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1. I n t r o d u c t i o n  

In this paper, we resolve an outstanding problem concerning the global regularity of so- 

lutions of the Dirichlet problem for the degenerate Monge-Amp~re equation in Euclidean 

n-space, R n, n~>2. 

THEOREM 1.1. Let gt be a uniformly convex domain in a n with boundary Of~EC 3,1, 

~cC3'1(~) and let f be a non-negative function in f~ such that f l / ( n - 1 ) c C l ' l ( ~ ) .  Then 

there exists a unique convex solution uECI , I (~)  of the Dirichlet problem 

det D2u = f in f~, (1.1) 

u = ~ on 0~.  

Consequently, any generalized solution of (1.1) in C~ must belong to C1'1(~). More- 

over, the solution u satisfies an estimate 

llu[[cl,,(~) <~ c, (1.2) 

where C is a constant depending on f~ and the norms of the functions ~ and ]=fl / (n--1)  

in the spaces C 3'1 (•) and C 1'1(~t) respectively. 

A function u E C ~  is a generalized solution of equation (1.1), in the sense of 

Aleksandrov, if u is convex in ~t with subgradient (or normal) mapping X having density 

f with respect to Lebesgue measure in R n. The regularity assertion in Theorem 1.1 is an 

immediate consequence of the existence assertion and the uniqueness of the generalized 

solution (see, for example, [19]). In turn, the existence assertion follows from the a priori 

estimate (1.2) applied to smooth solutions of approximating non-degenerate problems, 

whose solvability is guaranteed by the fundamental second-derivative HSlder estimates 
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of Calabi [4], Caffarelli, Nirenberg and Spruck [21, and Krylov [14], [15]. The Monge- 

Ampere equation (1.1) is referred to as non-degenerate when the inhomogeneous term f 

is positive (or equivalently when it is uniformly elliptic with respect to a convex classical 

solution). For non-degenerate equations, the global second-derivative estimate (1.2) was 

established by Ivochkina [11], and again with a different proof in [2], with constant C 

depending also on infa f > 0 .  

The global regularity problem for degenerate Monge-Amp~re equations (that is, 

when the non-negative function f is allowed to vanish somewhere in f~) has been stud- 

ied by various authors (see [3], [7], [10], [15] [18], [20], [23], [24]), with the strongest 

result to date due to Krylov [16]-[18] who established Theorem 1.1 in the case when 

fUncCl'l(~), with the constant C in (1.2) depending on the norm of fl/,~ (rather than 

fU(n-1)). We remark that  the techniques of this paper are completely different to those 

of [16]-[18]. When the equation is completely degenerate, that  is, the function f is iden- 

tically zero, Theorem 1.1 was proved by Caffarelli, Nirenberg and Spruck [3], following 

the corresponding interior regularity result of Trudinger and Urbas [24]. 

The assumption that  fl/'~E C 1,1(~) appears natural as then the estimation of second 

derivatives is readily reduced to boundary estimation, by applying the Aleksandrov- 

Bakelman maximum principle [5] to the twice differentiated equation as in [1], [23]. 

Recently, Guan [7] observed that  by following an argument analogous to that  of Pogorelov 

[5], [19], this reduction to boundary estimation can be achieved by only assuming that  

fl/("-I)ECI'I(~t), as in Theorem 1.1. However, he has to suppose that  either ~ = 0  or 

f is positive near the boundary, to derive an a priori estimate for second derivatives on 

the boundary by the usual methods. 

The significance of Theorem 1.1 is not so much that  it is an improvement of earlier 

results but that  it is optimal. Indeed, an example of Wang [25] shows that  if the function 

]=fl/(~-1) ~ C1,1(~), then C~,~-regularity is false in general. The assumption ~C C 3'1 (~) 

is also optimal for global regularity [3]. In the non-degenerate case, Wang [26] shows that  

~EC3(~)  suffices for global Cl,l-regularity while if only ~EC2'I(fI),  the solution may 

even fail to lie in the Sobolev space W2,P(t2) for sufficiently large p. We also note here 

that  for degenerate Monge~Amp~re equations, Cl'l-regularity is the best that  can be 

expected. This is readily seen by letting B=BI (0 )  be the unit ball in R 2, and defining 

u o n B  by 

u(x,y)= [max{(x2-1 § (1.3) 

We then have det D2u=0 in B, with u analytic on OB. In the two-dimensional case, better 

regularity is possible if the Hessian matrix D2u has at least one positive eigenvalue [8]. 

The rest of this paper is devoted to the proof of the second-derivative estimate (1.2). 

In the following section, we reduce that  estimation to estimation on the boundary, 
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as in [7] (Lemma 2.1). The estimation of the second derivatives of the solution of (1.1) 

on the boundary 0~t is carried out in the ensuing sections. As in the non-degenerate 

case [2], [11], the estimation of the double normal derivatives can be achieved, from that  

of the other second derivatives, through the equation itself. However, in the degenerate 

case, certain precise forms of these preliminary estimates are absolutely vital. In w we 

provide the necessary estimate from below for the cofactor of the double normal deriv- 

ative (Lemma 3.1), while in w167 4 and 5, we derive crucial linear estimates for the mixed 

tangential-normal second derivatives with respect to the square roots of the correspond- 

ing tangential derivatives. Our techniques rest strongly on the behaviour of the equation 

(1.1) with respect to affine transformations and on the convexity of the solutions. 

Finally, in w we complete the proof of estimate (1.2) and remark on the extension 

to more general inhomogeneous terms. The notation in this paper is standard with 

Lipschitz spaces and their norms being defined as, for example, in [5]. Almost always 

our constants C will depend on the same quantities as in the statement of Theorem 1.1, 

but to avoid too much repetition, this is not always indicated. 

2. G l o b a l  s e c o n d - d e r i v a t i v e  b o u n d s  

As mentioned in the introduction, it suffices to prove the estimate (1.2) for smooth solu- 

tions of non-degenerate problems. The estimation of the solution itself and its gradient 

is well known from standard barrier considerations [5]. In this section we follow [7] to 

reduce the estimation of second derivatives of solutions of (1.1) to their estimation on 

the boundary. 

LEMMA 2.1. Let u E c a ( ~ ) N C 2 ( ~ )  satisfy equation (1.1) in gt with f > 0  in ~. Then 

sup ID2ul ~< C+sup ID2ul, (2.1) 
~2 OR 

where C is a constant depending on I]11,1 and ~. 

Proof. Since the estimate (2.1) is already proved in [7], we present here a proof for 

completeness. 

Let w ( x ) = A u ( x ) +  1 2 ~MIx I . Suppose that  w attains its maximum at x0. If XoEO~, 

we are through. So to prove (2.1) we need only to consider the case x0E~. By rotating 

the coordinates we may suppose that  D2u is diagonal at Xo. Then at x0 we have 

0 = Wk (Xo) = ~ Uiik § Mxk ,  
i : - 1  

n 

0 ~ Wkk(Xo) = E Uiikk~-M. 
i = l  
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Differentiating the equation log de t (D2u)=log  f with respect to xk gives 

uiJui jkk  fkk  f 2  F - E  " " { f n--1 f 2 }  n--1 f2 I f2 UzrUasUijkUrsk>~ fkk n - 2  f~ 1 ]2 --: I+I I ,  

where (u ij) is the inverse of (uij), which is also diagonal at x0. Since ]=fU(n-z)e  
C1'1(~), we have 

f k k  

f 
n - 2  f2 k 
n-1  f2 >~-Cf-U(n-1) 

Iv/I .< cgCf, 

and hence also 

II ~> - C f  -1/('~-1), 

where C depends on I]11,1 and $2. Therefore we obtain 

ii >1 _Cf-1/(,~-I). U Uiikk 

Consequently 

=ui~u -Mui i  M E  1 0 >1 uiiwii(xo) iikkT >>- - -  -- C f  -1/('~-1). 
Uii 

Observing that  

_ _  ) f - 1 / ( n - 1 )  
Uii U22 .-- ?-tnn 

if un=maxuii>~l, we reach a contradiction if M is large enough. [] 

3. Tangential derivatives 

In this section we establish upper and lower bounds for the tangential second-order 

derivatives of solutions on the boundary. For any point xoC Of~, without loss of generality 

we may suppose that  x0 is the origin and that  the Xn-aafis is the inner normal there. By 

transforming the coordinates x'= (x 1,..., x~ - l )  we may suppose that  in a neighbourhood 

Af of the origin, 0f~ is represented by 

zn= p(x') = �89 Ix'12 + cubic of x'+O(Ix'l 4) (3.1) 

as x'-+0, where x'-=(xl, ..., xn-1).  Subtracting a linear function we may suppose that  

Vu(0) = 0 and inf u(x) = u(0) = 0, (3.2) 
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while, by rotation of the coordinates x', we may further suppose that  ui j (0)=0 for i # j ,  

i, j = 1, ..., n -  1. By Taylor expansion, 

l n - 1  
) = Z + R(x' )+  O(Ix'14) , (3.3) 

i=1 

where R(x') denotes the cubic term. Then b~ =u~  (0) > 0 for i =  1, ..., n -  1. We may further 

suppose 

0 < b l  ~<b2 ~<... ~<bn-1. 

Differentiating the equality u(x', Q(x'))=~(x', t~(x')), we get 

bi = Wii(0)+~n(0), i = 1 , . . , , n - I ,  (3.4) 

which implies an upper bound for bi (in terms of Vu). To proceed further, we first 

observe the following obvious fact. Suppose that  n=2 ,  u is non-negative and 

u=~=ax~+flx31+R4 on 0fl, 

where a~>O, ~ E R  and ]R4[~A]xl] 4. Then 

I~1 ~< ( l + A ) v ~ ,  (3.5) 

since u~>0 at the points Xl=+V~ .  A lower bound for the tangential derivatives bi is 

given by the following lemma. 

LEMMA 3.1. There exists a positive constant "Yo depending on ~, ]~]3,1 and ]f]1,1 
such that 

n - - 1  

1-I bi ~ ~of(O). (3.6) 
i=1 

Proof. To prove (3.6), we make a dilation x--~y=T(x) defined by 

y i=Mix i ,  i = 1,. . . ,n, 

where { Mi=b~/2M, i = 1 , . . . , n - i ,  

Mn = M = 1/bl. 

Let 

v(y) =M2u(x).  
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Then 

det(Dy2v) = g ( y ) = :  f(Yi/Mi)M2n in 5 =T(f~). (3.7) 
~ = l  Mi 2 

By (3.1), the boundary 05  can be represented in a neighbourhood iV" (=T(Af))  of the 

origin by 
n--1 

1 E diY~i+O(Iy'13) (3.8) 
i=l 

with 

Moreover, 

di - Mn bl M~ - b~ ~< 1, i = 1,..., n - 1 .  (3.9) 

IDf, OI <~ IDk, oI <~ C 

for k=3,4, where C depends on Of~. On 2V'OO~ we have 

n-lbiy  +R(y I ), 1 , 
i=1 

where 

(y', ~(y')) C 05,  (3.10) 

M 2 
bi = ~-~2 bi = 1 (3.11) 

and R(y ~) is the cubic term. Noticing that  

M 2 
4 Inure(y)] = ~ [ n ~ ( x ) l  ~ C, 

we see that  all fourth-order derivatives of ~ are bounded. Hence in (3.10), the third term 

O(ly~[4)<~Cly'l 4 for some constant C depending only on Oft and 1~13,1. Applying (3.5) 

to every direction in the tangent plane {yn=0} of c0~, we conclude that  the coefficients 

of R are uniformly bounded. Hence near the origin both 0~ and ~ are C3'l-smooth and 

their C3,1-norms are independent of the upper bound of M. Without loss of generality 

we may assume 5N{y,~<I}cJV'. Let 

cd={yeb[yn<l ,  ]yil< 1, /---- 2, . . . , / t - - I } .  

Then w is bounded in terms of 0f~ and [~13,1 since dl=l in (3.8). By the convexity of v, 
and noticing that  v=~<<.C on Own05, we have 

v ~ C  in w, (3.12) 

where C depends on f~ and 1~13,1. We claim that  

sup{g(y) l yew}  <~ C (3.13) 
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for some constant C depending on ]/11,1, ]qP]3,1 and s where by (3.7), 

g(y)_ f(yi/Mi) (3.14) 
n--1 

1-Ii= 1 bi 

From (3.13) and (3.14) we obtain (3.6) with 3,o=1/C. To prove (3.13), we compute 

gl/(n-1) o ~ Of U(n-D/OYi Of  W(n-t)/Oxi 
coy i (Y/ = = . [[Iin=-llbi] 1/(n-1) Mi[rln-llbi] 1/(n-1) 

Since f=fl /(n-1) cCl ' l  and f is non-negative, we have, as in the proof of Lemma 2.1, 

Iv/I-< Cv , 

where C depends on f~ and []]1,1. We then obtain 

O-~-gl/(~-l)(Y) <~ 

Observing that  

C f l /2(n-1) Cgl /2(n--1) 

[rln-1 b ]i/(n--1) Mikl t i= 1 i] 

we obtain 

Mi [ 1-In-11 bi] 1/2(n- 1)" 

n--1 n--1 
~/r2(~-1)  A/r2(n-1)~-1 = 1, M?(n-1) ~X bi>/'"l H b i )~" l  ~1 

i=1 i=1 

Ogl/2(n-1)(y)  <~ C. 
Oyi 

(3.15) 

Hence if sup~ g is large enough, so is inf~ 9, which implies by (3.12) and the comparison 

principle that  inf~o v<0. On the other hand, by (3.2) we have v>~0. This contradiction 

shows that  g is uniformly bounded in w, in accordance with (3.13). Hence (3.6) holds. [] 

4. M i x e d  t a n g e n t i a l - n o r m a l  de r iva t ives  

In this and the following section we prove an estimate for the mixed tangential-normal 

second derivatives of solutions of the Dirichlet problem (1.1) in terms of the corresponding 

tangential second derivatives. We first prove a preliminary estimate in terms of the 

largest tangential second derivative. Using the coordinate system (3.1), introduced in 

the preceding section, we formulate this estimate as follows. 
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LEMMA 4.1. Letting 7 and T denote respectively the unit inner normal to O~ and 
1 any unit tangential vector to 0~, we have for any xEAfAO~, with Ixl<<. ~ b~_l , the 

estimate 

lu~(~) l  <~ C bV/~-;n-~ , (4.~) 

where C is a positive constant depending on ~, ]~13,1 and I]11,1, and bn-1 is defined by 
(3.3). 

Proof. Let M=l/b,~_l. We make a dilation x-~y=T(x)  by defining 

y' = vi--~x ,, 

Yn : Mxn. 

Let v(y)=M2u(x). Then v satisfies 

det(D~v) = g(y) =: M n - l f ( T - l ( y ) )  

In the neighbourhood J~=T(Af),  0~ is represented by 

and on the boundary 0~NAf, 

where 

yn :�89 

n--1 

1 E biY~+R(Y')+O(lyl4)' v (y )  = ~(y ' )  = 
i=1  

in ~ ---- T(fl). (4.2) 

(4.3) 

which is also bounded independently of M, by virtue of (4.3). By (4.2) and the uniform 

convexity of J~N0~ implied by (4.3), we then obtain, by the usual barrier considerations 

for the Monge-Amp~re equation ([5, Theorem 17.21]), a normal derivative bound 

Iv~(Y)l ~< C (4.5) 

~ = { y e S J y n < l } ,  

bz - bi 
"-bn-----~ 41.  

As in the preceding section, we see that  near the origin, both 0~ and ~ are C33-smooth 

with C3,1-norms independent of M. Similarly to (3.13) we also infer that  the function g 

is uniformly bounded on the domain 

y = (y', ~(y'))  ~ 0 ~ ,  (4.4) 
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for ycO~ satisfying y~<7,  where ~ is the unit inner normal to 0~ and C depends as 

usual on f~, 1r and Ill1,1. From (4.5) we have 

hDvl ~ C (4.6) 

on 05N {y~ ~< 3 }, which extends to 5M {Yn ~< 3 } by the convexity of v. By differentiating 

equation (4.2) with respect to a tangential vector field as in [5], [24], or with respect to a 

linear vector field with skew-symmetric Jacobian matrix as in [2], [12], we obtain, again 

from the uniform convexity of N'N0~,  the mixed tangential-normal second-derivative 

estimates 

Iv~el ~ C (4.7) 

on O~n{y~<�89 where ~ is a unit tangent vector to 0~ and C depends on ~t, 1~[3,1 

and If]l,;. Since a more complicated version of this argument will be needed later, in 

the absence of uniform convexity of 0~, we omit the details here. Pulling back to our 

original coordinates, we obtain (4.1). [] 

We remark here, for purposes of illustration, that  Lemmas 3.1 and 4.1 are already 

sufficient to ensure a second-derivative estimate in the two-dimensional case. To see this, 

we write equation (1.1) at the origin in the form 

Ull (0) U22 (0) : U22 (0) -~- f (0), (4.8) 

so that  

by Lemmas 3.1 and 4.1. 

0 < u22(0) - u 2(0) + f (0)  c ,  

5. M i x e d  t a n g e n t i a l - n o r m a l  der iva t ives ,  c o n t i n u e d  

We proceed from Lemma 4.1, by means of induction, to obtain the following refinement. 

LEMMA 5.1. For i = l , . . . , n - 1 ,  we have the estimate 

]Uin(0)l ~< C0 X/~,  (5.1) 

where Co is a constant depending on ~, 1~13,1 and Ill1,1, and bi=ui/(0) is defined by 
(3.3). 

Proof. For i=l ,  . . . , n - l ,  let us denote by Ti=~-i(x) the tangential direction of 0f~ at 

xEAfNO~, which lies in the two-dimensional plane parallel to the xi- and x~-axes and 



96 P. G U A N ,  N.S.  T R U D I N G E R  AND X.-J .  W A N G  

passes through the point x. Our induction hypothesis is that for some k = l ,  ..., n - 2  and 

i = k + l , . . . , n - 1 ,  there exists a constant Oi>O, depending on f~, [qol3,1 and [][1,~, such 

that for xEAfnOf~, with Ix[ ~<0iv~/, we have the estimates 

for j=l , . . . , i ,  where C is a constant depending on f~, [~13,1 and 1]11,1. When k=n-2 ,  
(5.2) is exactly (4.1) with 0 n - l =  �89 We shall prove that there exists a constant Ok, also 

depending on 12, [~13,1 and I]11,1, such that for xEAf~Of~, with Ixl<.OkV~k, we have 

< (5.3) 

for j=l , . . . ,k ,  where C is a constant depending on ~, Iqo[3,1 and If[1,1. The estimate 

(5.1) then follows from (4.1) and (5.3) by induction. 

To prove (5.3), we introduce the dilation x--*y=T(x) defined by 

yi=Mixi,  i=l , . . . ,n ,  

where 

v/M, i=l , . . . ,k ,  

M~= v '~M,  i = k + l , . . . , n - 1 ,  

M, i = n, 

and 

1 

bk 

1 We may suppose that bk<<.[bk+l, otherwise (5.3) follows immediately from (5.2). 

v(y)=M2u(x). Then v satisfies 

Let 

f (y i /Mi)M 2n 
det(D2v)=g(Y) =: Ylin=l M2 

Near the origin 0~  is represented by 

in fi =T(gt) .  

n-1 d 2 0 ,3 
1 E iYi + ( lYl ) ,  Y n  = ~ ( y t )  = 

i=1  

(5.4) 

where 
1, i<~k, 

di= bk/bi (~<1), i>~k+l. 
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After the transformation we have, for 2~=T(Af) ,  

1 
v(y) = ~(y ' )  = 

r i l l  

o , 4  ~y~+ (y)+  ( ly l ) ,  
i = l  

y =  (y', ~ ( y ' ) ) e k n 0 5 ,  (5.5) 

where 
1, i>.k, 

bi= bi/bk (<.1), i < k .  

As above we see that  near the origin, both ~ and 0~  are C3'Lsmooth and their C 3,L 

norms are independent of M. 

Let 

w={YCf t lY~<~ 2, lY~I < ~, i=k+l , . . . , n -1} ,  (5.6) 

where t3 will be chosen small such that  the third- and high-order terms in (5.4) and 

(5.5) do no harm to the following estimation. As before we may assume that  wCAf and, 

by (5.4), that  w is bounded independently of M. By the convexity of v we have 

v<~C in w. 

Similarly to (3.13) we have 

sup{g(y) l yew } < C. (5.7) 

To prove (5.3) it is crucial to establish a bound for the normal derivative of v near 

the origin. The main difficulty is that  we cannot control the convexity of 0~  near the 

origin. We construct a lower barrier v by setting 

v(y)=�89 1 ~ (5.8) KYn - K 2 Yn, 

where a > 0  small and K > I  large wilt be chosen so that  

det(D2v) = a ' ~ - l g  ~> sup g(y). (5.9) 
02 

We claim that  v~<v on Ow (with appropriate choice of ~, a and K) .  For later 

application we will prove the stronger inequality 

1 v~< ~v on Ow. (5.10) 

To prove (5.10) we first consider the piece OlW:=OwAO~. For yEOlW we have, by (5.5), 

n - - ]  
1 1 

b~y~ +O(ly I ) >/~1912-c1~)12 v(y)=~ ~ -  2 ,3 
i=1 
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provided ~3 is small, where ~)=(Yl,-.-, Yk) and Y=(Yk+I, ..-, Yn-1)- By (5.4) we have 

1 1 2 v(y) <~ ~a[y'[ 2--~K Yn <~ �89188 

Hence (5.10) holds on 01w. On 02w:=OwG{yn=/3 2} we have v~>0. For a > 0  small and 
K > I  large, we have 1 2 2 v~<-TK /3 , so that  (5.10) also holds on 02w. 

Finally we consider the piece 03w:=Ow•{lyi[=/3 for some i=k+l,...,n-1}. We 

only consider the piece O~w:=OwN{y~_l=/3} since other pieces of 03w can be handled 

in the same way. First we prove that  

v(y)/> 1/32 on O~wN{yn<r (5.11) 

provided eo is small enough. If O'3w C {y~ ~> eo/32}, we have nothing to prove, so we may 

suppose O~wN{y~<eo/32}7~rg. To prove (5.11) we first fix a point p=(~,~,pn)EO~w, 
where 15=(pl, . . . ,pk)r 15=(Pk+l,.-.,p~-l), Pn<r For 5/>0 sufficiently small, we 

then fix a further point p* =(0,15,pn+5) so that  the straight line through p and p* meets 

O~w in a point t5 satisfying 

! [p_p*[ ~< [p_p*[ ~< IP-P[. (5.12) 2 

In view of the convexity of ~ and the representation (5.4), we may accomplish (5.12) by 

taking 

= IV~ 0(0,P)I �9 Ipl < O([/313) 

Now let p~ ~(0,~5)) be the projection of p* on 0~. We and/3 sufficiently small. 

claim that  

Ivy(p~ ~< C, (5.13) 

where ~ is the unit inner normal at p0. Indeed, for any y=(0 ,~ ,  ~(O,~I))CO~NBok+I(O), 
with Ok+l as given in (5.2), we have (for xeT-l(y)) 

[xi[= Y~ii bk ~<0k+l-i-~, i = k + l ,  . . . , n -1 .  
bi 

Hence by (5.2), 

i=k+l  

n--1  
8 1/2 sup{Ix~L.l ,~r,(x)ll lzd< ~+lbk/bi }<Cb~,  

and since u~(0)--0 by (3.2), we obtain 

[Vu(x)l<~Cbk at x=T-l(y). 
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]Vy,~(y)l = Mlux,~(x)l <~ CMbk = C. 

Noticing that  v=~EC 3 on 0~, we obtain (5.13). From (5.13) and the convexity of v, we 

have 
v(p*)  o �9 o >~ v(p ) -CIp n-pal, (5.14) 

while, from (5.5), 
1 n--1  

v(p~ ~ Ip~176 3) 
i=k+l 

and 
n--1  k 

1 E~)ilpil2+O(ifl3 ) =v(pO)+~ E~ilPil2wO(if]3)" ~(p) = 
i=1  i=1  

Noticing that  o p n _ l = Z ,  we h a v e  v(p~ �89 ~ if fl is small enough. Since 

d i = l  in (5.4) when i~k,  we see that  

k 
- 0 3 Ebi[Pil 2 ~ C(IPn-Pnl§ ) ~ C(pn § 

i=1  

Hence we may first fix/3 small and then choose ~o small so that  p~<2eoZ 2 and 

1/3: Hence by (5.12) and the convexity of v, we have whence by (5.14), v(p*)~5 " 

3 1 2 v(p) >~ 3v(p*)-2v(fi) >~ -~v(p*) >~ ~t3 , 

and (5.11) is proved. 

From (5.11) we have 
1 2 v(y) >~ ~/J - C y n  on O~w, 

where C depends on/3 and ~o. On the other hand, 

v(y) ~ Ca-K2yn.  

1 O~w if cr Hence v_<~v on is small and K large enough. 

inequality (5.10). 

This completes the proof of 
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The next step in our proof is to adapt the barrier v to obtain a normal derivative 

bound near the origin. For any point yoCOlW, let ~=(~1, ...,~,~)=A(y-yo) be an ortho- 

gonal basis at Y0 so that  ~n coincides with the inner normal, where A is some orthogonal 

matrix. Instead of (5.8), we now set 

2 , -~K~,~-K ~n+l(~ ), 

where a > 0  small and K > I  large will be chosen so that  (5.9) holds, ~t=(~x, . - . ,~ -1 ) ,  

and l is a linear function such that  II(~)-v(y)[=o(l~']) as ~---~0. Since both ~ and 0 n  

are C3'l-smooth near the origin, arguing as above, and by virtue of (5.11), we see that  
v~< 1 _ 5v on aw if lY01 and a ( > 0 )  are sufficiently small and K > I  is sufficiently large. By 

(5.9) and the comparison principle, it follows that  v(y)<~v(y) on w. We therefore obtain, 

by the convexity of v, 

]v~,(y)[ <~ C for yCcg~ near the origin. (5.15) 

By choosing a new 3 we can then ensure that  the estimate (5.15) holds for all yCOlW= 
cOwA0~, where w is given by (5.6), and subsequently, from the convexity of v, 

Invl<~C i n  w .  ( 5 . 1 6 )  

We can now complete the proof of (5.1) by standard arguments [2], [5]. For conve- 

nience we follow that  in [2]. Let 

~--.W z v i J w i j ,  

where {v ii} denotes the inverse of the Hessian DUv, and T=(T1, ...,Tk), where 

Ti=Oi+(yiOn-ynOi), i= l,...,k. 

Applying the operator T to both sides of the equation 

F(D2v) := log det(D2v) = log g, 

we obtain 

where s Setting 

f~(Tv) ---- T(log g), 

w(y) = +T(v- )(y)+BLyl 2, 

we have, since di=l for i<~k in (5.4), 

Iw(y)l CB(M2+yn)  on Ow. (5.17) 
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Similarly to (3.15) we have 

so that  

Hence 

]Vgl/2(n-1)(y)l ~ C, 

]VgJ <~ Cg (2~-3)/2(n-~) (y). 

~w~BEvii-C(g-1/2(n-1)+Evii ) 
1 E ?)ii ~B -- Cg -1/2(n-1) 

>12!Bg -Wn - C"-1/2(n-1)~ >~ 0 

provided B is large enough. Now set 

w(y) =A(v-v-yn)+W(y) ,  

where v is given by (5.8), and A > I  is a sufficiently large constant to be chosen later. By 

(5.9) and the concavity of F,  we have 

s  >1 F(D2v)-  F(D2v) >~ O. 

Consequently 

L:~ >~ 0, (5.18) 

which implies that  the function ~ attains the maximum on the boundary of w. 

We claim that  ~(y)~<0 on cow for sufficiently large A. This is because, by (5.10) and 

(5.17), 
t 2  1 ~(y) <~ CB(ly [ +y~)-- ~A(v(y)+yn). 

Using (5.4) and (5.5), we then choose A large enough so that  ~(y)~<0 on Ow. 
Noticing that  ~(0)=0,  we have therefore (O~/Oyn)(O)<~O. Namely, Iv~,~(0)l~<C, 

i=l,. . . ,k.  Similarly we have Iv~e~(y)l<~C, i=l,. . . ,k, for yEOwnO~ near the origin, 

where ~ is a tangential direction of 0~ at y which lies in the plane parallel to the Yi- 

and y~-axes and passes through the point y. Pulling back to the x-coordinates we obtain 

(5.1). [] 

6. Conc luding  remarks 

To complete the proof of the second-derivative estimate (1.2) in Theorem 1.1, we write 

(as in the case n = 2  in (4.8)) equation (1.1) at the origin in the form 

n--1 n - 1  

(l~bi)unn(O):E(i~%jbi)u2n(O)+f(O)'i=l ~ j = l  ( 6 . 1 )  
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so that  
n-1 u~n(O) f(O) 

0 ~ Unn(O ) ---- j = l  ~ bj -~- niL--1 x - b i  <" C (6.2) 

by Lemmas 3.1 and 5.1. Combining (3.4), (4.1) or (5.1) and (6.2), we thus obtain 

In2u[ <. C (6.3) 

on 0n,  and subsequently in fl by (2.1), where in both (6.2) and (6.3) the constant C 

depends on ~, [][1,1 and [~[3,1- The estimate (1.1) is thus established for the non- 

degenerate case f > 0  on ~. To get the full generality of Theorem 1.1, we need to solve 

approximating Dirichlet problems (using [2] or [5]), with f replaced by f + c ,  for c>0 

constant, and deduce the existence assertion of Theorem 1.1 by sending E to zero. 

The conditions on the function f can be weakened somewhat. In particular, in the 

derivation of the estimate (6.3) on the boundary 0n,  we have only used the condition 

fW2(n-1)EC~ For the full second-derivative estimate in ~t, we only need to assume 

additionally that  A f  1/(n-1) is bounded from below (in the sense of distributions) in the 

proof of Lemma 2.1 [7]. Moreover, by employing the Aleksandrov-Bakelman estimate 

[5] instead, we can replace the latter condition by A f  1In being bounded from below 

by a function in Ln(fl). For application to problems in differential geometry (as, for 

example, in [8]), which provided the motivation for Guan's approach in [7], it is desirable 

to impose no restriction on the non-negative function f apart from smoothness, as in the 

cases n=2 ,  3 in [7]. 

Finally we remark that  the results of this work carry over to more general Monge~ 

Ampere equations of the form 

det D2u = f(x, u)r (6.4) 

where f is monotone increasing in u and ~ convex. In particular, we may consider the 

equation of prescribed Gauss curvature 

det n2u = f ( x ) ( l +  Inul2) (~+~)/2 (6.5) 

with again f l /(n-1)Ecl' l(~),  in the presence of barriers, so that Theorem 1.1 would 

continue to hold if 

f a  f < (6.6) 02n 

and, for example, f = 0  on 0~t [23]. 
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