

I~-Q~.,~_ _ "ut E ~w is an R-cover of the old reals, i.e. QE(~w) v[LimdorA)] ~ QRut",_ where ~_t 

(3) Of course possibly L1 =0. 
(4) Here and below just enough absoluteness is enough, of course. 
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is a name in the forcing Q t,~, i.e. all this is in (Qt,w[q]) v[q], G the generic subset of 

Limt(Q rA), not depending on A (usually ~t is the generic real of Q t,,~, hence Q t,,~ is 

interpreted in the universe V Limt(~rA), and so ~t is determined by the generic; normally 

we assume this absolutely). 

Then IF-p " (VeE~w)(3 tE i* ) (eRe t ) ,  i.e. {~t: tEL*} is an R-cover, which, if  R=<* ,  
means ~ <<. IL*I ''. 

(1A) If  we weaken assumption (d) to "for some ~t a Limt(OrK~)-name", where 

K~=Kt,  or we use R'=<K~:tEL*>, ' t K~CL<~t, then we get IF-p"{ut:tEL*} is an R- 

cover". I f  we weaken assumption (d) to IFp"for every OE~w, for some tEL  t and ~E 

V(Ww) y[Limt(0IK~)], we have QRv", then 

II-p "(VQ C wo.))(3t E L*) (3  u C V Limt (~ [K~)) [LoR 1/] ". 

K I This implies that in V P, if  R = < *  then ~-~-tcL~ I t]; we could use a sequence K '  

indexed by other sets. 

(2) Assume that 

(a) R is a Borel two-place relation on ~w (we shall use <*); 
(b) # is a cardinality; 

(c) if  L*C_L t and ]L*I<#, then for some tEL  ~ and K-closed L**D_L* we have 

L**Eltt, and in V Lim'(0~L**), I~-Q,.;~ "some ~E~w is an R-cover of the old reals" (usually 

is the generic real of Or,v_1 ; this we assume absolutely). 

Then II-p "(VXE[~w]<t~)(3uE"~w)(A~cx oRu)" (so for R = < *  this means b>~#). 

(3) Assume that 

(a) R is a Borel two-place relation(5) on "~w (we use R={(Q, ~,):g, ~E~2 and 

0-1{1} ,  u - l { 1 }  are infinite with finite intersection}); 

(b) ~ and 0 are cardinals, and x<~O~)~; 

(c) if  t i ,~EL t for i<i(*) ,  n<w, x~<i(*)<0, and each {t i ,~:n<w} is K-closed, 

then we can find tnEL t for n<w such that {t~: n < w } C L  t is K-closed and 

( .)  for every i<i(*) ,  for some j < x ,  j # i ,  and the mapping ti ,~+ti,~, 

t j ,~+tn  is a partial isomorphism of (t, Q) (see Definition 2.9 below). 

Then in V P we have: 

~]R if Qi,~,iE~w for i<i(*) ,  x ~ i ( * ) < 0  and i ~ j  ~ v iRy j ,  then we can find ~E~w 

such that i<i(*)  ~ ~iR~. 

Proof. This is straightforward, but being requested we give details: 
(1) Let ~ be a P-name of a member of (~w) vP, so that as P satisfies the c.c.c. 

(see Definition 2.6 (B)(j)), for each n there is a maximal antichain {pn,i: i<in} such 

(5) So R is defined in V; if R is from V Limt(QrK) we need a partial isomorphism (see below) of 
(t, Q) extending idK. 
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that  Pn,i forces a value of Q(n) and, of course, in is countable. Let M={a:a is a 

countable K-closed subset of Lt}. Then obviously M is closed under countable unions 

and U{a:aEM}=L t. Let i a=a  for a E i ,  so that  by Definition 2.6 (B)(i)(~) we have 

pELimt(Q)  r U { L i m ~ ( Q F L a ) : a E i }  but P - -L imt (Q) .  Hence for n<w and i<in, for 

some an,iEM we have pn,iELimr But M is Rl-directed, so for some aEM we 

have {an,i:n<w and i<i~}C{c:c<Ma}. Also by Definition 2.6(B)(e) we know that  

Limt(Q I i a ) < L i m t ( Q ) = e ,  so Q is a Limt(Q r/~)-name. Now by assumption (c) of what 

we are proving, as L~C_L is countable, we can find tEL*C_L t such that  LaEI~. Also 

we know that  KtEI~ (see Definition 2.1 (2)(c)), hence A:=K~UL~ belongs to It t and is 

K-closed; and easily also B=AU(t}  is K-closed. 

Then A C B C L  t are K-closed, so as above Limt(QFA)<Limt(Q[B)<Limt(Q)=P 

and Q is a Limt(Q IA)-name (hence also a Limt(Q [B)-name) of a member of ~w. 

Now by assumption (d), in V Limt(Q[A) we have It-Q~,:~ 0 t , and therefore by 

_ t I t -  " " Claim 2.7 (2) we know that  L imt (QIB) - -L imt (QfA)*Qt ,w .  So ogether Limd,) ~R~t , 

and hence by the previous sentence and obvious absoluteness we have It-p "~R~t". So as 

was any P-name of a member of (~w) VP, we are done. 

(1A) The proof is the same as above. 

(2) Assume plt-p "XC_~w has cardinality <#".  As we can increase p without loss of 

It- " ~ '  n,, generality, for some 0</ t  we have p p A =~ , SO we can find a sequence (Qa:~<0) of 

P-names of members of (~w) VP such that  p It-p " X =  {e ,  :(~<0}". Let {p,,n,i:i<i,,~} be 

a maximal antichain of P,  with p~,n,i forcing a value to ~ ( n )  and i~,n countable. 

Define M={aC_Lt:a is countable and K-closed}, so that  for each (~<0, n<w, 

i<i . . . .  for some a~,n,iEM we have p~,n,iELimt(Q[La .... ~). Then for some K-closed 

L**C_L t and tEL t we have L**EIt t and a~,n,iCL** for c~<0, n<w and i<i~,~. We now 

continue as in part  (1). 

(3) Assume i(*)E[x,  0) and It-p "pi, ~iE"~w and i ~ j  ~ ~iR~j". So as above we can 

find a countable K-closed K~ C_ 5 t such that  ~i and Qi are Limt(Q IK~)-names; without 

loss of generality, K ~ r  and even IK~I=R0; this is impossible only if L t is finite, and 

then all is trivial. Let (ti,n:n<w) be a list of the members of K~' with no repetitions. 

Let fi,j be the mapping from K~ to K* defined by fi,j(tj,n)=ti,n. 

We define the two-place relations E1 and E2 on i(*) and on i(*) x i(*) respectively by 

�9 i E l j  if and only if fi , j  is a partial isomorphism of ( t ,Q) such that  ]i,j  (see 

claim (B) of Definition 2.9 below) maps (0j, Yj) to (Qi, vi); 

�9 (il, i2) E2 ( j l ,  j~) if and only if i~ E1 j l ,  i2 E2 j2 and fi~,j~Ufi2,3~ is a partial isomor- 

phism of (t, Q). 

We easily have that  
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| (i) E1 and E2 are equivalence relations over their domain; 
(ii) -1 fj,i =fi,j " 

As li(*)/E1]<cf(x) (by clause (c) of the assumption) and we can replace i(*) by 

i (* )+x ,  without loss of generality, i < x  ~ OEli. Now we apply assumption (c), and 

get (tn: n<w). By (*) of clause (c) and clause (A)(b) of Definition 2.9 below, for any i 

and j clearly K*UK] and K*U{tn:n<w} are K-closed (see the definition below). For 

any i<i (*)  let j i < x  be as in (*) of clause (c), which means that j~7~i and the following 

mapping gi is a partial isomorphism of (t, Q): Dom(gi)={ti,n, tj~,n: n<w}, gi(ti,n)=ti,n 
and gi(tj,n)=t~. 

Let g and O be Limt(Q FK*)-names such that for some, equivalently any, i, t}i maps 

t,j~, Qj~ to v, O, respectively (this is all right as for any il and i2 we have jilElji~ because 
�9 . g , ~  jliE12i2 and hence gi2ofh2, ] i l = g i l [  jQ). Now for any i<i(*) ,  as j i r  we know that 

"v n ,, it~O �9 Thus we have H-Lirnt(O[(K*UK~i))  i 1 % ~ j  i , SO applying gi we have ]~-Limt(g*UK*) ' ' p  T~ ,, 

proved N R and Claim 2.8. [] 0, 

In Definition 2.9 below we note that isomorphisms (or embeddings) of t's tend 

to induce isomorphisms (or embeddings) of Limt(Q), and we deal (in Definitions 2.10 

and 2.11) with some natural operation. In Definition 2.9 we could use two t's, but this 

can trivially be reduced to one. 

Definition~Claim 2.9. Assume that t, K and Q=(Qt ,~: tEL  t) are as in Defini- 

tion 2.6. By induction on ~ we define and prove the following:(6) 

(A) (Definition) We say that f is a partial isomorphism of (t, Q) of depth ~<~ if 

(omitting ~ means for some ordinal ~; writing t instead of (t, Q) means that we assume 

Qt ,n ,=Q,  i.e. constant, K t = z  for every tEL t, and that we may say "t-partial isomor- 

phism" ) 

(a) f is a partial one-to-one function from L t to Lt; 

(b) Dora(f)  and Rang(f )  are (t, K)-closed sets of depth ~<~; 

(c) for tEDom(f )  and A C D o m ( f )  we have AEI~ ~=>f"(A)EI}(t); 
(d) for tEDom(f ) ,  we have that f maps Kt onto Kf(t), and f IK t  maps ~t to ~/(t); 

more exactly, the isomorphism ] which f induces from Limt(Q IKt) onto Limt(Q IKf(t)) 
does this. 

(B) (Claim) (a) f induces naturally an isomorphism, which we call f ,  from 

Lim(Q IDom(f))  onto Limt(Q IRang(f)) .  

Proof. This is straightforward. [] 

(6) If K t = Z  and  all Q t,~_ have  t he  s ame  definit ion of forcing no t ion  as in our  m a i n  case, we can  
sepa ra te  t he  defini t ion and  claim�9 
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Definition 2.10. (1) We say that t = t ~ + t  2 if 
(a) L t = L t + L t :  (as linear orders); 

(b) for t e L  ~, I~=I~; 

(c) for t e L  ~, I~=-{AC_Lt:ANLt~�9 

So t ] + t  2 is well defined if t 1 and t 2 are disjoint, i.e. LtINLt~=~. 

(2) We say that  t ~ ~<wkt 2 if and only if 
(a) L t l c L  t~ (as linear orders) and t e L t ~  Itt~C_I~; 

(b) for every countable(7) AC_L t' and t � 9  t~ we have A�9149 ~. 

(3) If (re: ~<~) is ..<wk-increasing, with ~ a limit ordinal, we define t~:=Ur t r by 

Lt~= ~ L 6 (as linear orders), 
~<~ 

It t' = LJ {It 6: ~ < ~ and t �9 Ltr }. 

Clearly ~ < ~ t r  ~. Such a t ~ is the limit of (tr now a ~<wk-increasing se- 

quence (tr {<~) is continuous if for every limit ordinal 6<~ we have t~= LJr tr 

(4) If (tr 4<~) are pairwise disjoint (i.e. 4#~ ~ Lt 'NLt~=O), we define y]r t r by 

induction on ~ naturally: for ~=1 it is t ~ for ~ limit it is LJc<~(~r t;),  and for ~ = E + I  

it is (~r t r +te; so ~1~<~2 ~ < ~  tr <wk)-'~<~2 t 4 (even an initial segment). 

(5) We can replace tr in (1) (4) above by (t r Kr 

CLAIM 2.11. Let t be an FSI-template. 

(1) I f  Lt=;~ or just finite, and {s: L t ~ s < t } E I  t, then t is smooth. 

(2) I f  t 1 and t 2 are disjoint FSI-templates, then t l + t  2 is an FSI-template and 

IE {1, 2} =:=~ t /<wk tl -]-t 2 . 

(3) I f  t I and t 2 arc disjoint smooth FSI-templates, then t l + t  2 is a smooth FSI- 

template; moreover, Dpt (L t) ~< Dptl (Lt l )+  Dpt2 (L t2 ) and Dpt (L t~ ) = Dpt~ (Lt~). 

(4) /f  (re: r is a <~wk-increasing sequence (see Definition 2.10 (2)) of FSI-tem- 

plates and ~ is a limit ordinal, then t~:=[.Jr t ~ is an FSI-template and ~<~ ~ tr ~. 

(5) /f  (tr is an increasing continuous sequence (see Definition 2.10 (3)) of 

smooth FSI-templates and ~ is a limit ordinal, then t~:--=[.Jr t r is a smooth FSI- 

template, r  ==> tr t~ and Dpt~(Lt~)~<~'~r Dptr162 

(6) /f  (tr162 is a sequence of pairwise disjoint (smooth) FSI-templates, then 

~r t r is a (smooth) FSI-template and ()-~r tr s~<r is increasing continuous. 

(7) We can expand t r by Kr 

(7) We may restrict ourselves to FSI-templates t of a globally countable, i.e. such that AEI~ 8z 
tELt =a IAI~<I~0, or a locally countable, with no loss. We use this restriction as in Definition 2.13. If 
AiCAjEI~ for i<j<x,  then in t*=W/D, U{J*D't(A~):i<x}El~*-,t(t)~t) even if [.J{Ai:i<x}~l t. 
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(8) We can restrict ourselves to locally countable t's (so that the sums are locally 

countable if the summands are) or to globally countable ones. 

(9) Assume that J is a linear order, tx is a smooth template for every x E J  and 

(Lt~:xEJ} are pairwise disjoint ( for notational simplicity). We define t by L t = ~ e j  L t* 

(so that L ~ s < t  if and only if (3x, y ) ( s E L t ~ A t E L t ~ A x < j y ) V ( 3 x E J ) ( L t ~ s < t ) )  and 

I~ = {A c_ L t : (Vs E A)(s  <L' t) and letting t E t x we have 

ANLt*E I~ ~ and {y: y < j  x, A A L  ty # 0 }  is finite}. 

Then t is a smooth template (can be expanded by K ' s )  (this will be used in w 

Proof. This is easy. For example, part (3) is proved by induction on Dpt(Lt), 

part (6) by induction on ~, and in part (7) let M be [j]<~o ordered by inclusion and 

L{x(1) ..... x(n)} = U { Lt~(z): l=  1,..., n} for any x(1), ..., x(n) E J. [] 

Discussion 2.12. To prove our desired result CON(a>O) we need to construct an 

FSI-template t of the right form. Now we do it by using a measurable cardinal. The point 

is that  if we are given ({ t i ,n:n<w}: i<i(*)) ,  L ~, i(*)>~x, and D is a normal ultrafilter 

on x, then in tX/D the w-sequence ((ti,n: i< x } / D : n  <w} is as required in Claim 2.8 (3)(c), 

considering W/D as an extension of t. 

Definition 2.13. For a template t and a (2~~ ultrafilter D on x, we define 

t*:=W/D, JD,t and jD,t(t) as follows: 

(a) We define t* by 

Lt*= (Lt)~/D as a linear order, 

and if t*=( t~: i<x} /D,  where t~EL t, then we let Itt**={A:we can find A~EItt~ for i < x  

such that  Acl-[ i<~ Ai /D} .  

(b) We then let jD,t be the canonical embedding of t into W/D, i.e. jD, t ( t )= 

( t : i < x } / D  for every tEL  t. 

(c) Let finally t '=jD,t( t )  be defined by t' t* �9 . t t '  n = L  I{JD, , (S) .sEL } and IjD,t(s)= 
{{jD,t(t) : t e A } :  AEI~}.  

(We can deal with K if D is (UtEL~ ]Kti+)-c~ lete, which holds here as each Kt is 

countable, and we can also deal with Q if we have less than com(D) kinds of ~t (letting 

~i vary), which holds here too.) 
N 

CLAIM 2.14. In Definition 2.13, 

(1) W/ D is also an FS I-template, j D,t ( t ) <<. wk tX/ D and jD,t is an isomorphism from 

t onto jD,t(t); 
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(2) if t is a smooth FSI-template, then t'~/D is a smooth FSI-template; 

(3) moreover, Dp~/D( L t~/D) <~ (DPt( Lt) )X/D. 

Proof. This is straightforward. [] 

Now Definition 2.15 and Observation 2.16 below are used only in the short proof of 

Conclusion 2.17, depending on w so you may ignore them. 

Definition 2.15. Fix l~0<x<#=c f (p )<A=cf (A)=)~  "~ and D, a x-complete (or just  

(2~~ uniform ultrafilter on x. We define, by induction on ~<)~, a smooth 

FSI-template t~,r for "~<tt such that  

(a) t~,r is an FSI-template; 

(b) if ~/1~'2 then t~l,~ and t~2,r are disjoint, i.e. Lt~,r ,r =0; 

(c) for ~<~ we have t~,~<~wkt~,r 

(d) if ~ is limit then t~,r t~,~, see Definition 2.10 (3) and Claim 2.11 (6); 

(e) if ~ = ~ + 1  and ~ is even, then there is an isomorphism j~,~ from ~-~Z~<~ t~,~ onto 

t~,r which is the identity over t~,~; 

(f) if ~=~+1  and ~ is odd, then there is an isomorphism j~,r from (t~,~)X/D onto 

tn,r which extends the inverse of jD,%.~. 

OBSERVATION 2.16. Definition 2.15 is legitimate. 

Proof. This follows by the previous claims. [] 

CONCLUSION 2.17. Assume that x is measurable and x<p=cf(#)<A=cf(A)=A "~. 

Then for some c.c.c, forcing notion P of cardinality )~, in V P we have a=)~ and b=~=t t .  

Short proof (depending on w Let t~,; (for ~/<# and 4~<A) be as in Definition 2.15. 

Let t = ~ < u t ~ , ~  , K=(Kt :  t~Lt),  K t = ~  and Q = ( Q t :  tE Lt} with Q t being constantly 

the dominating real forcing (= Hechler forcing). Lastly let P = L i m t ( Q ) .  

The rest is as at the end of w [] 

Alternative presentation of the proof of Conclusion 2.17, self-contained, not depend- 

ing on Definition 2.15 and Observation 2.16. We define an FSI-template t r for r by 

induction on 4. 

Case 1: 4=0.  Let tr be defined by 

t~ Ltr I~={A:AC_a} .  

Case 2: ~ = ~ + 1 .  We choose t r such that there is an isomorphism jr from L d onto 

(L t~)x/D satisfying that j r  tr is the canonical embedding JD,tr and if xCL tr and Jr = 
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(X~: r < X)/D E (L t')x/D, then A E I~ r if and only if for some A = (Ae: e < ~) we have A~ E I ~  

and {jr {r 

Case 3: ~ is limit. We choose t r from 

Ltr U Lt~ as linear orders. 
~<r 

Subcase 3A. If x E L t~ then I~r {A: A_C {s: L 6 ~ "s < x" } }. 

Subcase 3B. If x~L t~ but xE L  re, then(s) 

I~r {A : for some ~<~  we have x E L  re, and i fy=min{yELt~ "x < y"}, 

which is in L eo (and is always well defined, see clause (b) of (*) below), 

then A\{tEL6: Ltr "t < z" for some z such that Lt~ "z < y ' }  

belongs to I~ ~ (and hence is a subset of Ltr 

We now prove by induction on ~ ~< A that 

(*) (a) tr is an FSI-template; 
(b) L eo is an unbounded subset of Ltr 

(c) t r is smooth; 

(d) t ~ w k t  r for ~<~; 

(e) if x e n  t' then {z: for some yen  t~ we have Lt'~ "z<<.y<x"}EI~r 
(f) L ~r has cardinality -~<(#+]r 

(g) (t~: ~<~) is <wk-increasing continuous; 

(h) we have t r  ~,r where ~'r ,r162 L 6 ~"x<~"} .  

(Why? This is easy. For example, why do clauses (a) and (c) hold? For ~=0  by 

Claim 2.11 (1) and (6). For r  by Claim 2.14(2). For ~ limit, for any tELt~ clearly 

~ , r  is the union of the increasing continuous sequence (~'~ : r < (), and is hence a smooth 

FSI-template by clause (h) and Claim 2.11 (5). Now also tr is a smooth FSI-template by 

Claim 2.11 (6). Of course, we let Kr tELtr Kt<=O and Qt be a dominating real 

forcing.) 

Lastly let for 4~<A, P r  Now 

(a) PA is a c.c.c, forcing notion of cardinality ~<A ~~ and hence VP~2u~ by 

Definition 2.6 (B)(j) as A=A~; 

(/3) in V v~ we have ~<~#, by Claim 2.8 (1) applied with R- -<*  and L * = L  t~ using 

(*)(b) and (e); 

(7) in V P~ we have b~># by Claim 2.8 (2) applied with R = < * ;  

((~) b = 0 = #  and a>~# by (/3) and (V), as it is well known that b<~ and b~<a. 

(s) So members of L t~ have the "veteranity privilege", i.e. "founding father's right"; i.e. members 
t of L t~ have the maximal It tr . 
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But in order to sort out the value of a, we intend to use Claim 2.8 (3) with 0 there 

chosen as )~ here. 

But why does the demand (c) from Claim 2.8 (3) holds? Assume that  i(*) E [~, )~) and 

ti,nEL ~x, for i< i (* )  and n<w, are given. As A is regular and >i(*) ,  necessarily for some 

~<)~ we have {ti,n:i<i(*) and n<w}CL ~. Now let tnEL tr be such that  j~+l ( t~)=  

(ti,n:i<~)/D; easily (tn:n<w) is as required (note that  the number of isomorphism 

types of w-sequences (t~ :n<w)  in t is trivially ~<"]2).(9) So 

(e) in V p~ we have a~>~4 ~ a~>A by Claim 2.8 (3). 

Thus we are done. [] 

3. El iminating the measurable 

Without  a measurable cardinal our problem is to verify condition (c) in Claim 2.8 (3). 

Toward this it is helpful to show that  for some Ill-complete filter D on x,  for any 

i (*)E[x,  A) and ti,nEL t, for i< i (*)  and n<w, we have: for some B E D  +, for every j < i ( * )  

some AED satisfies that  for any io,ilEAClB, the mapping tj,n~-4tj,n, tio,ne-4til,n is a 

partial isomorphism of t. So D behaves as an Ill-complete ultrafilter for our purpose. 

(If you know enough model theory, this is the problem of finding convergent se- 

quences, see IS1, Chapter II]. For stable first-order T with x=xr (T) ,  any indiscernible 

sequence (equivalently set) ( ~ : ( ~ < a * )  of cardinality ~>x is convergent. Why? As for 

any [)E ~>~, for all but < ~  ordinals (~<~*, b ^ ~  has a fixed type so that  average is de- 

finable. In IS1, Chapter  II], we deal with it in general (harder to prove existence, which 

we do there under the relevant assumptions).) 

LEMMA 3.1. Assume 2s~  s~ Then for some P we have: 

(a) P is a c.c.c, forcing notion of cardinality A; 
(b) in V P, b=O=# and a=2~~  

Proof. We rely on Definition 2.6 and Claim 2.8. Let L~ be a linear order isomorphic 

to )~, let L o be a linear order anti-isomorphic to )~ (and L o NL~ = 0 )  and let Lo=L o +L~. 

Let J be the following linear order: 

(a) its set of elements is ~>(L0); 

(b) ~ < j u  if and only if for some n<w we have Tin=urn and lg(~?)=n & u(n)EL~ 
or lg(~,)=n & 7/(n)ELo, or we have lg(7?)>n & lg (u)>n  & LoVrl(n)<u(n ). 

(See more on such orders in [L], [$2, Appendix] and [$9, XIII, w but  we are self- 

contained.) 

(9) In fact, it is ~2 ~o by the construction, but this is irrelevant here. 
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Note that 

[]1 every interval of J ,  as well as J itself, has cardinality A; 

[q~ if R0<0=cf (0 )<A or 0=1 or 0--0 and (ti:i<O) is a strictly decreasing sequence 

in J ,  then J r{Y~J: (Vi<0) (y< j  t~)} has cofinality A if non-empty; 

~ [  the inverse of J satisfies [ ~  and is moreover isomorphic to J;  

El2 if 0=  cf(0)> R0 and s~, t~ G J for c~ < t~, then we can find a function f:  0--+ 0 which 

is regressive and a club E of 0 such that: if c~l</31 are from E for /--1,2 and f(c~l)= 

f(/31)=f(c~2)=f(/32), then ta1<JS/31~=> ta2<jsl~2 and tal~-8Blgg'ta::8~2 (we can add 

tal<jt~l tee ta2<jt~2, etc., but this can be deduced using the above several times). 

We now define by induction on 4 < #  FSI-templates t i  such that 

(*)5 the set of members of Ltr is a set of finite sequences starting with 4, hence 

disjoint to t~ for s<~;  for xCL t~ let ~(x)=~. 

Defining tr Case 1: 4=0, ~ a successor or cf(~)=R0. Let Ltr ={(r and iit~)={~}. 

Case 2: cf(~)>~0. Let hi: J--+~ be a function such that e<~  ~ h~-~{s} is a dense 

subset of J.  The set of elements of t; is 

{{r162 e J a n d x e  U Lt~} �9 

The order <re is defined by: 

�9 (4) is maximal; 

�9 (r ^('11)^Xl <re (r if and only if 

< a  w v = w < v ( w  = = 

Lastly, for yEtr we define the ideal I=Iyr 
(c 0 if y = ( ; )  then I = { Y :  Y_CLt'\{(r 

(/3) if y =  (~)^(v)^x then I is the family of sets Y satisfying the following conditions: 

(i) YCLtr 
(ii) (VzeY)(z<~,y); 
(iii) for each r}EJ and ~<hr we have 

t~ . {z: (~)^{~)^zeY, ~ ( z ) = {  and z #  ({)} �9 I({), 

(iv) the set {r/e J :  (~x)({r is finite. 

Why is tr really an FSI-template? We prove, of course, by induction on ~ that  

(*)~ (i) L t' is a linear order; 

(ii) It t' is an ideal of subsets of {seI~r s<t} ;  

(iii) tr is an FSI-template; 

(iv) tg is disjoint to t~ for e<~.  
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(Why? By Claim 2.11 and looking at the definitions.) 

Next we prove, by induction on ~, that tr is a smooth FSI-template. Assume that 

t~ is a smooth FSI-template for all ~ < ~. 

(*)2 For ~?e J and ~<~ he (~)+ 1, we have that tel{ (~)^(~)^Q: Q e [.J~<~ t~} is a smooth 

FSI-template. 

(Why? We prove this by induction on e: for e=-0 by Claim 2.11 (1); for ~ successor 

by Claim 2.11 (3); for s limit by Claim 2.11 (5) and (6).) 

(*)~ For Z C J  we have that tr [([.Jo~z { (~)^(~)^Q: QE [Jr162 is a smooth FSI- 

template. 

(Why? By induction on IZI: for IZ[=0 and I Z ] = n + l  by Claim 2.11 (3); for IZl~>R0 

by Claim 2.11 (5).) 

(*)~ t~ [ (Lk\{(~)})  is a smooth FSI-template. 

(Why? By (,)~ for Z - - J . )  

(*)~ tr is a smooth FSI-template. 

(Why? By Claim 2.11 (3).) 

(*)~ If KC_L tr and t e L  t' then the ideal I:r is generated by a countable 

family of subsets of K. 

(Why? Check by induction on ~.) 

Now for ~ <~# let 

5q2 8r162 i.e. 
(i) the set of elements of 8i is [_J~<; Lt~; 

(ii) for x, yes r  we have x<5,  y if and only if ~(z) <~(y) V (~(x)=~(y) & x<t,(~)y); 

(iii) I~ '={YC8r  (VzeY)(z <~, y) and {zesr : ~(z)=~(y) and ze Y}eI~(~)}. 
(*)~ 8r is a smooth FSI-template. 

(Why? This is just  easier than the proof above.) 

(*)~ If K C L  ~' is countable and t e L  5r then the ideal I~r of subsets of K is 

generated by a countable family of subsets of K. 

(Why? By (,)~ and by the definition of 8; and of the t~'s.) 

Let 0=(2s~176 We shall prove below by induction on ff that 8r and tr are (s 

good (see the definition below and Subclaim 3.4). Then we can finish the proof as in 

Conclusion 2.17 using 8,  (and (*)~ and (,)~). 

Definition 3.2. (1) Assume(m) that 0 is regular uncountable and (Vc~<0)[lals~ 

We say that a smooth FSI-template t is (A, 0,T)-good if the following condition is 

(10) But if you like to avoid using (*)~, (*)~ and )4; below, just use 0----:~. In fact, even without 
(*)~ and (,)~ above, countable 1/V suffice, but then we have to weaken the notion of isomorphism, and 
there is no point in that. 

(11) We here ignore K and {(t, q~t, ~t): t E L t}. 
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satisfied: 

Assume that t~,nEL t for c~<8 and n<w,  that (t~,n: n<w} is K-closed and that 

YY is a family of subsets of w such that 21Wl <8. Then we can find a club C of 0 and a 

pressing-down function h on C such that 

$ '  if S C C  is stationary in 0, (V(~ES)[cf(5)>~0] and h i s  is constant, then we have: 

[ ~  for every ~</~ in S, the truth value of the following statements does not 

depend on (c~, ~) (but may depend on n, m and wEW):  

(i) t~,,~ = t/~,m ; 
(ii) t~,n <L~tZ,m; 
(iii) {t~,z:lEw}EI~,m ; 
(iv) { tz j :  IEw}EItt~,n; 
(v) {t~j:IEw}EItt,,n; 

[]~ let 5"~0 be such that cf(5*)=T and sup(SMb*)=5*; if 8<~*<A and s~,~EL t, 
for ~</3"</~ and n<w, then we can find t~EL t for n<w such that for every ~<~*,  for 

every large enough c~ESMb*, for some t-partial isomorphism f we have f(t~)=t~,~ and 

(2) We say that t is strongly ()~, 8, ~-)-good if above we allow 1/Y=P(w) (so if 8>~2,  

this is the same). In both cases we may omit T in the notation if T--8. 

Observation 3.3. Instead of "h regressive" it is enough to demand that for some 

sequence ( X ~ : a < 8 )  of sets, increasing continuous, IX~]<8 and for every (or club of) 

6<0, if cf(5)>~q0 then h(5)E~l-~<lql(Xb). 

SUBCLAIM 3.4. In the proof of Lemma 3.1, 

(i) tr is strongly (A, 8)-good; 

(ii) sr is strongly (A, 8, R~)-good; 
(iii) if c f ( ( ) ~ 8  then sr is also strongly (A,8)-good. 

Proof. Recall that  8=(2s~ +, and let 142 be given (21~Vl<8 for the first version; 

}/V=P(a~) for the second, using (*)~ and (*)~ from the proof of Lemma 3.1). We prove 

this by induction on (. 

For ~r If ~=0, it is empty. Otherwise, given t~,nE~r t~ for a<8 and n<w, 
let h~(c~) be the sequence consisting of 

(i) ~,,~:=min{~:~E{~(t~,,~):/3<5 and m<w}U{oe} and ~>~(t~,~)} for n<w; 
(ii) u~={(n,m, 1):~(ta,n)=~,m & l--1 or ~(t~,n)=~(t~,m) &: l=2}; 

(iii) wa={(n ,w):n<w,  wC_w and {t~,m:mEw}EItt~,~}; 
i.e. h~(5)=(u~, (~ ,~ :n<a ; ) ,w~) .  If S~={5:cf(5)j>R1, h~(5)=y} is stationary, we define 

h~[Sy such that it codes h~(5), and if n(*)<w,  aESy ~( t~ ,n ( , ) )=~y ,~ ( . )  and we let 

u~,~(.) = {n: ~ ,n  =~y,n(.)}, then h~ [S~ codes a function witnessing the (A, 8)-goodness of 
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t~,~(.) for (t~,n:nEUy,n(.), ~ESy}. 
Fix S as in ~ .  It is easy to check that  this shows [ ~  even if cf(r But assume 

cf (~)~0& 5*=0 or 5*<0, cf(5*)=R1 (or just R0<cf(5*)<0), 5*=sup(SM(~*); we shall 

also prove the statement from ~]~. Let Wl={n : the  sequence (~(tz,n):~ES) is strictly 

increasing} and Wo={n: (~(t~,.): ~ES} is constant}. Let 

~(s ,  n) = ~s,n = U {~(t~,~) : ~E S}; 

as cf(()r  it is less than ( also when new1. 

Given (~:/3</3"),  /3*<A and $Z=$=(s~, ,:n<w) we have to find (tn:n<w) as 

required in ~ .  If nEwo, W~o,n={mEwo:~(t~,n)=~(t~,m) for aES} ,  and to choose 

(t,~:mEw~,n} we use the induction hypothesis on t~(s,~). If new1 then we can find 

t*Et~s,~ such that  {t:tEt~s,~ and t~<t~(s,~)t*} is disjoint to {tz,m:/3<6* and m<w}U 

{s/3,m:/3</3* and m<w}.  This is possible because the lower cofinality of L t~(s,~) is 

the same as that  of L0 and we have A>0§ I. Then we choose ~*EJ such that  

(Vx)((r *) ̂ xEt~(s,~) ~ (r <t,(s.,)t*), and we choose also (tn,: n'Ewl and 

~z,n,=~s,~) such that  tnE{(~)^(7/)^(x)Esr taking care of 14; (inside w' " -  1,n "-- 

{mEwl:~(t~,m)=~S,m} and automatically for others, i.e. considering tn~ and t~ 2 such 

that  ~s,~r This is immediate. 

For re. This case is similar (using EJ 1 and V12). 

We have proved Subclaim 3.4 and Lemma 3.1. [] 

We may like to have "2~~ is singular", a=A and b=~=p. Toward this we would 

like to have a linear order J such that  if 2 = ( x ~ : a < 0  / is monotonic, say decreasing, 

then for any cr < A, for some limit 5 < 0 of uncountable cofinality the linear order {y E J :  

c~<~ ~ y < j x a }  has cofinality >a .  Moreover, 5 can be chosen to suit w such sequences 

simultaneously. So every set of w-tuples from J of cardinMity ~>0 but less than A can 

be "inflated". 

LEMMA 3.5 .  Assume that 

(a) (2~~ ~o, A singular; 

(b) 
(c) #~>Ncf(A), or at least that 

(c-) there is f:A--+cf(A) such that if (ae :~<#)  is strictly increasing continuous, 

c~e<A and 7<cf(A), then for some r we have f (~)>~7.  

Then for some e.c.c, forcing notion of cardinality A we have ]]-p "2R~ b : O : X  

and a=A". 

Proof. Note that  (c) ~ (c-). Just let a < A  8~ cf(a) =Ne 8z ~<cf(A) ~ f ( a ) = ~ ;  clearly 

there is such a function, and it satisfies clause (c-). So we can assume (c-). Let a=cf(A) 
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and (As: s<a}  be a strictly increasing sequence of regular cardinals greater than # + a  

with limit A. Let Lo,L~,L o be as in the proof of Lemma 3.1, L0,~ be the unique 

interval of L0 of order type (the inverse of A~)+A~ (so that  (L0,~:s<a) is increasing 

with union Lo), and Lo,~ is an interval of L0,~ for s < ~ < a .  We define g:L0--+cf(A) as 

follows: ifxGL~ then g(x)=f(otp({y~L~: y<Lx}, <)); i f x~L o and the order type (otp) 

of ({yeLg:x<Ly}, <L) is the inverse of 7, then g(x)=f(~); and let 

J * =  { ~ > ( L 0 ) :  n(0)~L0,o and ~ ( n + l )  eLo,~(n(n)) for n<w}, 

ordered as in the proof of Lemma 3.5. 

We define s ;  and tr as there. We then prove that  sr and tr are (~-, O)-good and 

(A, ~-)-good as there, and this suffices repeating the proof of Lemma 3.1. [] 

Discussion 3.6. We may like to separate b and ~. So below we adapt the proof of 

Lemma 3.1 to do this (we can do it also for Lemma 3.5). 

A way to do this is to look at the forcing in Lemma 3.1 as the limit of the FS- 

iteration (P~, Q ~ : i < #  and j<p), so that  the memory of Q~ is { i : i < j } ,  where Q~ is 

Limt[(Qt : tELtJ)]. Below we will use the limit of the FS-iteration ( ~, Q j .  3 < #  • pl),  so 

that  Q~ has memory wr where, e.g., for ~=#a+i, with i<#, w r  j<~i 

and (~,j)r Let P * = P ~ • 2 1 5  

Of course, Qr will be defined as Limtr tr defined as above, b=#  and ~=#1. 

This should be easy. If (A~: s < s  ~) exemplifies a in V P*, and thus s* ~>p, then for some 

(a*,/3*) e #  • #1, for x (=0) of the names they involve {Qua+z: a<a*,/~<fl*} only. 

Using indiscernibility on the pairs (a,/~) to make them increase we can finish. 

LEMMA 3.7. (1) In Lemma 3.1, /f p=cf(#)~cf(#~) ,  #I<A,  then we can change the 

conclusion b = ~ = #  to b=# and ~--Pl. 

(2) Similarly for Lemma 3.5. 

Proof. First assume that  #1 is regular. 

First proof. Let #0 =#.  In the proof of Lemma 3.1, for l E {0, 1 }, using # = #t gives s~z, 
0 1 and without loss of generality, ~ and s are disjoint. Let s be s0 +'$1, by which we mean 

that  L~=L ,o+L ,~, and for tELS,t we let I~:=I~t (this is not s0+s l  of Claim 2.11). 

Now the appropriate goodness can be proved, so we can prove a=)~. Easily we get ~>#l  

and b ~ P0. This is enough to get inequality, but to get exact values we turn to the second 

proof. 

Second proof. Instead of starting with ( Q i : i < p )  with full memory, we start with 

(9~: ~ < ] A X ~ t l ) '  and Qr having the following "memory": if ~=#a+i, with i < x ,  then 

we = { # / ~ + j : ~ < a ,  j ~ i  and (~, j )  ~ (c~,i)}. 
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To deal with the case when #1 is singular, we should use a p-directed index set (instead 

of #0 • as the product of ordered sets. [] 

4. O n  r e l a t e d  c a r d i n a l  i n v a r i a n t s  

Explanation of w On Theorem 4.1 you may wonder: u has nothing to do with order or 

quite directed family, so how can we preserve small u? It is true that  using the "directed 

character" of b and ~ has been the idea, i.e. in the end we have that  P = ( P i : i < P )  is 

<-increasing, P = U { P i : i < p }  and ~?i is a Pi+l-name of a real dominating V Pi. But 

what we really need, for (P, f]) as above, is that  taking ultrapower by the x-complete  

ultrafilter D preserves the property of ~, in our present case ~ has to witness u =# .  

For being a dominating real this is very natural (Log' theorem). But here we shall use 

(D~: i<#) ,  with Di being a P i -name of an ultrafilter on w, and demand ~ to be mod 

finite included in every member of Di, and moreover Yi to be generic over V Pi for a 

forcing related to Di. When we like to preserve something in an inductive construction 

on c~<A of ( P ~ : i < p ) ,  it is reasonable to have a stronger induction hypothesis than 

needed just for the final conclusion. We here need a condition on (P~+I ~/~, P~ D~) 

preserved by the ultrapower (as the relevant forcing is c.c.c., nicely enough defined in 

this work). 

Secondly, we need for limit c~: if c f ( a )>  l~0 it is straightforward, if not, being generic 

for the Qi has nice enough properties so that  we can complete U~<~ D~ to a suitable 

ultrafilter. 

This explains to some extent the scope of possible applications; of course, in each 

~ Y~ ) with Y~ a relevant witness, case the exact inductive assumption on (Pi+l ,  ~i, P q  

varies. 

THEOREM 4.1. Assume that 

(a) x is a measurable cardinal; 

(b) x < # = c f ( # ) < A = c f ( A ) = A  X. 

Then for some c.c.c, forcing notion P of cardinality A, in V v we have 2~~ 

u = ~ - - b = #  and a=A. 

Remark. Recall that 

u = min{IPl : P C [w] a~ generates a non-principal ultrafilter on w}. 

The proof of Theorem 4.1 is broken into definitions and claims. 
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Definition 4.2. For a filter D on w (to which all cofinite subsets of w belong) let 

Q(D) be 

{T:TC ~>w is closed under initial segments, 

and for some tr(T), the trunk of T, we have 

(i) 1 ~< lg(tr(T)) ~ TNZw = {tr(T)I/}; 

(ii) tr(T) ~ ~ E ~>w ~ {n: ~7 ̂  (n) E T} E D}, 

ordered by inverse inclusion. 

Definition 4.3. Let ~ be the family of t consisting of 

p t  t Q = Q t = ( P ~ , Q ~ : i < ~ ) = (  ~ , Q ~ : i < , ) ;  

D = Dt = (Di: i < # and cf(i) r x)  = (Dit: i < # and cf(i) y~ x); 

such that  

(a) Q is an FS-iteration of c.c.c, forcing notions (and P~ = P~ = Lim(Q t) = [Ji<~ P~); 

(b) if i<# and c f ( i ) r  then Qi=Q(Di ) ,  see Definition 4.2 above; 

(c) Di is a Pi-name of a non-principal ultrafilter on w when i < #  and c f ( i )~x ;  

(d) IP~I~<A; 

(e) for i < #  and c f ( i ) r  let ~i be the Pi+l-name of the Qi-generic real, 

w = U { t r (p ( i ) ) :Pe qP ,§  

and we demand that  for i<j<p of cofinality r we have 

II-pj "Rang(~i) E Qj";  

(f) r i is a P~-name of a function from Qi to {h:h is a function from a finite set 

of ordinals to 7-/(w)} such that  IF-p, "p, qEQi are compatible (in Q~) if and only if the 

functions ri(p) and r i(q ) are compatible (i.e. 

Ti(p) [ (Dom(zi (p)) N Dom(zi (q))) = Ti (q) F(Dom(zi (P)) ~ Dom(zi (q))), 

and then they have a common upper bound r such that  T~ (r)=~i(P)U Ti(q)"; 
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(g) if c f ( i )#~ ,  iEDom(p) ,  p c P j  and i<j<<.#, then Ti(P(i)) is {(0, tr(p))}; i.e. this 

is forced to hold; 

(h) we stipulate P i = { p : p  is a function with domain a finite subset of i such that 

for each jEDom(p) ,  Op~ forces that p ( j ) E Q j  and it forces a value to Tj(p( j ) )} ;  

(i) Ikp~ "QiC']{<~I(',/) for some ordinal 7". 

Let "7(t) be the minimal ordinal -y such that 

i < # ~ Ikp~ "if x E Q i then dom(Ti(X)) C -y". 

We let v/t be the function with domain P i  such that T~(p) is a function with domain 

{~/( t ) j+/9: jEDom(p)  and p FJ [~-Pj "~gEDom(r/(p(j)))"},  and we let 7/t('y(t)j+/3) be the 

value which p [j forces on T} 09). 

Obviously we have the following inequality. 

SUBCLAIM 4.4. ]~#O. 

Recall the following result. 

SUBCLAIM 4.5. If in a universe V ,  D is a non-principal ultrafilter on w, then 

(a) Ikq(D)"{tr(p)(l): l<lg( tr(p))  and peGq(D)}  is an infinite subset of w, almost 

included in every member of D"; 

(b) Q(D) is a c.c.c, forcing notion, even a-centered; 

(c) ~ i :  U {tr(p): p6  GQ(D)} C %0 is forced to dominate (%0)v; 

(d) {pcQ[D]  : t r(p)=rl} is a directed subset of Q[D]. 

(Note that this, in particular clause (c), does not depend on additional properties 

of D; but as we naturally add many Cohen reals (by the nature of the support), we may 

add more and can then demand, e.g., that D i ( c f ( i )#x )  is a Ramsey ultrafilter.) 

Definition 4.6. (1) We define ~<n by saying that t~<ns if (t, sE]~ and) 

(i) i~< # ~ Pi  < P i ,  

(it) i < #  A c f ( i ) # ~  ~ Ikp~ "D[C_D["; 
" ~ C  s .  (iii) i < #  =:>l~-p~ ~i--Ti �9 

(2) We say that t is a canonical <~n-upper bound of (t~:~<a) if 

(i) t, t~EJ~; 

(it) c~</3<5 ~ t~..<nt~..<nt; 

(iii) i < p  and cf( i )=,r  implies Ikp~ , , n t - - i  I O t ~ , ,  
. ~ i - - I , . . ) a < 5  ~ i  " 

Note that if cf(5)>R0 then Ikp~ - n t _ l  I ~ i _  va~<a ~iO t~'' for every i < # ,  so t is totally de- 

termined. 

(3) We say that (t~:~<c~*) is <.g-increasing continuous if c~</3<c~* ~ t~..<nt~ and 

for limit 5<c~*, t~ is a canonical ..<n-upper bound of (t~:c~<5). Note that  we have not 
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said "the canonical ~<~-upper bound", as for 5<a* and cf(5)=lq0 we have some freedom 

in completing U {~D~ ~: a<5} to an ultrafilter (on w in V PI, when i<p ,  c f ( i ) r  

SUBCLAIM 4.7. If  P I < P 2  and D z is a Pl-name of a non-principal ultrafilter on w 

for l=1 ,2  and IF-p 2 "D1C_D2", then PI*Q(D1)<P2*Q(D2) .  

Proof. First, we can force with P1, so without loss of generality, P1 is trivial 

and D1EV is a non-principal ultrafilter on w. Now clearly pEQ(D1) ~ p E Q ( D 2 )  and 

Q(D1) ~p<~q ~ Q(D2) ~p<~q, and if p, q@Q(D1) are incompatible in Q(D1), then they 

are incompatible in Q(D2). Lastly, in V, let Z={p,~:n<w}CQ(D1) be predense in 

Q(D1). We shall prove that  Z is predense in Q(D2). For this it suffices to note that  

[] if D1 is a non-principal ultrafilter on w, ZC_Q(D1) and ~TE ~>w, then the following 

conditions are equivalent: 

(an) there is no pEQ(D1) incompatible with every qEZ which satisfies tr(p)=~/; 

(by) there is a set T such that  

(i) y E T ~ _ u E p ;  

(ii) ~_u~_oET ~ uET; 

(iii) if uET then either {n: u^(n) ET} ED1 or (Vn)(u^(n)q~T) & (3qEZ)(u=tr(q)); 

(iv) there is a strictly decreasing function h: T-+Oal; 

(v) 
The proof of [] is straightforward. 

So, as in V, ZC_Q(D1) is predense, for every ~E~>w we have (av) for D1, and 

hence by [] we also have ~E~>w ~ (bn). But clearly if T n witnesses (b)n in V for D1, 

it witnesses (bn) in V p2 for D2. Hence applying [] again we get ~TE~>w ~ (an) in V P2 

for D2, and so Z is predense in Q(D2) in V P2. We have proved Subclaim 4.7. [] 

SUBCLAIM 4.8. If [----(ta:Ol((~) is <.h-increasing continuous and (~<A + is a limit 

ordinal, then it has a canonical <.~-upper bound. 

Proof. By induction on i<# ,  we define P~, and if i < #  we then have Q~, T~ and D~ 

(if c f ( i )Cx)  such that  the relevant demands (for tE ~ and for being a canonical ~<~-upper 

bound of t)  hold. 

Defining P~ is obvious: for i=0  trivially, if i= j  + 1 it is t t P j , Q j ,  and if i is limit it is 

U { P } : j < i } .  

If P~ has been defined and c f ( i )=x ,  we let Q~=U~<6 Qti" and T~--:U~<6 ~ .  It is 

easy to check that  they are as required. If P~ has been defined and c f ( i ) r  then 

U~<a Dt is a filter on w containing the cobounded subsets, and we complete it to an 

ultrafilter. 

Note that  there is such a D~ because 
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(a) for c~<5 we have p t~<p~,  and hence It-p~ "D~ ~ is a filter on w to which all cofinite 

subsets of w belong, and it increases with of'. 

Note that  there will be no need for new values of the ri 's,  nor any freedom in defining 

them. As we have proved the relevant demands on P} and Q} for j < i, clearly P~ is c.c.c. 

by using (~j : j< i} ,  and clearly (P~, Q-L: ~<i  and ~<i} is an FS-iteration. Now we shall 

prove that  ~ < 5  ~ P ~ < P I .  

So let 2: be a predense subset of P ~  and pEPS, and we should prove that  p is 

compatible with some qEZ in P~; we divide the proof into three cases. 

Case 1: i is a limit ordinal. If j~Dom(p) ,  it is trivial. Otherwise pEP} for some 

j<i. Let Z'={q[j:qEZ}, so that  clearly Z'  is a predense subset of P}~ (as t~E~).  

By the induction hypothesis, in P~ the condition p is compatible with some q'EZ'; so 

let r 'EP} be a common upper bound of q' and p, and let q'=q[j, where qEZ. Then 

rO(q [[j, i))EP~ is a common upper bound of q and p as required. 

Case 2: i = j + l  and c f ( j ) = x .  Then without loss of generality, for some/3<5, p(j) is 

a P)~ of a member of Q;0; and also without loss of generality a,.</3<& By the 

induction hypothesis, Pjt~ Hence there is p'EP) ~ such that  [p'<~p"EP)~ '', p[j 
are compatible in P}]. 

Let 

t o 

J =  {q'IJ: q'EP~ ~ q' is above some member of 5[ and q'[j It-p;s "p(j) ~<gJ q'(j), ,}. 

Now J is a dense subset of P ~  (since " t~ if qEPj then qO{(j,p(j))} belongs to p~0 and is 

hence compatible with some member of 5[). 

Hence p' is compatible with some q " E J  (in p~0), so there is r such that  p'<<.rEP~ ~ 
and q"<.r. As q " E J  there is q'EP~ ~ such that  q'[j=q", q' is above some q'E2: and 

t~ 

q'[ j I~ "p(j) <gJ q, (j),,. 

As p t j ~  "p'<~r & q' [j=q"<~r" and by the choice of p' there is p*EP} above r (hence 

above p' and above q"=q'[j) and above p[j. Now let r*=p*U(q"[{j}). Clearly r*EP~ 

is above p[j, and r*[j forces that  r*(j) is above p[{j}. Clearly r*[j is above r, and r* 

is also above q*EZ, so we are done. 

Case 3: i= j+l  and c f ( j ) r  Use Subclaim 4.7 above. 

So we have dealt with c~<5 ~ P ~ < P ~ .  

Clearly we are done with the proof of Subclaim 4.8. [] 
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SUBCLAIM 4.9. If  tEJ~ and E is a x-complete non-principal ultrafilter on x,  then 

we can find s such that 

(i) t~<~s~;  
(ii) there is ( k i , j i : i < #  and c f ( i ) r  such that 

(a) ki is an isomorphism from (P~)X/E onto P~; 

(~) ji is the canonical embedding of P~ into ~(P~/E'~j ~ , 

(7) ki~ equals the identity on P~; 

(iii) p~ is the image of (p~)~/E under k~, and similarly v~ if i<#  and c f ( i ) r  

(iv) if i<#  and c f ( i )=x ,  then ~ is defined such that for j < x  and c f ( j ) r  we 

( i, 7', T~)~/D onto ~ i, 7 , Ti ) for some ordinals have that kj is an isomorphism from p t  ~ps , ~,i, 

7' and 7"  (except that we do not require that the map from 7' to 7"  preserves order). 

Proof. This is straightforward. Note that if c f ( i )=  x and i < #, then Q~ is isomorphic 

to P~+I/P~,  which is c.c.c., as by Log' theorem for the logic L~,x we have Uj<i  (P})'~/E < 

p t  ~g/E" similarly for which guarantees that the quotient is c.c.c, too (actually T~ is i + l ]  / , T i '  

not needed for the c.c.c, here). [] 

SUBCLAIM 4.10. If  tCYt then I~-p~"u=b=O=#". 

p t  
Proof. In V ,, the family :D={Rang(~i): i < #  and c f ( i ) ~ x }  U {In, w): n<w} gen- 

erates a filter on P(w)v[P~ ], as Rang(~i)E[w] s~ and i < j < #  ~ c f ( i ) r  & c f ( j ) r  

Rang(~j) C* Rang (~i). 

Also it is an ultrafilter, as P(w)v[e~ ] = [-Ji<~ P(w) v[P~], and if i < #  then Rang(~+~) 
. . . . .  v[P~] induces an ultrafilter o n  ~D(w)V[P~+I]. So we have u~<#. A l s o  (w~d)v[P~]  = l , . J i 4 t ~  " 03) , 

(~w) v[p~] is increasing with i, and if cf(i)r then ~?~6 ~w dominates (~w) v[Pl] by Sub- 

claim 4.5, and so b = O = p  as in previous cases. Lastly, always u>~b, and hence u=# .  [] 

Now we define t~EJ~ for a~<A, by induction on a, satisfying that (t~:a~<A} is ~<~- 

increasing continuous and such that t~+l is obtained from t~ as in Subclaim 4.9. Let 

P = P } .  Then ]Pl ~< A, hence (2 ~~ )vP~< (A ~~ )v, and equality easily holds. 

We finish by the following subclaim. 

SUBCLAIM 4.11. I~-p~"a~>cf(A)". 

Proof. Assume toward a contradiction that 0<cf(A), p e P  and pl~-p "A={Ai: i<O} 

is a MAD family", where ~ is a MAD family if 

(i) A~e [~]~~ 
(ii) i ~ j  ~ ]A~Aj [<Ro;  

(iii) under (i) and (ii), 4 is maximal. 
" A  ,- r,.,]tr ' '  Without loss of generality, It-p -_-i--[~ . As a>~b=# by Subclaim 4.10, we have 

/>#. For each i < 0 and m <w there is a maximal antichain (Pi,m,n :n <w} of P and there 
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is a sequence (ti . . . .  :n <oh) of t ru th  values such that  Pi,m,n IF-"(m E Ai )~  ti,m,n". We can 

find countable w~ C_ p such that  Um,n<~ Dom(pi,m,n) C_ wi. Possibly increasing wi and 

retaining countability, we can find (Ri,~:7Ew~) such that 

((~) wi has a maximal element and 7Ew~\{max(wi)} ~ 7+ lEwd;  

(/~) Ri,~ is a countable subset of P~X and qERi,.y ~ Dom(q)C_wiM7; 

(7) for 71<72 in wi, qERi,-~2 ~ q[71ERi,-yl; 

(5) for 71Ew~, 7E71nwi  and qER~,~I, the P~-name q(7) involves R0 maximal anti- 

chains all included in R~,~; 

(6) {Pi . . . .  :m,n}C_Ri,max(wO. 

Since cf(A)>~0 (as p<A=cf(A)  by the assumption of Theorem 4.1), we have P , - t  _ 
pt~ ~ ptx ~<~11 pt~g. Clearly for some c~<A we have U{R~,~: i<8,  7Ew~}CP t ~ . _  But --t, - - - g  , 

and so IFp~ " ~ = { A i : i < O }  is MAD". 

Now, letting j be the canonical elementary embedding of V into V~/D,  we know 

that  

( .)  in V~/D,  j(A) is a j ( P ~ ) - n a m e  of a MAD family. 

As V " / D  is x-closed, for c.c.c, forcing notions things are absolute enough; but  

{ j ( i ) : i < # }  is not { i : V ~ / D ~ i < j ( # ) } ,  so in V, it is forced for IF.i(p~) that  { j (A i ) : i<# }  

is not MAD! 

Chasing arrows, clearly IFp~+I "{Ai : i<0}  is not MAD", as required. 

The proof of Subclaim 4.11, and hence of Theorem 4.1, is complete. [] 

Discussion 4.12. We can now look at other problems, e.g. what can be the order 

and equalities among ~, b, a and u; we have not considered it. We have considered having 

i=# ,  but  there was a problem. 
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