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1. Introduction

Throughout this paper M denotes a three-dimensional boundaryless compact manifold
and Diff(M) the space of C!-diffeomorphisms defined on M endowed with the usual
C'-topology. A y-invariant set A is transitive if A=w(x) for some z€A. Here w(z) is the
forward limit set of = (the accumulation points of the positive orbit of ). The mazimal
invariant set of ¢ in an open set U, denoted by A,(U), is the set of points whose whole
orbit is contained in U, i.e. Ay,(U)=;cz ¢*(U). The set A,(U) is robustly transitive if
A4(U) is transitive for every diffeomorphism ¢ C!-close to ¢.

A diffeomorphism €Diff (M) is transitive if M=w(z) for some z€M, ie. if
A, (M)=M is transitive. Analogously, ¢ is robustly transitive if every ¢ C'-close to
¢ also is transitive, i.e. if A,(M)=M is robustly transitive.

In this paper we focus our attention on forms of hyperbolicity (uniform, partial and
strong partial) of a maximal invariant set A,(U) derived from its robust transitivity.
Observe that U can be equal to M, and then ¢ is robustly transitive.

On one hand, in dimension one there do not exist robustly transitive diffeomor-
phisms: the diffeomorphisms with finitely many hyperbolic periodic points (Morse-
Smale) are open and dense in Diff(S!). On the other hand, for two-dimensional diffeo-
morphisis, every robustly transitive set A,(U) is a basic set (i.e. A,(U) is hyperbolic,
transitive, and the periodic points of ¢ are dense in A,(U)). In particular, every robustly
transitive surface diffeomorphism is Anosov and the unique surface which supports such
diffeomorphisms is the torus T2. These assertions follow from [M3] and [M4].

In dimension bigger than or equal to three, besides Anosov (hyperbolic) diffeomor-
phisms there are robustly transitive diffeomorphisms of nonhyperbolic type. As far as
we know, three types of such diffeomorphisms have been constructed: skew products,
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Derived from Anosov, and deformations of the time-7 map X, of the flow of a transitive
Anosov vector field X.

Before describing these examples let us recall that the standard Derived from Anosov
(DA) diffeomorphisms, defined on the two-torus T2, are obtained via saddle-node bifur-
cations of Anosov systems: the unfolding of the bifurcation leads to structurally stable
maps (the DA-diffeomorphisms) whose nonwandering set is a source and a nontrivial hy-
perbolic attractor, see [Sm| and [W]. This two-dimensional construction can be carried
to higher dimensions to get DA-diffeomorphisms which are robustly nonhyperbolic and
transitive, see {[M1] and [C].

Chronologically, the first examples of nonhyperbolic robustly transitive diffeomor-
phisms were skew products. Such diffeomorphisms were constructed in the four-dimen-
sional torus T4=T?xT? by perturbing the product of a DA-diffeomorphism and an
Anosov one, see [Sh]. Nowadays we also know that one can perturb the product of any
diffeomorphism @ having a hyperbolic transitive attractor A¢ and the identity Id on any
compact manifold to get G C!-close to ® xId with a robustly nonhyperbolic transitive
attractor Ag. Moreover, Ag=A¢(U) for some neighbourhood U, and Ag(U) is robustly
transitive. In particular, if ® is Anosov (i.e. Ao =M), then the perturbation G is robustly
transitive, see [BD1].

All robustly transitive diffeomorphisms mentioned above (skew products and DA-
maps) are nonisotopic to the identity, but there also are robustly nonhyperbolic transitive
diffeomorphisms isotopic to the identity: Given any transitive Anosov vector field X let
X be the flow of X at time 7. Then one can perturb X, to obtain a robustly transitive
diffeomorphism, see [BD1].

In dimension bigger than or equal to three, besides the constructions above, one can
also obtain robustly nonhyperbolic transitive sets (of semilocal nature) via cycles con-
taining periodic points of different indices (dimension of the stable manifold), see [Dil],
[Di2] and [DR].

The nonhyperbolic transitive sets A, (U) quoted above always contain periodic points
with different indices and coincide with the closure of their transverse homoclinic points
(i.e. the transverse intersections between the invariant manifolds of a periodic point).
The previous examples fit into the category which we call strong partially hyperbolic (see
the definition below): there is a Dy-invariant partially hyperbolic splitting of Ty )M =
E°*®E°@E"* with three nontrivial bundles, where E® and E* are hyperbolic directions
(contracting and expanding, respectively) and E° is a nonhyperbolic central direction.
On the other hand, recently, see [B] and [BV], there have been constructed examples of
robustly transitive diffeomorphisms which do not admit three nontrivial invariant bundles
(i.e. either E° or E* above is trivial).
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It is important to mention that in this paper we are only concerned with transitive
sets which are locally maximal. Notice that one can also define transitive sets (in a robust
way) as follows: given a hyperbolic saddle P of ¢, for every 1 close to ¢ define 3y as
the closure of the transverse homoclinic points of Py (P, is the continuation of P). Such
sets are transitive, but in general they fail to be locally maximal: in some cases sinks
or sources accumulate to X, see [BD2]. Even more, they do not admit any nontrivial
D+j-invariant splitting, see [BD2] and the constructions in [DU].

Our goal here is to characterize the forms of possible hyperbolicity for a maxi-
mal invariant set A,(U) which is robustly transitive. We prove that, in the case of
three-dimensional compact manifolds, the robustly transitive sets A,(U) are generically
partially hyperbolic.

Now let us state precisely our results. We begin by giving some basic definitions. Let
¢ be a diffeomorphism and A a p-invariant set. A splitting TAM=FE®F is dominated if
E and F are Dyp-invariant and there are constants m>0 and K <1 such that

|(De ™)z I (D™ ey | <K for all €A,

A Dy-invariant bundle E defined on A is uniformly contracting (resp. expanding) if
there are C>0 and 0<A<1 such that for every n>0 one has

|Dz™ ()| SCA™M|v|| (resp. || Dz~ "(v)|| < CA™||v]]) forallz€A and vEE.

The set A is uniformly hyperbolic, or shortly hyperbolic, if there is a Dp-invariant splitting
TAM=E@F such that F is uniformly contracting and F is uniformly expanding. The
splitting EQF is called (uniformly) hyperbolic.

The set A is partially hyperbolic if there is a dominated splitting EQF of Th M
such that either E is uniformly contracting or F is uniformly expanding. In the first
case we write TAM=FE°@E, otherwise we write E*@E°. Notice that we can have
simultaneously both types of splittings, TAM=E*@®E=E*®E. Then, taking E°=
E“NE®, one has a Dy-invariant splitting TAM=E°*®E‘®E*, with three nontrivial
directions, where E° and E™ are uniformly hyperbolic, and we speak of strong partial
hyperbolicity, see the precise definition below. '

Given an open subset U of M let

T(U)={peDiff(M): A,(U) is robustly transitive}.

By definition 7(U) is open. In the case of transitive diffeomorphisms we let 7=7 (M)
(i.e. 7 denotes the set of robustly transitive diffeomorphisms). Our main result is



4 L.J. DIAZ, E.R. PUJALS AND R. URES

THEOREM A. Let U be an open subset of a compact boundaryless three-dimensional
manifold M. There is an open and dense subset A(U) of T(U) such that A (U) is
partially hyperbolic for all o€ A(U).

Observe that this statement is trivial when A,(U) is finite (actually, in this case
A, (U) is hyperbolic). Hence, from now on we assume that A,(U) is infinite.

Theorem A admits a stronger version in the case of transitive diffeomorphisms.
We say that a transitive diffeomorphism is partially hyperbolic if the whole manifold is
partially hyperbolic. We prove the following

THEOREM B. FEvery €7 is partially hyperbolic.

At least in their full scope, these results do not extend directly to higher dimensions.
For dimension strictly bigger than three, there are sets U of robustly transitive diffeo-
morphisms such that every diffeomorphism ¢ in U does not admit a partially hyperbolic
splitting, see [BV]. Actually, for such ¢ one cannot identify any hyperbolic direction.
However, we expect that an appropriate reformulation of Theorems A and B holds in
any dimension: we conjecture that the robustly transitive sets A, (U) generically admit
a dominated splitting.

Next we state stronger versions of Theorems A and B which relate the types of hyper-
bolicity of A,(U) (uniform, partial and strong partial) to the indices and the eigenvalues
of the periodic points of A, (U). We also state the connection between approximation by
homoclinic tangencies (associated to points in A,(U)) and the lack of uniform or strong
partial hyperbolicity.

For ergodic properties of partially hyperbolic systems we refer the reader to [BV].
See [GPS] for results in the conservative case.

Finally, in the context of vector fields defined on three-manifolds, we first observe
that every C!-robustly transitive flow is Anosov, see [Do]. On the other hand, every
robustly transitive set (a priori different from the ambient manifold and containing sin-
gularities) is partially hyperbolic, see [MPP)]. ‘

Before stating new results let us recall a result due to R. Mafié that holds in any
dimension. By a robust property of ¢ we understand a property of ¢ that holds for every
¢ in a C'-neighbourhood V,, of .

THEOREM ([M3]). Let A,(U) be a robustly transitive set. Then the following three
conditions are equivalent:

(1) all the hyperbolic periodic points of A,(U) are robustly hyperbolic,

(2) the set A,(U) is robustly uniformly hyperbolic,

(3) all hyperbolic points of A,(U) have robustly the same indez.
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This theorem means that in our context the relevant case for proving Theorems A
and B is exactly the nonhyperbolic one, that is, when A, (U) contains robustly hyperbolic
points with different indices. So, in the remainder of this section we will assume that
A, (U) is robustly nonhyperbolic.

In this paper we consider two special types of partially hyperbolic sets: strong
partially hyperbolic and volume-expanding/contracting in the central bundle. Let us
state these definitions precisely.

Let eDiff(M). A p-invariant set A, is strong partially hyperbolic if there are a D-
invariant splitting of Ty, M =E°*®E°@®E", where the bundles E° and E* are nontrivial
and hyperbolic (uniformly contracting and expanding, respectively), and constants C'>0
and 0<A<1, such that

[1D2¢™ (Wl 1D 2y ™™ (N < CA™|0° |- |0°]],
[1Dgn () ™" ()l | D™ (v)[| < CX™ [[0* || |[v°]l,

for all n>0, v'€EL, i=s,c,u.

A partially hyperbolic set A, expands (resp. contracts) volume in the central bundle
if E° is volume-expanding (resp. -contracting). By a volume-ezpanding bundle F of A,
we mean a Dyp-invariant bundle F' such that there are constants C>0 and o>1 such
that

|JacF(I)(gak)| >Co* forallzcA,, k>1,

where Jacp(;) ¢ denotes the Jacobian of ¢ in the bundle F' at z. We say that a Do-
invariant bundle F' is volume-contracting if it is volume-expanding for p~!.

As we have mentioned, a partially hyperbolic set can also be hyperbolic. Here, to
avoid misunderstandings, we adopt the following convention: the partially hyperbolic
sets we consider are genuinely partially hyperbolic, meaning that their central directions
are nontrivial and nonhyperbolic.

Given p€T (U) the set A,(U) has robustly real eigenvalues if there is a Cl-neigh-
bourhood U, of ¢ such that for every ¢cif, and every periodic point PEA4(U) all the
eigenvalues of Dp¢™ are real (n is the period of P). Consider the subset P(U) of 7 (U) of
diffeomorphisms ¢ such that A,(U) has robustly real eigenvalues and hyperbolic points of
different indices (i.e. A,(U) is not uniformly hyperbolic). When U=M we let P=P(M).

THEOREM C. The set A,(U) is strong partially hyperbolic for all e P(U)NA(U).

In the case of transitive diffeomorphisms we have a stronger version of the previous
result:
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COROLLARY D. Let ¢g€P. Then p is strong partially hyperbolic.

The existence of periodic points with complex (nonreal) eigenvalues prevents the
existence of a splitting having three nontrivial directions (recall that we are considering
three-manifolds). Theorem C means that the existence of such points with complex
eigenvalues is the unique obstruction for the strong partial hyperbolicity. The next
theorem says that if the nonhyperbolic set A,(U) has complex eigenvalues then it satisfies
a stronger form of partial hyperbolicity: the central bundle is either volume-expanding
or -contracting.

Let p€T(U). The set A,(U) has complez eigenvalues if there is some periodic point
PeA,(U) such that Dpe™ has two eigenvalues with the same modulus (n is the period
of P). We denote by V(U) (resp. V) the subset of T(U) (resp. 7) of diffeomorphisms ¢
such that A,(U) (resp. ¢) is not uniformly hyperbolic and has complex eigenvalues.

THEOREM E. Let ¢ be a diffeomorphism in A(U) that can be approzimated by
diffeomorphisms in V(U). Then the central bundle of Ty, wyM is two-dimensional and
volume-ezpanding/contracting: if Ta,yM=E*®E® then E® is volume-ezpanding,
and if Ty, w)yM=E"©E then E is volume-contracting.

In the case of a transitive diffeomorphism Theorem E can be read as

COROLLARY F. Let €T be a diffeomorphism which can be approrimated by diffeo-
morphisms in V. Then ¢ is partially hyperbolic and volume-ezpanding/contracting in
the central bundle.

Note that since A,(U) is not uniformly hyperbolic it contains points of indices one
and two. Qur proof shows that all periodic points with complex eigenvalues have the
same index.

Finally, the following corollary gives the connection between the absence of strong
partial and uniform hyperbolicity and the approximation by homoclinic tangencies. Re-
call that a hyperbolic periodic point P has a homoclinic tangency at z if the invariant
manifolds of P have a nontransverse intersection at x.

COROLLARY G. Let p€ A(U) be such that A,(U) is neither strong partially hyper-
bolic nor uniformly hyperbolic. Then ¢ can be approxzimated by some ¢ with a homoclinic
tangency associated to some hyperbolic periodic point in Ay(U).

Let us observe that in dimension bigger than two the existence of homoclinic tan-
gencies does not lead to creation of sinks or sources, and thus homoclinic tangencies are
not an obstruction for transitivity. We remark that Corollary G can be formulated in
the case of transitive diffeomorphisms.
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In view of the results above, let us summarize the different types of robustly transitive
sets A,(U) in three-manifolds. For that let P(¢) denote the set of periodic points of ¢
in A, (U). We also consider the subsets Pr(p) (resp. Pc(y)) of P(y) of points having only
real eigenvalues of different moduli (resp. having two eigenvalues of the same modulus,
this case including periodic points with eigenvalues of multiplicity bigger than one and,
obviously, periodic points with complex (nonreal) eigenvalues).

(1) Suppose that A,(U) is hyperbolic. Then Pc(¢y) is robustly empty if and only if
for every ¢ C!-close to ¢ the set Ay(U) has a hyperbolic splitting with three nontrivial
directions.

(2) Suppose that A,(U) is robustly nonhyperbolic. Then

» A,(U) contains (robustly) points of indices one and two,

» A,(U) is (robustly) nonstrong partially hyperbolic if and only if ¢ can be approx-
imated by diffeomorphisms ¢ with Po(¢)#£@,

» A,(U) is robustly nonstrong partially hyperbolic if and only if ¢ can be approx-
imated by a diffeomorphism ¢ with a homoclinic tangency (associated to some point

of P(¢)).

~ As we have mentioned, the unique surface which supports robustly transitive diffeo-
morphisms is the two-torus. This means that (at least for surfaces) the existence of
such transitive diffeomorphisms gives some topological information about the surface.
For higher dimensions we would like to know if it is possible to deduce some topological
information about the ambient manifold M from the existence of robustly transitive
diffeomorphisms. In the case of three-manifolds, we study the connection between the
existence of transitive diffeomorphisms in M and the growth of the fundamental group
of M. As an application of Theorem B, we obtain an obstruction for the existence of
robustly transitive diffeomorphisms on manifolds with finite fundamental group. The
formulation of this obstruction depends on the integrability of the central bundle: note
that, to the best of our knowledge, it is an open question whether the central bundle is
necessarily integrable, even in the simplest case of three-manifolds.

Let E‘(¢)® E¢(p), i=s or u, be a partially hyperbolic splitting of M for p€Diff(M),
where E°(p) has dimension two. The splitting is dynamically coherent if there exists a
foliation F¢(yp) tangent to E°(p). Notice that, by the hyperbolicity, E*(¢) or E*(p)
(according to the case) is integrable, and then one can define the stable/unstable folia-
tion F*(p), tangent to E*(p), i=s,u.

THEOREM H. Let M be a three-dimensional boundaryless compact manifold. Sup-
pose that M supports a robustly transitive diffeomorphism having a dynamically coherent
splitting. Then the fundamental group = (M) is infinite.
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Let us say a few words about the organization of this paper. The main step of our
constructions is the following preliminary result:

THEOREM 1.1. There is a residual subset R(U) of T(U) such that for every
9ER(U) the set A,(U) has a partially hyperbolic splitting T, w)yM=E(0)BE°(p),
i=s or u, where E'(p) is one-dimensional and uniformly hyperbolic.

We give an outline of the proof of this theorem in §2. In §3 we introduce the
different types of perturbations that we use in this paper (perturbation of the derivative
and creation of cycles). Theorem 1.1 is proved in §4, which is the main and the longest
section of this paper. This section is divided in three parts: estimates on the eigenvalues
(§4.1), angular estimates of the bundles (§4.2), and construction of uniformly dominated
splittings (§4.3). Finally, in §5 we prove the theorems in this introduction by using
Theorem 1.1.

Acknowledgments. The authors are grateful to Ch. Bonatti, J. Palis, M. Sambarino,
M. Shub, and M. Viana for many useful and encouraging conversations. The authors
acknowledge the warm hospitality of IMPA (Rio de Janeiro, Brazil), Departamento de
Matemadtica of PUC-Rio (Rio de Janeiro, Brazil) and IMERL (Montevideo, Uruguay)
while preparing this paper. Finally, we also thank the referee’s suggestions for improving
the presentation of this paper.

2. Outline of the proof of Theorem 1.1

To explain the main ideas and difficulties of the proof of Theorem 1.1 (actually, the key
result in this paper) let us begin by saying a few words about a stronger two-dimensional
version of our result. From now on fix the open set U and denote by P(yp) the set of
periodic points of ¢ in U, and by Pgr(yp) the subset of P(y) of periodic points having all
eigenvalues real and different in modulus.

THEOREM ([M3]). Every C'-robustly transitive set A,(U) of a surface diffeomor-
phism ¢ is a basic set (hyperbolic, locally mazimal, and with dense periodic points).

Let us assume that A,(U) is infinite, otherwise, as we have mentioned in the intro-
duction, the result is immediate. To prove the result it is enough to see that P(yp) is
robustly hyperbolic, or equivalently (due to the fact that we are in dimension two) that
the number of sinks and sources is finite and constant in a neighbourhood of . From
the transitivity and since we are assuming that A, (U) is infinite, in our case this number
is zero. Arguing by contradiction, if P(y) is not hyperbolic then one gets an elementary
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bifurcation of some periodic point (saddle-node, flip or Hopf). In dimension two, such
bifurcations lead to the creation of new sinks or sources, contradicting the fact that the
number of sinks and sources is locally constant. We also observe that in dimension two
homoclinic tangencies generically lead to the creation of sinks or sources, see [PV]. Thus,
in the case of surface diffeomorphisms, such bifurcations are also forbidden.

In higher dimensions the examples quoted in the introduction show that a robustly
transitive set A,(U) can be nonhyperbolic and its periodic points can bifurcate. More-
over, one can also have homoclinic tangencies. Actually, the main difficulty in the proof
of Theorem 1.1 arises from the fact that in dimension three the list of forbidden bifur-
cations of points in A,(U) is rather limited: Hopf bifurcations and sectionally ezpan-
sive/dissipative homoclinic tangencies (i.e. homoclinic tangencies associated to periodic
points such that the modulus of the product of any pair of eigenvalues is bigger/less than
one). Let us observe that, for example, sectionally dissipative homoclinic tangencies
imply the creation of sinks, see [PV], and thus they are forbidden in our context.

The proof of Theorem 1.1 is by contradiction: assuming that A,(U) is not partially
hyperbolic we create either a sink or a source in U. Since A, (U) is infinite this contradicts
its robust transitivity. Let us now be much more precise and sketch some key ideas and
ingredients of our proof.

An important difficulty in the proof is to find a suitable candidate for the role
of Dep-invariant splitting over A,(U). For that we first restrict our attention to the
diffeomorphisms ¢ such that Pr(y) is dense in A,(U), and prove that such diffeomor-
phisms are generic in 7 (U) (see Lemma 4.2). For points P€ Pr(p) there is a splitting
TpM=E3$®FE%®FEY with three nontrivial directions (E% is the eigenspace associated
to the eigenvalue A;(P), where |A;(P)|<|A:(P)| <|Au(P)])- The problem now is to ex-
tend this splitting to the closure of Pr(y). Unfortunately, in general, such an exten-
sion does not exist, for instance, if P(p) contains a point with some complex (nonreal)
eigenvalue. Using E}, E% and E} we define two new splittings, TpM=EL®EH" and
TpM=FEt®EY, where Eﬁf:E};@Efg. We show that at least one of these two splittings
is uniformly dominated. Then, by [M2], one can extend such a splitting to the closure
A, (U) of Pr(yp) (again, if there are periodic points with complex eigenvalues it is not
possible to extend simultaneously both splittings).

The key for obtaining the uniform dominance is to have an appropriate control
of the angles between these bundles. More precisely, we prove that if both families of
angles {a(Ep, EF')} pa(p) and {a(Ef, EF')} pr (), a(E, F) denoting the angle between E
and F', are not uniformly bounded away from zero, then after a perturbation of ¢ we get
¢ and points P and Q& Pr(¢) (with the same index, say 2), homoclinically related and
such that a(Ep (), EF*(4)) and o(Eg(9), EG (4)) are both small. These features lead
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to the creation of sinks (if [A;(P)A:(P)Au(P)|<1) or sources (if [As(P)A(P)Au(P)|>1)
in U, see Proposition 4.8. In a few words, to obtain the sinks/sources, we first use
the angular estimates to get a heteroclinic tangency. Associated to such a tangency we
get a saddle-node R (i.e. a periodic point having a unique eigenvalue in the unit circle,
moreover such an eigenvalue is 1) such that |A;(R)|<1=X(R)<|\(R)| and o(E}, ER)
is arbitrarily small. After a new perturbation, we create either a sink or a source. We
point out that such sinks/sources are not explicitly associated to a tangency.

In this paper we explore the correlation between the dominance (also expansion/con-
traction of the derivative) of a splitting and the estimates on the angles between the
bundles of the splitting. We show that at least one of the splittings we are considering
(either E*®E* or E*® E®*) is uniformly dominated, see Proposition 4.23. For example,
if ES@E is not uniformly dominated then, after perturbation, one obtains a splitting
such that the angle between the E® and E* is arbitrarily small.

Suppose now that, for instance, { Ep® Eg'} pg () is uniformly dominated. Then one
can extend such a splitting to a uniformly dominated one defined on the whole A, (U). In
§4.4, we see that the ergodic closing lemma, see [M3], and the uniform dominance of the
splitting imply the uniform hyperbolicity of E*. This means that E°®E® is partially
hyperbolic.

In our proof we use some ideas introduced by Mané in [M3] considering families
of periodic linear maps, see §3.1. Given ¢ such that Pr(y) is dense in A,(U) we take
the family of periodic linear maps D(¢)={Dp¢}pecpr(y)- The robust transitivity of
A,(U) allows us to deduce some properties for families of linear maps B={Bp} pcpy(y)
close to D(yp). Given Bpe€B, write §p=B‘pn—l(P) ... Bp (n is the y-period of P) and let
As(Bp), Ac(Bp) and Ay(Bp) be the eigenvalues of Bp, |A(Bp)|<|Ae(Bp)|<|Au(Bp)]
(two of them may be nonreal). If A\;(Bp) is real, E*(Bp) denotes its eigenspace. In
this case, let E*¥(Bp), k, j#i, be the Bp-invariant space that does not contain E*(Bp).
Notice that if \x(Bp) and A;(Bp) are both real then E¥(B,)=E*(B,)®E’(Bp).

We prove that families B close to D(y) satisfy the following conditions (see Propo-
sition 4.7 and its proof):

(1) Either E*(B)® E“*(B) is defined for all B close to D(p) (i.e. E*(Bp)®E“(Bp)
is defined for all Bp€B), or E*(B)® E°*(B) is defined for all B close to D(yp).

(2) Assume that the splitting E*(B)®E*(B) is defined for all B close to D(yp).
Then the angle a(E*(Bp), E“(Bp)) is uniformly bounded away from zero (Bp€B and
B close to D(yp)).

Finally, we see that these properties (definition of the splitting and angular esti-
mates), which hold for families of periodic linear maps B close to D(y) (thus indexed by
Pr(p)), are passed on from B to diffeomorphisms ¢ close to ¢. Observe that since the
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periodic points of ¢ bifurcate, a priori Pr{%) has nothing to do with Pr(y). Hence, the

previous assertion is not at all trivial.

3. Perturbations of diffeomorphisms

The existence of a partially hyperbolic splitting for a robustly transitive set A,(U) arises
from the fact that it is not possible to perturb the diffeomorphism ¢ to create sinks or
sources in U. In this section we introduce the two types of C!-perturbations that we use:
perturbation of the derivative and creation of cycles.

3.1. Perturbation of derivatives: linear maps and diffeomorphisms

We begin by recalling a result due to Franks (see Lemma 3.1 below) which will enable us
to perturb the derivative of a diffeomorphism ¢ at any z€A,(U) along a finite segment
of its w-orbit (preserving such a segment of orbit). Typically, we will apply this lemma to
periodic points of ¢: given P€ P(¢) and a neighbourhood V of the ¢-orbit of P there is
1 C-close to ¢, preserving the -orbit of P and coinciding with ¢ outside V, such that
the derivative Dy at any 1*(P)=¢"(P) is the product of Dy with some matrix close to
the identity. As a consequence of this result we get that the moduli of the strong stable
and unstable eigenvalues of points in P(y) are both uniformly bounded away from 1, see
Lemmas 4.5 and 4.6.

LeEMMA 3.1 (Lemma 1.1 of [F] and Lemma I1.2 of [M3]). Given peDiff(M) and
a neighbourhood U of ¢ in DIff(M) there is €>0 such that for any finite set F=
{z1,22,...,2,} CM, neighbourhod U of F, and linear maps Li:To, M —T o )M with
|Li—Dg, 0| <e, there is p€U such that

(1) ¢(x)=p(z) for all e FUM\U), and

(2) D, ¢=L; for every i=1,...,n.

This lemma plays a key role in our proof, and it will allow us to move back and
forth between the spaces of linear maps and of C 1-diffeoinorphisms: Roughly speaking,
consider a diffeomorphism ¢ and a point P of ¢-period m. Then to each family of linear
maps {A;}7" such that every A; is close to Di(pyp we associate a diffeomorphism
1 close to ¢, preserving the p-orbit of P, and such that D:(py®y=A;, and vice versa,
to each ¢ close to ¢ and each periodic point of ¥ we associate a family of linear maps
(the family of derivatives along the orbit). For that we introduce the notion of family of
linear maps.
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A family A=(A]), ¢ ;cz of linear maps is periodic if for each v€1 there is n, such
that A7,
AY=(A]);cz are the eigenvalues (resp. eigenspaces) of the product A7, _,...A], de-
noted by Ax(A7) (resp. Ex(A7)). '

Two periodic families of linear maps A=(A])

=A] for every i. The eigenvalues (resp. eigenspaces) of the periodic sequence

—{BY
vericz and B={B}'}. ¢ ;cz are e-close

if they have the same period and

sup | By — A7 <.
~el
i€Z
Given a family of periodic linear maps A=(A4]) velicz then an A-invariant splitting
E(A)®F(A) is a family of splittings (E] ®F)), ¢s ;cz such that AY(G])=(G7,,) and
G, =G] for each i, G=E,F. An A-invariant splitting E(A)®F(A) is uniformly

dominated if there are m and A€ (0, 1) such that

m—1 m—1 -1
(i), (T )
j=0 j=0
for all yeI and i€Z. Finally, the angle of the splitting F(A)®F(A) is
ao(E(A), F(A) =inf{a(E], F), v€ 1, i€ Z},

<

-
E:’ Fi+m

where a(E], F,') denotes the angle between E7 and F'.

Given €T (U) we define Pg(p) as the subset of periodic points of A,(U) having
only real eigenvalues of different moduli. We have the following result whose proof we
postpone to §4 (see Lemma 4.2).

LEMMA. Consider the subset R of diffeomorphisms ¢ in T (U) such that Pr(yp) is
dense in A,(U) and every periodic point P of Pr(yp) is hyperbolic. Then R is residual
in T(U).

This lemma means that to prove Theorem 1.1 it is enough to consider diffeomor-
phisms ¢ such that Pr(¢y) is dense in A,(U). For such a ¢ consider the periodic family
of linear maps

D(p) ={Dp}icz, PePr(v)s Db =Dyi(pye-
For D(y) we have the D(y)-invariant splittings
E*(D(¢))®E*(D(y)), E°*(D(9))@E™(D(¥)),
where E7(D(yp)) is the family of one-dimensional eigenspaces E%(y) associated to the
eigenvalue Xj(P) of Dpy™, n is the p-period of P (j=s,c,u), and E*"(D(yp)) is the
family of spaces {EF (0)=Ep(¢)®Ep(9)} PepPa(e)-

Our goal is to prove that either E*¢(D(p))® E*(D(p)) is uniformly dominated, or

E*(D(p))®E(D(yp)) is uniformly dominated.
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3.2. Creation of cycles

The next lemma which we borrow from [H] allows us to create homoclinic/heteroclinic
cycles associated to points in P(yp). Observe that Lemmas 3.2, 3.3 and 4.5 below hold
in any dimension.

Before stating the lemma let us recall that if P is a hyperbolic periodic point of a
diffeomorphism ¢ then for every ¢ close to ¢ there is a hyperbolic periodic point P, close
to P (given by the implicit function theorem). This point is called the continuation of P
for ¢.

LEMMA 3.2 ([H]). Let @eDiff(M), and let P and Q be hyperbolic periodic points
of . Suppose that there are sequences of points (x,) and natural numbers (kn) such
that

() 2P EW™(P) and ¢*(z,) "€ W*(Q).

Then there is ¢ arbitrarily C'-close to ¢ such that
WH(Ps)OW*(Qy) # 2,

where Py and Q4 are the continuations of P and Q for ¢.

From now on we denote by AhB the transverse intersection between A and B. Let
us now state the following result that follows from Lemma 3.2:

LEMMA 3.3. Let P and Q be hyperbolic points in P(p), p€T(U), such that
index(P) > index(Q).

Then there is ¢ close to ¢, $€T (U), such that
(a) if index(P)=index(Q) then W3(Ps)hW*(Q4)#2 and W*(Py)MW*(Q4)#2,
(b) if index(P)>index(Q) then W*(Py)MW™"(Qy)#2, and there is

S Wu(Pd,)ﬂWs(Qd,)

such that
TW(Py)+To W (Qy) = T W (Py) 0T W*(Qo),

t.e. T 18 a point of quasitransverse intersection.
Here Py and Qg are the continuations of P and Q for ¢. This lemma also holds
for the homoclinic case P=Q.

Proof. Let us suppose that P and @ have different indices. The case index(P)=
index(Q) follows analogously. We first claim that there is ¢ close to ¢ such that W?*(Py)
and W*(Qg) have a nonempty transverse intersection.
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To prove the claim notice that dim(W?*(P)})+dim(W*(Q))=4>3, and thus if
W (P)nW*(Q)#9 after perturbing ¢ one can get a transverse intersection between
these invariant manifolds. So let us assume that W*(P)NW*(Q)=@. By the transitiv-
ity of A,(U), there is z€ A, (U) with a dense orbit in A,(U). Thus there are sequences
(n;) and (m;), n;, m;—o0, with m;>n;, such that

e™(z)—>P and ¢™(z)—Q.

Hence, for fixed fundamental domains D* of W}{_(P) and D* of W}

».(Q) there are new

sequences, say (72;) and (m;), 7; —00, m;="n;+k;, ki>0, such that
¢"(z)=pi—d*€D* and @™ (z)=¢"(p;)—>d“€ D"
Applying Lemma 3.2 to (p;) we get ¢o&T (U) close to ¢ such that
W?(Pgo )N W™ (Qq, ) # 2.

After a new perturbation, if necessary, we get a transverse intersection. Moreover, such
a transverse intersection persists for every ¢€7 (U) close to ¢o. This ends the proof of
the claim.

Since ¢o €T (U), applying the above argument to W*(Py,) and W*(Qs,), we obtain
$ €T (U) close to ¢g with W¥(Py, )NW*(Qy,)#2. Since

dim(W* (Py,)) +dim(W*(Qg,)) =2 <3,

in this case we obtain (after a new perturbation if necessary) a quasitransverse intersec-
tion instead of a transverse one. Clearly, ¢=¢, satisfies the conclusions of the lemma.

The proof of the lemma now is complete. O

4. Proof of Theorem 1.1

As mentioned in the introduction the first difficulty to prove the theorem is to find a
suitable candidate for the role of partially hyperbolic splitting of T +()yM. To obtain an
appropriate splitting we first focus our attention on the periodic points of A4(U) having
real eigenvalues with different moduli, i.e. on the subset Pr(¢) of P(¢). For points
in Pr(¢) one has the splitting Tp M =E$(¢)SES(¢)D E%(¢) with three D¢-invariant
one-dimensional directions, corresponding to A;(P), A(P) and A, (P).

We now prove the genericity (in 7(U)) of the diffeomorphisms ¢ such that Pg(¢)
is dense in A4(U), see Lemma 4.2. In §§4.2 and 4.3 we deal with the problem of how to
extend this auxiliary splitting, defined only on Pr(¢), to the whole A4(U). To prove the
density of Pr(¢), Lemma 4.2, we need the following result:
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LEMMA 4.1. There is a residual subset R of Diff(M) such that for every ¢€
RNT(U)=Ro(U) one has:

(a) the periodic points of ¢ are dense in Ay(U),

(b) every periodic point of Ay(U) is hyperbolic.

Proof. Using that Ay(U)=w(z) for some z and the robust transitivity of Ag(U),
we get that Ay(U) is generically the closure of the periodic points of ¢ contained in it,
see [P]. Moreover, by the Kupka—Smale theorem, all periodic points of ¢ are generically
hyperbolic. O

Given a point P denote by Hp the set of transverse homoclinic points of P (the
transverse intersection between the invariant manifolds of P). Consider the set

Re(U)={¢peT(U): Pr(¢) is dense in A4(U),
and Hp is dense in A4(U) for all Pe P(¢)}.

Let Hyp P(¢) be the subset of hyperbolic points of P(¢), and let

Hyp Pr(¢) =Hyp P(¢)N Pr(9).
LEMMA 4.2. The set Rr(U) is residual in T(U).

Proof. Let us first prove the generic density of Pr(¢) in Ag(U). For each neN
consider a finite covering B,, of M by open balls B, (w) of radius 1/n. Let

Rrn={p€T(U): B,(w)NA4(U) # 2 = B,(w)NHyp Pr(¢) # 2}.

By definition, R, (U) is open. We claim that it is also dense in 7 (U). This claim implies
that Pr(¢) generically is dense in Ag(U): just consider the residual subset (), Rn(U)
of T(U).

Fix n, B,(w)€B,, and ¢€Ro(U). Suppose that B, (w)NAs(U)#2. By Lemma 4.1
we have Hyp P(¢)NB,(w)#2&. We prove that ¢ can be approximated by some ¢ with
Hyp Pr()NB,(w)#2. This implies the density of R, (U) in 7(U).

Suppose that our claim does not hold. Note that if P has two real eigenvalues of
the same modulus then one can perturb ¢ to obtain a hyperbolic periodic point with
three real hyperbolic eigenvalues of different modulus. Thus we can suppose that every
periodic point P of ¢ in B,(w) has a complex (nonreal) eigenvalue .

Take a periodic point P of ¢ (which for simplicity we will assume to be fixed)
and suppose, for example, that |A|<1. After a perturbation we can suppose that ¢ is
linearizable in a neighbourhood VCU of P and that W?*(P,¢) and W*(P,¢) have a
nonempty transverse intersection. The last assertion follows from Lemma 3.3.
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Take a point z€V of transverse intersection between Wy (P) and W*(P). Let
y=¢"'(z)eW (P)NV. By replacing x (resp. y) by some forward (resp. backward)
iterate Z=¢*(z) (resp. y=¢"*(y)), with big ¢, we can assume that

T;W*(P)y~E}{ and T;W°(P)~EF, zZ=2I,9, (4.1)

where ~ means that the two spaces are close. After a new perturbation we can suppose
that T;W*(P) and T;W*(P) are parallel to E% and E§, respectively.

Consider a normal basis {v, w, w} of Ty M (resp. {v1, w1, wi } of Tz M) where w,wt
are orthogonal vectors in T;W*(P) and ve T;W*(P) (resp. w1, wi are orthogonal vectors
in T;W*(P) and v1€ Tz W*(P)). In these coordinates the derivative Dy¢p™: TyM —T5 M,

where m=2t+1, is of the form

¢m O 0
a1 a
Dg¢™=1§ 0 an a2 |, AZ( H 12)-

0 ay an az1 (22
Observe that we can take (and we do) w and w* such that A(w) and A(w') are also
orthogonal.

There is a sequence of diffeomorphisms ¢y —¢ such that every ¢, has a periodic
point Qy, of period rx=n,+m such that rx—o00, Qx—Z, ¢.(Qx)€V for every 0<i<ny,
and ¢;*(Qr)— 7. We claim that after a new perturbation, if necessary, we can assume
that

Do, $p*(A(w)) =|A™w and Dq,dp*(A(w")) =A™ w".
To prove the claim recall that the eigenvalue A of Dp¢ is complex and that wlw’ and
A(w)LA(wt). After a new perturbation, we can assume that Dp¢y has a complex

eigenvalue A\ with argument ) such that ng6y is the angle between A(w) and w. On
the other hand, since ¢} *(Qx)— ¥ there are matrices Jx—Id such that

cm O 0
Do, o7 =Jx-| 0 a1 a2
0 a1 a2

Thus, by the choice of 8y, in the basis {v,w,w'}, one has

cnAlE 0 0
Dg, ¢k = Ji- 0 A | A|™* 0 , Jk—Id as k— o0,
0 0 blA™

where a,, and b, are real numbers independent of k and n, and A, is the expanding
real eigenvalue of Dp¢. Using Lemma 3.1 we perturb each ¢ at qS,:l(Qk):qS’,;’“—l(Qk)
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to obtain a sequence ¢ — ¢ such that @ is a periodic point of period ry=n;+m of 1
with derivative

Cm AR 0 0
Do, ik = (Jk) ™ Do pi = 0 am|A[™ 0 - (4.2)
0 0 by | A|™*

Hence Dq,1;* has three real eigenvalues of moduli different from one. After a new
perturbation the moduli of the three eigenvalues are all different. By construction Qx¢€
A4, (U) and, if k is big enough, its orbit intersects B, (w). This implies that ¢ €R,(U).
Finally, by construction, 1, — ¢, which gives the density of R,(U) in 7(U). This ends
the proof of the first part of the lemma.

The second part of the lemma follows similarly: given any periodic point Pe P(¢)
and a ball B,(w) of the covering B, of M intersecting A4(U) we use Lemma 3.3 to
perturb ¢, and obtain a homoclinic point of P in B, (w). O

Let us make the following remark to the proof of the lemma before that will be used
in the proof of Lemma 4.14.

Remark 4.3. The numbers a,, and by, in equation (4.2) are independent of n and k.

4.1. Estimates on the eigenvalues

Our next step is to get some estimates on the eigenvalues of the periodic points of a
robustly transitive set Ag(U). Let P be a periodic point of period k of ¢, i.e. ¢*(P)=P
and ¢*(P)#P for all 0<i<k. Denote by As(P), A.(P) and A,(P) the three eigenvalues
of Dp¢*, where

As(P)] < [Ae(P)] < [Au(P)]-

Take ¢€T (U). Since we are assuming that A4(U) is infinite, the robust transitivity of
A4(U) implies the following result (whose proof is trivial) which we will use repeatedly.

FacT 4.4. Let ¢€T(U). Then ¢ has neither sinks nor sources in U. Moreover,
As(P)| <1< |Ay(P)| for every Pc P(¢).
We begin by obtaining some estimates on the strong stable and unstable eigenvalues

of points P€ P(¢) which ensure that the moduli of these strong eigenvalues are uniformly
bounded away from 1:
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LEMMA 4.5. Let ¢€T(U). There is >0 such that
As(P)I < (1-6)* < (14+8)* < [Au(P)|

for every Pe P(¢) of period k.

Proof. The proof is by contradiction. Suppose contrary to our claim that for every
n>0 there is P,€ P(¢) of period m,, such that

|A3(Pn)|>(1_%)m" or |,\u(Pn)|<(1+%)m".

Suppose, for instance, that the first inequality holds for infinitely many n. Taking a sub-
sequence, if necessary, we can assume that

[As(Pp)] > 1—l for every n and (P,) — Q€ Ay (U).
n ¢

If the m,, are bounded by some m then Q€ P(¢) and its period k is less than m. Thus,
by construction, |A;(Q)|>1, contradicting Fact 4.4.

Hence we lose no generality assuming that (my)—o0. For each big n, using Lem-
ma 3.1, we have ¢, close to ¢ preserving the ¢-orbit of P, such that

1
Dos by tn = 1237 Pocprd:

By construction, ¢,—¢. Thus ¢,€T(U) for every big n, and |A;(P,,¢,)|=>1. But
Fact 4.4 prevents such a possibility. This completes the proof of the lemma. O

Finally, the estimates on the strong stable and unstable eigenvalues above can be
translated into the context of families of linear maps as follows.

Given a family of periodic linear maps B close to D(yp) and a periodic point P€ Pg(p)
of period &, consider the linear map §P=Bwk—l(P) ... Bp, and denote by As(Bp), Ac(Bp)
and A\, (Bp), |As(Bp)|<|A(Bp)|< | u(Bp)l, its eigenvalues.

Using Lemmas 4.4 and 3.1 we get uniform estimates on the strong stable and unstable
eigenvalues of families B close to D{(p), peT (U):

LEMMA 4.6. Let peR(U). There is §>0 such that for every family of periodic
linear maps B close to D(yp) one has

IAs(Bp)| < (1-8)* < (1+8)* < |Au(Bp)|

for every BpeB and P& Pr(y) of period k.
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4.2. Angular estimates

In what follows we focus our attention on the residual subset of T(U) given by
R(U)=Rr(U)NRe(U), Rr(U) and Ro(U) as in Lemmas 4.2 and 4.1, respectively.

As above, given two linear spaces E and F let a(E, F) denote the angle between E
and F. Also, recall that given a family of linear maps B and a splitting E(B)® F(B),
ao(E(B), F(B)) denotes the angle of the two bundles of the splitting E(B)®F(B), see
§3.1.

PROPOSITION 4.7. Let $€R(U). Then there are constants C,5>0 such that

» either E°(B)®E(B) is defined and ag(E*(B), E<“(B))>C for every family of
linear maps B such that ||[B—D(¢)| <4,

e or E*(B)®E(B) is defined and ag(E“(B), E<*(B))>C for every family of linear
maps B such that |B—D(¢)| <4.

The main step of the proof of the proposition is the following result:

PROPOSITION 4.8. Let ¢€R(U). There are C>0 and a C'-neighbourhood U of ¢
such that for every €U one of the two possibilities holds: either a(E%L(¥), EgH(¥))>C
for every Pa(¥), or a(Ep(®), B () >C for every PePa(t),

4.2.1. Proof of Proposition 4.8. The proof of this proposition is by contradiction.
If the result is false then there are sequences of diffeomorphisms 1, —¢ and of points
P,, Q<€ Pr(¢,) such that

a(Ep,(Yn), Ep.(Yn)) <1/n  and o(EQ (¥n), B, (¥n)) <1/n. (4.3)

Remark 4.9. To state Proposition 4.8 we prove that the existence of the sequences
in (4.3) leads to the creation (after perturbation) of either sinks or sources in A4(U),
contradicting Fact 4.4.

Take points P, and @, as above and let t, and 7, be their periods. We begin by
observing that t,,r, —oco. Suppose for instance that (t,) does not go to infinity. Taking
a subsequence, if necessary, one gets P, —P&€Pr(¢). One has a(E%(¢), EZ(4))>1>0,
which prevents a(Ep (¥n), E8:(1n))—0. This proves our assertion.

Now, since t,, and r,—00, from Lemma 4.5 one gets

I)‘S(Pn)|’ I’\S(Qn)l_*o and l)‘u(Pn)|’ |/\u(Qn)|—’OO

Our next step is to see that we can take (after a perturbation) the points P, and @,
having the same index.
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LEMMA 4.10. Let 9, P, and Q, be as in (4.3). After a perturbation of 1, we
can assume that P, and Q, have index 2 for n large enough.

Remark 4.11. The arguments in the proof of the lemma show that one can also take
both points with index 1, or P, with index 2 and @, with index 1.

Proof. We prove the lemma, for the points P, (for the @, one argues analogously).
Consider perturbations of the derivative of D¢ at P, and Q,. It is important to note
that Lemma 3.1 allows us to find such perturbations at P, and Q, simultaneously (for
the same diffeomorphism).

If there are infinitely many P,, with index 2 we are done. Thus, we lose no generality
assuming that every P, has index 1. For each y€R(U) close to ¢ let

PR () ={Pe Pr(4): P has index 1 and a(E5 (%), E&(y)) < 1/n}.

Write
(PRY ()= U Pr"(¥).

nzng
Since the periods ¢, tend to infinity and every P, is hyperbolic, for each n there is a
neighbourhood V,(¢) of ¢ such that

PR"(W)# 2 for all Y€V, (). (4.4)

We claim that there are diffeomorphisms £, —¢ and points P € Pﬁ’"({n) such that

IAC(Pén’ 511,)‘ -1

Clearly, the lemma follows from the claim: applying Lemma 3.1 to £, we obtain a new
sequence &, — ¢ such that |A(F,, £, )| <1 and o(Ep, (€1) Eg: (£,))<2/n. So it remains
to prove the claim.

We argue by contradiction. Assume that the claim is false. Then for a fixed ng (big)
we get ©>0 such that

|Ae(Py, )| > (1+u)*,  where k is the period of Py,

for all 9 close to ¢ and every Py€(P)1™ (¥). This assertion follows from Lemma 3.1
by arguing as in the proof of Lemma 4.5. Now, recall that |A;(Py, ¥ )| <(1—8)*" and
| Au(Pn; ¥n)|>(1+8)!" (see Lemma 4.6). By Lemma IL.9 in [M3] (which, in a few words,
asserts that robust hyperbolicity of periodic points implies that the angles between the
stable and unstable bundles are bounded away from zero) there is y>0 such that

o(Ep,(¥), Ep,(¢)) >~ for all ¢ close to ¢ and every Py€ (P)1™ ().
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Taking n>1/~ one has Pﬁ’"(zp)zz for all 9 close to ¢, contradicting (4.4). This ends
the proofs of the claim and of the lemma. O

The next step in the proof of the proposition is to get a saddle-node periodic point R
such that a(E%(p), E%(p)) is small. We use the following claim whose proof we postpone
until the end of this section.

CLAM 4.12. Suppose that R(U) and that P, and @, are the periodic points of
¥n in (4.3), P, and Q, with index 2. Then there are sequences of diffeomorphisms (¢,),
o €T (U) and ¢p— ¢, and of points R, € Pr(¢y) of period ky, such that

(1) max{a(F5,(#n), B (60)), a(E, (60, B ()} <1/,

(2) Ac(Rn,¢n)=1, and

(3) ky—o00.

We begin by stating the following algebraic fact that will be frequently applied to
the characteristic polynomial of the derivatives of periodic points.

Fact 4.13. Consider sequences of real numbers (0y,), (pn) and (&) such that
(1) [nl—o00,
(2) 1<K <|opn|/|tun| for some constant K.

For each >0 consider the sequence of polynomials

Pn,é(x) = (x_an)(x_ (P’n+€§n(ﬂn_an))) ‘Egno'n(un _Jn)-

Then there is ep, |en|~1/]&n|—0, such that the roots p,(e,) and o,(g4) of Pr.e.(z) are

both real and satisfy :
ln(en)| =lon(en)l = V/ [tnonl -

Proof. If the product o, u, is positive, just take

o 2 I#n0n| —Hn—0On

1
, len|=——0.
A fenl

~ [énl

Then the roots of the polynomial P, ., (z) are

/v"n(sn)y O'n(en) = i\/ HnOn -
Otherwise, if the product is negative, let

Pn+0Onp

1
S P PO SN
elun—ony’ ol

139

En =

Now the roots of the polynomial are

tn(En), Onlen) =/ |non] .
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This completes the proof of the fact. O

Now we complete the proof of Proposition 4.8. For simplicity let us write X;(n)=
Xi(Rn,¢n), i=s,c,u. Since A.(n)=1 one has (generically) two possibilities: either
As(n) Ae(n) Au(n)|=]As(R) Au(R)|>1 or |As(n)Au(n)]|<1 for infinitely many n. Suppose,
for instance, that the first possibility holds.

In Tr, M consider an orthonormal basis Bo(n) such that there are eigenvectors v°(n),
v*(n) and v*(n) associated to A.(n), A(n) and A,(n), respectively, with coordinates (in
the basis By(n))

v°(n)=(1,0,0), v°(n)=(an,1,0), v*(n)=(Bn,"n,1).
By the Dg, (¢*~)-invariance of the E};, (¢n), one has (in the basis Bo(n))
1 7i(n) 72(n)

Dp,(¢5) = (0 As(n) Ta("))a where 73(n) = (A (1) —As(n))Yn-
0 0 Jn)

By Claim 4.12, o(Eg (¢n), E, (¢n))<1/n—0, and thus
Va+55 — oo.

Suppose first that y2—oco. By Lemma 3.1, given ¢>0 we can perturb ¢, at
¢ (Rn)=0%""1(R.,) to get ¢, such that ¢, (Rn)=¢’(R,) for every j and

) |

1 ni(n) Ta(n)
DRn(¢s,n)kn =I5'D¢;1(Rn)(¢e,n)'DRn ﬁn_l = (0 )‘S(n) T3(n) ) -
0 eXs(n) ers(n)+Au(n)

= o o

1 0
Dd,;}l(Rn)((pe,n):IE‘D¢;1(R")¢’1L, where I, = (0 1
0 ¢

Then

The characteristic polynomial of Dg, (4. .)* is of the form (1—z)P.(z). Applying
Fact 4.13 to P.(z), with

(1) on=Au(n),

(2) Hn:)‘s (’I’L),

(3) |onl/|ttn]=]Xu(n)]/|Xs(n)]| =00 (recall that k,— oo and Lemma 4.5), and

(4) &n="n, [Mn|—00,



PARTIAL HYPERBOLICITY AND ROBUST TRANSITIVITY 23

one gets €, —0 such that the eigenvalues of Dg, (¢~ ) are Ai(en)=1, A2(en) and As(en),
where

[A2(en)| = [A3(en)| =V [ Au(n) As(n)] > 1.

Thus we can perturb ¢, » (big n) to get €7 (U) with a repeller at R,€Ay(U), con-
tradicting Fact 4.4. This completes the proof of the proposition when |7, |—o0.
Suppose now that 42 is bounded; thus B2 - 00 and then a(E}‘;n, Efz,,)—’o as n—o0.
By Claim 4.12, o(E% , Ef, )—0, and hence a(E}, , Ef, )—0.
In Ef=FE} ®FE}% let us consider an orthonormal basis {v“(n),v(n)}. Since
a(E% , Ef;, )—0 there is an eigenvector v*(n) of As(n) of the form

v¥(n) =v%(n)+x,v(n), 36, —0 as n—s oo.

Now, consider the basis Bj(n)={v¢(n),v*(n),v*(n)}. In this basis,

1 0 0
As(n)—Au(n
Dradle= {0 M) pst) |, po(m) =222l o
0 0 Afn) "
As before, using Lemma 3.1, for a fixed £>0 we perturb ¢, at ¢,'(R,) to obtain ¢,
with ¢¢ (R,)=¢},(Ry) for all i satisfying

D¢;}L(Rn)(¢e,n) = IE'D¢;1(Rn)¢na
1. as above. Then

0 0
Dp,(¢e,n)» =1e-Dyzr (g y($em) Drodin ™ = 0 Au(n) pa(n)
0 eAs(n) epg(n)+A.(n)

As before, applying Fact 4.13 to the characteristic polynomial of DRn(qSE,n)k", one has
€r—0 such that the eigenvalues of Dg,(¢5" ) are Ai(en)=1, M2(¢n) and As(n), where

[A2(en)] = [Az(en)| = V| Au(m) As(n)] > 1.

Thus, perturbing ¢, (big n) one gets ¥ €T (U) with a repeller at R,€A4(U), contra-
dicting Fact 4.4. This completes the proof of Proposition 4.8 assuming Claim 4.12. So
it remains to prove the claim.

Proof of Claim 4.12. Take periodic points P, and @, of 1, with index 2 satisfying

1
OB, (a), BEA(Sa)) < and (B (¥n), B, (W) < -
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By Lemma 3.3 we can assume that P, and @Q,, are homoclinically related (their invariant
manifolds meet transversely). Thus there are segments of arcs i, CW*(P,, ¥, ) and disks
0%, CW*#(Py,,vy) such that

’Y::»—’Wféc(QmT/)n), 6fn_’Wlf)c(Qm1/)n), m — 00.

Since a(EY (¥n), EZ (¥n))<1/n, there is a homoclinic point z, associated to P, such
that the angle between T, W*(P,,,v,) and T, W*(P,,¥») is small (less than 2/n). Ap-
plying Lemma 3.1 to x,, and considering suitable compact parts of the invariant manifolds
of P,, we can perturb 1, to get a diffeomorphism £, with a homoclinic tangency at z,
(associated to P,). In this way we get a point of quadratic contact z,, between W*(P,,&,)
and W*(P,,£,). Now, from [R] and a standard argument on unfolding of homoclinic
tangencies, we get ¢, (close to &,;) with a periodic saddle-node R,, (associated to the
tangency of W*(F,,&,) and W*(P,,&,)) with eigenvalues A;(n)=1, |A;(n)|<1<|Ay(n)].
Moreover, this saddle-node can be chosen arising from some periodic point of a horse-
shoe such that the angles between their invariant manifolds are small. Observe that such
horseshoes appear in the unfolding of a tangency. Thus we can assume that

E} (¢n) ~ES (0n),  E5(pn)~ES.(pn) and (B (), By, (on)) is small

This completes the proof of the claim (and thus the proof of Proposition 4.8). O

4.2.2. Proof of Proposition 4.7. We divide the proof of the proposition into two
steps: existence of the splittings and estimates on the angles.

First step: Fristence of the splittings E*(B)®E*(B) or E*(B)®E(B).

LEMMA 4.14. Let Pe P(y), veT(U), such that

(1) P has index two and P€Pc(v) (i.e. P has two contracting eigenvalues of the
same modulus),

(2) the set of transverse homoclinic points of P is not empty.

Then given 6>0 there are ¢€T(U) close to ¥ and ReP(p) with

a(Eg(p), ER' () <6.

Remark 4.15. The lemma holds for periodic points having an expanding complex
eigenvalue. In this case one gets a(E%(p), EF (¢))<0.

Proof. Suppose that PeU (which for simplicity we assume to be a fixed point) has
a pair of contracting nonreal eigenvalues. The case in which the eigenvalues are real (one
eigenvalue with multiplicity two or different eigenvalues with the same modulus) follows
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analogously. Let A;, Ac and Ay, |As|=|Ac| <1< |Ay|, be the eigenvalues of Dpp. As in the
proof of Lemma 4.2 we construct diffeomorphisms ), ¥ —1, having periodic points Q
(in the continuation of some horseshoe of P) of period ry=ng+m (ng—o00) such that
the derivative Dg,¥"™ is (see equation (4.2))

Cm Ak 0 0
Do.(y¥)=1 0  am|As|™ 0
0 0 by | As|™

for some big k. Consider the basis {v,w,w'} in the proof of Lemma 4.2 and unit
vectors v;, w; and wi in the directions of Do, ¥k (v), Do, ¥t (w) and Do, i (w'). Using
Lemma 3.1 we get & preserving the tg-orbit of Qg such that
1
Dei (uyér(ws) = Taml e Dy (@) ¥r(wi),

1
L 1
De; quyér(wi) = WD¢i(Qk)wk(wi ),

Dy (@u) 8k (Vi) = Dy (0, ¥k (v3)-

Since @, and by, are independent of r (see Remark 4.3), and 7 can be taken arbitrarily
big, every & is close to ¥ and

Cm ALk 0 0
Dogr=| o a0
0 0 A Ag |

For a fixed §>0, a new application of Lemma 3.1 gives diffeomorphisms & 5, &x,5 =&k as
d—0%, preserving the £x-orbit of Qy, with

10 0 Crn AT 0 0
DQk(&I:ﬁS): 01 Y 'DQk( I:k): 0 E[As | 6] As["*
0 0 1442 0 0 +| A |7 (1462)

A straightforward calculation now shows that the eigenspaces Eg, (£,s) (associated to
+(146%)|A,[™) and E (&) (associated to £|\|™) of Dq, (&) are spanned by
(0,1,£6) and (0,1,0). Thus the angle between E (&x,5) and E§, (&x,5) is of order of 4.
This ends the proof of the lemma. O

The proof of Lemma 4.14 provides immediately the following remark which we will
use in the proof of Proposition 4.23.

Remark 4.16. Under the hypotheses of Lemma, 4.14, let Xp be any horseshoe (non-
trivial hyperbolic set) containing P. Then the periodic point R of ¢ in Lemma 4.14 such
that a(E%(p), EG(p)) is small can be taken in the continuation ¥ p(y) of Xp.



26 L.J. DIAZ, E.R. PUJALS AND R. URES

LEMMA 4.17. Let eR(U). Then
e either E°(B)®E“*(B) is defined for all B close to D(¢),
o or E¥(B)®E(B) is defined for all B close to D(¢).

Proof. The first step to prove the lemma is to see that for every B close to D(¢) at
least one of the splittings E*(B)® E°“(B) and E*(B)® E**(B) is well defined. The second
step is to prove that we can take the same type of splitting for all B close to D(¢).

First part of Lemma 4.17: Existence of splittings. We argue by contradiction.
Suppose that there are families B arbitrarily close to D(¢) such that the splittings
E*(B)®E®(B) and E*(B)®E®(B) are both not defined. Then there are sequences
B,—D(¢), and (P,) and (Qn), Pn,Qn€Pr(¢), such that for each n there are
(Bp,)iez, (B, )icz € By, such that

(1) E**(Bp,) is not defined; thus Bp, has a complex (nonreal) contracting eigen-
value,

(2) E<*(Bg,) is not defined; thus Bg, has a complex (nonreal) expanding eigen-
value.

Using the correspondence between diffeomorphisms and linear maps in Lemma 3.1,
we get diffeomorphisms 4, — ¢ such that P, and @, are periodic points of ¥, with

Dpn'(/};" = Bd)‘nfl(P,,) ...Bp, and DQn’(/),rL" = B,prn—l(Qn) By,

where t,, and r,, are the periods of P, and Q,. In particular, Dp 9%~ (resp. Do, ¥.) has
a contracting (resp. expanding) complex eigenvalue. Using Lemma 3.3 we can assume
that the sets of transverse homoclinic points of P, and Q,, are both nonempty.

Lemma 4.14 and Remark 4.15 imply that there are sequences of diffeomorphisms
¢n—¢ and periodic points P, and Qn € P(py) such that a(E;g"(cpn), E%f,(‘Pn))<1 /n and
Oé(Eén(SDn), Eg;(@n))< 1/n, contradicting Proposition 4.8.

Second part of Lemma 4.17: Splitting of the same type. We prove that either
E*(B)®E“(B) is well defined for all B close to D(¢), or E*(B)®E(B) is well de-
fined for all B close to D(¢), that is, we can take the same type of splitting for every
family of linear maps close to D(¢). If not, there are sequences B,,C, —D(¢) such that

(1) it is not possible to define E*(B,)®E(B,); then there are P, € Pr(¢) and
Bp_€B, with a contracting complex eigenvalue,

(2) it is not possible to define E*(C,)®E(C,); then there are Q,€ Pr(¢) and
Cg,€C,, with an expanding complex eigenvalue.

Now, using Lemma 3.1 and recalling that we can perform the perturbations at P,
and ¢, simultaneously, arguing exactly as in the first part of the proof of the lemma
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{existence of the splittings) we get diffeomorphisms v, —¢ and points R,,T, € Pr{¢)
such that

1 1
(B, (¥n), BRA($n)) < - and a(BY, (n), BE,($n)) < -

contradicting Proposition 4.8. This concludes the proof of Lemma, 4.17. 0

Second step: Angular estimates. To obtain the uniform angular estimate suppose,
for instance, that E*(B)@®E“*(B) is defined for every B close to D(¢).

LEMMA 4.18. Suppose that E*(B)®E(B) is defined for every B close to D(¢).
Then there is C>0 such that ao(E*(B), E°(B))>C for every B close to D(¢).

Proof. We argue by contradiction. Suppose that for every C>0 there is B
close to D(¢) such that ao(E*(B), E®(B))<C. Then one gets B,—D(¢) such that
ap(E*(By), E®(B,))<1/n. Thus there are periodic points P,€ Pr(¢) and linear maps
Bp,€B, such that

1 ;
a(ES(Bpn),Ec“(Bpn))< a (4.5)
We now use the following fact:

FAacT 4.19. Let ¢€R(U) such that for every family of linear maps B close to D(¢)
the splitting E°(B)& E“(B) is defined. Then

[As(Bp)| <|Ae(Bp)| < [Mu(Bp)|

for all PePr(¢).

Proof. The idea of the proof is that if |A;(Bp)|=|A:(Bp)|, then we can perturb ¢ in
such a way that the continuation of some R€ Pr(¢) has a contracting complex (nonreal)
eigenvalue. This contradicts the fact that E%(B)®E“*(B) is well defined for all B close
to D(¢).

To prove the fact we argue by contradiction. Suppose that |As(Bp)|=|A.(Bp)| for
some Bp € B, B close'to D(¢). Since, by hypothesis, E¥(Bp)® E“*(Bp) is defined, A;(Bp)
and A.(Bp) are both real. If A\;(B,)=A.(Bp), we perturb Bp to obtain a family C close
to D(¢) such that Cp has a complex (nonreal) contracting eigenvalue, contradicting the
hypothesis of the lemma. So it remains to consider the case A\;(Bp)=—\.(Bp). First,
by Lemma 3.1, there is ¢ close to ¢ such that Dp=Bp. Using the arguments in the
proof of Lemma 4.2, we get 9 close to ¢ (hence close to ¢), and a periodic point R,
which is the continuation of some R€ Pr(¢) (R in the homoclinic class of P), with a
contracting (real) eigenvalue of multiplicity two. After a new perturbation, we get £ such »
that R¢ has a complex (nonreal) contracting eigenvalue. This provides C close to D(¢),



28 L.J. DIAZ, E.R. PUJALS AND R. URES

such that Cr=Dg, ¢, and thus with complex contracting eigenvalues. Thus the splitting
E¢(C)® E(C) is not defined. 0

We claim that we can also suppose that the eigenvalues A.(Bp,) and \,(Bp,) of
the points P, in (4.5) are both real (and thus with different modulus). If A.(Bp,) and
Au(Bp,) are complex the arguments in the proof of Lemma 4.2 give ¥ close to ¢, and a pe-
riodic point R, which is the continuation of some R, € Pg(¢) with three real eigenvalues.
Moreover, Eg () is close to E*(Bp,) (resp. E’ () is close to E“(Bp,)). This gives
families C,, of periodic linear maps close to D(¢) such that a(E*(Cg,), E°*(Cg,))<2/n
and Cg, has real eigenvalues. This completes the proof of the claim.

We are now ready to finish the proof of Lemma 4.18. Let v? be a unit vector
which spans E*(Bp, )}, i=s, ¢, u. Take a normal basis {v?,v?, v} }, where v¥ is orthogonal
to E°“(Bp,). In this basis v?=(al,a?,a}), a}7#0. We have two possibilities: either
ag #0 or not. Note that since a(E*(Bp,), E°*(Bp,))—0 then

an \ arV
(5)+(5)
a3 az

In the first case, arguing as in the proof of Proposition 4.8, we get C close to D(¢)
having two contracting eigenvalues of the same modulus, contradicting Fact 4.19.

In the second case, a(E*(Bp,), E*(Bp,)) is small. Again as in the proof of Propo-
sition 4.8, there is C close to B such that Cp,_ has eigenvalues A1, Ay and A.(Bp,), with
[A1]=]|A2|. If |A\.(Bp,)|>1 then, from Lemma 4.6, |\;|=|Aa2]| <1, contradicting Fact 4.19.
Suppose now that |A.(Bp,)| <1. Consider an isotopy (L*);[o,1] from Bp, to Cp, preserv-
ing the central direction E°(Bp,), i.e. L°=Bp_, L'=Cp, and L'(v.)=Bp,(v.). Using L*
we define in the natural way a parametrized family of periodic linear maps L? close to B.

Let

p=inf{t€[0,1] : L! has two eigenvalues with the same modulus}.

By hypothesis, u<1. Moreover, by construction, [A;(Ls )|=|A(Bp,)|=|A(L5 )|<1,
contradicting Fact 4.19. This ends the proof of the lemma. O

Now the proof of Proposition 4.7 is complete.

4.3. Uniformly dominated splittings

In view of Proposition 4.7, we have that for every ¢ in the residual subset R(U) of
T (U) there are C>0 and §>0 such that either ag(E*(B), E“(B))>C for every family
of periodic linear maps B d-close to D(¢) or ag(E*(B), E*(B))>C for every family of
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periodic linear maps B d-close to D(¢). In the sequel let us assume that we have fixed ¢
and that the first possibility holds:

ao(E*(B), E**(B)) > C for all B §-close to D(d). (4.6)

Our goal is to prove that if (4.6) holds and E*(¢)® E“(¢) is (hyperbolically) dominated
on the period (see Lemma 4.24 below) then the splitting is uniformly dominated.

Let us begin with the following two-dimensional lemma about perturbations of linear
maps.

LEMMA 4.20. Consider sequences of (2x2)-diagonal matrices {(A;m)i%q}m>0,

; 0
Ai,m _ (az,m ,
0 bi,m
such that

(a) Tz, A m=Apm=1d* for every m,

(b) there is a constant ¢>0 such that ¢ <|a; ml, [bi,m|<c, for every i and m.

Then given €>0 and >0 there is mg such that for every m>my there are families
of triangular matrices (A;m)™, satisfying

(i) |Asm—Aimll<e for every 0<i<m, and

(ii) esther
flae(D)=(5) o flan(3)-()

or

for some K with |K|>sc.

Proof. Consider perturbations fL-,m and fli,m of A; p, of the form

Ai,m _ (ai,m Si,m(sm) , Az’,m _ ( Aai,m 0 ) ,
0 bi,m 6i,m6m bi,m

for some Sz-,m, &ym=il and 4,,20 to be determined later. Arguing inductively and
bearing in mind that [}~ ; a;m=1and []~ , b; m==£1, a straightforward calculation gives

L ) B )
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where
™m j—1 ™m m = m
. -~ . 5m5],m 6 ]»mcjv
#m=>_ ([T aim Jomdim( I bim ) =3 =0 .
=1 Vi=1 i=j+1 j=1 I Ni—jp1 W™
and
m
-~ bz,m
am= 11 2
i=j+1 ™

We choose (inductively) the &; ,, such that

5. Gim _ |&5,ml
Gm T T
aim  |@jml

Similarly, we have

(e ] )£ (L 32 S

b
j=1 Vi= i=j+1 j=1 =M i=j+1 o™ =1 Jomme
and
N . m .
5. cj,m_|cj,ml B — H aim
dmy — = 16;.m|’ 4,m -
7,m 7,m i=j+1 1,1
That is,
< s -1
|&j,m| =1&j,m|™"-
Notice that, by construction,
8 mCi 5 mCim
IMIM 0 and 2L S0
a’]ym b]vm

Consider now the sums

Since the |ajm| and |b; | are bounded, we have that these sums cannot be bounded
simultaneously. Suppose, for instance, that the first one is not bounded. Then there is
m such that S,,>2/e.

Observe that %m =06 Sm. Thus taking &, € (3¢/ S, €) we have
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Clearly, by the definition of fij,m,

i ()- () Frin()-(3). oo

By the definition of 8, one gets || A;m—A; m||<e. Now it is enough to take 4; =4, .
This completes the proof when §m is not bounded.

Finally, if §m is bounded then §m is not bounded. Then the proof of the lemma
follows as before by considering lower triangular matrices instead of the upper triangular
ones. O

‘We have the following reformulations of the previous lemma and of Proposition 4.7
in terms of cone fields whose proofs are immediate.

LEMMA 4.21. Let ((A; )1 )m>o0 be families of linear maps satisfying the hypothe-
ses of Lemma 4.20. Consider any pair of cones C* and C¥ around i=(1,0) and j=(0, 1),
respectively, such that i¢C¥ and j¢C". Then the perturbations (A;,,) in Lemma 4.20
can be taken satisfying

(a) either TT~, A; m(C*)CCP,

(b) or [T2, Aim(C?)CCh.

LEMMA 4.22. There are 7,0>0 such that for every family of linear maps B é-close
to D(¢) it holds

E*(Bp) ¢ C.(E*(Bp))

for every Pc Pr(¢). Here C.(F') denotes the cone field of size T around F.

Denote by
Pg(y)={Pe Pr(y) of period m = n}.

PROPOSITION 4.23. Assume that hypothesis (4.6) holds. Then there is ng such that
the Dy-invariant splitting (E;(¥)®EZ*(Y))geppo(y) 5 uniformly dominated for every
YER(U) close to ¢.

Proof. We first prove the dominance in the period for periodic points:

LEMMA 4.24. Under the hypothesis of Proposition 4.23 there are A, 0<A<1, and
ng such that

||D,¢"|E;(¢,)||-I|D¢n(m)¢’"IE;u(¢)|f <A™ for every x€ PR°(v) of period n > ny.

Proof. We argue by contradiction and suppose that the lemma is false. Then
there are sequences of points P, € Pr(), Pm of period n,,, and of increasing numbers
(km)—1- such that

1Dp, " 5, )l 1D, ") HEgn, o ] > (k)™ forallm.  (4.7)
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On the other hand, from Lemma 4.6,

1Dp " (v )| < (1=8)""[lv°ll, v*€Ep, (),

nm\—1¢,u —n u u " (48)
|(Dr ™) @I < A+8) ™ 0¥, v*€ B
Now, if kn, is close enough to 1 one has
(1-8)" < kpm.
Therefore, there is we Eg.,, p ), [|v°[|=[wl=1, such that
1Dp, 6™ (0| (D ™)~ (W) = ()™ (4.9)
Let

Tm = (k) /™™, 7 —1 as m— o0.

We now perturb the derivative of Dy along the orbit P, ¥(Pp), ..., "~ (Py,) multi-
plying the action of the derivative Dy:(p,)¥ in the direction Dp, ¢*~!(v®) (without
modifying the derivative in the direction spanned by Dp_1*~1(w)) by the factor 7. In
this way we obtain families B,, —D(1) such that

IBynm=1(Pr) -+ Brn(¥*)|[- | Bp -+ Byam—s(p,) (W) = 1. (4.10)

Take the unit vector w'e E“*(Bp, ) in the direction

B;"ll ...B;}m_l(Pm)(w)

and write
Mo, = “B¢nm—l(Pm) ... Bp_(v®)]] (4.11)

For each 0<j <7y —1 consider the linear space E; spanned by vi=By;-1(p, ) ... B, (v*),
w;-:B,lpj—l(Pm) ...Bp,, ('), and its normalized basis §;,

Bi = {vj /3 ll, w;/llwj |} (4.12)

In the sequel we will focus our attention on the space E;. Recall that a(E*(B), E°*(B))>
C>0 for every B close to D(¢), see (4.6). Thus, there is a metric g;, equivalent to the
initial metric of M, such that for every 0<j<n,, —1 the vectors v]“-' and w; are orthogonal,
and |vj{|;=|lvj|| and ||w}|l;=|lw}|| (|| ||, denotes the norm associated to g;). In other
words, in the metric g; the basis §; is orthonormal. From (4.11), the restriction of
Tn=Bynrm-1(p,,) --- Bp,, (in the basis S and Sy, ) is '

Nm—1

1 0
Tm= [[ Tim:EBo— En,,, Tm=ps,1d%, Idi:(0 il), Tim= Byi(p,)-
i=0
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We now apply Lemmas 4.20 and 4.21 to the sequence T; ,». Consider the spaces Ej,
j=0,...,m, spanned by v and wj (see (4.12)). For a fixed 7>0 satisfying Lemma 4.22
we consider the cone fields (see Lemma 4.21)

C*(Bp,) =[C-(E*(Bp,))l* and C"(Bp,)=[C.(E™(Bp,)),

(A€ denotes the complement of A) and the matrices (T; ). Suppose, for instance, that
we can perturb the (T} ,,) according to case (a) in Lemma 4.21. By perturbing B (which
is close to D(v)) along the segment of y-orbit { P, ¥(Pp), ..., Y™™ 1(Py)} we obtain C
close to B such that

(1) Cyi(pn) Bi=Ej11,

(2) E*(Cyi(p,.))=E"(Byi(p,,) for every j,

(3) Cyi(p)lE;=Ti,m, where T; , is the perturbation of T, in Lemma 4.21.
Therefore,

@) 1325 ' Cos(pm) |8, =111 Tom=Tom-

On one hand, by Lemma 4.22 and by definition,

Es(ij(pm)) C [CT(ECH(CW‘(pm)))]c: CU(C¢j(pm)) for all 0 < j < N

On the other hand, let C=Cynm-1(p,,)-.-Cp, and take a unit vector vg in the strong
unstable direction of P,,. Recall that we are assuming that the (7} ) can be perturbed
according to (a) in Lemma 4.21. Since these matrices are triangular (expressed in the
basis 8;={v$, Dp,,1’(w’)}) we have that in the basis {v§,w’,v§} the linear map C is

given by

C(vg) =Aug
C(w') = s1v§ +s0w’,

C(v§) = A5+ KC(w') = A0+ Kseyvy + Ksraw/,

where |5r1] and |sr2| are both small (this follows from the fact that the modulus of C(w’)
is of order of |As|, that also is small). Observe that the angle between v§ and w' is
uniformly bounded from below for all m (otherwise, using that |A,|—0o0 and |A;|—0 we
get a contradiction). So after a change of metric (of bounded size) we can assume that
the basis 8={v§,w’, v§} is orthonormal.

Observe that A, is an eigenvalue of C. Consider an eigenvector associated to As of
the form (a,b,1). A straightforward calculation shows that

K%l
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That is, if K is sufficiently big, we have
Cyrm-1(Pn) -+ CP(E*(CP,,)) = E*(Cyrm(Pn)) C Cr(E™(Cyrm(P,n)))s
contradicting Lemma 4.22. This completes the proof of Lemma 4.24. a
We now finish the proof of Proposition 4.23. We argue by contradiction. Suppose
that {E3(Y)®ES (¥)}pz(y) is not uniformly dominated for all n. Then there are se-

quences of points P, € Pr(v¢), P, of period n,,, n,—o00, and of increasing numbers
(km)—1- such that

1Dp, ™ 55, I 1(Dptb™ Mgty )| > km forallm.  (4.13)

We claim that we can take the points P,, in the sequence with periods n,,,>m for

infinitely many m (then, taking a subsequence we can suppose that n,,>m for all m).

We prove this claim by contradiction. Suppose that n,, <m for every m sufficiently big.
Then m=kn,,+rm,, 1<k, 0<r <n,. We have

km <|IDp, %™ |gg, |-I(DP¥™) B, |

Y™ (Pm)
<D, %" gy, ||| Dyrnm(py¥ ™52, . |
Do g1 oy (4.14)
L B e R B 1 P S

I N(Dyerm Py ¥™) ey I

Knvm Tm
< ()\) L ||D¢,knm(pm)’lp |E: e (P
where the last inequality follows from Lemma 4.24. This equation gives

- k
| Dyknen Py ™™ B2 -1 (Dyprnem Py ™) llE;‘fmm(pm)” > (/\)% (> km)-

knm (Prm)

wknm (P )

Since k,,,—1, 0<A<1 and n,, —oco, this implies that r,, —oco. Now it is enough to take
y"m*(P,,) instead of P,, and m=r,, <n,, (i.e. reindex the sequence) in the definition of
dominance. This ends the proof of the claim.

For each k,, consider the point P, of period n,>m in (4.13). Take o>k, such
that

o~ lo]l < [ D=9 @)l <l

for all ze M and veT, M. Since n,,>m, from Lemma 4.24 for each m there is t,,,
m< ity <Ny, such that

072 <0 %km < || Dp ' (%) |(Dp¥'™) " (W)l < 0%k < 0°
for some unit vectors weEy,  p ) and v’ebp . Since the angle between E*(¢)) and
E<%(3)) is uniformly bounded from below, using Lemma 3.1 and arguing as in the proof
of Lemma 4.24 we get families of linear maps B,, —D(¢) such that
| Bytm(Pr) -+ BPn(0*)I|-|(Bytm(p,) - Bp,) " w) ]| =1
for some unit vectors v*€ E*(Bp,) and w€E®(Bytm(p,,))- Arguing as in the proof of
Lemma 4.24 this leads to contradiction. This completes the proof of Proposition 4.23. O
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4.4. End of the proof of Theorem 1.1

We are now ready to construct a partially hyperbolic splitting for T )M for every
¥ in R(U) close to ¢. By Proposition 4.23, {E3(Y)DEE (¥)}peppo(y) is uniformly
dominated. Proposition 1.3 in [M2] allows us to extend this splitting to a uniformly
dominated one defined on the closure of PR°(¢), which'is Ay (U) (recall that eR(U)).
We also denote these extensions by E*(y) and E*(v).

The hyperbolicity of E* (1)) follows from the ergodic closing lemma (see Theorems A
and B in [M3]) and Lemma 4.5 by using standard techniques (see the proof of Theorem B
in [M3]). Moreover, by the dominance of the splitting E*(y)® E<*(y), E*(v) is the strong
stable bundle. This completes the proof of Theorem 1.1.

5. Proofs of the theorems
5.1. Proof of Theorem A

It is enough to see that given any ¢€R(U) and its partially hyperbolic splitting from
Theorem 1.1, say T,M=E3(¢)®ES(¢), x€Ay(U), one can extend it for every ¢ in a
neighbourhood Vg of ¢ in 7(U). Then it is enough to consider A(U)=Uycr ) Ve To
get the neighbourhood V, first define the map

U:T(U)— P(M), €~ Ae(U),

where P(M) denotes the set of subsets of M endowed with the usual Hausdorff metric.
By the definition of A¢(U) and the continuity of £, we have that if A¢(U)CVCU for some
neighbourhood V of A¢(U), then the same holds for every ¢ close to & (i.e. A,(U)CV).
This means that the map ¥ is upper semicontinuous in 7 (U).

Due to the partial hyperbolicity of (E3(0)DEZ(9))zen,v), there is an extension
of it, say (E°.(¢)®E(¢))zew, defined on a small neighbourhood W of Ag(U) such
that in the coordinates induced by (E°(¢)®E<($))zew the matrix D¢™ (m as in the
definition of partial hyperbolicify) is of the form

a1,1 012 01,3 @ a
2,2 2,2
m ) )
Dy¢™=| 021 022 az2]|, A= ( ) )
031 G332 0a33

where

a11-|A7Y<x<1 and max{g;;} <min{a;1,[|(A)7}||} forall zeW.
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By the upper semicontinuity of ¥ we have
Ay(U)y=9(yp)CW for every ¢ close to ¢.

Using the splitting (Ersz(¢)@lfffzm(¢))zew, which is not necessarily Di-invariant, one has
0'1,1 0’1,2 9’1,3 al a
22 022
D= by by aby |, 4=(22 %2),
7 1 7 a3,2 a3,3
€31 032 @33
By continuity, if ¥ is close to ¢, one has
max{g} ;} < min{ay ;, [|(A)7H}.

Since
ap- ||A_1|| <x<l1

we obtain a Dt-invariant dominated splitting of v, E*(¥))®E°(¢) in the maximal in-
variant set of ¢ in W, which is exactly Ay (U), see [HPS] for details.

Finally, by construction and the C!-proximity of % to ¢, the bundle E*(¢) is uni-
formly hyperbolic. This completes the proof of Theorem A.

5.2. Proof of Theorem B

We begin by explaining the obstruction for extending the splitting in Theorem A, defined
only for diffeomorphisms in the open and dense subset A(U) of 7 (U), to the whole 7 (U)
when U# M. The obstruction arises from the fact that the map ¢— A, (U) is (in general)
only upper semicontinuous. Clearly, if U=M this map is constant, p+—A,(M)=M, and
hence continuous. In other words, given p€(7(U)\A(U)) and 2€A,(U) a priori we do
not know if there are diffeomorphisms ¢, €.A(U) and points z,€A,, (U) such that

p=limy, and z=limz,.

When U=M, since A,(M)=M, this property holds automatically.
Take p€7 and a sequence ¢, —p, P R=R(M), R(U) as in Theorem 1.1. For
each n and y€ Pgr(py) define m3%(y) by

Mo (y) =min{m: || Dy o} |gsom I |(Dyr) HEey  (pu)ll <3 for all k2m},

ok

ma(y) =min{m: ||Dy§0ﬁ|E11;(<pn)||‘”(Dy(p,ﬁ)_1|Ecs (oo || >3 for all k2 m}.

ek
Finally, let
my™ =sup{m;™(y) : y € Pr(pn)}-
Since we have, by Theorem 1.1, that at least one of the splittings E°(¢,)®E“(p,) and
E*“(on)®E(py,) is uniformly dominated, then for each n, either m;, or m% is finite.
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LEMMA 5.1. There is a subsequence (ny) such that either (mj, ) or (my, ) is uni-

formly bounded from above.

Proof. The lemma follows from the arguments in Proposition 4.23. If the lemma is
false, taking n big enough one gets ¢ close to ¢,, and points P and Q in Pr(¢) such
that a(E3(¢), EE'(¢)) and a(Ey(4), EG'(4)) are both arbitrarily small, contradicting
Proposition 4.8. O

Observe that, in view of Lemma, 5.1, there are i=s or u, and a subsequence {nj}
such that mflk is bounded. So let us assume (taking a subsequence if necessary) that,
for instance, m$ <m< oo for all n. So we get m such that

1Dy 7 By (om -1 (Dy 07) Bt el <3 for all y€ Pr(pn) and (big) n.  (5.1)

Since Pr(ipy) is dense in M, given z, taking a subsequence if necessary, we can suppose
that there are z,€ Pr(p,) with z, —z. Now let

Ey(p)=limE; (pn) and EZ(p)=lim ES" (on).

Next we extend the splitting to the whole p-orbit of z. Now (5.1) implies that the
splitting is uniformly dominated. Thus, it is the unique Dy-invariant splitting of type
Es®E** over the p-orbit of z. In other words, Er=FE¢ and E2=EZ*.

Finally, as in the proof of Theorem A we have that E*(y) is uniformly hyperbolic
(contracting). This completes the proof of Theorem B.

5.3. Proof of Theorem C: strong partial hyperbolicity
Take ¢€R(U) and suppose that it satisfies (4.6):

a(Es(¢), ES*(¢)) 2 C >0  for every z€ Ay(U). (5.2)

Our goal is to prove that, under the assumptions of Theorem C, the same kind of angular
estimates hold for the splitting E%(¢)® E°*(¢). Observe that the arguments in the proof
of Proposition 4.7 and Theorem 1.1 imply

LEMMA 5.2. Let ¢cR(U). Suppose that there are C and >0 such that every
family of linear maps B é-close to D(P) satisfies

ao(E*(B), E=(B)) > C > 0.

Then {E¢(9)®EE ()} pepa(e) can be extended to a partially hyperbolic splitting defined
on the whole Ay(U).

By Lemma, 5.2, Theorem C follows from the following claim:
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CrAM 5.3. Let o€ P(U). Then there are C,6>0 such that
ag(E*(B), E“*(B))>2C

for every family of linear maps B 6-close to D(yp).

Before proving the claim let us end the proof of Theorem C. By Lemma 5.2 and
Claim 5.3 we have two partially hyperbolic splittings in A, (U),

E (p)®E;"(p) and E;(¢)OE;(y),

where
dim(EZ*(p)) = dim(Ez(¢)) = 2.

Now take
E(p) = EZ°(9)NEZ (9),

which is Dy-invariant and one-dimensional. Then
Tr,w)yM = E*(9)® E°(p) D E™ ().

Finally, E*() (resp. E“(y)) dominates E°(p). This follows from the dominance of E*(¢)
(resp. E¥(p)) over E<“(p) (resp. E*¢(¢)). This means that A,(U) is strong partially
hyperbolic.

This ends the proof of the theorem for diffeomorphisms in P(U)NR(U). Now the
proof of Theorem 1.1 allows us to extend this bundle with three invariant directions to
A(U) (which is open and dense in 7 (U)).

To prove the claim first observe that if ¢€P(U) and P€P(yp), then by Fact 4.19,

N (P, @) #1(P@)| forall i3, i,5€{s,c,u}. (5.3)

We argue by contradiction. If the claim is false, using Lemma 3.1, we get diffeomor-
phisms p, —¢ (9, € P(U)NR(U)) and points P, € Pr(pn) With a( EE (¢n), Ep (¢n))—0.

Suppose first that there are infinitely many P, with index two. We have (see
Lemma 4.2) that there is a (nontrivial) transverse intersection between W*(P,, ¢,) and
W*(P,, ). Then, as in the proof of Claim 4.12, we perturb ¢, to obtain a tangency
associated to P,. Now the unfolding of this tangency leads to the creation of periodic
points with complex (nonreal) eigenvalues (see [PV] for details), contradicting (5.3).

So we are left to consider the case in which every P, (big n) has index one. First
recall that we are assuming that a(E2(p,), ES%(pn))>C>0 for all z€ A, (U), see (5.2).
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Therefore, a(E%(pn), ES*(pn))—0 implies that a(E¥(pn), ES(pn))—0. We now have
two possibilities:

I)\u(Pm (Pn)l
1) — "0 00,
D BePuron)]
(2) % is uniformly bounded from above.

In the first case, using Fact 4.13 and Lemma 3.1, we get ¥, close to ¢, such that
|Ac(Pry ¥n)|=|Ae (P, 1n)|, which contradicts (5.3).

Finally, if |Au(Pn, ¥n)|/|Ac(Pr, @r)| is uniformly bounded, we apply Lemma 3.1 to
perturb ¢, through the orbit of P, to get v, with |A(Pn,¥n)|=|Au(Pn,¥n)|, contra-
dicting (5.3).

5.4. Proof of Corollary D

The corollary follows applying the arguments in the proof of Theorem B to the splittings
E*@E and E*@E.

5.5. Proofs of Theorem E and Corollary G

We divide the proof of the theorem into two parts: approximation by homoclinic tan-
gencies (which will imply the corollary) and expansion/contraction of the volume.

5.5.1. Approxzimation by homoclinic tangencies. Proof of Corollary G. By hypothe-
ses there are ¢ close to ¢, and P and Q€Hyp P(¢) of indices 2 and 1, respectively, such
that @ has an expanding complex eigenvalue (recall Remark 4.15). The next lemma
immediately implies the corollary.

LEMMA 5.4. Let ¢ be as above. Then given any ReHyp P(¢) of index two there is
1 close to ¢ with a homoclinic tangency associated to Ry, where Ry is the continuation
of R for 1.

Proof. By Lemma 3.3 there is £ close to ¢ such that

(1) W*e(Re, &) and W*(Q¢, £) have a nontrivial transverse intersection, and

(2) W*(Re,€) and W*(Qg, §) have a point of quasitransverse intersection.

Since Q¢ has an expanding complex eigenvalue, W*(Re, £) spirals around W*(Q¢,§).
Finally, since W*(R¢, &) and W*(Qg¢, &) are quasitransverse we can perturb £ to obtain
1) with a homoclinic tangency associated to R.. d

5.5.2. The bundle E is volume-expanding. Proof of Theorem E. The theorem
follows immediately from the proposition below.
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PROPOSITION 5.5. Let pc A(U). Then we have:
(1) if Ta,w)=E*(@)DE(p), then E(¢)=E(p) is volume-ezpanding,
(2) if Ta,w)y=FE*“(p)®E*“(p), then E°(¢)=E(p) is volume-contracting.

Remark 5.6. This proposition does not hold {in general) if p€P(U). To see this ob-
serve that in such a case there are two possible choices for the central bundle, either
E°=E® or E°=FE°, Now just take ¢ having a fixed point P of index two with
[Ac(P)Ay(P)|<1 (then E°=E°* is not volume-expanding), and a fixed point @ of in-
dex 1 such that |A.(@)As(Q)|>1 (then E°=E*°* is not volume-contracting).

Proof. Let us suppose, for instance, that we have Ty vy =E*(p) ® E“*(). The case
Tp,y=E"(p)®E(p) follows similarly.

To prove that the Jacobian of ¢ is expanding in the central direction let us first
observe that |Jacy' ¢|>1 for every Pe P(yp), that is, |\, (P)A:(P)|>1. This is trivial for
points P with index 1. We claim that this inequality alsc holds for points of index 2.
Suppose contrary to our claim that there is P with index 2 such that |\, (P)A.(P)|<1.
By Lemma 5.4, after a perturbation, we can assume that W*(P, ¢) and W*(P, ¢) have
a homoclinic tangency. Such a tangency is sectionally dissipative (the modulus of the
product of any pair of eigenvalues is less than one), and thus its unfolding leads to sinks
in U (see [PV]), contradicting Fact 4.4.

Assume by contradiction that E“*(yp) is not volume-expanding. Then there are
sequences ,€A,(U), k,€N and 7,, with k,—o00 and 7,,—17, such that

| Jacgs (™) < am,

where JacS“(¢) is the Jacobian of D;¢*| gcw. In other words, one has

kn—1

1 n

P Z log(|Jacgs(,., ) (#)]) < log(Tn).
i=0

Note that we can take k, such that ¢7(z,)#¢'(z,) for all j#i, j,i€{0,...,k,}. Thus
for each n we can consider the Dirac measure 4, supported on the segments of orbits
{Zn, ..., p*"(zn)}. Taking a subsequence we can suppose that (J,) converges to an in-
variant measure yu such that

[ 108 13acz ()] dua) <o,

Using the ergodic decomposition theorem, one gets v (ergodic and p-invariant) such that

/log [Jact! (p)| dv(z) <0.
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By the ergodic closing lemma [M3], given >0 there is ¢ close to ¢ and a ¢-periodic
point y such that

me—1

1 cu
m_ Z 10g(| JaC¢¢ (y)(¢) ]) <g,
€ i=0

where m, is the period of y. Observe that m.—oo as e—0. By Lemma 3.1, taking >0
arbitrarily small and m,. big, we get ¢ close to ¢ such that ¥™=(y)=y and

me—1

1
— Y log(|Jacgt,(¥)]) <0.
€ =0

In other words,
|Jacy (Y™ )| <A< 1.

This last inequality means that y is a sectionally dissipative periodic point of ¢¥. Now
the proposition follows from the comments above. a

5.6. Proof of Theorem H

Let @eDiff(M) be a robustly transitive diffeomorphism. If ¢ is Anosov (uniformly
hyperbolic) then M=T?3 and we are done, see [N]. Otherwise, by Theorem B, ¢ has a
partially hyperbolic splitting, say E*(¢)® E(¢). By hypothesis, E*(y) and E(yp) are
both integrable. Denote by F*(p) the integral foliation of E*(y), i=s or cu.

We argue by contradiction. Suppose that 71 (M) is finite. By the C%-Novikov theorem
(see [CL]), F°*(p) has a compact leaf F. Moreover, the strong stable foliation F*(y) is
transverse to F. Taking a convenient finite covering M of M (for instance the universal
one) we can suppose that the lift F of F is orientable, and that the lifts 7*() and
F “(p) of F*(p) and F“(yp), respectively, are transversally orientable. Moreover, since
the covering is finite, one has that Fis compact.

We claim that there is a curve o which intersects F transversally infinitely many
times (always with the same orientation). Now, using this curve, it is not hard to
construct infinitely many closed curves that are not homotopic to each other. But this
is impossible when (M) is finite.

Let us now prove the claim. We first take ¢ close to ¢ such that Pr(¢) is hyperbolic
and dense in M, see Lemma 4.2. Then there is a periodic point P of ¢ such that its strong
stable manifold W**(P, ¢), which is part of a leaf of F°(¢), intersects F' (transversally).

Let us first suppose that P has index 1. Thus we have W*(P, ¢)=W**(P, ¢}. From
Lemma 4.2, P has a homoclinic transverse point. Then, by the A-lemma, W*(P, ¢)
accumulates onto itself. This implies that W*(P, ¢) intersects F infinitely many times.
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Take as a the lift of W*(P,¢). Since the covering is finite one has that « intersects F
(transversally) infinitely many times.

Finally, suppose that P has index 2. Since ¢ is not hyperbolic there is a periodic
point @ of ¢ with index 1. By Lemma 3.3 we can assume that W*(Q, ¢) and W*(P, ¢)
meet transversally, and that W*(Q, ¢) and W*(P, ¢) intersect quasitransversally. This
means that, generically, W*(Q, ¢) accumulates on W*¢(P, ¢). Thus, W*(Q, ¢) intersects
F transversally. Now we can construct the curve a as before. This ends the proof of the

theorem.
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