
Acta Math., 186 (2001), 239 270 
@ 2001 by Institut Mittag-Leflter. All rights reserved 

Thick points for planar Brownian motion and 
the ErdSs-Taylor conjecture on random walk 

AMIR DEMBO 

Stanford University 
Stanford, CA, U.S.A. 

by 

YUVAL PERES 

University of California 
Berkeley, CA, U.S.A. 

and 

Hebrew University 
Jerusalem, Israel 

JAY ROSEN and OFER ZEITOUNI 

CUNY Technion 
Staten Island, NY, U.S.A. Haifa, Israel 

1. I n t r o d u c t i o n  

Forty years ago, ErdSs and Taylor [7] posed a problem about simple random walks in Z2: 

How many times does the walk revisit the most frequently visited site in the first n steps? 

Denote by Tn (x) the number of visits of planar simple random walk to x by time n, and 

let T~ :=maxxcz~ Tn(x). ErdSs and Taylor [7, (3.11)] proved that  

1 ~< lim inf T,* 2r* ~< 1 
- -  - -  - -  a . s . ,  ( 1 . 1 )  47r n-~oc (logn) 2 <~limsupn_~cc (logn) 2 7r 

and conjectured that  the limit exists and equals 1/Tr a.s. The importance of determining 

the value of this limit is clarified in (1.3) below, where this value appears in the power 

laws governing the local time of the walk. 

The Erd6s-Taylor conjecture was quoted in the book by R~v~sz [19, w but to 

the best of our knowledge, the bounds in (1.1) were not improved prior to the present 

paper. As it turns out, an important  step towards our solution of the Erd6s-Taylor 

conjecture was the formulation by Perkins and Taylor [17] of an analogous problem on 

the maximal occupation measure that  planar Brownian motion (run for unit time) can 
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assign to discs of a given radius. Perkins and Taylor also obtained upper and lower 

bounds with a ratio of 4 between them, and conjectured in [17, Conjecture 2.4] that  the 

upper bound is sharp. 

In this paper we prove this conjecture of Perkins and Taylor as part of a study of 

the fine multifraetal structure of Brownian occupation measure. The proof is based on a 

'multiscale refinement' of the classical second moment method; since the second moment 

method is such a widely used tool in probability, we believe that  our refinement will 

have further applications to other problems where the standard second moment method 

breaks down due to high correlations. 

We then establish the ErdSs-Taylor conjecture by using strong approximation. In- 

deed, this derivation highlights the significance of the Komlds-Major-TusnAdy [10] strong 

approximation theorems, and their multidimensional extensions by Einmahl [6]; earlier 

approximations are not sharp enough to obtain the ErdSs-Taylor conjecture from our 

Brownian motion results. 

Although the bulk of our work is in the Brownian motion setting, we first state our 

results for simple random walk. A generalization to a class of planar random walks is 

stated and proven in w 

THEOREM 1.1. Let Sn=~-]~=l Xi denote simple random walk in Z 2. Let M(n,c~) 

denote the number of points in the set {x: Tn(x)~> c~(log n)2}. Then, 

lim 7n 1 
- -  - -  a . s . ,  (1.2) 

n ~  (log n) 2 7r 

and for aC(O, 1/Tr], 

lira l~  a.s. (1.3) 
n ~  logn 

Moreover, any (random) sequence {Xn} in Z 2 such that Tn(xn)/T*-+l must satisfy 

lim log Ix~[ 1 
- -  a . s .  (1.4) 

n-+or log n 2 

The last assertion of the theorem improves an estimate of R6v6sz [19, Theorem 22.8], 

and shows that  the 'favourite points' for planar simple random walk by time n are 

consistently located near the boundary of the range (on a logarithmic scale); the analo- 

gous statement for simple random walk on Z is contained in a well-known result of Bass 

and Griffin [1]. 

Next, we collect some definitions needed to state our Brownian motion results. For 

any Borel measurable function f from O<.t<.T to R 2, denote by #YT its Occupation mea- 
sure: 

#YT(A) = [T1A( I t )  dt 
Jo 
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for atl Borel sets AC_R 2. Throughout,  D(x,r) denotes the open disc in R 2 of radius r 

centered at x, and {wt}t)o denotes planar Brownian motion started at the origin. Let 

O=inf{t:[wt[=l}. We write dim(A) for the Hausdorff dimension of a set A. 

Our results for planar Brownian motion follow; the first one was conjectured by 

Perkins and Taylor [17]. 

THEOREM 1.2. 
(n(x, (1.5) lim sup -- 2 

~-~~ ze ro  ~2(log e_ l )  2 a . s .  

Here one may replace 0 by any deterministic 0 < T < o ~ ;  this is the form in which this 

problem was stated as [17, Conjecture 2.4]. This theorem should be compared with the 

classical result of Ray [18, Theorem 1]: 

#~(D(O, c)) 1 
limsup~0 c 2 loga -1 loglogloga -1 = 2 a.s. (1.6) 

Theorem 1.2 has an application to the problem of reconstructing the range of spatial 

Brownian motion from the occupation measure projected to a sphere; see Pemantle et 

al. [16]. 

Recall that  for almost all Brownian paths w, the pointwise H61der exponent 

H61der (~ ,  x ) : =  lim log ~ ( D ( , ,  r (1.7) 
~-~0 log 

takes the value 2 for all points x in the range {wt:O~t~O}. Hence, as explained in [3], 

standard multifractal analysis must be refined in order to capture the delicate fluctua- 

tions of Brownian occupation measure and obtain a non-degenerate dimension spectrum. 

However, the logarithmic corrections required for spatial and planar Brownian motion 

are different. The next theorem describes the multifractal structure of planar occupation 

measure. 

THEOREM 1.3. For any a~2, 

dim{xE D(O, 1) : lim T ~ - ( ~  - a }  = 2 - a  a.s. (1.8) 

Equivalently 
{ # ~ ( D ( w t , e ) ) }  a 

dim 0~<t~<0:l im = a  = 1  a.s. (1.9) 
e-+O e2(1og e - l )  2 -- 

Also, 
sup lim sup #~(D(x,/,r a.s. (1.10) 
1<<1 ~ o  r  
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Remarks. (1) We call a point xED(O, 1) on the Brownian path a perfectly thick point 
if x is in the set considered in (1.8) for some a>0;  similarly, t > 0  is called a perfectly thick 
time if it is in the set considered in (1.9) for some a>0.  

(2) Perhaps of greater significance than the numerical results in the theorems above, 

are the insights that  their proofs yield on the nature of thick points in the plane and 

the contrast with the spatial case. In our study [3] of thick points for spatial Brownian 

motion, a key role was played by a certain localization phenomenon: The balls of radius 

r that  have the largest occupation measure accumulate most of this measure in a short 

time interval (of length at most e2]log el b for some b). This localization does not hold in 

the planar case, where the balls of radius c with greatest occupation measure accumulate 

this measure on a macroscopic time interval (of length longer than e "r for any 7>0) .  

During this time interval, the Brownian particle makes excursions of essentially all length 

scales e "r. These excursions create substantial dependence between occupation measures 

of rather distant discs; handling this dependence is the crux of our work. 

(3) By Brownian scaling, for any deterministic 0 < r < o c ,  the set D(0,1) and 

can be replaced by D(O,r) and Or=inf{t:lwtl=r}, without changing the conclusion of 

Theorem 1.3. Similarly, one may replace #~ by #7 in the statement of the theorem, for 

any deterministic T <  oe. 

(4) For any x ~ { wt : 0 ~< t ~< 0 } and ~ small enough, ~ '  (D (x, e)) = 0. Hence, the equiv- 

alence of (1.8) and (1.9) is a direct consequence of the uniform dimension doubling prop- 

erty of Brownian motion, due to Kaufman [9] (see also [17, (0.1)]). 

(5) The proof of our theorem will also show that 

d im{xED(0 ,1 )  l i m s u p ~ ~ @ 2 ) e ~ 0  ~ (log c-  ) - a } = 2 - a  a.s. (1.11) 

and 

dim{xED(O, 1):liminf #~(D(x'e)) } (1.12) ~-~o e2(loge-1) e - a  = 2 - a  a.s. 

This is in contrast to the situation for transient Brownian motion [3] where the lim sup 

and liminf results analogous to (1.11) and (1.12) require different scalings. 

We call a point xCD(O, 1) on the Brownian path a thick point if x is in the set con- 

sidered in (1.11) for some a>0,  and a consistently thick point if x is in the set considered 

in (1.12) for some a>0.  

(6) Similarly we will see that  

{ / dim x c D ( 0 , 1 ) : l i m s u p  2 - a  a.s. e-+0 ~2(1og~_l )  2 ~>a = (1.13) 

and 
tt~(D(x, E)) } 

dim x C D ( 0 , 1 ) : l i m i n f  >/a = 2 - a  
~-~o c 2 ( l o g z - 0  2 

a.s. (1.14) 
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As in the case of spatial Brownian motion, we have the following anMogue of the 

coarse multifractal spectrum. Denote by s  the Lebesgue measure. Then: 

THEOREM 1.4. For all a<2 ,  

lim log/:eb({x:  #~(D(x,  s))/> ar = a a.s. 
~-~0 log s 

The basic approach of this paper, which goes back to Ray [18], is to control occupa- 

tion times using excursions between concentric discs. The number of excursions between 

discs centered at a thick point is so large, that  the occupation times will necessarily be 

concentrated near their conditional means given the excursion counts (see Lemma 3.1). 

w provides a simple lemma which will be useful in exploiting this link between excursions 

and occupation times. This lemma is then used to obtain the upper bounds in Theo- 

reins 1.2 and 1.3. In w we explain how to obtain the analogous lower bounds, leaving 

technical details to lemmas which are proven in later sections. The key idea in the proof 

of the lower bound is to control excursions on many scales simultaneously, leading to a 

'multiscale refinement' of the classical second moment method. This is inspired by tech- 

niques from probability on trees, in particular the analysis of first-passage percolation by 

Lyons and Pemantle [12]. The approximate tree structure that  we (implicitly) use arises 

by considering discs of the same radius r around different centers and varying r; for fixed 

centers x, y and 'most' radii r (on a logarithmic scale) the discs D(x, r) and D(y, r) are 

either well-separated (if r<< Ix -y l )  or almost coincide (if r>> Ix-yl) -  

In w we prove Theorem 1.4 on the coarse multifractal spectrum, while in w we 

prove Theorem 5.1 (and in particular, the Erdh~Taylor  conjecture). w167 establish the 

technical lemmas used in w Complements and open problems are collected in the final 

section. 

2. 

The following simple lemma will be used repeatedly. 

0 < r l ~ r 3 ,  let ~=inf{ t>O:lwt l=r3}  and define 

H i t t i n g  t i m e  e s t i m a t e s  a n d  u p p e r  b o u n d s  

Throughout  this section, fix 

LEMMA 2.1. For [xol=r2, 

EZ~ 2) = log(rs/r2) for rl ~ r2 ~ r3. (2.1) 

~0 ~ 
= 1D(Ox 0 (W~) ds. 
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For all k ~ 1, 
~], EX~ k ~ k! [ log(r3/ r l )+ 1 k 

implying that for 0~<A<r~-2/[log(r3/rl)+�89 

EX~ ~ )  ~4 (1 -Arl 2 [log(r3/rl)+ �89 )--1. 

(2.2) 

(2.3) 

Proof of Lemma 2.1. By Brownian scaling, we may and shall assume without loss 
of generality that  r l =  1. Due to radial symmetry, EX(e)=u(lx[) is a function of Ix[ only, 
with u(r) satisfying 

1( I I - -  --1 tx 
5 u . r  u ) = - l ~ < l ,  (2.4) 
u(r3)  = O, 

for rE [0, r3]. Solving for (2.4), one finds that  

u(r) = { -�89189176 r< 1, (2.5) 
log r3 - log r, r3/> r/> 1, 

proving (2.1). Since u(r)~ �89 +log r3, we have by the strong Markov property that  

k 

E~~176 H 1n(o,,)(ws,)dsi...dsk) 

k - 1  

= k [ E X ~  H 1D(O'I) (ws')u([wsk-l[)dsl"''dsk-1) 
\ O ~ s l ~ . . . ~ S k - x ~ a  i=1 

k(�89 +log r3)EX~ (~k- ' ) ,  

proving (2.2) by induction on k. The bound (2.3) then follows by the power series 
expansion of e ~ .  [] 

We next provide the required upper bounds in Theorems 1.2 and 1.3. Namely, with 
the notation 

Thick>a = { x E D ( 0 ,  1): l imsup # ~ ( D ( x ' ~ ) ) E - ~ o  ~2(logc_1) 2 ) a } ,  (2.6) 

we will show that  for any aC(0, 2], 

dim(Thick>a) ~< 2 - a  a.s. (2.7) 

and 
~(D(x, ~)) 

lim sup sup 
~-+o ]xJ<l ~2(l~ 2 

~< 2 a.s. (2.8) 
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(note that  (2.8) provides the upper bound also for (1.10)). 

Set h(e)--e2llogcl 2 and 

z(x,r :- ,~(D(x,r 

Fix 5>0 small enough (5< 1 will do), and choose a sequence gn$O as n--+oo in such 

a way that g l<e  -1 and 

h(gn+l) = (1-5)h(gn) ,  (2.9) 

implying that gn is monotone decreasing in n. Since for gn+l<~S<~gn we have 

h(gn+l) #~(D(x, gn)) (1 -5 )z (x ,  e), (2.10) z(x, gn)-  h(gn) h(gn+l) >~ 

it is easy to see that for any a>0,  

Thick~>a C Da := {x �9 D(0, 1): lim sup z(x, an) >~ (1 -5 )a} .  
n-+oc 

Let {xj:j=I,. . . ,Kn} denote a maximal collection of points in D(0,1) such that 

infl#jlxl--xjl>~Sgn. Let 02=inf{t:twtl=2 } and let ~ be the set of l~<j~<Kn such 

that 

#~(D(xj, ( l+5)gn))  ~> (1-25)ah(g~). (2.11) 

Applying (2.3) for r~=(l+5)gn, r3=2 and A=(l+5)-lr~2/lloggnh it follows by Cheby- 

shev's inequality that 

Px(p~2(D(0, (l +5)gn)) >~ (1-25)ah(gn)) ~ -(1-10~)a COn 

for some c=c(5 )<ec ,  all sufficiently large n and any x�9 1). Note that for all x � 9  

D(0, 1) and e, b~>0, 

P(p~ ( D(x, e) ) >~ b) <<. P - x ( # ~ ( D ( 0 ,  c))~> b). 

Thus, for all sufficiently large n, any j and a>0,  

P ( j  �9 An) ~< Cg(, 1-105)a, (2.12) 

implying that 
EIA,~[ ~ , - (1 - -105)a - -2  ( 2 . 1 3 )  ~ C C  n 

Let V~,j=D(xj,Sgn). For any xED(0 ,1)  there exists jE{1 , . . . ,K~} such that 

XEVn,j, hence D(x, an)C_D(xi, (1+5)an). Consequently, [J~),~ Uj~.aVn,j forms a cover 
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of Da by sets of maximal diameter 26gin. Fix hE(0, 2]. Since ]2n,j have diameter 25g~, 

it follows from (2.12) that  for - ) ,=2- (1 -115)a>0 ,  

E • Ivn,jr-< '(25)  ~'n < O O .  

n = m  j E A n  n = r n  

Thus, ~n~=m~jeA~llZn,jr Y is finite a.s., implying that  dim(Da)~<7 a.s. Taking 550 

completes the proof of the upper bound (2.7). 

Turning now to prove (2.8), set a=(2+5)/(1-105) noting that  by (2.13) 

C n < C O .  

n = l  n = l  n = l  

By Borel-Cantetli, it follows that  almost surely A,~ is empty for all n>no(w) and some 

n0(co)<c~. By (2.10) we then have 

,~(D(x,e)) 
sup sup ~< a, 

e~<g'~o(~) Ix[<l  e 2 ( l o g a - 1 )  2 

and (2.8) follows by taking 540. [] 

3. L o w e r  b o u n d s  

Fixing a<2 ,  c>0 and ~>0, let 0c=0c(w)=inf{t :  Iwtl=c}, 

Fc = F~(w) := x C D(0, c) : lim ~-~0 E2(logr 2 a 

and Ec:={w : dim(Fc(w)) ~>2-a-~}.  

In view of the results of w we will obtain Theorem 1.3 and (1.11) (1.14) once we 

show that  P ( g l ) = l  for any a < 2  and g>0. Moreover, then the inequality 

u~(D(x, ~)) u~(D(x, ~)) 
lim inf sup sup lim inf 

e-~O lzl<l. r 2 >/[xl<l ~--+0 r162 

implies that  for any q>O, 

u (D(x, 
l iminf sup ~> 2(1-~/) a.s. 

s-+O Ixl<l  r 1 6 2  2 

In view of (2.8), these lower bounds establish Theorem 1.2. 
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The bulk of this section will be dedicated to showing that P ( g l ) > 0 .  Assuming this 

for the moment, let us show that this implies P ( g l ) = I .  With w~:=c-lwc2t we have that 

c20(wC)=inf{c2t: [c-lwc2t[ = l } = 0 c ( w )  and hence 

c r~ ds = [~ 
/t~ (D(x, c)) = J0 l{Iw~--x]~<e} ou l{[wc"--cxl<~cs} ds 

1 f ~O(~c) l#~o(D(cx, ee)). 
= c-2 Jo 1{1~ _cxl~<c~ } ds = 

Consequently, F c (w) = cF 1 (w ~), so Brownian scaling implies t hat p = P (g~) is independent 

of c>0.  Let 

g := lira sup gn-~, 

so that  P(g)~>p. Since $~Ehc~c and 0,~-~$0, the Blnmenthal zero-one law tells us that  

P(E)C{0,  1}. Thus, p > 0  yields P ( g ) = I .  We will see momentarily that the events g~ are 

essentially increasing in c, i.e., 

P ( g b \ e c ) = 0  for a l l 0 < b < c .  (3.1) 

Thus, P(E\E1)~<P(U~{C~-~\$1})=0,  so that also P ( g l ) = l .  

To see (3.1), observe that  for b<c, 

rb(W)\{w  : < t < C 

Hence, with 3r~b=a({wt : 0~<t~<0b}), 

P(eb\e~)  EP(dim(Fb(w))  r dim(Fb(W)\{wt: Ob <<. t <<. 0~}) [ ~c0~). 

Applying the strong Markov property at time 0b and observing that the set Fb(W) is a.s. 

analytic, we thus obtain (3.1) as a consequence of a general fact: 

Any fixed planar analytic set A satisfies 

dim(A\[w]) =d im(A)  a.s., (3.2) 

where [w]:={wt:t>O} is the range of planar Brownian motion w started at any fixed 
point. 

To verify (3.2), suppose that d im(A)>~.  Then there exists a Frostman measure 

on A, i.e., a positive finite measure such that ~(B)~<(diamB) ~ for all balls B; see 

[8, p. 130]. Since w does not hit points, Fubini's theorem yields that 

f l{xc[~,]} d~(x)= f P(x  C [w]) d~(x) E(~([w])) = E 
J J 
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Thus u is a.s. carried by A\[w], whence dim(A\[w])>~a a.s. This proves (3.2). 

It thus only remains to show that  P(81) >0. We start by constructing a subset of F1, 
1 and the Hausdorff dimension of which is easier to bound below. To this end, fix r = g  

the square S=[~1,2el]2CD(0, 1). Note that  for all xES and yESU{0} both O~D(x, el) 

and OED(x, �89 1)CD(x,2). Let e k = c l ( k ! ) - 3 = e l  k l-3. HI=2 For xES, k>~2 and 

~)>el let N~(D) denote the number of excursions from OD(x, ek-1) to OD(x, ek) prior to 

hitting OD(x, Q). Set nk=3ak 2 logk. We will say that a point xES is n-perfect if 

.<~r~t l~<N~(2)<<.nk+k,  for a l l k = 2 , . . . , n .  n k  - - k  .... "~'k k21 (3.3) 

For n~>2 we partition S into Mn=g21/(2en)2=�88 n t n l  l 6 non-overlapping squares of 

edge length 2en=2r  3, which we denote by S(n, i), i=1, ..., Mn, with xn,i denoting 

the center of each S(n, i). Let Y(n, i), i= 1 ..... Mn, be the sequence of random variables 

defined by 
f 1 if xn,i is n-perfect, 

Y(n, i) 
I 0 otherwise. 

Set qn,i = P ( Y ( n ,  i )=l)=E(Y(n,  i)). Define 

An= U S(n,i), (3.4) 
i :Y(n , i )=l  

F~ = U An (3.5) 
n>~m 

and 

F = F(~ )  = N Fro. (3.6) 
m 

Note that  each xEF  is the limit of a sequence {xn} such that  xn is n-perfect. Since 

D(x., ~-IX-Xnl) C D(x, ~) C D(x., ~+lx-~nl) 

for xEF, applying the next lemma (to be proven in w for the n-perfect points x~, and 

using the continuity of e~-~e 2 I log el 2, we conclude that  FCF1 .  

LEMMA 3.1. There exists a 6(c)=6(E,~)--+0 a.s. such that for all m and all xCS, 
if x is m-perfect then 

#~~176162 <~a+5(r for all e>>.r (3.7) 
a-6(E) ~< e2(loge) 2 
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To complete the proof that  P ($~)>0  it thus suffices to show that  

P (d im(F) />  2 - a - 5 )  > 0, (3.8) 

for any a < 2  and 5>0. Fixing a < 2  and 5>0  such that  h:=2-a-5>O, we establish (3.8) 

by finding a set C of positive probability such that  for any w E C we can find a non-zero 

random measure ~ supported on F(w) with finite h-energy, where the h-energy of a 

measure ~ is defined as 

dL,(y) (3.9) 

(see e.g. [13, Theorem 8.7]). The measure Q=p~ shall be constructed as a weak limit 

of measures u,~, where u~=un,,~ for n~>2 is the random measure supported on A~C_F,~ 
whose density with respect to Lebesgue measure is 

M~ 

fn(x) = E qn,~ 1{y(~#):1} l{x~S(~,i)}- 
i = 1  

Note that  
Mn 

E(~n (S)) = E qn,~ P(Y(n, i) = 1)(2en) 2 = e~. (3.10) 
i = 1  

Observe that  if xES is n-perfect then the number N~ of excursions from OD(x, ~k-1) 
to OD(x, ~k) prior to 0 is also between nk--k and nk+k. Whereas it is this property that  

leads to Lemma 3.1, the use of a stopping time related to the x-concentric disks in the 

definition of N~(Q) simplifies the task of estimating first and second moments of Y(n, i). 
These estimates, summarized in the next lemma, are a direct consequence of Lemmas 7.1 

and 8.1. 

LEMMA 3.2. Let l(i,j)=min(m: D(xn,i, Cm)ND(xn,j,Em)=~} ~n. There exists 
5n--+O such that for all n~2 and i, 

q~,i ~> Q~ := inf P ( x  is n-perfect) ~ ~-~+~, (3.11) 
xcS 

whereas for all n and i~j ,  

~2  --a--Sz(i,j) (3.12) E(Y(n,i)Y(n,i)) �9 

Furthermore, Q~>~cqn,i for some c>0 and all n>~2 and i. 

In the sequel, we let C,~ denote generic finite constants that  are independent of n. 

The definition of l(i, j)~>2 implies that  

2cl(i,j) ~ IXn,i--Xn,jl  <~ 2~l(i , j )- l .  (3.13) 
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Recall that  there are at most Co~2_1~~2=Co16r162 2 points Xn, j in the ball of radius 

2~z-1 centered at Xnd. Taking hereafter l(i,i):=n, the last statement of Lemma 3.2 

shows that  (3.12) holds (up to a multiplicative factor) also when i=j. Thus, it follows 

from Lemma 3.2 that  

M,~ 

- lq -1  E(Y(n,  i) Y(n, j )  )(2Cn) 4 E((u~(S)) 2) = ~ qn# n,j 

i,j=l (3.14) 

K4 --a--~l(i,j) 16~2-a-~1 
i,j=l / = 1  

is a bounded sequence (recall that  ~l-~0). Applying the Paley Zygmund inequality (see 

[8, p. 81), (3.10) and (3.14) together guarantee that  for some b>O, v>O, 

P(b-1)v,~(S))b)>~2v>O, for all n. (3.15) 

Similarly, for h = 2 - a - 6 C  (0, 2), 

M'~ E(Y(n' i )Y(n 'J))  ~ 
E(~h(/~n)) ~< C3 ~ Ix--yl -h dx dy 

qn,iqn,j (n,i) (n,j) 
~,j=l (3.16) 

M~ ~c 

~C4 ~ s163 n l(i,j) 
i,j=l l=l 

is a bounded sequence. Thus we can find d<oc such that  

P(Gh(Vn) ~< d) >~ 1 - v  > 0, for all n. (3.17) 

Combined with (3.15) this shows that 

P(b -1 >~ vn(S) >~ b, 6h(V,~) ~< d) ~> v > 0, for all n. (3.18) 

Let Cn ={w: b -1 ~>v,(S) ~>b, ~h(~n) ~<d} and set C= lim sup,  C,. Then, (3.18) implies that  

P(C) ~> v > 0. (3.19) 

Fixing • E C there exists a subsequence nk--+ cr such that  w C Cnk for all k. Due to the lower 

semicontinuity of Gh(" ), the set of non-negative measures u on S such that  u(S)c [b, b -1] 

and Gh(~)~<d is compact with respect to weak convergence. Thus, for ~EC, the sequence 

U~k=Unk,~ has at least one weak limit 0~ which is a finite measure supported on F(~) ,  

having positive mass and finite h-energy. This completes the proof of (3.8), hence that  

of P(C1) >0. [] 
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4. The  coarse mult i fractal  s p e c t r u m  

Proof of Theorem 1.4. Fix aE(0, 2) and let 

C(e, a) : {x: #~(D(x, e)) ~> ar 

With gn as in (2.9), the bound (2.13) yields for some c~=c~(6)<oc and any 7/>0, 

C g ( 1 - 1 0 a ) a - r j  P(s >~g:~) <~ qElAnlg~-'~ <~ 2 n 

The Borel-Cantelli lemma and (2.10) then imply that  

lira inf log s a/(1-6))) ~> a(1-106)  
e+0 log e 

Taking 6--+0 then yields the conclusion 

a . s .  

l iminf log s a)) ~> a a.s. 
e-~o log e 

Turning to a complementary upper bound, fix 6>0 such that  a(1+6)3<2.  Let 

~ = ~ 6 / ( 1 + d ) ,  C e = C ( ~ / ( l + 5 ) , a ( l + 5 )  ~) and N ( 4  be a (finite) maximal set of xi~C~ 

such that  lxi-xjl>2c6 for all ir Note that  {P (x , , e6 ) :x iEn(e )}  are disjoint, and if 

xEC'6 then D(x, e6) C C(e, a). Therefore, 

7rc~lN(~)l ~<s O D(x, e6)) <~ s 
xEC6 

With d(e)=log IN(e)l/log(1/e), we thus see that  

Let 

and 

lim inf d(e) ~< 2 - 1 i n  sup log s a)) (4.1) 
e-+0 ~-~0 log r 

CThick~>a = { xED(O'l):liminf#~(D(x'c))e-+O e2(logr 2 ~>a} 

#~(D(x,c))  } 
CThick-r >a = x E D(O, 1) : inf ~> a 

' e ~  e2(loge-1) 2 ' 

The sets CThick~,>a are monotone non-increasing in 7, and 

(4.2) 

CThick>ao+6)4 C_ U CThick~n,>a(l+a)a (4.3) 
n 

for any 7n--~ 0. Recall that  S~ := {D(x,, 3ca) : x~ E N(r } forms a cover of 6"6, so a fortiori it 

is also a cover of CThick~M+a),>a0+6)3. Fixing en$0 it follows from (4.3) that  On>,~S~, 
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is a cover of CThick>a(l+a)4 by sets of maximal diameter 6era. Hence, the r/-Hausdorff 

measure of CThick>~(l+~p is finite for any r/such that  

o~ oo 

E IN(~n)l~n -= E E~n-d(e~) < OC, 
n = l  n=l 

i.e., whenever 77>liminf~_~o d(~). Consequently, by (4.1), 

dim(CThick)ao+5)4 ) ~< lira inf d(~) ~< 2- lira sup 
~-->0 ~-+0 log E 

Taking 5--+0 and using (1.14) yields that 

log s  a)) 
lim sup ~< a a.s., 

c-+o log 

as needed to complete the proof. 

log s a) ) (4.4) 

[] 

5. T h e  E r d S s - T a y l o r  c o n j e c t u r e  

We present here the generalization of Theorem 1.1 alluded to in the introduction. Recall 

that  a random walk in Z 2 is aperiodic if the increments are not supported on a proper 

subgroup of Z 2. 

THEOREM 5.1. Let S n = E n  1 X i be an aperiodic random walk with i.i.d, increments 

XiGZ 2 that satisfy E X = 0  and EIx]m<oc for all m<oo. Denote by F = E X X  I the 

covariance matrix of the increments, and write ~r:=27c(detF) 1/2. Consider the local 
time 

T n ( X ) : = ~ l { s k = z  }, x E Z  2, 
k = l  

and its maximum T* =maxx~z2 Tn(x). Let M(n, a) denote the number of points in the 

set {x:Tn(x))a(logn)2}.  Then, 

lira T* _ (5.1) n--+oo (1ogn) 2 =Trr l  a.s., 

and for cte(0, Tr~-a], 

lira log M(n,  a)  --1--a~rr  a.s. 
n - - + ~  l o g  n 

Moreover, any (random) sequence {xn} in Z 2 such that T~(xn)/T~--+ l must satisfy 

lira log I:;Cn] 1 
- -  a . s .  

n-+~ logn 2 

(5.2) 

(5.3) 
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_ _  1 7rp = T r . )  (Note that  for simple random walk F - ~ I ,  so 

Proof of Theorem 5.1. We start by proving the lower bound 

liminf T* 1 -1 (5.4) 
~-+or (logn) - - - - ~  ~> 27r(detp)1/2 =Zrr a.s. 

(For the case of simple random walk, this will prove the Erd6s-Taylor conjecture, as the 

upper bound is already in [7, (3.11)].) Our approach is to use Theorem 1.3 together with 

the strong approximation results of [6] and [10]. 

Fixing 5>0,  it follows from (1.8) that a.s. 

liminf sup #[(D(z, e)) ~> sup liminf #~(D(z, ~)) >~ 2-  6_ 
~--+0 Izl<l e2lloge[2 Izl<l e-+o e2[logEI2 2" 

Hence, E(D(z'*)) ) 
l i m P ( s u p  ~>2-5 =1.  
~-~0 \lzl<l e2ll~ 2 

Since P(0~< 1) >0, it follows that for some/)0 >0, s 1 >0 and all e <c , ,  

P ( s u p  #~(D(z,c)) ) 
\ lzl<l e2tl~ 2 >/2--5 >~3~5o. 

In particular, fix rl>0 and let en=n n-1/2. Then for large n, 

P ( s u p  p~(D(z,e~)) ) 
\Izl <1 El loganl2  ~>2(1--6) ~>3p0. (5.5) 

Since, by L6vy's modulus of continuity, 

lim P (  sup Iwt,~t]/~-w~l>~&n ) =0, 
n--+cc 0~<t~<l 

it follows that for large n, 

( ) E j = I  I~j/~-zl<(l+6)~n (5.6) P sup ~> 2 (1 -5 )  2 
Izl<l ne,2~ I l~ an 12 >/2/90. 

By Einmahl's [6, Theorem 1] multidimensional extension of the Koml6s Major-  

Tusns [10] strong approximation theorem, we may, for each n, construct {Sk}~=l and 

{Wt}o<~t<H on the same probability space so that 

lira P( Iw jo-l  lJ2S  
n--+ oo \ k = l , . . . , n  I % / n  
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(For the case where Sn is a Z2-valued simple random walk, the original construction of 

Komlds-Major-Tusn~dy [10] suffices, since rotating the axes by 1 ~Tr, one may view S~ as 

two independent  one-dimensional simple random walks of step size 1 / v ~  .) Combining 

the above with (5.6), it follows that  for large n, 

P( sup EjL1 ilr-1/2s~-yl<v~(l+2~)~ ~> 2(1_5)z)  ~>/30. (5.7) 
\y~tt2 ns2n I log cn 12 

The number of lattice points in the ellipse {z: IF-1/2z-y]<v/-~(l+26)en} is less than 
7r(det F)l/2n(l+25)3r so by the pigeonhole principle, 

~j'~- a l l r -1/2sj-ul<v~ (1+2~)~. 
T2/> sup y~R2 7r(det F)l/2n(l+25)3e2~ 

Since [log enl= ( �89  r/)log n, we infer that  for large n, 

{ (1  - 5 )3  (1  - ( l o g  n )  

Since a path of length n contains [n ~] disjoint segments of length [n~-~], using indepen- 
dence of increments we deduce for large enough n that  

( ( l - -5)6(l--2r /)2( l~ [ ( (1--5)3(l--2~])2(l~ 
P T,~< (1+25)37rr ] ~< P T[~_~]~< i ~  ]J  

~< ( l - p 0 )  [n~]. 

An application of the Borel-Cantelli lemma followed by taking the limit as 6, r]$0 com- 

pletes the proof of (5.4). 
To establish (5.1), it remains to verify the upper bound 

T2 1 
- -  a . s .  ( 5 . s )  limsUPn_~ (logn) 2 ~< ~rr 

If {Sn} is strongly aperiodic, i.e., if the increments are not supported on a coset of a 
proper subgroup of Z 2, then the local CLT in Spitzer [20, w P9] implies that  

~ P [ S k = 0 ] ~  l ~  as n--+cx~. (5.9) 
7rF 

k=0 

In fact, as we now show, our standing aperiodicity assumption suffices to get (5.9): 
Let h:=g.c.d.{n:P(S,=O)>O}. From Spitzer [20, w P1] it follows that  either S,~h 

is strongly aperiodic (in which case (5.9) holds) or it is periodic. Using Spitzer [20, w P1], 
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we may infer that there exists an integer (2 x 2)-matrix A, and a strongly aperiodic ran- 

dom walk {Sn} in Z 2, such that S~h=AS,~ for all n>~l. (See the discussion in [11, 

pp. 659-660] for a similar argument.) By the remark following [20, w P1], the index of 

the subgroup AZ 2 in Z 2 is h; on the other hand, this index equals I det A I by the counting 

argument in the proof of [20, w P2] (cover Z 2 by h cosets of AZ 2, and use the trans- 

formation of volumes by the factor Idet A D. Denote by F and F the covariance matrices 

for the increments of {S~} and {S~}, respectively. Since hF=AFA', the determinants of 

F and F coincide, and (5.9) follows. 

Applying [2, Theorem 8.7.3] for the renewal sequence un=P(S~=O), we deduce from 

(5.9) that for all large n, 

P(for all [1, & #0 )  > 

By the strong Markov property, 

P[Tn(0) ~> c~(log n) 2] < (1 

Hence, 

(1-5)~-p 
log n 

(5.10) 

(1 -- 6) rrr f Oog n) 2 logn ~ e-(I -a)~rr  l~ n = n - (1 -5 )~ r  . (5.11) 

n 

k = l  

~< nP[Tn (0) ~> a(log n) 21 (5.12) 

n l - -  (1--6) a~rp " 

If a>Trr  1 then by taking 6>0 small enough, we ensure that  the right-hand side of (5.12) 

is summable on the subsequence nm=2"L By the Borel-Cantelli lemma we get (5.8) for 

this subsequence, hence by interpolation for all n. 

The proof of (5.2) is very similar: Fix a<2,  rl>0 and gn=n •-1/2. Recall the defi- 

nition of N(e)  from w for 5>0  small enough. The argument of that section shows that 

for some f l  >0 and all n large enough, 

P ( 0 <  1, [N(en)[ ~> ~ a(1+fi )5-2)  ~ 3pl. 

c3 a(1+5) 5 - 2  On this event we can find in each N(r a subset of at least o c~ points that are 

3On-separated. By Lhvy's modulus of continuity, the multidimensional strong approxima- 

tion of [6, Theorem 1] and the pigeonhole principle, we may infer that for a =  ( �89  1, 

some 6'(7], 6 )>0 such that 5'$0 when 5Vr/$0, and all large n, 

pfM(,o., a) ~> n l - ~ r  -2a'] ~>p~. 
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The lower bound follows by partitioning a path of length n to n ~ segments of length 

n 1-5 each, using independence of increments, the Borel-Cantelli lemma and considering 

6,750. 

The corresponding upper bound follows from (5.12) by Markov's inequality and an 

application of the Borel-Cantelli lemma along the subsequence n,,~. 

Finally, for {x~} satisfying Tn(xn)/T~-+l,  for any ~/>0, a.s. 

IXnl ~ max ISk] <~ n 1/2+7~, 
k : l , . . . , n  

for all n large enough. On the other hand, the inequality (5.11) implies that  

P (  sup Tn(y)~>a(logn) 2) <~ Cn 1-2~l-(a-6)c~v, 
lY l<~n~/2 - ,  

which is summable on the subsequence nm=2 T M  if a ~ r > l - 2 ~  and 5 is small enough. 

Invoking the Borel-Cantelli lemma and the monotonicity of n~->suPlyl<nl/2-, T~(y) it 

follows that a.s. 
suPlyl<~,~l/~-,, Tn(y) 

limsUPn~ (log n) 2 < (1--2~])~rl' 

SO that  (5.3) follows from (5.4). [] 

6. From excurs ions  to  o ccu p a t io n  t imes  

Recall that  N~ denotes the number of excursions from OD(x, ~k--1)  t o  OD(x, ok) prior 

to 0. Fixing aE (0, 2) and nk =3ak  2 log k we call x c S  lower k-successful if N~ ~nk--k,  

and x c S  is called lower m-perfect if it is lower k-successful for all k=2 , . . . ,m.  Recall 

that  if x E S is m-perfect then also 

n k - k ~ N ~ K n k + k ,  for a l l k = 2 , . . . , m ,  

and hence x is lower m-perfect. 

With h(c):=e2]log c[ 2, the following lemma gives the lower bound in Lemma 3.1. 

LEMMA 6.1. There exists a 6(c)=6(c,w)--+0 a.s. such that for all m and all xES,  
if x is lower m-perfect then 

(a-6(e))h(c)~<p~(D(x,c)), for al lr  (6.1) 

Proof of Lemma 6.1. Let 6k=r 6 and let Dk be a 5k-net of points in S. Let 

t c k e l / k  6 ~ t] ~ C k _ l e - 1 / k ~  Ck z C k _ l  , 
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I I 
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s' / 
-" / 

\ / / 

Fig. 1 

so that  

e~ ~>ck+hk, ~" k--1 ~ r  (6.2) 

We will say that  a point xtET)k is successful if there are at least nk - k  excursions from 

OD(x', ek_l)" to OD(x', ek)' prior to 0. Let 

r =eke -j /k,  j =0,  1, . . . ,3klog(k+l) ,  

__ ~,  . ,~--2/k  3 _  r , ~ - j / k , ~ - 2 / k  3 - 1 / k  6 and let c ~ , y - ~ , j ~  --~k~ ~ . We now derive Lemma 6.1 from the fol- 

lowing lemma. 

LEMMA 6.2. There exists a ~(e)=(~(e,w)--+0 a.s. such that for all k and x'EI)k, if 

x t is successful then 

! ! ~ W l ! (a--5(ek,j))h(~k,j) .~#~ (D(x ,~k,j)), for all j = 0 ,  1, . . . ,3klog(k+l) .  (6.3) 

For assume that  Lemma 6.2 holds, and let x E S  be lower m-perfect. For any k~<m we 
- -  ! I !  C can ~nd x'CVk with Ix-x'l ~ k -  Then, D(x, E~) C D(~', ~'k) and D(x, ~k- l ) -  D(x, ~k-l), 

see (6.2) and Figure 1, so that  the fact that  x is lower k-successful implies that  x' is 

successful. Thus (6.3) holds by Lemma 6.2. One easily checks that  (fk+C~,j ~<Zk,j for all 

j and any large k, implying that  D(x', e~,j)CD(x, ckd). This, together with (6.3) and 
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then shows that  for all j = 0 ,  1, ..., 3k log(k+l ) ,  

13 
(a--5(ek,j)---s ) h(~k,j) ~ #~ ( D(x,  ek,j) ). 

Now for any ek+l~<e~<ck, let j be such that  ek,j+~<e~<ek,j. Then, 

#~(D(x , c ) )  #~(D(X,  Ck,j+l)) p~(D(Z,  ek,j+l)) ( 1 _ 2 )  
h(~) >1 h(ck,j) >>" h(ck,j+~) 

and Lemma 6.1 follows from (6.4) and (6.5). 

(6.4) 

(6.5) 

Hence, 

n I 

\ / ~ 1  

Kk ----- = 3 log k -  . l o g \  ek / 

With k large enough, using Stirling's approximation for log~k =log E1--3 log k!, 

2 1 , (1 
i 

Ql nl~.l Tl'k'J 1 ~)1 
Px',k,j < P _-27-nk = Kkglk,j2 <~ - . (6.6) 

A ~ 2 _ ~ r2zcIk, Define Tl,k, j :-=Tl,k,j/(l~kCk, j ). Then, a substitution in Lemma 2.1 with r l - ek , j ,  
ra-ek_l-  " reveals that  for all k large enough, 

E(?l,k,j) = 1, E(?~k,j ) ~< 10 (6.7) 

so that ,  with ~l,k,j:=?l,k,j--E(?t,k,j), we have 

s 

p 1 E ~ , k , J < ~ - -  Px,,k,j ~< ~- 
k /=1 

(6.8) 

Let 

Proof of Lemma 6.2. Suppose that  xtCTpk is successful. Then there are at least 

n k = n k - k  excursions between OD(x ' ,~ )  and ' " n k ' OD(x ,~k-1), where ' --+~ as k---~cx~. Let 

Tl,k, j denote the occupation measure of D(x',  ' ' ' ok,j) C D(x , ek) during t h e / t h  excursion. 

Note that  the Tt,k,j are i.i.d, and 

(/0 ) Px',k,j : = P  l{w~eD(x,#k,~) } dt<. a 1-1~-~g k h(etk,j),x ' is successful 
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Since 7rt,k,j>>.--1, it follows that for all 0 < 0 < 1 ,  

E(e -~ ~ I+202E(T~k,j)  ~< 1+2002 ~< e 2~176 

Taking O=A/(a log k), a standard application of Chebyshev's inequality then shows that 

for some A=A(a)>0,  C l < e c  and all x'ESPk, k, j ,  

P~', k,j <<. C1 e-xk2/log k (6.9) 

Since 17?kl<<.e c:kl~ for some C2<oc and all k, it follows that 

3 k l o g ( k + l )  

E E E Px ' , k , j~3CI~  k2eC2kl~176176176 
k = l  j = 0  x~CT>k k = l  

The BorebCantelli  lemma completes the proof of Lemma 6.2. [] 

We turn to the upper bound in Lemma 3.1. The situation here is quite similar to 

the lower bound. A point x E S  is upper k-successful if N~<<.nk+k, and x E S  is upper 

m-perfect if it is upper k-successful for all k=2, . . . ,m.  Since every m-perfect x E S  is 

upper m-perfect, the following lemma gives the upper bound in Lemma 3.1. 

LEMMA 6.3. There exists a 5(~)=5(~,w)--+0 a.s. such that for all m and all xES ,  

if x is upper m-perfect then 

#~(D(x,  s)) ~< (a+ci(s))h(s),  for all s >1 ~m. (6.10) 

so that 

Let now 
-I akC-2/ka gpt Ek_lel/k6, Ck ~ , k--1 z 

g~ ~< ~k--dk, #'k-1 ~> ~k-l+Sk.  (6.11) 

We now say that x'ETPk is u-successful if there are at most nk4-k excursions fi'om 

O D ( x ' , ~ l )  to OD(x',g~) prior to 0. We can derive Lemma 6.3 from the following 

lemma. 

LEMMA 6.4. There exists a 5(~)=(~(~,w)--~0 a.s. such that for all k and x'ETPk, if 

x t is u-successful then 

#~O(D(x',E~c,j)) ~< (a+5(e~,j))h(r for all j = 1 , . . . ,3k log(k+I) .  (6.12) 

Note that here we take j/> 1 to insure that r ~< g~. As with the lower bound, (6.12) 

leads, for x E S  which is upper m-perfect, to 

( , 13)  
#}'(D(x, ck,j)) ~ a+5(Ck,j)+ h(ek,j), (6.13) 
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for all j = l ,  ..., 3k log(k+1). Lemma 6.3 then follows as with the lower bound, noting 

that  we also have (6.13) for j=O since Sk,O=ek_t,a(k_l)log(k). 
Since 0~D(x,  sl) for all xES,  with n~=nk+k,  the proof of Lemma 6.4, in analogy 

to that  of Lemma 6.2, comes down to bounding 

tt 

P "Tl ,k , j> nk <<.e ~k/l~ * 'k") )  nk.  

Noting that,  by (2.2), for some C<oo,  all A>0 small and k large enough, 

E ( e ~ " k " )  = I + E  ~-. 1E(TI'k'j) "~ I + E  n '  E(rl~'k'J+l) ~< I+CA2'  
n = 2  n = 2  

the proof of Lemma 6.4 now follows as in the proof of Lemma 6.2. 

This concludes the proof of Lemma 3.1. [] 

7. First  m o m e n t  e s t i m a t e s  

Fixing ~=3a  >0, recall that  ~1 = 1, r =k-aek-1  and nk = ~k 2 log k for k ~> 2. Recall also 

that  N~(Q) denotes the number of excursions from OD(x, sk- t )  to OD(x,r prior to 
x 1 ax,o=inf{t>~O:wtEOD(x,o)}, and xES  is called n-perfect when IN~(~)-nkl<<.k and 

I N~(2)-nkl~< k for k=2,  ..., n. Throughout we let a*,0 denote the corresponding hitting 

times for {w . . . .  /2+t,t~O} and set Eo=�89 Our next lemma provides the lower bound 

(3.11) on P(x  is n-perfect) as well as a uniform (for xES)  complementary upper bound. 

LEMMA 7.1. For all n>>.2 and some 5,--+0, 

x 1 qn:=P(nk--k~N~(~)<<.nk+k;2<-..k<-~nlaz,e~<crx,1/2)=(n!) - ~ - ~  . (7.1) 

Moreover, for some c>0 and all xES,  

qn >~ P(X is n-perfect) >~ cqn. (7.2) 

Proof of Lemma 7.1. Recall that  eventually n a - k ~ l ,  and that  O~D(x, E1) for all 

xES.  Hence, for x E S  to be n-perfect, necessarily ax,~l<a~,l/2, resulting in the upper 

bound in (7.2). Turning to the lower bound, consider the event {ax,2 <dx,~l } which guar- 
antees that z _ ~ i N~ (2)--N~ (5) for all k. By the radial symmetry of the events considered and 

the strong Markov property of Brownian motion, the event {~x,2 <az,el } is independent 
x 1 of both {N~ (~), k>~2} and {(Tx,~i<a.,1/2}, with P ( a . , 2 < a  . . . .  )=/~3>0 independent of 
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the value of xCS. Note that  P(ax,el<~x,1/2), for xES, is a monotone decreasing func- 

tion of [x[ that is positive for all such x, hence 154 := infx~s P(ax,~l<ax, 1/2)>0. The lower 

bound of (7.2) thus follows (with c=p3P4 >0). 

Consider the birth-death Markov chain {Xz} on {0, 1, 2, ...}, starting at X0= l ,  hav- 

ing 0 as its absorbing state and the transition probabilities for k = l ,  2, ... 

pk:=p(Xz=k+l]Xl_l=k)=l_P(Xz=k_l[Xz=k)= 1og(~k-1/ck) (7.3) 
log(ak-1/Ck+l) " 

Let L I = I ,  and let for each k~>2, 

Lk = ~ l { x z = k - - l , X t + l = k  } 
/=0  

denote the number of transitions of {XL} from state k - 1  to state k. Observe that  Pk 

is exactly the probability that  a path of wt starting at OD(x, ek) will hit OD(x,~k+l) 
prior to hitting OD(x, ok-l),  with (Xz, Xl+l) recording the order of excursions the path 

makes between the sets {0D(x,sk), k~>l} prior to ax,U2. By the radial symmetry and 

the strong Markov property of Brownian motion, qn of (7.1) is independent of xcS. 
x 1 Moreover, fixing xeS, conditioned upon {a~,~l<a~,l/2}, the law of {N~ (~),k>~2} is 

exactly that  of {Lk, k~>2}. 

ConditionM on Lk= lk ~> 1 we have the representation 

lk 

Lk+I ---- E Y/' (7.4) 
i=1  

where the Y~ are independent identically distributed (geometric) random variables with 

P(Yi=j)=(1-pk)pg, j = 0 , 1 , 2 , . . . .  (7.5) 

Consequently, {Lk, k>~l} is a Markov chain on Z+ with transition probabilities 

P(Lk+l =m,Lk=l+ l)= (m+ml)p~(l-pk)l+l , (7.6) 

for k~>l, m,l>~O and P(Lk+I=OILk=O)=I for all k~>2. We thus deduce that 

n--1  

qn=P(nk-k<Lk<nk+k;2<k<n)= E rI  P(Lk+l=Ik+llnk=lk) (7.7) 
12,...,l n k = l  

Ilk--nkl~k 

(where 11=1). The number of vectors (12, ..., ln) considered in (7.7) is at least n! and at 

most 3nn!. Since n -1 logn!-~oc and for some ~/n-+0, 

r l  log k = (n!) ~, 
k = 2  

we see that  the estimate (7.1) on q, is a direct consequence of (7.7) and the next lemma. 
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LEMMA 7.2. For some C = C ( ~ ) < o c  and all k>~2, Im-nk+ll<~k+l ,  [l+l-nk]<<.k, 

k-r k-r 
C -1 ~< P ( L k + l = m l L k = / + l )  ~<C . (7.8) 

Proof of Lemma 7.2. It suffices to consider k>>l, in which case from (7.3), 

logk = - - 0  1 (k l -~gk)  1 (7.9) 
Pk = l o g k + l o g ( k + l )  2 

and since n k -  2k--+cc, the binomial coefficient in (7.6) is well approximated by Stirling's 

formula 

m! = v/-~-~ mm e - m vf-m (1+o(1)). 

With nk=@21ogk it follows that  for some C l<co  and all k large enough, if II-nkl<~2k, 

I m - n k + l l ~ 2 k  then 

/ ~ C1 (7.10) 
- 1 - ~ k log-----k 

Hereafter, we use the notation f ,~g if f i g  is bounded and bounded away from zero as 

k--~oc, uniformly in {m:Im--nk+ll~<2k} and {Z:lZ-nk/,.<2k}. We then have by (7.6) 

and the preceding observations that  

p ( L k + l = m l L k = l + l ) . .  ~ (re+l) m+l m l e x p ( - l I ( m / l , p k ) )  (7.11) 
x/~iZm m Pk (1--pk) "~ k 2 ~ k  , 

where 

I(A, p) = - (1 +,~) log(1 + A)+)~ log A-,~ l o g p -  log(1 -p) .  

The function I(A, p) and its first order partial derivatives vanish at (1, �89 with the second 

derivative I ~ ( 1 ,  �89 1 Thus, by a Taylor expansion to second order of I(/~,p) at (1, �89 

the estimates (7.9) and (7.10) result in 

m C2 (7.12) 
I ( - [ - , p k ) -  k~ff21 ~< k2 log------- ~ 

for some C2<oc, all k large enough and m, 1 in the range considered here. Since 

[l-@21ogkI<.2k, combining (7.11) and (7.12) we establish (7.8). [] 

In w we control the second moment of the n-perfectness property. To do this, we 

need to consider excursions between disks centered at x E S as well as those between disks 

centered at yES,  ybCx. The radial symmetry we used in proving Lemma 7.1 is hence 

lost. The next lemma shows that,  in terms of the number of excursions, not much is lost 

when we condition on a certain a-algebra G~ which contains more information than just 
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the number of excursions in the previous level. To define G y, let T0=0 and for i=1,  2, ... 

let 

~-2i-1 = i n f  {t  ) ~-2i-2: wt E OD (y, st) }, 

~-2i = inf {t ~> ~-~i- 1 : wt E OD(y, ez- 1) }. 

Thus, N~(1)=max{i  : q-2i_l <O'y,1 }. F o r  each  j = l ,  2, ..., N/Y(1) let 

e (j) = {w~-2~_2+t : 0 <~ t ~ T2j_ 1 - -T2j_2} 

be the j t h  excursion from OD(y, el-~) to OD(y, el) (when j = l  the excursion begins at 

the origin). Finally, let 

e (N~(1)+1) = {WT2N~(1)+ t : 0 ~.~ t ~ O'y,1 --T2N~(1)}. 

We let J l : = { l + l , . . . , n }  and take GY to be the a-algebra generated by the excursions 
e (i), ..., e(N~(1)) , e(N[(1)+l). 

LEMMA 7.3. There exists Co<c~ such that for any 2<~l<~n-1, ]rrt~-n~[<<.l and all 

yES,  

P(N~(1) = ink; k e Jl ] N~Y(1) = ml, GY) ~< Co H P(Lk+I = mk+l ILk =- ink). 
k=l 

(7.13) 

The key to the proof of Lemma 7.3 is to demonstrate that  the number of Brownian 

excursions involving concentric disks of radii ek, kEJl, prior to first exiting the disk of 

radius el-1 is almost independent of the initial and final points of the overall excursion 

between the cl- and et_l-disks. The next lemma, proven in w provides uniform estimates 

sufficient for this task. 

LEMMA 7.4. For 1~2 and a Brownian path starting at zEOD(y, El), let Zk, kEJl, 

denote the number of excursions of the path from OD(y,~k_l) to OD(y, ek), prior to 

r ct_l)}. Then, for some c<c~ and all {rnk:kEJz}, uniformly in 

vEOD(y, el_l) and y, 

P~(Zk=mk,  kEJ1 [we =v)~< ( l+c l -3 )Pz (Zk=mk,  kEJl).  (7.14) 

Proof of Lemma 7.3. Fixing l~>2 and yES,  let Z (j), kEJz, denote the number of ex- k 
cursions from OD(y, ek-1) to OD(y, ok) during the j t h  excursion that  the Brownian path 
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wt makes from OD(y, r to OD(y, r The lemma trivially applies when mt=O. Con- 

sidering hereafter rnl >0, since O~D(y, ~1) we have that  conditioned upon {N~(1)=mt}, 

ml  

j), (7.15) 
j = l  

Conditioned upon G~, the random vectors {Z~ j), ke Jz} are independent for j = 1,2, ..., mr. 
Moreover, {Z (j), keJz} then has the conditional law of {Zk, kEJz} of Lemma 7.4 for some 

random zy C OD(y, et) and vy C OD(y, ~_~), both measurable on 6 y (as zj is the final point 

of e (j), the j t h  excursion from OD(y, s~-l) to OD(y, ~z), and vj is the initial point of the 

( j + l ) s t  such excursion e(J+l)). Hence, 

ml 

P ( N : ( 1 )  =ink, ke  J, I N : ( 1 ) = m , ,  G~)=  E ~ P~'(Z(J)=m(Y)' ke  J, I we(,) = vj), 
T~L j = l  

mt re( j )  where the sum runs over the set Pl of all partitions r n k ~ j = l  kEJt. By the 

uniform upper bound of (7.14) this is 

m l  

<~ E 1-[ (l +cl-3)Pz~(z~J)=--(J),u k , ke  Jt) 
"Pz j = l  

= P(NZ(1) =ink, keg  I N[(1) 

Since ml =O( l  2 log l) we thus get the bound (7.13) by the representation used in the proof 

of Lemma 7.1. [] 

8. S e c o n d  m o m e n t  e s t i m a t e s  

Recall that  N~ (Q) for x E S, k >~ 2, Q > ~ 1 denotes the number of excursions from cgD (x, Ck-1) 
to OD(x,~k) prior to c%,~, and as such N~(�89 With nk=~k21ogk we 

shall write N~nk  if IN-nkl<~k. Relying upon the first moment estimates of Lem- 

mas 7.1 and 7.3, we next obtain an upper bound related to the second moment of the 

n-perfectness property. In particular, the inequality (3.12) is a direct consequence of this 

bound and (7.2). 

LEMMA 8.1. For qn of (7.1), some yz-+O and all x ,yES such that Ix-yl~2~l, 

P ( x  and y are n-perfect)-<..~ ~n~.j-2 (t~r . (8.1) 

Proof of Lemma 8.1. Necessarily l>~2. We may and shall assume without loss of 

generality that  n is so large that  nn_2>~n-1. Furthermore, assuming without loss of 
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generality that  f(n):=((n-1)!) r >~(n!) r is non-decreasing, it suffices by (7.1) 

to consider only l<~n-2. Similarly, fixing x, ycS, we may and shall take the minimal 

value of l such that Ix-yl~>2~z. In this case, D(y, ez)nOD(x, ek)=e for all k#l-1.  
Moreover, OED(x, � 89  1) implying that ax,1/2<<.ay,1, and, recalling the a-algebras 

x 1 ~L1 defined above Lemma 7.3, {N~ (~) ~ n k }  are measurable on G~+I for all kr  
With J~ :={ l+ l ,  ..., n} and I~:={2, ..., I - 2 ,  l + l ,  ..., n}, we note that 

x I k {x and y are n-perfect} C { N~ (7) ~ nk, kE Il } n{N~(1) ~nk, kE Jz}. 
Let F(I t ) :=  {m2, ..., m , :  Imk--nkl<~k, kCI~}, F(J l ) :=  {ml+l, ..., m , :  Imk--nk]<<.k, kEJl}. 
Then, using (7.13) in the second inequality and the representation (7.7) of Lemma 7.1 

in the third, 

P (x  and y are n-perfect) 

<~ E E[P(NY(1)=rak' kE J~+I I N~+I(1)=ml+I' G~+I); N~(�89 ~nk' k6 II] 
r(J0 

n--1 
[ E  H I p,Nx[l'~knk'kEIl) <~ Co P(Lk+l=mk+llLk=mk) \ k~) 
~r(Jz) k=l+l 

n--1 n--1 1 
~C~ k--l+iH f(Lk+l:fnk+llLk=mk) 1 [F(~/i) k=lI-I m k + i '  = 

n--1 2 

(where m l = l ,  q0=ql := l ) .  By (7.7) and the bounds of Lemma 7.2 we have the inequality 
n--1 

q n =  ~ IIP(Lk+~=mk+~lLk=mk) 
m2,'",m77, k=l  

Imk--nkl<~k 

~> q~+l inf [mt+l--nt+l[<~l+l 

q/+lC -2 sup 
Iml+l--n~+l ]~</A-1 F(Jl+l) k=l+l 

n - 1  
~q1+1C-2(21+3)-1 E H P(Lk+i=mk+llLk=mk). 

r(J~) k=z+l 

Combining (8.2) and (8.3), we see that 

P (x  and y are n-perfect) ~< Coql-2-[ qnc2 (2----~/+3) -/2, 
[ ql+l J 

and (8.1) follows from the estimate of (7.i). 

n--1 

H P(Lk+l=mk+llLk=mk) 
F(Jt+ t) k=/+i  

n - ]  

E n P(Lk+l=mk+llLk=mk) 

(8.3) 

[] 
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9. C o n d i t i o n a l  excu r s ion  p robab i l i t i e s  

Proof of Lemma 7.4. Without loss of generality we can take y--0. Fixing l~>2 and 

z�9 ct) it suffices to consider {ink, k �9  for which Pz(Zk =ink, k �9  >0. Fix such 

{ink, k � 9  and a positive continuous function g on OD(O, st- l) .  Let 

: inf{t : wt �9 019(0, c t - j } ,  

T0=0, 

and for i=0,  1, ... define 

T2i+1  = inf{t/> r2i: wt �9 OD(O, r  UOD(0, r 

z2i+2 = inf{t/> T2i+ l : Wt �9 019(0, St)}. 

Set j =rot+ 1 and let Z~, k �9 Jr, be the corresponding number of excursions by the Brown- 

ian path prior to time 7zj. Then, by the strong Markov property at ~-2j, 

E~[g(w~); Zk =m~, keJt] z ~ j  = = E  [E (g(w§ O);Z~=mk, k�9 

and 

Pz(Zk = ink, k E Jz) = E ~ [E~'2J(Zz+I = 0); Z~ = ink, k E Jl, ~ >~ 7"uj]. 

Consequently, 

EX(g(w~); Zl+1:0)  
EZ[g(w~); Zk : ink, k C Jl] <~ P~(Zk : mk, k C Jr) sup 

Ixl=e, Pz(Zl+l  = 0) 

and, using again the strong Markov property at time T2, 

EZ(g(w~); Zl+l = 0 ) =  E~(g(we))-E~(EW'2(g(we)); Zz+I ) 1) 

~< EX(g(w§ ) 1)l infEY(g(we)) .  

Since Ex(Zz+l ) l )=p l  whenever Ixl=el, cf. (7.3), it thus follows that  

E ~ [g(w,); Zk = ink, k �9 .It] < Pz(Zk = ink, k �9 Jl)E~(g(we)) (1 -Pt)  -1 

X ]" 
(9.1) 

Recall that  

/o z') au, 

where Kr(u, z ' )=(r  2 -  I z '12) /b - z 'P  is the Poisson kernel. Therefore, we get the Harnack 

inequality 

suPlxl:~z EX(g(w~)) ~ maxlxl:~,l~l:~z_ ~ K~_l(U, x) _ (el_l+Sl) 2 (9.2) 
inflyl=~ EY(g(wJ)  minlyl=~z,l~l=~_ ~ K~_~(u, y) (~ t_ l -  ez) 2" 
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With et_l=13et, we get from (9.1) and (9.2) that  for some universal constant c<ec,  

EZ[g(we ); Zk = mk, k E Jz] <. ( l +cl- a) PZ( Zk = mk, k e Jz) E~( g(we ) ), 

and since this bound is independent of g we obtain (7.14). 
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[] 

10. C o m p l e m e n t s  a n d  unso lved  p r o b l e m s  

(1) In [3] and the present paper, we analyzed Brownian occupation measure where it is 

exceptionally 'thick'. To describe completely the multifractal structure of the measure, 

an analysis of ' thin points' is needed. In [4] we show that  

lim inf #~(D(wt 'e))-- i  a.s. (10.1) 
e--+0 tE[0,1] e2/loge -1 

We also show that  for any a > l ,  

dim{ xED(O'l):liminf#~(D(x'e))s~o e2/log e-1 = a }  =2--2a a.s. (10.2) 

We call a point xED(O, 1) on the Brownian path a thin point if x is in the set considered 

in (10.1) for some a>0.  In contrast to the situation for thick points, the results (10.1) 

and (10.2) for thin points hold for M1 dimensions d~>2. 

(2) The 'average' occupation measure of small balls by planar Brownian motion was 

recently investigated by P. MSrters [14]. He showed that  #~' has an average density of 
order three with respect to the gauge function ~(e )=e  2-log(I/e), i.e., almost surely, 

1 fl/e p~(D(x, e)) de 1" l m  --  ~,0 log [l~ r I J~ ~--~ [e log e I -- 2 at #~'-almost every x. 

(3) Computation of Laplace transforms is a traditional component of multifractal 

analysis, and in our work on transient Brownian motion [3] Laplace transforms (expo- 

nential moments of occupation measure) were used to determine the coarse multifractal 

spectrum. In the present paper we obtained the coarse spectrum directly, as this was 

easier than computation of exponential moments. We believe that  

f l  ['Ap~(D(Wt,e))) ( 1 ) ~ 
lim ! e x p /  ~ dt = a.s. for all A < 1. (10.3) 
~-~0J 0 \ e loge -1 

Presently, we can only show this for A < �89 The general result would follow by analyticity 

arguments if one could prove that  

/01 limsup exp(;\uT(D(W"e))~dt<~ a.s. f o r a l l , ~ < l ;  (10.4) 
~-4o • e2 loge -1 ] 



268 A. DEMBO, Y. PERES, J. ROSEN AND O. ZEITOUNI 

this 'almost' follows from Theorem 1.4. 

(4) Next, we discuss briefly the packing dimension analogue of Theorem 1.3; con- 

sult Mattila [13] for background on packing dimension, Minkowski dimension and their 

relation. The set of consistently thick points CThick~>a, defined in (4.2), has different 

packing dimension from the set Thick>a, defined in (2.6). Namely, for every aC(0, 2], 

direr  (CThick>~) = 2 -  a, (10.5) 

dimp(Thick>a) = 2. (10.6) 

To justify (10.5), we use the notation of w The sets An, defined in (2.11), satisfy 

IA~I ~< (~n)  (1 -115 )a -2  (10.7) 

for all large n, by (2.13) and Borel Cantelli. 

Recall the discs Pn,j=D(xj, 6gn) defined after (2.13), and denote Vn=UjeA F~,j. 

By (10.7), the upper Minkowski dimension of Fz* = N,,~>t Yn is at most 2 -  (1 - 116) a. It 

is easy to see that  CThick>~c Ut~>lFz*, whence dimp(CThick>~)~<2-(1-116)a.  Since 

5 can be taken arbitrarily small, while dimp(CThick>a)~>dim(CThick>~a), this proves 

(10.5). 

To prove (10.6), it clearly suffices to consider a=2.  Recall that  O=inf{t:lwtt=l }. 
For each n/> 1, let 

Vn:= U ~ O<t<O:#~(D(wt'~)) 1 }  
0<E<l/n t. c2(l~ c - l )  2 > 2-- . 

It is easy to check, e.g. by applying Theorem 1.2 with an arbitrary T replacing 0 there, 

and using the shift invariance of Brownian motion, that  for any n~> 1, almost surely V,~ 

is an open dense set in (0, 0); by [3, Corollary 2.4], dimp(NnV~)=l a.s. The set 

{ O~t~O:limsup#;(D(wt'E))~--~o s2(logr 2 ~> 2} (10.8) 

contains ~nVn, so it has packing dimension 1. Finally, Thick>2 is the image under planar 

Brownian motion of the set in (10.8); hence the uniform doubling of packing dimension 

by planar Brownian motion, see [17, Corollary 5.8], yields (10.6). 

(5) In Theorem 5.1 we assumed that  the random walk increments have finite too- 

ments of all orders. We suspect that  finite second moments suffice, but our method only 

gives the following result: 

Under the assumptions of Theorem 5.1, except that the moment assumption on the 
increments is relaxed to E[X[m<oc for some real m>~2, we have 

1 - 1/m <~ lira inf T~ ~< lim sup T,~ 1 
7 r ~  ' ~  (logn) 2 n--,~ (logn) z <" --Trr a.s. (10.9) 
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(6) In this paper  we focused on Brownian occupation measure in dimension two, the 

critical dimension for recurrence. Other natural  random measures for which we expect 

analogous results are the occupation measure of the symmetric Cauchy process on the 

line, and the projected intersection local times for several planar Brownian motions. 

Establishing such results is a challenging problem. 

Acknowledgements. We are grateful to Haya Kaspi for helpful discussions and to 

Davar Khoshnevisan for suggesting the relevance of our results on Brownian motion to 

the Erd6s-Taylor  conjecture. 

R e f e r e n c e s  

[1] BASS, R. F. & GRIFFIN, P. S., The most visited site of Brownian motion and simple random 
walk. Z. Wahrsch. Verw. Gebiete, 70 (1985), 417-436. 

[2] B1NGHAM, N.H., GOLDIE, C.M. ~ TEUGELS, J .L. ,  Regular Variation. Encyclopedia 
Math. Appl., 27. Cambridge Univ. Press., Cambridge, 1987. 

[3] DEMBO, A., PERES, Y., ROSEN, J. ~ ZEITOUNI, O., Thick points for spatial Brownian 
motion: multifractal analysis of occupation measure. Ann. Probab., 28 (2000), 1-35. 

[4] - -  Thin points for Brownian motion. Ann. Inst. H. Poincard Probab. Statist., 36 (2000), 
749-774. 

[5] DEMBO, A. ~z ZEITOUNI, O., Large Deviations Techniques and Applications, 2nd edition. 
Appl. Math., 38. Springer-Verlag, NewYork, 1998. 

[6] EINMAHL, U., Extensions of results of Komlds, Major, and Tusmldy to the multivariate 
case. J. Multivariate Anal., 28 (1989), 20-68. 

[7] ERD6S, P. & TAYLOR, S.J. ,  Some problems concerning the structure of random walk 
paths. Acta Math. Acad. Sci. Hungar., 11 (1960), 137-162. 

[8] KAHANE, J.-P., Some Random Series of Functions, 2nd edition. Cambridge Stud. Adv. 
Math., 5. Cambridge Univ. Press, Cambridge, 1985. 

[9] KAUFMAN, R., Une propri@t@ metriqu@ du mouvement brownien. C. R. Acad. Sci. Paris 
Sdr. A-B, 268 (1969), A72~A728. 

[10] KOMLOS, J., MAJOR, P. & TUSNADY, G., An approximation of partial sums of independent 
RV's, and the sample DF, I. Z. Wahrsch. Verw. Gebiete, 32 (1975), 111 131. 

[111 LE GALL, J.-F. & ROSEN, J., The range of stable random walks. Ann. Probab., 19 (1991), 
650-705. 

[12] LYONS, R. & PEMANTLE, R., Random walks in a random environment and first-passage 
percolation on trees. Ann. Probab., 20 (1992), 125-136. 

[13] MATTILA, P., Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifia- 
bility. Cambridge Stud. Adv. Math., 44. Cambridge Univ. Press, Cambridge, 1995. 

[14] MORTERS, P., The average density of the path of planar Brownian motion. Stochastic 
Pwcess. Appl., 74 (1998), 133-149. 

[15] OREY, S. & TAYLOR, S.J. ,  How often on a Brownian path does the law of the iterated 
logarithm fail? Proc. London Math. Soc. (3), 28 (1974), 174-192. 

[16] PEMANTLE, R., PERES, Y., PITMAN, J. ~ YOR, M., Where did the Brownian particle go? 
To appear in Electron. J. Probab. 



270 A. DEMBO, Y. PERES, J. ROSEN AND O. ZEITOUNI 

[17] PERKINS, E.A. &: TAYLOR, S.J., Uniform measure results for the image of subsets under 
Brownian motion. Probab. Theory Related Fields, 76 (1987), 257-289. 

[18] RAY, D., Sojourn times and the exact Hausdorff measure of the sample path for planar 
Brownian motion. Trans. Amer. Math. Soc., 106 (1963), 436-444. 

[19] R~v~sz, P., Random Walk in Random and Non-Random Environments. World Sci. Pub- 
lishing, Teaneck, N J, 1990. 

[20] SPITZER, F. ,  Principles of Random Walk. Van Nostrand, Princeton, N J, 1964. 

AMIR DEMBO 
Departments of Mathematics and Statistics 
Stanford University 
Stanford, CA 94305 
U.S.A. 
amir@math.stanford.edu 

JAY ROSEN 
Department of Mathematics 
College of Staten Island 
CUNY 
Staten Island, NY 10314 
U.S.A. 
jrosen3~earthlink.net 

YUVAL PERES 
Department of Statistics 
University of California at Berkeley 
Berkeley, CA 94720 
U.S.A. 
and 
Institute of Mathematics 
Hebrew University 
Jerusalem 
Israel 
peres@math.huji.ac.il 

OFER ZEITOUNI 
Department of Electrical Engineering 
Technion 
Haifa 32000 
Israel 
zeitouni@ee.technion.ac.il 

Received May 10, 1999 


