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1. I n t r o d u c t i o n  

The first interesting class of simple C*-algebras (not counting the simple von Neumann 

algebras) were the UHF-algebras, also called Glimm algebras, constructed by Glimm 

in 1959 [22]. Several other classes of simple C*-algebras were found over the following 

25 years including the (simple) AF-algebras, the irrational rotation C*-algebras, the free 

group C*-algebras C*ed(F~) (and other reduced group C*-algebras), the Cuntz algebras 

On and the Cuntz-Krieger algebras OA, C*-algebras arising from minimal dynamical 

systems and from foliations, and certain inductive limit C*-algebras, among many other 

examples. Parallel with the appearance of these examples of simple C*-algebras it was 

asked if there is a classification for simple C*-algebras similar to the classification of von 

Neumann factors into types. Inspired by work of Dixmier in the 1960's, Cuntz studied 

this and related questions about the structure of simple C*-algebras in his papers [14], 

[17] and [15]. 

Avon  Neumann algebra is simple precisely when it is either a factor of type IN for 

n<c~  (in which case it is isomorphic to Mn(C)), a factor of type II1, or a separable factor 

of type III. This leads to the question if (non-type I) simple C*-algebras can be divided 

into two subclasses, one that  resembles type II1 factors and another that  resembles type 

III factors. A II1 factor is an infinite-dimensional factor in which all projections are 

finite (in the sense of Murray-von Neumann's comparison theory for projections), and 

II1 factors have a unique trace. A factor is of type III if all its non-zero projections 

are infinite, and type III factors admit no traces. Cuntz asked in [17] if each simple 

C*-algebra similarly must have the property that  its (non-zero) projections either all are 

finite or all are infinite. Or can a simple C*-algebra contain both a (non-zero) finite and 
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an infinite projection? We answer the latter question in the affirmative. In other words, 

we exhibit a simple (non-type I) C*-algebra that  neither corresponds to a type II1 or to 

a type III factor. 

It was shown in the early 1980's that  simple C*-algebras, in contrast to von Neumann 

factors, can fail to have non-trivial projections. Blackadar [5] and Connes [12] found 

examples of unital, simple C*-algebras with no projections other than 0 and 1--before  

it was shown that  Cre d (F2) is a simple unital C*-algebra with no non-trivial projections. 

Simple C*-algebras can fail to have projections in a more severe way: Blackadar found 

in [4] an example of a stably projectionless simple C*-algebra. (A C*-algebra A is stably 

projectionless if 0 is the only projection in AQIC.) Blackadar and Cuntz proved in [8] 

that  every stably projectionless simple C*-algebra is finite in the sense of admitting a 

(densely defined) quasitrace. (Every quasitrace on an exact C*-algebra extends to a trace 

as shown by Haagerup [23] (and Kirchberg [26]).) These results lead to the dichotomy 

for a simple C*-algebra A: Either A admits a (densely defined) quasitrace (in which case 

A is stably finite), or A is stably infinite, i.e., A| contains an infinite projection. 

Cuntz defined in [16] a simple C*-algebra to be purely infinite if all its non-zero 

hereditary sub-C*-algebras contain an infinite projection. Cuntz showed in [13] that  his 

algebras (9,,, 2~n~<c~, are simple and purely infinite. The separable, nuclear, simple, 

purely infinite C*-algebras are classified up to isomorphism by K-  or KK- theory  by the 

spectacular theorem of Kirchberg [27], [28] and Phillips [35]. This result has made it an 

important question to decide which simple C*-algebras are purely infinite. We show here 

that  not all stably infinite simple C*-algebras A are purely infinite. 

Villadsen [41] was the first to show that the K0-group of a simple C*-algebra need 

not be weakly unperforated; Villadsen [42] also showed that  a unital, finite, simple C*- 

algebra can have stable rank different from one- - thus  answering in the negative two 

long-standing open questions for simple C*-algebras. 

If B is a unital, simple C*-algebra with an infinite and a non-zero finite projection, 

then its semigroup of Murray-yon Neumann equivalence classes of projections must fail 

to be weakly unperforated (see Remark 7.8). It is therefore no surprise that  Villadsen's 

ideas play a crucial role in this article. Our article is also a continuation of the work by 

the author in [37] and [38] where it is shown that  one can find a C*-algebra A such that 

M2(A) is stable but A is not stable; and, related to this, one can find a (non-simple) 

unital C*-algebra B such that  B is finite and M2(B) is properly infinite. We show here 

(Theorem 5.6) that  one can make this example simple by passing to a suitable inductive 

limit. 

In w (added March 2002) an example is given of a crossed product C*-algebra 

D)%Z,  where D is an inductive limit of type I C*-algebras, such that  D)4~Z is simple 
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and contains an infinite and a non-zero finite projection. This new example is nuclear 

and separable. It shows that simple C*-algebras with this rather pathological behavior 

can arise from a quite natural setting. It shows that  Elliott 's classification conjecture (in 

its present formulation) does not hold (cf. Corollary 7.9); and it also serves as an example 

of a separable nuclear simple C*-algebra that  is tensorially prime (cf. Corollary 7.5). 

I thank Bruce Blackadar, Joachim Cuntz, George Elliott and Eberhard Kirchberg for 

valuable discussions and for their comments to earlier versions of this manuscript. I thank 

Paul M. Cohn and Ken Goodearl for explaining the example included in Remark 7.13. 

I also thank the referee for suggesting several improvements to this article (including a 

significant simplification of Proposition 5.2 (ii) and (iii)). 

This work was done in the spring of 2001 while the author visited the University 

of California, Santa Barbara. I thank Dietmar Bisch for inviting me and for his warm 

hospitality. 

The present revised version (with the nuclear example in w and where the con- 

struction in w is simplified) was completed in March 2002. A part of the work leading 

to this construction was obtained during a visit in January 2002 to the University of 

Mfinster. I thank Joachim Cuntz and Eberhard Kirchberg for their hospitality, and I am 

indebted to Eberhard Kirchberg for several conversations during the visit that  led me to 

this construction. 

2. Finite, infinite and properly infinite projections 

A projection p in a C*-algebra A is called infinite if it is equivalent (in the sense of 

Murray and von Neumann) to a proper subprojection of itself; and p is said to be finite 
otherwise. If p is non-zero and if there are mutually orthogonal subprojections Pl and P2 

of p such that p~pl,,~p2, then p is properly infinite. A unital C*-algebra is said to be 

properly infinite if its unit is a properly infinite projection. 

If p and q are projections in A, then let pOq denote the projection diag(p,q) in 

M2(A). Two projections pEMn(A) and qEMm(A) can be compared as follows: Write 

p..~q if there exists v in Mm,n(A) such that v*v--p and vv*=q, and write p~q if p is 

equivalent (in this sense) to a subprojection of q. 

In the proposition below, where some well-known properties of properly infinite 

projections are recorded, (9~ denotes the Cuntz algebra generated by infinitely many 

isometries with pairwise orthogonal range projections, and g2 is the Cuntz-Toepli tz al- 

gebra generated by two isometries with orthogonal range projections [13]. 
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PROPOSITION 2.1. The following five conditions are equivalent for every non-zero 

projection p in a C*-algebra A: 

(i) p is properly infinite; 

(ii) pep2p; 
(iii) there is a unital *-homomorphism $2-+pAp; 

(iv) there is a unital *-homomorphism O~-+pAp; 

(v) for every closed two-sided ideal I in A, either pEI  or p + I  is infinite in A / I .  

The equivalences between (i), (ii) and (iii) are trivial. The equivalence between (iii) 

and (iv) follows from the fact that there are unital embeddings $:-+ (9r162 and (9~--+$2. 

The equivalence between (i) and (v) is proved in [29, Corollary 3.15]; a result that  

extends Cuntz' important observation from [14] that every infinite projection in a simple 

C*-algebra is properly infinite. 

We shall use the following two well-known results about  properly infinite projections. 

LEMMA 2.2. Let p and q be projections in a C*-algebra A. Suppose that p is 

properly infinite. Then q~p  if and only if q belongs to the closed two-sided ideal in A 

generated by p. 

Proof. If q~p, then, by definition, q~qo <.P for some projection q0 in A. This entails 

that q belongs to the ideal generated by p. Conversely, if q belongs to the ideal generated 

_< n (cf. [40, Exercise 4.8]), and ~]~j=lP~P if p is properly by p, then q ~ j = l  P for some n n 

infinite by iterated applications of Proposition 2.1 (ii). [] 

PROPOSITION 2.3. Let B be the inductive limit of a sequence Bl-+B2-+B3-+... of 

unital C*-algebras with unital connecting maps. Then B is properly infinite if and only 

if Bn is properly infinite for all n larger than some no. 

Proof. If Bn is properly infinite for some n, then there are unital *-homomorphisms 

C2-+Bn-+B, and hence B is properly infinite. Conversely, if B is properly infinite, then 

there is a unital *-homomorphism $2--+B. The C*-algebra s is semiprojective, as shown 

by Blackadar in [6]. By semiprojectivity (see again [6]), the unital *-homomorphism 

s  lifts to a unital *-homomorphism $2-+1-I~=no Bn for some no. This shows that 

B,~ is properly infinite for all n>~no. [] 
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3. Vector bundles  over products  of  spheres  

We consider here complex vector bundles over the sphere S 2 and over finite products of 

spheres, ($2) n. 

For each k<~n, let ~k: (S2)n--+S 2 denote the kth coordinate mapping, and let 

~m,n: ($2)m-+($2) n be given by 

Qm,n(Xl,X2,...,Xm)=(Xl,X2,...,X~), (xl,x2,...,Xm) e(S2) m, (3.1) 

when m ~> n. 

Whenever f :  X-+Y is a continuous map and ~ is a k-dimensional complex vector 

bundle over Y, let f* ( [ )  denote the vector bundle over X induced by f .  Let e(~)E 

H2k(Y, Z) denote the Euler class of ~. Denote also by f* the induced map H*(Y, Z)--+ 

H*(X,  Z). By functoriality of the Euler class we have f*(e(~))=e(f*(~)). 
For any vector bundle ~ over ($2) n and for every m>~n we have a vector bundle 

~'--Q*,~(~) over ($2) TM. It follows from the Kiinneth Theorem (see [33, Theorem A6]) 

that the map 
* . * 2 n ~m,n" H ( (S )  , Z) --+ H*((S2) m, Z) 

is injective; so if e(~) is non-zero, then so is e(~'). Our main concern with vector bundles 

will be whether or not they have non-zero Euler class, and from that  point of view it 

does not mat ter  if we replace the base space ($2) n with ($2) m for some m>~n. 
We remind the reader of some properties of the Euler class for complex vector 

bundles ~l,~2,...,~n over a base space X. First of all we have the product formula 

(see [33, Property 9.6]): 

e (~ l (~2~ . . . (~n  ) : e(~l).e(~2).....e(~n). ( 3 . 2 )  

Let 0 denote the trivial complex line bundle over X. The Euler class of 0 is zero; and so 

it follows from the product formula that  e(~)=O whenever ~ is a complex vector bundle 

that  dominates t? in the sense that ~---0~y for some complex vector bundle 71. 

Combining the formula 

ch(~) = 1 + e(~) + �89 e(~) 2 + ~ e ( ~ )  3 -~- ... , 

that  relates the Chern character and the Euler class of a complex line bundle ~ (see 

[33, Problem 16-B]), with the fact that  the Chern character is multiplicative, yields the 

formula 

e ( ~ l ( ~ 2  ~ ) . . . ~ ) ~ n )  ---- e(~l)+e(~2)+...+e(~n), (3.3) 

that  holds for all complex line bundles ~1,..., ~n  o v e r  X. 
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Let ~ be a complex line bundle over S 2 such that its Euler class e(~), which is an 

element in H2(S 2, Z), is non-zero. (Any such line bundle will do, but the reader may take 

to be the Hopf bundle over $2.) For each natural number n and for each lion-empty, 

finite subset I = { n l ,  n2, ..., nk} of N define complex line bundles (~ and (~ o v e r  ($2) m 

(for all m ) n  and r n ) m a x { n l ,  ..., nk}, respectively) by 

~n = 7rn(~), ~I = Cnl~n '>e ' "~nk ,  ( 3 . 4 )  

where, as above, Try: (S2)m-+S 2 is the n th  coordinate map. The Euler classes (in 

H2(($2) m, Z)) of these line bundles are by functoriality and equation (3.3) given by 

e(r = 7r*(e(~)), (3.5) 

e(~i) = 7r* (e(~)) +Tr* 2 (e(~)) +...+~r* k (e(~)). (3.6) 

LEMMA 3.1. For each n and for each r a i n  there is a complex line bundle ~1~ over 

($2) m such that ~n@~-OOOn.  

Proof. Since 
dim(~@~) = 2 > 1 ~ 1(dim(S2)-  1), 

it follows from [24, 9.1.2] that  there is a complex vector bundle ~ over S 2 of dimension 

d im(~ / )=2 -1= l  such that ~@~----0@7/. We conclude that  

* t ~  �9 * (,, . .r = ~r.(( @ O  = ~ . ( o @ ~ )  = 0 @ ~ . ( ~ ) .  []  

PROPOSITION 3.2. Let 11,/2, ..., I m  be non-empty, finite subsets of N.  The follow- 

ing three conditions are equivalent: 

(i) e(Ole(J:e.. .eOm)#0; 
(ii) for all subsets F of {1,2,. . . ,m} we have IUjerljl>~lFi; 

(iii) there exists a matching tlEI1, t2EI2, ..., tmEI,n (i.e., the elements t l , . . . , tm 

are pairwise distinct). 

Proof. Choose N large enough so that each (Ij is a vector bundle over ($2) N. 

(ii) r (iii) is the Marriage Theorem (see any textbook on combinatorics). 

(i) ::~ (ii). Assume that I[.Jj~r Ijl < IFI for some (necessarily non-empty) subset F =  

{ j l , j 2 , . . . , j k }  of {1,2 .... ,m}, and write 

dde___f U Ij ={n l ,n2 , . . . , n l } .  
jEF 

Let ~0: (S2)N-+(S2)t be given by 0(x)=(Trn~(x), 7rn2(x), ..., zrn,(x)). Then 

d e f  . 
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for some k-dimensional vector bundle r/over ($2) I. Now, e(r/) belongs to H2k((S2) l, Z), 

and H2k((s2)I, Z)=0  because 2k>2/.  Hence e(~) =Q* (e(r/)) =0, so by the product formula 

(3.2) we get 

e(~llO~I2@...@~l,n ) = e(~). H e(~lJ)  = O. 
jC.F 

(iii)=>(i). Put 

The element 

x j=rr~(e (~) )eH2( ( s2 )g , z ) ,  j = 1, 2,..., N, 

Z = X l " X 2 " . . . ' X N  E H 2 N ( ( s 2 )  N, Z )  

is non-zero by the Kiinneth Theorem [33, Theorem A6]. Using that  x~=0 and that  

xixj  =x jx i  for all i , j  it follows that  if il,  i2,---,iN belong to {1, 2 .... ,N}, then 

z, if i l , . . . , iN are distinct, 
xil.xi2.....xiN = (3.7) 

0, otherwise. 

Now, by (3.2) and (3.6), 

~(r162 + r ) = ~(r ). ~(r e(r 

: ( z  

E Xil" Xi2""" "xi'" " 
(il ..... 'i,,,)E 11 x... x lm 

Assume that (iii) holds, and write 

{ 1 ,  2,  . . . ,  N}\{tl, t2, ..., tin} = { s l ,  s2, ..., SN ..... }. 

Let k denote the number of permutations a on {1,2,. . . ,m} such that G(j)EIj  for 

j = l , 2 , . . . , m .  The identity permutation has this property, so k/>1. The formula for 

e(~1,|174 above and equation (3.7) yield 

e( i1,G~l=|174 )" x,," x~='..." X,N_,,, = kz ~ O. 

It follows that  e(~h@... @(l,,~) # 0 as desired. [] 
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4. Project ions  in a certain multiplier algebra 

There is a well-known one-to-one correspondence between isomorphism classes of complex 

vector bundles over a compact Hausdorff space X and Murray von Neumann equivalence 

classes of projections in matrix algebras over C(X) (and in C(X)| C). The vector bundle 

corresponding to a projection p in Mn(C(X))=C(X, Mn(C)) is 

~ p : { ( x , v ) : x � 9  v � 9  n)} 

(equipped with the topology given from the natural inclusion ~p C_ X x C~), so that  the 

fibre (~p)x over xeX  is the range of the projection p(x). If p and q are two projections in 

C(X)@/C, then ~p~-~q if and only ifp,~q. It follows from Swan's theorem, which to each 

complex vector bundle ~ gives a complex vector bundle ~/such that  ~G~ is isomorphic to 

the trivial n-dimensional complex vector bundle over X for some n, that  every complex 

vector bundle is isomorphic to ~p for some projection p in Mn(C(X)) for some n. 

View each matrix algebra M~(C) as a sub-C*-algebra of/C via the embeddings 

C ~+ M2(C) r M3(C) ~ ... "-~/C, 

where M,,(C) is mapped into the upper left corner of M~+I(C).  Identify C(X, IC) with 

C(X)| and identify C(X, Mn(C))  with C(X)| 
In w we picked a non-trivial complex line bundle ( over S 2 (which could be the Hopf 

bundle). This line bundle ( corresponds to a projection p in some matrix algebra over 

C($2), and, as is well known, such a projection p can be found in M2(C($2)) =C(S 2, M2). 

(The projection p E M2(S 2, M2) corresponding to the Hopf bundle is in operator algebra 

texts often referred to as the Bott  projection.) Put  

(x) 

Z= 1-I $2. 
n= 1 

Let 7r,,: Z-+S 2 be the n th  coordinate map, and let Qo~,n: Z--~(S2) n be given by 

With ~,,: C((s2)n)---+C((S2)n+I) being the *-homomorphism induced by the map Qn= 

Q~+I,n defined in (3.1) we obtain that  C(Z) is the inductive limit 

c ( s  c((s2) 2) c((s2) 3) ... c ( z )  

with inductive limit maps ~o~,n: C((S2)n)--+C(Z). 
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For n in N and for each non-empty finite subset I={nl, n2, ..., nk} of N, let Pn and 

PI be the projections in C(Z)| IC) given by 

Pn(X) =p(Xn), (4 .1 )  

Pi(X) ~- p(Xn,)|174 
(4.2) 

= p n , ( z )  |  

for all x=(xl,x2,...)EZ (identifying M2 and M2|174174 respectively, with sub- 

C*-algebras of/C). 

We shall now make use of the multiplier algebra, .A4(C(Z)@IC), of C(Z) |  

C(Z, 1C). We can identify this multiplier algebra with the set of all bounded functions 

f: Z--+B(H) for which f and f* are continuous, when B ( H ) ,  the bounded operators on 

the Hilbert space H on which K: acts, is given the strong operator topology. 

It is convenient to have a convention for adding finitely or infinitely many projections 

in A,4(C(Z)| or more generally in Ad(A), where A is any stable C*-algebra--a  con- 

vention that extends the notion of forming direct sums of projections discussed in w 

Assuming that  A is a stable C*-algebra, so that  A=Ao| for some C*-algebra A0, 

then we can take a sequence {Tj}~= 1 of isometries in C|174 such 

that  1 = ~ = 1  TjT~ in the strict topology. (Notice that  1 is a properly infinite projection 

in A/I(A).) For any sequence ql, q2, ... of projections in A and for any sequence Q1, Q2, ... 

of projections in A/I(A), define 
n 

q,@q2~...@qn = E TjqjT; E A, (4.3) 
j = l  

o ~  o o  

i~) qj =- E TjqjT; e.A4(A), (4.4) 
j = l  j = l  

n 

QI@Q2G...~3Qn = E TjQjT; e .A4(A), (4.5) 
j = l  

QJ = Z TjQjT; E M(A). (4.6) 
j----1 j = l  

Observe that  q'j=TjqjT]~qj, that  the projections q~,q'2,.., are mutually orthogonal, 
o o  ! 

and that  the sum ~ j = l q j  is strictly convergent. The projections in (4.3)-(4.6) are, 

up to unitary equivalence in A4(A), independent of the choice of isometries {Tj}~= 1. 

Indeed, if {Rj}j~=I is another sequence of isometries in A4(A) with l = ~ = i  RjR~, then 

U=)- '~= 1RjT~ is a unitary element in A4(A) and 

RjXjR~ = U Xj U* 
j=l  - j = l  - 
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for any bounded s e q u e n c e  {Xj}?_ 1 in Ad(A). It follows in particular that  

OO 

~ qj "~ (~ qa(j) (4.7) 
j = l  j = l  

for every permutation a on N. 

In the lemma below, the correspondence between projections and vector bundles is 

given by the mapping p~-~p defined at the beginning of this section. By identifying the 

projections Pn,Pl,PI1, "",Plk with projections in C((S2)N)@~, where N is any integer 

large enough to ensure that  these projections belong to the image of 

} ~ , g  | C( ( s2)N)| -+ C( Z)@IC, 

we can take the base space to be (S2) g. 

LEMMA 4.1. Let ~n and ~l be the complex line bundles defined in (3.4). 

(i) The vector bundle ~n corresponds to p,~ for each n in N.  

(ii) The vector bundle (I corresponds to P1 for each non-empty finite subset I of N.  

(iii) The vector bundle ~110~I20...0~1k corresponds to pi~|174 whenever 

I1, ..., Ik are non-empty finite subsets of N. 

Proof. (i) Since p corresponds to ~, p,~=poTr,, corresponds to ~,~=rr,*(~), where 

rr,: (s2)N-+s 2 is the n th  coordinate map. 

(ii) Write I = { n l ,  n2, ..., nk}. We shall here view p ,  as a projection in C(($2) N, 111/2) 

and Pl as a projection in C(($2) N,/1//2|174 By (i), ~n is the complex line bundle 

over ($2) N whose fibre over xE(S2) g is equal to p , (x) (C2) .  The fibre of tile complex 

line bundle ( j  =(,,~|174174 over  XE(S2) N is by definition 

(~)~,, = (6,,)x |  |174 

=pnl(x)(C2)|174174 

= p~ (x) (C2 | C2 | | C 2 ). 

This shows that ~ corresponds to Pl. 

(iii) This follows from (ii) and additivity of the map p~-+~p. [] 

Tile next three lennnas are formulated for an arbitrary stable C*-algebra A and its 

multiplier algebra 3,t (A), but they shall primarily be used in the case where A = C(Z) |  K~. 

The lemma below is a trivial, but much used, generalization of (4.7): 

LEMMA 4.2. Let A be a stable C*-algebra, and let ql,q2,.., and rl,r2,.., be two 

sequences of projections in A. Assume that there is a permutation a on N such that 

qj~r~(j) and qj,,~r~,(j), respectively, in A for all j in N.  Then (~j~=lqj~(~j~__~rj and 
O 0  O 0  (~j=l q j~(~j=l  rj, respectively, in .M(A). 
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An element in a C*-algebra A is said to be full in A if it is not contained in any 

proper closed two-sided ideal of A. 

LEMMA 4.3. Let A be a stable C*-algebra. The following three conditions are equiva- 
lent for all projections Q in fl4(A): 

(i) Q ~ I ;  

(ii) Q is properly infinite and full in A4(A); 

(iii) I~Q. 

Proof. (i) ==v (iii) is trivial. Assume that  I ~ Q .  Then Q is full in A4(A) (the closed 

two-sided ideal in A4(A) generated by Q contains 1 and hence all of A4(A)). It was noted 

above (4.3) that  1 is properly infinite in A4(A), and so QOQ<<.I| whence Q 

is properly infinite; cf. Proposition 2.1. This proves (iii)=~ (ii). Assume finally that Q 

is properly infinite and full in A4(A). Since K0(~/[(A))=0 (see [7, Proposition 12.2.1]) 

the two projections Q and 1 represent the same element in K0(A4(A)); and since these 

two projections both are properly infinite and full they must be Murray-von Neumann 

equivalent (see [16, w or [40, Exercise 4.9 (iii)]), i.e., Q ~ I .  [] 

LEMMA 4.4. Let A be a stable C*-algebra and let q, ql,q2,.., be projections in A. 

If q~j~=lqJ in A4(A), then q~ql|174174 in A for some k. 
o~ cx~ ! Proof. We have (~j=lqj=~'~j=lqj (=Q) for some strictly summable sequence of 

mutually orthogonal projections ~ ' ... ql,q~, in A with qj~qj. By the assumption that  

q~Q there is a partial isometry v in A4(A) such that  vv*=q and v*v<~Q. As v=qv, 

there is k such that  v belongs to A, and by the strict convergence of the sum Q=~~j~=I qj 

v - v ~  1 
q~ <7" 

j = l  

k t ! Put x=v)-~j=lq j. Then xx*<~q, x*x<.q~+...+qk and Ilxx*-qll<l. This shows that  

xx* is invertible in qAq with inverse (xx*) -1. Put u=(xx*)-W2x. Then uu*=q and 

u*u<. q~ +"'+q'k, whence q~qlG...Gqk. [] 

Let g be a constant 1-dimensional projection in C(Z, IC)=C(Z)~IC (that corre- 

sponds to the trivial complex line bundle 0 over X).  The (easy-to-prove) statement 

in part (iii) of the proposition below is not used in this paper, but it may have some 

independent interest. 

PROPOSITION 4.5. Let I1,I2 .... be a sequence of non-empty, finite subsets of N. 
Put 

oo  

Q = ~ pbe .M(C(Z)| 
j = l  
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(i) If IUj~F IJl>~ IFI for all finite subsets F of N, then g;~Q and Q is not properly 
infinite. 

(ii) g~PnOPn for every natural number n. 
(iii) If infinitely many of the sets 11, Is, ... are singletons, then Q| is properly 

infinite and Q| in A4(C(Z)| 

Proof. (i) We show first that  g~Q in J~4(C(Z)| Indeed, assume to the contrary 

that  g~Q. Then 

g ~ P&OPI2 0''" @Pxk (4.8) 

in C(Z)| for some k by Lemma 4.4. As noted earlier, C(Z)| is an inductive limit 

C(S2)| K ~,| C((S2)2)| ~| C((S2)3)| ~ ... ----+ C(Z)| 

Take N such that  all projections appearing in (4.8) belong to the image of 

~ , ,  |  C((S2)n)N)U, > C(Z)| 

whenever n>~N. Use a standard inductive limit argument to see that  (4.8) holds rela- 

tively to C((S2)n)@~ for some large enough n>~N. In the language of vector bundles 

over ($2) n, (4.8) and Lemma 4.1 imply that  

O@z] ~-- (tl@(12@...@(ik (4.9) 

for some vector bundle ~7 over ($2) ". Now, (4.9) and (3.2) imply that  e((t,0...G(lk)=O, 
in contradiction with Proposition 3.2 and the assumption on the sets Ij.  

The projection Pll is a full element in C(Z)| and p&<~Q. Hence g belongs to the 

ideal generated by Q. It now follows from Lemma 2.2 and from the fact that  gT~Q that  

Q cannot be properly infinite. 

(ii) follows from Lemma 3.1 and Lemma 4.1. 

(iii) The unit 1 of A,t(C(Z)| can be written as a strictly convergent sum 1= 
o~ 

:)-]j=l gJ, where gj,~g for all j .  Let F denote the infinite subset of N consisting of those 

j for which Ij is a singleton. By Lemma 4.2 and (ii) we get 

1 ,,~ (~ g ~ (~ (pb~pb) ~ (~ (pb~pb) ,,~ Q@Q. 
j = l  jEF j = l  

Lemma 4.3 now tells us that  QOQ is properly infinite and that  Q| [] 
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5. A n o n - e x a c t  e x a m p l e  

We construct here a simple, unital C*-algebra that  contains a finite and an infinite 

projection; thus proving one of our main results: Theorem 5.6 below. 

Let again Z denote the infinite product space 1-[j~l $2" Set A - - C ( Z ) |  =C(Z, K:); 

recall from w that  ~/l (A) denotes the multiplier algebra of A and that  it can be identified 

with the set of bounded *-strongly continuous functions f :  Z-+B(H).  
Choose an injective function v: Z x N-+  N. Choose points cj,i E S 2 for all j ,  i E N with 

j >/i such that  
{(cj,l,cj,2,...,cj,n) Jj >~ n} = S 2 x S 2 x . . . •  2 (5.1) 

for every natural number n. Set 

I j = { v ( j ,  1),p(j, 2), . . . ,u(j , j)} (5.2) 

for j c N .  

Define *-homomorphisms cflj: A--+ A for all integers j as follows. For j ~< 0, set 

~j(f)(x)=f(x~,(j,a),xv(j,2),xv(j,3),...), f E A ,  x = ( x l , x e , . . . ) E Z .  (5.3) 

Let Pn and Pl be the projections in A=C(Z ,K)  defined in (4.1) and (4.2). Choose an 

isomorphism T: K:|  For f in A, x=(xl ,x2,  ...) in Z and j>~l define 

~j ( f ) (X)  : T(f(ej , l , . . . ,  Cj,j, X v ( j , j + I )  , Xv(j,j+2),...)@plj(X)). (5.4) 

OO ~ _ _  
Choose a sequence { Sj }~=_~ of isometries in Ad (A) such that  ~j=_  ~ SjS~ - 1  with the 

sum being strictly convergent. Define a *-homomorphism r A-+.M(A) by 

OO 

r  E Sj~j( f )S~,  l e A .  (5.5) 
j ~ - - - O O  

LEMMA 5.1. Let {en}nC~=l be an increasing approximate unit for A. Then 
{~(en)}n~=l converges strictly to a projection FE.M(A), and F is equivalent to the iden- 
tity 1 in .A4(A). 

Proof. If r converges strictly to F E Ad (A) for some approximate unit { e ,  } for A, 

then this conclusion will hold for all approximate units for A. We can therefore take 

{en}~=l to be the approximate unit given by en(x)=r where {r is an increasing 

approximate unit for ]C. 
e oo We show first that {~j( n)}~=l converges strictly to a projection Fj in M(A)  for 

each j E Z .  Indeed, since ~j(e,~)=en when j~<0 it follows that  ~j(e~)--+l strictly; and so 
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Fj=I  when j~<0. Consider next the case j~>l. Here we have ~j(en)(X)-'=T(~n| 
Extend T:/C| to a strongly continuous unital *-homomorphism ~: B(H|  

B(H) and define Fj in fl4(A) by Fj(x)=~(1Qpb(x)) for xEZ.  Then Fj is a projection 

and {~j(en)}~-i converges strictly to Fj. 
N o w ,  

oo s t r i c t l y  oo * 
~(en)= ~ Sj~j(en)S; ~ ~ SjFjS~ r 

n-.-> oo 

As I = F o ~ S o F o S ~ F  it follows from Lemma 4.3 that  F ~ I  in A4(A). [] 

Take an isometry T in .A4(A) with T T * = F  (where F is as in Lemma 5.1). Define 

~ ( f ) = T * O ( f ) T =  ~ T*Sj~j(I )S~T,  l E A .  (5.6) 
j~--oo 

Then ~:A--+fl4(A) is a *-homomorphism that  maps an approximate unit for A into 

a sequence in A4(A) that  converges strictly to the identity in A4(A) (by Lemma 5.1 

and the choice of T) .  It follows from [32, Proposition 2.5] that  ~ extends to a unital 

�9 -homomorphism ~: A4 (A)--+A4 (A). 

We collect below some properties of the *-homomorphisms ~ and ~. A subset of a 

C*-algebra A is called full in A if it is not contained in any proper closed two-sided ideal 

in A. 

PROPOSITION 5.2. Let Pl be the projection in A defined in (4.1), and let g be a 
constant 1-dimensional projection in A = C( Z, IC). 

(i) ~ ( g ) ~ l  in A4(A), and ~(f)  is full in A4(A) for every full element f in A. 
(ii) If f is a non-zero element in .A4(A), then ~( f )  does not belong to A, and A~( f )  

is f~dl in A. 
(iii) If f is a non-zero element in Ad(A), then A~k( f )  is full in A for every k e N .  

(iv) None of the projections ~k(pl) , k e N ,  are properly infinite in .A4(A). 

It follows immediately from (ii) that  ~ and ~ are injective, ~(A4(A))NA={0} and 

~(A)NA={0}.  

The proof of Proposition 5.2 is divided into a few lemmas, the first of which (included 

for emphasis) is standard and follows from the fact that  any closed two-sided ideal in 

C(Z, IC) is equal to C0(U,/C) for some open subset U of Z. 

LEMMA 5.3. Let f be an element in A=C(Z,  IC). Then f is full in A if and only if 

f (x)~O for all x e Z .  

Proof of Proposition 5.2 (i). Observe first that  ~j(g)=g for every j~<0. Accordingly, 

0 0 

1~  (~ g,,~ ~ T*Sj~j(g)S~T <<. ~(g) in M(A).  
j~--OC9 j~--O~ 
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This and Lemma 4.3 imply that  ~ ( g ) ~ ]  and that  ~(g) is full in .M(A). If f is any 

full element in A, then the closed two-sided ideal generated by ~ ( f )  contains ~(g) and 

therefore all of Ad(A). This proves the second claim in (i). [] 

Proof of Proposition 5.2 (ii). Take a non-zero element f in A/I(A). There is an 

element a in A such that afrO. The two claims in (ii) will clearly follow if we can show 

that  ~(af)~A and that A~(af) is full in A, and we can therefore, upon replacing f 

by a f, assume that f is a non-zero element in A=C(Z, IC). 
There are 5>0, r E N  and non-empty open subsets U1, ...,/Jr of S 2 such that  

X Ulxu2x...xUrxSexS x... IIf(x)ll..->5. (5.7) 

Use (5.1) to find an infinite set A of integers j>~r such that 

(Cj,1, Cj,2, . . . ,  Cj ,r)  e U 1 X  U s X ... X U r for all j E A. (5.8) 

It follows from Lemma 5.3, (5.4), (5.7) and (5.8) that  II~j(f)ll>~5 and ~j(f)  is full in A 

for every j in the infinite set A. This entails that ~(f)=~-~j=_~T*Sj~j(f)S~T does 
O ~  not belong to A. (A strictly convergent sum ~ j = _ ~  a j  of pairwise orthogonal elements 

from A belongs to A if and only if l i m j ~ + ~  Ilajll=O.) The closed two-sided ideal in 

A generated by A~(f)  contains the full element ~y(f)=S~T~(f)T*Sj and therefore all 

of A (for each- -and  hence at least o n e - - j  in A). [] 

Proof of Proposition 5.2 (iii). This follows from injectivity of ~ and Proposi- 

tion 5.2 (ii). [] 

We proceed to prove Proposition 5.2 (iv). 

LEMMA 5.4. Let J be a finite subset of N, and j an integer. Then ~j(p.l)~,,pr 
where 

= ~ u(j, J), j <. O, 
o ~ j ( J )  (5.9) ( ~,(j,J\{1,2,. . . , j})UIj, j>~l. 

We have in particular that v(j, J)Cc~j(J) for all finite subsets J of N and for all jEZ.  

Proof. Write J={tt,t2,...,t~,}, where tl<t2<...<t~:. We consider first the case 

where j ~<0. Then 

~j(pj )(x) = p . ] (Xv( j ,1 )  , X~( j ,2)  , xu ( j , 3 )  , . . . )  

= ) ( x ) |  = p (j, j ) ( x ) ,  

as desired. 



124  M. RORDAM 

Suppose next that  j>~ 1, and put q(x)=pj(cj4,  ..., cj,y, x~(j,j+l) , X~(j,j4_2) , . . . ) .  Then 

~j(pg)(x)=v(q(x)| Suppose that  l < j < t k  and let m be such that tm-~ <~j<tm 

(with the convention t0=0). Then 

q(x) = p(cj,ta)| )@P(X,(j,tm)) @... | 

~- p(cj , t~ ) Q  . . . |  t . . . .  ~ ) Q P ~ , ( j , J \  {1,2 ..... j})  ( x ) .  

Thus q,-~p~(j, j \{ 1,2 ..... j }), which shows that  ~j (pd) is equivalent to the projection defined 

by 

x ~-~ ~-(Pv(j,J\{1,2,...,j})(x)| 

and this projection is equivalent to P~(j,J\{1,2 ..... j})ulj. If j>~tk, then J \ { 1 ,  2 .... , j } = ~  

and q(x)=p(cj, t~ )| t~), i.e., q is a constant projection. In this case, qoj(pj)~pb , 
thus affirming the first claim of the lemma. 

The last claim follows from the definition of the sets I3 in (5.2). [] 

Q 0o , 
LEMMA 5,5. Let ,11, J2 .... be finite subsets of N.  Put =(~i=1P1~EJM(A) �9 Then 

where aj is as defined in (5.9). Moreover, if I U iep Jil >~ JFI for all finite subsets F of N, 

then I U(j,i)e6. aj(J~)l >t IGI for all finite subsets G of Z x N. 

Q oo . .  Proof. By (4.4), =~. i=1Tipj ,  Ti , and because ~ is strictly continuous we get 

oo  oo  oo  oo  

i=1 i=1 i=1 j-=--cx~ i=1 j=--cx2 

where the first equivalence is proved below (4.3)-(4.6), and the last equivalence follows 

from Lemma 5.4. 

By the Marriage Theorem we can find natural numbers t iEJi  such that  {ti}ieN 

are mutually distinct. Set sj,i=~(j,t~.). Then sj,~ belongs to o~j(J~) by Lemma 5.4, 

and {sj,i } (j,i)EZ• are mutually distinct because ~ is injective and the ti 's are mutually 

distinct. This proves the second claim of the lemma. [] 

Proof of Proposition 5.2 (iv). Put  Qo=pl and put Qn=~'~(Qo). We must show that  

none of the projections Qn, n>~0, are properly infinite. It is clear that Q0 is finite, and 

hence not properly infinite. 
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Use Lemmas 5.4 and 5.5 to see that 

Q1 = T*Sjqoj(pl)S;T~ @ ~j(Pl)"~j ~(j,1) G PI~ j=_c Pji,, 
j = - ~  

where J j={u( j ,  1)} for j~O and J j=I j  for j ~ l .  It is easily seen that  the sequence of 

s e t s  {Jj}~=-oc satisfies the c o n d i t i o n  I UjEF JJ] ~ IFI for all finite subsets F of Z. Hence 

Q1 is not properly infinite by Proposition 4.5 (i). 

The claim that Qn is not properly infinite for all n follows by induction using 

Lemma 5.5 and Proposition 4.5 (i). [] 

THEOREM 5.6. Consider the inductive limit B of the sequence 

, ~ ( C ( Z ) | 1 7 4  ~)M(C(Z) |  >B. 

Then B has the following properties: 

(i) B is unital and simple. 

(ii) The unit of B is infinite. 
(iii) B contains a non-zero finite projection. 

(iv) K0(B)=0  and KI(B)=O. 

Proof. (i) B is unital being the inductive limit of a sequence of unital C*-algebras 

with unital connecting maps. 

Write again A for C(Z) |  and let ~ , n : ~ 4 ( A ) - - + B  be the inductive limit map 

from the n th  copy of Ad(A) into B. Let L be a non-zero closed two-sided ideal in B, 

and set 

Ln = ~ l , n ( L )  <~ A//(A). 

Then Ln is non-zero for some n. Since A is an essential ideal in A/I(A), also A N L .  is 

non-zero. 

Take a non-zero element e in ANL~. Then ~(e) belongs to Ln+l, hence A~(e)C_ 

Ln+l, and so it follows from Proposition 5.2 (ii) that  AC Ln+I. Take now a full element f 

in ACLn+l.  Then ~(f )  belongs to Ln+2. It follows from Proposition 5.2 (i) that  ~( f )  is 

full in ~4(A) and therefore L~+2=A4(A). Hence L=B,  and this shows that  B is simple. 

(ii) This is clear because the unit of 2~4(A) is infinite. 

(iii) As in the proof of Proposition 5.2 (iv), set Qo=pl and Q~=~n(Qo) for n~>l. 

Put  Q = ~ , o ( Q o ) E B .  It is shown in Proposition 5.2 (ii) that  r is injective, which implies 

that  ~ , 0  is injective, and hence Q is non-zero. We show next that  Q is finite. 

Assume that  Q were infinite. Then Q is properly infinite by Cuntz' result (see 

Proposition 2.1) because B is simple. Applying Proposition 2.3 to the sequence 

Qo.A/l(A)qo -{-% Q~A4(A)Q1 ,xx) Q2A4(A)Q2 ~ ... > QBQ, 



126 M. R(/) RDA M 

with the unital connecting m a p s  ,~j =~IQj3d(A)Qj, we obtain that  Qn is properly infinite 

for all sufficiently large n. But this contradicts Proposition 5.2 (iv). 

(iv) This follows from the fact that  the multiplier algebra of a stable C*-algebra has 

trivial K-theory (see [7, Proposition 12.2.1]). [] 

It follows from Proposition 4.5 (ii) and Proposition 5.2 (i) that  the finite projection 

Q in B (found in part (iii) above) satisfies 

Q| ~ ~ , o ( Q o e Q o )  = ~cc,0(pl@pl) ~ qsoo,0(g) = ~oo,1 (~:)(g)) "~ 1, 

whence Q@Q~I  by Lemma 4.3. In other words, the corner C*-algebra QBQ is unital, 

finite and simple, and M2(QBQ)~-B is infinite. 

The C*-algebra B from Theorem 5.6 is not separable and not exact. To see the latter, 

note that B ( H ) ,  the bounded operators on a separable, infinite-dimensional Hilbert 

space H, can be embedded into j~4(A)=A4(C(Z)|  and hence into B. As B(H)  is 

non-exact (see Wassermann [43, 2.5.4]) it follows from Kirchberg's result that  exactness 

passes to sub-C*-algebras (see [43, 2.5.2]) that B is non-exact. We use the lemma below 

from [3] to construct a non-exact separable example. 

LEMMA 5.7 (Blackadar). Let B be a simple C*-algebra and let X be a countable 

subset of B. It follows that B has a separable, simple sub-C*-algebra Bo that contains X .  

COROLLARY 5.8. There exists a unital, separable, non-exact, simple C*-algebra Bo 

such that Bo contains an infinite and a non-zero finite projection. 

Proof. Let B be as in Theorem 5.6. Let s be a non-unitary isometry in B and let 

q be a non-zero finite projection in B. The universal C*-algebra, C*(F2), generated by 

two unitaries is separable and non-exact (see Wassermann [43, Corollary 3.7]). It admits 

an embedding into .M(C(Z)| and hence into B. Let u, vEB be the images of the two 

(canonical) unitary generators in C*(F2). Use Lemma 5.7 to find a separable, simple, 

and unital C*-algebra Bo that  contains {u, v, s, q}. 

Then B0 is infinite because it contains the non-unitary isometry s; and it contains 

the finite projection q. Finally, B0 is non-exact because it contains the non-exact sub- 

C*-algebra C*(u, v)~-C*(F2). [] 

6. A nuclear example  

We show here that an elaboration of the construction in w yields a nuclear and separable 

example of a simple C*-algebra with a finite and an infinite projection. 

The construction requires that  we make a specific choice for the injective map 

u : Z •  from w 
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Let {AT}~=0 be a partition of the set N such that  Ao={1} and such that  AT is 

infinite for each r ) 1 .  For each r ) 1  choose an injective map ~ :  Z x AT-1-+At and define 

u: Z x N--+N by 

u(j,t)=~,T(j,t), r E N ,  tEAT_I, j E Z .  (6.1) 

Observe that  

teAT *:* u( j , t )EA~+l ,  j E Z .  (6.2) 

To see that v is injective assume that  ~(j, t )=~( i ,  s). Then ~(j,  t )=~( i ,  s)EAT for some 

r~>l. Therefore both s and t belong to AT-1. Now, %(j,t)=t/(j,t)=~(i,s)='yT(i,s), 
which entails that (j, t )=  (i, s) by injectivity of ~/r. 

Let a j  be as defined in Lemma 5.4 (with respect to the new choice of ~). Let 

F0c_P(N) be the family containing the one set {1}, and set 

F n . l  = { j(z)I/ern, j E Z }  C_ P(N)  

for n~>0. Set F = U ~ _  0 F,~. Observe that  each I E F  is a finite subset of N. 

Put  Qo=PlEA (cf. (4.1)) and put Q,,=~n(Qo)E.M(A) (where ~ is the endomor- 

phism on ]vl(A) defined in w above Proposition 5.2). It then follows by induction from 

Lemma 5.5 that  

Q~"~ ( ~ P l ,  n/>0,  (6.3) 
IE  F,~ 

when PiE A is as defined in (4.2). 

LEMMA 6.1. There is an injective function t:F--+N such that t(I)EI for all IEF .  

It follows in particular that 

l U II~IFI 
I E F  

for all finite subsets F of F. 

Proof. Define t recursively on each F,, as follows. For n=O we set t({ 1})= 1. Assume 

that t has been defined on Fn-1 for some n~> 1. Then define t on F ,  by t(aj(I))=v(j, t(I)) 
for IEFn-1  and j E Z .  It follows from Lemma 5.4 that  

t ( I ) e I  ~ t(aj(I))eay(I),  I E I ' , j ~ Z .  

It therefore follows by induction that  t(I)EI for all IEF.  

We show next that  t ( I )EAn if IEF~.  This is clear for n=O. Let n~>l and let 

IEFn  be given. Then I=ctj(I') for some I 'EFn-1  and some j E Z .  It follows that  

t(I)=t(aj(I '))=u(j,t(I ')).  Hence t(I)EA~ if t ( I ' ) E A , _ I ,  cf. (6.2). Now the claim 

follows by induction on n. 
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We proceed to show that  t is injective. If I,  J E F  are such that  t (I)=t(J) ,  then 

t ( I )=t(J)Eh~ for some n, whence I,  J both belong to Fn. It therefore suffices to show 

that  t]rn is injective for each n. We prove this by induction on n. It is trivial that  t[ro 

is injective. Assume that  t]r~_, is injective for some n>~l. Let I,  J E F n  be such that  

t (I)=t(J) .  Then I=c~i(I') and j = a j ( j t )  for some i, jEZ  and some I', J'EFn-1, and 

u( i, t( I') ) = t(c~i( I') ) = t( I) = t( J) = t(ai( J') ) = u(j, t( J') ). 

Since u is injective we deduce that  i=j  and t(I~)=t(J~). By injectivity of t]v._, we 

obtain F = J  ~, and this proves that  I=J .  It has now been shown that  t i t .  is injective, 

and the induction step is complete. [] 

Let gEA=C(Z,  K.) be a constant l-dimensional projection, and let Qn be as defined 

above (6.3). 

LEMMA 6.2. For each natural number m we have 

gT~Qo|174174 in ~4(A). 

Proof. From (6.3) (and Lemma 4.2) we deduce that  

Qo|174 ~ (~ pl. 
I E F o O . . . u F n  

The claim of the lemma now follows from Proposition 4.5 (i) together with Lemma 6.1. [] 

As in Theorem 5.6 consider the inductive limit 

.h4(A) ~---~.M(A) ~ ).A4(A) r > ...---+ B, (6.4) 

where A=C(Z)| Let #or A/[(A)-+B be the inductive limit map (from the n th  copy 

of J~(A))  for n~>0, and let # ..... :Ad(A)--+AJ(A) be the connecting map from the n th  

copy of J~cI(A) to the mth  copy of ~4(A) for n<m, i.e., #,,,n =~m-n. The endomorphism 

on A/I(A) extends to an automorphism c~ on B that  satisfies c~(#~,n(X))=#~,n(~(x)) 
for xEA/I(A) and all n E N .  (The inverse of c~ is on the dense subset Un~__o #~,n(2~4(A)) 

of B given by o~-l(#~,n(Z))=#~,n+l(x).) 
Put  Ao=#~,o(A)C_B, put An=o~n(Ao)C_B for all nEZ,  and put 

D,~=C*(A_n,A_n+I,...,Ao,...,An_I,An), D= 5 On. (6.5) 
n = l  

It is shown in Lemma 6.6 below that  each On is a type I C*-algebra, and so the C*- 

algebra D is an inductive limit of type I algebras. In particular, D is nuclear and 

belongs to the UCT class Af. Moreover, D is a-invariant (by construction). Observe 

that Am_~=#~,n(~m(A)) for all non-negative integers m and n. 

Put  Q = # ~ , o ( p l ) ( = # ~ , n ( Q n ) )  in DCB, and, as above, let gEA=C(Z,]C) be a 

constant 1-dimensional projection. 
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LEMMA 6.3. The following two relations hold in D and in B: 
(i) #~,o(g)~Q| 
(ii) N #~,o(g) 7~ (~j=-N aJ(Q) for all natural numbers N. 

Proof. (i) follows immediately from Proposition 4.5 (ii). 

(ii) Assume, to reach a contradiction, that  # ~ , 0 ( g ) ~ - ~ ; = - N  aJ(Q) in B (or in D) 

for some NE N. For j >~- N we have 

a3(Q) = aJ(#~,0(Q0)) = ~3(#~,N(~N(Qo))) = #~, N(~N+Y(Qo)). 
N j The relation # ~ , 0 ( g ) ~ j = - N  a (Q) can therefore be rewritten as 

2 N  

#~,m(~N(g))~ (~#~,N(cfiJ(Qo)) in B. 
j = 0  

By a standard property of inductive limits this entails that  

2 N  
#M,N(~N(g)) ~ (~#M,N(~J(Qo)) in A4(A) 

j = 0  

for some M~> N, or, equivalently, 

2N N + M  N + M  N + M  

j=O j =  M -  N j =  M -  N j=O 

Use now that  g~ M(g )  (which holds because ~j(g)=g for j < 0 ,  cf. (5.3)) to conclude 
..~ fc , ,NTMf, ,  that  g~,, t~j=o r in A4(A), in contradiction with Lemma 6.2. [] 

Let C be an arbitrary unital C*-algebra and let ~/be an automorphism on C. 

Let K: denote the compact operators on 12(Z) and let {ei,j}i,jez be a set of matrix 

units for K:. Define a unital injective *-homomorphism g): C-+.A4(C| and a unitary 

UE.h/[(C| by 

~,(c)= Z Tn(c)| . . . .  U = ~ l |  cEC, 
nEZ nEZ 

(the sums converge strictly in A4(C|  It is easily seen that  

c C, 

so that ~b extends to a representation ~:C)~Z--+A4(C|  The following standard 

argument shows that  the representation g) is faithful. 

Put  V t = ~ n e z  l|174 ]C) for tET,  and check that  lit is a unitary ele- 

ment that  satisfies Vtr ) and VtUVt*=tU for all t ~ T .  Let E: C)4~Z-+C be 

the canonical faithful conditional expectation, and define F:Im(~)--+Im(~) by F ( x ) =  

fTVtXVt*dt. Then F((p(x))=~(E(x)) for all xeC)%Z. Now, if ~ ( x ) = 0  for some pos- 

itive element x in C)4~Z, then r whence E ( x ) = 0  (by injectivity 

of r and x=O (because E is faithful). 
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LEMMA 6.4. Let C be a unital C*-algebra and let ~/ be an automorphism on C. 

Suppose that p and q are projections in C such that 
_,~ m (i) P~(~j=l q in C for some natural number m, and 

( i i)  N j P;~(~j=-N "Y (q) for all natural numbers g .  
Then q is not properly infinite in C)%Z. 

Proof. It suffices to show that  r is not properly infinite in M(C| Assume, to 

reach a contradiction, that  r is properly infinite in Jt4(C| Then (~jm_l r  ~b(q) 

by Proposition 2.1. As q|162 we can use (i) to obtain 

p| ~ ~ qQeo,o <~ ~ r ~ r = ~ "/J(q)| 
j = l  j----1 j = _ ~  

in Ad(C| By Lemma 4.4 this entails that  

N 

p| ~ E "/J(q)Qej,j in C| 
j - - - - - N  

_.~ N for some NEN,  or, equivalently, that p~l~j=_N~/J(q ) in C, in contradiction with as- 

sumption (ii). [] 

Returning now to our specific C*-algebra B from (6.4), Lemmas 6.3 and 6.4 imply: 

LEMMA 6.5. The projection Q=#~,o(pl) is not properly infinite in B)%Z. 

LEMMA 6.6. The C*-algebra Dn=C*(A-n,A_,~+I,...,A(j,...,An) is of type I for 

each nEN. 

Proof. Note first that 

AnAm C Amin{,.,m}, n, mE Z. (6.6) 

Indeed, we can assume without loss of generality that  n<.m, and then deduce 

AnAm = (~n(#~,o(A~'~-n(A))) C_ c~n(#~,o(A)) = An. 

Since AN~m-n(A)={O} when n<m, cf. Proposition 5.2 (ii), it follows also that  

AnAAm= {O}, n~rn. (6.7) 

Use (6.6) to see that  the C*-algebra Dm, n generated by Am, Am+l, ..., An, for m<~n, 
is equal to 

Dm,n = A,~ +Am+l +... +An-1 +An. (6.8) 
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(To see tha t  the right-hand side of (6.8) is norm closed, use successively the fact that  if 

E is a C*-algebra, I is a closed two-sided ideal in E,  and F is a sub-C*-algebra  of E,  

then I + F  is a sub-C*-algebra of E.) It  follows from (6.6), (6.7) and (6.8) tha t  we have 

a decomposition series 

0 <] A - n  <~ D - n , - n + l  <] D - n , - n + 2  <~ ... <~ D - n , n - 1  <1 D - n ,n  : Dn 

for Dn and that  each successive quotient is isomorphic to A= C(Z)| This proves that  

Dn is a type I C*-algebra. [] 

LEMMA 6.7. The crossed product C*-algebra D)%Z contains an infinite projection 

and a non-zero projection which is not properly infinite. The C*-algebra D has no non- 

trivial an-invariant closed two-sided ideal for any non-zero integer n. 

Proof. The projection Q=#o~,o(pl) belongs to Ao=P~,o(A)C_D, and it is non-zero 

because #o~,o is injective (which again is because ~ is injective). We have D C B  and 

hence 

QE D)%Z C_ B)%Z. 

Since Q is not properly infinite in B ) % Z  (by Lemma 6.5) it follows that  Q is not properly 

infinite in D)~,,Z. 

Put  P=#o~,o(g)EAoC_D, where g is a constant 1-dimensional projection in A= 

C(Z, IC). We have 

OO 

g =  o(g) ~ So o(g)S  < s  j(g)s; = 

cf. (5.3). Hence P = # ~ , o ( g )  is equivalent to a proper subprojection of #o~,o(~(g)). As 

#~,o(~(g))=a(p~,o(g)),, ,P in D ) % Z  we conclude that  P is an infinite projection in 

D ~ Z .  

Suppose that  n is a non-zero integer ( that  we can take to be positive) and that  I is 

a non-zero closed two-sided c~n-invariant ideal in D. Then IADkn is non-zero for some 

natural  number k, cf. (6.5). As I is ~n-invariant,  INC~kn(Dkn) is non-zero, and 

akn(Dkn) = C* (Ao, A1, ..., A2kn) = #oo,o(C* (A, ~(A), ..., ~2kn(A) ) ). 

Because A0 =#or (A) is an essential ideal in a k~ (Dkn) it follows that  IN  A0 is non-zero. 

Take a non-zero element f in INAo, and write f=P~,o(fo) for some non-zero element 

f0 in A. Use Proposition 5.2 (iii) to conclude that  

A - m f  =#oc,m(A~m(fo)) 
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is full in p~,m(A)=A-m, and hence that  A_mC_I, for every natural number m. Since 

I is cd'-invariant, A_m+rn=o/'n(A_m)C_I for all m E N  and all rEZ .  This shows that  

AmC_I for all m, which finally entails that  I=D. [] 

We remind the reader of the notion of properly outer automorphism introduced by 

Elliott in [19]: 

Definition 6.8. An automorphism 7 on a C*-algebra E is called properly outer if for 

every non-zero ~/-invariant closed two-sided ideal I of E and for every unitary u in A//(I) 

one has II~/li-AduN--2 (the norm is the operator norm). 

Olesen and Pedersen list in [34, Theorem 6.6] eleven conditions on an automorphism 

~/that  all are equivalent to ~ being properly outer. We shall use the following sufficient 

(but not necessary) condition for being properly outer: If E has no non-trivial v-invariant 

ideals and if ~y(p)~p for some projection p in E,  then "~ is properly outer. To see this, 

note first that  p~upu*=(Adu)(p) for every unitary u in A4(E) (the equivalence holds 

relatively to E) .  We therefore have "~(p)~(Adu)(p), whence II~f(p)-(Adu)(p)ll=l. 

This shows that  IIv-Adul[~>l for all unitaries u in A/I(E), whence 7 is properly outer 

(by (ii)r (iii) of [34, Theorem 6.6]). 

(One can argue along another line by taking an approximate unit {e~} for E,  such 

that e ~ p  for all A, and set x~=2p-e~. Then x~ is a contraction in E for all A, and one 

can check that  l im~_~  II ~/(x~) - (Ad u)(x~)II--2, thus showing directly that  II ~ - Ad u N =2 

for all unitaries u in A/I(E) whenever ~(p)~p for some projection p in E.) 

More generally, ~ is properly outer if for each non-zero 7-invariant ideal I of E there 

is a projection p in I such that  ~(p),,~p. 

LEMMA 6.9. The automorphism (~' on D is property outer for all non-zero inte- 

gers n. 

Proof. We know from Lemma 6.7 that D has no (f~-invariant ideals (when n r  so 

the lemma will follow from the claim (verified below) that  c~"(Q)~Q for all n r  (where 

Q is as in Lemma 6.3). 

Assume, to reach a contradiction, that  ~n(Q)~Q for some non-zero integer n ( that  

we can take to be positive). Then, by Lemma 6.3 (i), 

tt~,o(g) ~ Q@Q ~ Q@an(Q) ~ ~ vJ(Q) in D, 
j=O 

.in contradiction with Lemma 6.3 (ii). 

We now have all ingredients to prove our main result: 

[] 
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THEOREM 6.10. There is a separable C*-algebra D and an automorphism c~ on D 

such that 

(i) D is an inductive limit of type I C*-algebras; 

(ii) D)%Z is simple and contains an infinite and a non-zero finite projection; 

(iii) D)%Z is nuclear and belongs to the UCT class Af. 

Proof. Let D be the C*-algebra and let c~ the automorphism on D defined in (and 

above) (6.5). Since D is the union of an increasing sequence of sub-C*-algebras Dn (cf. 

(6.5)) and each Dn is of type I (by Lemma 6.6), we conclude that D is an inductive limit 

of type I C*-algebras, and hence that  the crossed product D)%Z is nuclear, separable 

and belongs to the UCT class Af. 

Since D has no non-trivial a-invariant ideals (by Lemma 6.7) and a n is properly 

outer for all n r  (by Lemma 6.9), it follows from Olesen and Pedersen [34, Theorem 7.2] 

(a result that  extends results from Elliott [19] and Kishimoto [31]) that  D ) ~ Z  is simple. 

By simplicity of D)%Z, the (non-zero) projection Q, which in Lemma 6.7 is proved to 

be not properly infinite, must be finite in D)%Z, cf. Proposition 2.1. The existence of an 

infinite projection in D)%Z follows from Lemma 6.7, and this completes the proof. [] 

7. A p p l i c a t i o n s  o f  t h e  m a i n  r e su l t s  

We begin by listing some corollaries to Theorems 5.6 and 6.10. 

COROLLARY 7.1. There is a nuclear, unital, separable, infinite, simple C*-algebra A 

in the UCT class .hf such that A is not purely infinite. 

Proof. Take the C*-algebra D)%Z from Theorem 6.10, and take a properly infinite 

projection p and a non-zero finite projection q in that  C*-algebra. Then q~qo<~p for 

some projection q0 in D>~Z by Lemma 2.2. Hence A=p(D>%Z)p is infinite; and A is 

not purely infinite because it contains the non-zero finite projection q0. [] 

COROLLARY 7.2. There is a nuclear, unital, separable, finite, simple C*-algebra A 

that is not stably finite, and hence does not admit a tracial state (nor a non-zero quasi- 

trace). 

Proof. Take the C*-algebra E = D ) ~ Z  from Theorem 6.10 and a non-zero finite 

projection q in E. Put A=qEq.  Then A is finite, simple and unital. Since A|174 

we conclude that  A| (and hence Mn(A) for some large enough n) contains an infinite 

projection, so A is not stably finite. 

Every simple, infinite C*-algebra is properly infinite, so Mn(A) is properly infinite. 

No properly infinite C*-algebra can admit a non-zero trace (or a quasitrace), so Mn(A),  

and hence A, do not admit a tracial state (nor a non-zero quasitrace). [] 
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A C*-algebra A is said to have the cancellation property if the implication 

p(~r~q@r ~ p ~ q  (7.1) 

holds for all projections p, q, r in A| It is known that  all C*-algebras of stable rank 

one have the cancellation property and that no infinite C*-algebra has the cancellation 

property. There is no example of a stably finite, simple C*-algebra which is known not 

to have the cancellation property (but Villadsen's C*-algebras from [42] are candidates). 

A C*-algebra A is said to have the weak cancellation property if (7.1) holds for those 

projections p, q, r in AQK: where p and q generate the same ideal of A. 

COROLLARY 7.3. There is a nuclear, unital, separable, simple C*-algebra A that 

does not have the weak cancellation property. 

Proof. Take A as in Corollary 7.1, and take a non-zero finite projection q in A. 

Since A is properly infinite, we can find isometries Sl,S2 in A with orthogonal range 

projections; cf. Proposition 2.1. Put  p=slqs~+(1-SlS~).  Then p is infinite because 

s 2 s ~ p ,  and so p~q  (because q is finite). On the other hand, q and p generate the same 

ideal of A- -namely  A i tself--and 

p@l = (slqs~ +(1-SlS~))@l ,,~slqs*l@(1-sls~)| ~ ,~q@l. [] 

It was shown in [30, Theorem 9.1] that the following implications hold for any 

separable C*-algebra A and for any free filter w on N: 

A is purely infinite =~ A is weakly purely infinite 

r A~ is traceless 

==~ A is traceless, 

and the first three properties are equivalent for all simple C*-algebras A. (A C*-algebra 

is here said to be traceless if no algebraic ideal in A admits a non-zero quasitrace. See [30] 

for the definition of being weakly purely infinite.) It was not known in [30] if the reverse 

of the third implication holds (for simple or for non-simple C*-algebras), but we can now 

answer this in the negative: 

COROLLARY 7.4. Let w be any free filter on N. There is a nuclear, unital, sepa- 

rable, simple C*-algebra A which is traceless, but where l~ (A)  and A,~ admit non-zero 

quasitraces defined on some (possibly non-dense) algebraic ideal. 

Proof. Take A as in Corollary 7.2. Then A is algebraically simple and A admits 

no (everywhere defined) non-zero quasitrace. Hence A is traceless in the sense of [30]. 
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Because A is simple and not purely infinite, A~ cannot be traceless. Since A~ is a 

quotient of l ~(A),  the latter C*-algebra cannot be traceless either. [] 

Kirchberg has shown in [28] (see also [39, Theorem 4.1.10]) that  every exact simple 

C*-algebra which is tensorially non-prime (i.e., is isomorphic to a tensor product DI| 

where D1 and D2 both are simple non-type I C*-algebras) is either stably finite or purely 

infinite. Liming Ge has proved in [21] that  the IIl-factor s is (tensorially) prime (in 

the sense of von Neumann algebras), and it follows easily from this result that  the C*- 

algebra Cr*ed(F2) is tensorially prime. We can now exhibit a simple, nuclear C*-algebra 

that  is tensorially prime: 

COROLLARY 7".5. The C*-algebra D)%Z from Theorem 6.10 is simple, separable, 

nuclear and tensorially prime, and so is p(D)4aZ)p for every non-zero projection p in 

D)% Z. 

Proof. The C*-algebra D)%Z is simple, separable, nuclear; cf. Theorem 6.10. It is 

not stably finite because it contains an infinite projection, and it is not purely infinite 

because it contains a non-zero finite projection. The (unital) C*-algebra p(D)%Z)p  is 

stably isomorphic to D)%Z and is hence also simple, separable, nuclear, and neither 

stably finite nor purely infinite. It therefore follows from Kirchberg's theorem (quoted 

above) that these C*-algebras must be tensorially prime. [] 

Villadsen's C*-algebras from [41] and [42] are, besides being simple and nuclear, 

probably also tensorially prime (although to the knowledge of the author this has not 

yet been proven). Jiang and Su have in [25] found a non-type I, unital, simple C*- 

algebra Z for which A ~ A |  is known to hold for a large class of well-behaved simple 

C*-algebras A, such as for example the irrational rotation C*-algebras and more generally 

all C*-algebras that are covered by a classification theorem (cf. [20] or [39]). Such C*- 

algebras A are therefore not tensorially prime. 

The real rank of the C*-algebras found in Theorems 5.6 and 6.10 have not been 

determined, but we guess that  they have real rank ~> 1. That  leaves open the following 

question: 

Question 7.6. Does there exist a (separable) unital, simple C*-algebra A such that  

A contains an infinite and a non-zero finite projection, and such that: 

(i) A is of real rank zero? 

(ii) A is both nuclear and of real rank zero? 

It appears to be difficult (if not impossible) to construct simple C*-algebras of real 

rank zero that exhibit bad comparison properties; cf. Remark 7.8 below. 

George Elliott suggested the following: 
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Question 7.7. Does there exist a (separable), (nuclear), unital, simple C*-algebra A 

such that all non-zero projections in A are infinite but A is not purely infinite? 

If Question 7.7 has affirmative answer, and A is a unital, simple C*-algebra whose 

non-zero projections are infinite and A is not purely infinite, then the real rank of A 

cannot be zero. Indeed, a simple C*-algebra is purely infinite if and only if it has real 

rank zero and all its non-zero projections are infinite. 

Remark 7.8. (Comparison and dimension ranges.) Suppose that  A is a unital, 

simple, infinite C*-algebra with a non-zero finite projection e. By simplicity of A there 

is a natural number k such that  l ~ e O e O . . . O e  (with k copies of e). Let Sl,S2,... be 

a sequence of isometries in A with orthogonal range projections; cf. Proposition 2.1. 

Letting [p] denote the Murray-yon Neumann equivalence class of the projection p, we 

have 

n[l] = [sls~+s2sa+...+SnSn] .~ [1] ~< k[e] 

for every natural number n. But [1] • [e] because e is finite and 1 is infinite. 

This shows that if A is a simple C*-algebra with a finite and an infinite projection, 

then the semigroup D(A) of Murray-von Neumann equivalence classes of projections in 

A| is not weakly unperforated. 

(An ordered abelian semigroup (S, +, 4)  is said to be weakly unperforated if 

ng<nh ~ g<~ h, for al lg,  h E S a n d a l l n E N .  

The order structure on T)(A) is the algebraic order given by g<~h if and only if h=g+f  
for some f in D(A).) 

Villadsen showed in [41] that  Ko(A), and also the semigroup 7:)(A), of a simple, 
stably finite C*-algebra A can fail to be weakly unperforated. The present article is a 

natural continuation of Villadsen's work to the stably infinite case. 

Let (S, +) be an abelian semigroup with a zero-element 0. An element gES is called 

infinite if g+x=g for some non-zero xES, and g is called finite otherwise. The sets 

of finite and infinite elements in S are denoted by Sfin and Sinf, respectively. One has 

S=S~nII Sinf and S+SinfC_ Sin~, but the sum of two finite elements can be infinite. 

It is standard and easy to see that  the finite and infinite elements in the semigroup 

7:)(A) are given by 

~)fin(A) = {[f]: f is a finite projection in AQK:}, 

Dinf(A) = {[f]: f is an infinite projection in A| 

If A is a simple C*-algebra that  contains an infinite projection, then the Grothen- 

dieck map 7:7:)(A)--+Ko(A) restricts to an isomorphism Dine(A)-+Ko(A) as shown by 
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Cuntz in [16, w We can therefore identify :Dinf(A) with Ko(A), in which case we can 

write 

D(A) = T)fin(A)IIKo(A). 

Note that  [0] belongs to Dfi.(A), and that  T)fin(A)={[0]} if and only if all non-zero 

projections in A| are infinite. One can therefore detect the existence of non-zero finite 

elements in A| from the semigroup T)(A); and Ko(A) contains all information about 

D(A) if and only if all non-zero projections in A |  are infinite. 

In general, when A is simple and contains both infinite and non-zero finite pro- 

jections, then :/:)fin(A) can be very complicated and large. One can show that  Dfin(B) 

is uncountable, when B is as in Theorem 5.6. We have no description of T)(A), when 

A=D)~Z  from Theorem 6.10. 

We remark finally, that  if A is simple and if g is a non-zero element in /)fin(A), 

then ngEl)inf(A) for some nEN.  In other words, ~)inf(A) eventually absorbs all non-zero 

elements in D(A). 

The example found in Theorem 6.10 provides a counterexample to Elliott's classifi- 

cation conjecture (see for example [20]) as it is formulated (by the author) in [39, w 
The conjecture asserts that  

(Ko(A), Ko(A) +, [1A]0, K1 (A), T(A), rA: T(A) --+ S(Ko(A))) (7.2) 

is a complete invariant for unital, separable, nuclear, simple C*-algebras. If A is sta- 

bly infinite (i.e., if A |  contains an infinite projection), then Ko(A)+=Ko(A) and 

T(A)=o. The Elliott invariant for unital, simple, stably infinite C*-algebras therefore 

degenerates to the triple (Ko(A), [1A]o, KI(A)). (We say that  (Ko(A), [1A]o, KI(A)) ~- 
(Go,go, G1) if there are group isomorphisms c~0: Ko(A)-+Go and a l :  KI(A)-~G1 such 

that  C~o([1A]o)=go.) 

COROLLARY 7.9. There are two non-isomorphic nuclear, unital, separable, simple, 
stably infinite C*-algebras A and B (both in the UCT class Af) such that 

(Ko(A), [1A]O, KI(A)) -~ (Ko(B), [1B]0, g l ( s ) ) .  

Proof. Take the C*-algebra A from Corollary 7.1. It follows from [36, Theorem 3.6] 

that there is a nuclear, unital, separable, simple, purely infinite C*-algebra B in the UCT 

class Af such that  

(Ko(A), [1A]0, K1 (A)) ~ (Ko(B), [1B]0, K1 (B)). 

Since B is purely infinite and A is not purely infinite, we have AZB.  [] 
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One can amend the Elliott invariant by replacing the triple (Ko(A), Ko(A) +, [1A]o) 

(for a unital C*-algebra A) with the pair (:D(A), [1A]), cf. Remark 7.8 above, where :D(A) 

carries the structure of a semigroup. In the unital, stably infinite case, the amended 

invariant will then become (:D(A), [1A], K1 (A)). (Since Ko(A) is the Grothendieck group 

of :D(A), and Ko(A) + and [1A]O are the images of :D(A) and [1A], respectively, under 

the Grothendieck map V:•(A)-+Ko(A), one can recover (Ko(A), Ko(A) +, [1A]O) from 

(:D(A), [1m]):) 

The invariant (:D(A), [1A]) can detect if A has a non-zero finite projection, cf. Re- 

mark 7.8; and the triples (:D(A), [1A], g l  (A)) and (:D(B), [1B], KI(B)) are therefore non- 

isomorphic, when A and B are as in Corollary 7.9. We have no example to show that  

(:D(A),[1A],KI(A)) is not a complete invariant for nuclear, unital, simple, separable, 

stably infinite C*-algebras. On the other hand, there is no evidence to suggest that  

(~)(A), [1A], KI(A)) indeed is a complete invariant for this class of C*-algebras. 

The Elliott conjecture can also be amended by restricting the class of C*-algebras 

that  are to be classified. One possibility is to consider only those unital, separable, 

nuclear, simple C*-algebras A for which A~-A| where Z is the Jiang-Su algebra (see 

the comment below Corollary 7.5). It seems plausible that  the Elliott invariant (7.2) 

actually is a complete invariant for this class of C*-algebras; and one could hope that  

the condition A'~-A| has an alternative intrinsic equivalent formulation, for example 

in terms of the existence of sufficiently many central sequences. 

Remark 7.10. (A non-simple example.) Examples of non-simple unital C*-alge- 

bras A, such that  A is finite and Ms(A) is infinite, have been known for a long time. 

Such examples were independently discovered by Clarke in [9] and by Blackadar (see 

[7, Exercise 6.10.1]): One such example is obtained by taking a unital extension 

O --+ ~ --+ A --+ C ( S 3 ) ~ O 

with non-zero index map 5: KI(C(S3))--+Ko(IC). Then A is finite and M2(A) is infinite. 

The proof uses that  any isometry or co-isometry s in A (or in a matrix algebra 

over A) is mapped to a unitary element u in (a matrix algebra over) C($3); and every 

unitary u in Mn(C(S3)) lifts to an isometry or a co-isometry s in M,,(A). Moreover, 

the isometry or co-isometry s is non-unitary if and only if the unitary element u has 

non-zero index. The unitary group of C(S 3) is connected, so all unitaries here have zero 

index. Hence A contains no non-unitary isometry, so A is finite. By construction of the 

extension, the generator of KI(C(S3)), which is a unitary element in M2(C($3)), has 

non-zero index, and so it lifts to a non-unitary isometry or co-isometry in Ms(A), whence 

M2(A) is infinite. 
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The C*-algebra M2(A) is not properly infinite since the quotient, M2(A)/M2(E) ~- 
M2(C($3)), is finite. 

An example of a unital, finite, (non-simple) C*-algebra A such that  M2(A) is prop- 

erly infinite was found in [38]. 

Remark 7.11. (Inductive limits.) Suppose that  

B1--+ B2--+ Ba-+...-+ B 

is an inductive limit with unital connecting maps, and that  B is a simple C*-algebra such 

that  B is finite and M2(B) is infinite. Then M2(B) is properly infinite, and it follows 

from Proposition 2.3 that  Bn is finite and M2(Bn) is properly infinite for all sufficiently 

large n. It is therefore not possible to construct an example of a simple C*-algebra, 

which is finite, but not stably finite, by taking an inductive limit of C*-algebras arising 

as in the example described in Remark 7.10. 

Remark 7.12. (Free products.) Let B be a simple, unital C*-algebra such that  B is 

finite and M2(B) is infinite. Then we have unital *-homomorphisms 

~I:M2(C)-+ M2(B), qo2:O~-+ M2(B) 

such that  q01(e) is a finite projection in M2(B) whenever e is a 1-dimensional projection 

in M2 (C). 

The existence of B (already obtained in the non-simple case in [38]) shows that  the 

image of e in the universal unital free product C*-algebra M2(C)*O~ is not properly 

infinite. 

It is tempting to turn this around and seek a simple C*-algebra A with a finite and 

an infinite projection by defining A to be a suitable free product of M2(C) and CO~. 

However, the universal unital free product M2(C)*O~o is not simple. The reduced free 

product C*-algebra 

(A, Q) = (M2 (C), 01)* (O~,  •2), 

with respect to faithful states ~1 and ~2, is simple (at least for many choices of the states 

Q1 and 02, see for example [2]) and properly infinite, but no non-zero projection e in 

M2(C) is finite in A. The Cuntz algebra O ~  contains a sequence of non-zero mutually 

orthogonal projections, and it therefore contains a projection f with Q2(f)< Q1 (e). Now, 

e and f are free with respect to the state Q and co(f)<0(e). This implies that  f ~ e  

(see [1]), and therefore e must be infinite. 
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It is shown in [18] that  reduced free product C*-algebras often have weakly un- 

perforated Ko-groups, which is another reason why this class of C*-algebras is un- 

likely to provide an example of a simple C*-algebra with finite and infinite projections; 

cf. Remark 7.8. 

We conclude this article by remarking that  ring theorists for a long time have known 

about finite simple rings that are not stably finite: 

Remark 7.13. (An example from ring theory.) A unital ring R is called weakly finite 
if xy= 1 implies yx = 1 for all x, y in R, and R is called weakly n-finite if Mn (R) is weakly 

finite. (A finite ring is a ring with finitely many elements!) A (unital) non-weakly finite 

simple ring R is properly infinite in the sense that  there are idempotents e, f in R such 

that  1,,~e~f and ef=fe=O. (Equivalence of idempotents is given by e ~ f  if and only if 

e=xy and f = y x  for some x, y in R.) 

An example of a unital, simple ring which is weakly finite but not weakly 2-finite 

was constructed by P. M. Cohn as follows: 

Take natural numbers 2<.m<n and consider the universal ring Vm,n generated by 

2ran elements {xij } and {yji }, i = 1,..., m and j = 1, ..., n, satisfying the relations X Y= Im 

and YX=In, where X=(xij)EMm,n(R), Y=(yij)El~l . . . .  (R), and Im and In are the 

units of the matrix rings Mm(R) and M,,(R). The rings Mm(Vm,n) and Mn(Ym,n) a r e  

isomorphic, and Mn(Vm,,,) is not weakly finite. Therefore Mm(V,,,n) is not weakly finite. 

In other words, V,~,,,, is not weakly m-finite. 

It is shown by Cohn in [11, Theorem 2.11.1] (see also the remarks at the end of w 

of that book) that V,n,,, is a so-called (m-1)-fir, and hence a 1-fir; and a ring is a 1-fir if 

and only if it is an integral domain (i.e., if it has no non-zero zero-divisors). Cohn proved 

in [10] that  every integral domain embeds into a simple integral domain. In particular, 

Vm,~ is a subring of a simple integral domain Rm,n whenever 2<~m<n. Now, Rm,,, is 

weakly finite (an integral domain has no idempotents other than 0 and 1, and must hence 

be weakly finite), and Rm,n is not weakly m-finite (because it contains Vm,n). 

This example cannot in any obvious way be carried over to C*-algebras, first of all 

because no C*-algebra other than C is an integral domain. 
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