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Introduction

In recent years, the study of the algebraic K-theory space K(R) of a ring R has been
approached by the introduction of spaces with a more homological flavor. One collection
of such spaces is connected to K-theory by various trace maps and is particularly effective
in measuring the relative K-theory K(f) associated to a surjective ring homomorphism
f: R—S whose kernel is nilpotent. Goodwillie’s main theorem in [10] shows that the
rational homotopy type of K(f) can be recovered from cyclic homology. The main
theorem of this paper shows that, for any prime p, the p-adic homotopy type of K(f)
can be recovered from topological cyclic homology, TC(f).

To define the topological cyclic homology TC(R) for a ring R one must first consider
ordinary rings as special types of more general rings up to homotopy. Functors with
smash product, or FSP’s, were introduced by M. Békstedt in [2] as useful models for such
topological rings and it is for these objects that topological cyclic homology is defined by
Bokstedt-Hsiang-Madsen in [4]. Every ring naturally gives rise to an FSP which models
the associated Eilenberg-MacLane ring spectrum of the ring, and in this way rings and
simplicial rings are naturally embedded into the category of FSP’s. One can extend the
definition of algebraic K-theory from simplicial rings to FSP’s so that the algebraic K-
theory of a simplicial ring agrees with the algebraic K-theory of its associated FSP. There
is a natural transformation trc: K—TC, called the cyclotomic trace, which was used by
Bokstedt-Hsiang-Madsen in [4] to solve the algebraic K-theory analogue of Novikov’s
conjecture for a large class of discrete groups. In [12], Goodwillie conjectured that for
maps f of FSP’s such that #o(f) (a ring map) is surjective with nilpotent kernel then the
relative cyclotomic trace from K(f) to TC(f) would be an equivalence after pro-finite
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completion. In this paper we prove the following theorem.

MAIN THEOREM. If f: R—S is a surjective ring map with nilpotent kernel then the
relative trace map K( f)—tr—°+TC( f) is an equivalence after p-completion for all primes p.

We actually prove the slightly more general result that if f: R—.S is a map of simpli-
cial rings such that mo(f) is surjective with nilpotent kernel, then the relative trace map
K( f)—tﬁTC( f) is an equivalence after p-completion for all primes p. Recently, Bjgrn
Dundas has shown how to deduce Goodwillie’s original conjecture for all FSP’s from this
result for maps of simplicial rings ([6]). Essentially, he shows how one can use simpli-
cial rings to approximate arbitrary FSP’s when the functors in question are sufficiently
analytic.

We will be using the work of Hesselholt and Madsen in [16] for our basic results and
terminology of TC. This result was announced in 1994 and has since been used to make
several explicit calculations in algebraic K-theory (see for example the computations of
Hesselholt and Madsen in [16], Tsalidis in [19], and B&kstedt and Madsen in [5]). For
a very nice overview of the subject of trace maps, algebraic K-theory and computations
recently obtained we recommend the review by Ib Madsen in [18].

The general scheme for our proof goes as follows. By an argument of Goodwillie
in §III of [10], we can reduce the main theorem to the case of a map of ordinary
rings admitting a section and having a square-zero kernel. For X a based simplicial
set, A a simplicial ring and M a simplicial A-bimodule we let M [X] be the simpli-
cial A-bimodule M[X]/M[#]. We let AxM[X] be the new simplicial ring with mul-
tiplication (a,m)(a’,m')=(ad’,am’/+ma’). Let K(AxM[-]) be the functor obtained
by taking the homotopy fiber of the natural map K(AKM [-])—=K(A). Similarly, let
'.[A‘C(Abd\zf [-]) be the functor obtained by taking the homotopy fiber of the natural map
TC(AxM[-])—TC(A). The functors K(Ax M[~]) and TC(Ax M[—]) are homotopy
functors from based spaces to spectra which are both (—1)-analytic in the sense of cal-
culus (for homotopy functors) as defined by Goodwillie in [14].

If for all primes p and n>1 the trace map from K(AxM[S"]) to ’fé(AxM[S"])
is 2n-connected after p-completion then the derivatives of these two homotopy functors
agree at a point (as defined by Goodwillie in [11]). It is not too difficult to show that for
these two functors this also implies that their differentials agree. By analytic continuation
(5.10 of [12]) we can deduce that the trace is an equivalence after p-completion for all
based spaces within the radius of convergence for each functor. Since the functors are
both (—1)-analytic this implies that this is true for all based spaces. In particular, the
p-completed trace is an equivalence for the space S° which is the special case we needed.

In [7], B. Dundas and the author prove that there is a natural transformation from
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K(AxM][-]) to TH(A; M[S'A—]) which is (2n+2)-connected on n-connected spaces.
In [15], L. Hesselholt proves that for n-connected spaces and all primes p, TC(AxM =Dz
is equivalent to STATH(A; M [-])7 in a 2n-range (where 3 is p-completion) by a natural
diagram of spaces. Thus, the objective is to “glue” these two arguments together com-
patibly which we do in §4 using the categorical description of the trace map established
by B. Dundas and the author in [8].

I would like to thank Bjgrn Dundas and Stavros Tsalidis for many encouraging
conversations while working on this paper. Also, I would like to thank Ib Madsen for
inviting me to talk on this result in Aarhus during which several improvements to the
original argument were made. I am especially indebted to Tom Goodwillie for generously
sharing his time and insights with me while I was a Tamarkin assistant professor at
Brown University, and specifically for his help in establishing the p-limit condition and
analyticity for ’I"El(Ax]VI[——])Z (81 and §2).

0. Reduction by work of Tom Goodwillie

We now establish some notation, terminology and a result which will reduce the main
theorem to showing three conditions. Let p be a fixed prime number.

Notation. Our conventions for spaces, connectivity and spectra are the same as
those in [14]. In particular, a map of spaces is called k-connected if each of its homotopy
fibers is (k—1)-connected. The empty space is (—2)-connected, every based space is
{—1)-connected, path-connected spaces are O-connected, and so on. For us a spectrum
(which some authors call a prespectrum) is a sequence {E(n)|n>0} of based spaces
equipped with based maps E(n)—QFE(n+1) (we will assume that all our spectra are
(—1)-connected). A morphism of spectra is a sequence of based maps which strictly
respects these structure maps. Following [14, 5.10] we define the p-completion of a spec-
trum F, written E7, to be the homotopy limit of the tower EAM([p™]) of smash products
with Moore spaces.

Let F be a functor from the category of simplicial rings to spectra. For f a map of
simplicial rings from R to S we write F(f) for the homotopy fiber of F(R) £>F(S ). The
functors F' which we will consider satisfy the following three conditions:

Condition 1. There is some integer b such that for k-connected simplicial ring
maps f, F(f) is (k—b)-connected. In particular, if f is such that |f| is a homotopy
equivalence then the map f. is a weak homotopy equivalence. )

Condition 2. If f is a surjective map of simplicial rings whose kernel I satisfies 12=0
then F'(f) is naturally equivalent to the realization of the simplicial spectra [n]— F(fin)).
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We note that Condition 2 can be modified to say that F'(f), is naturally equivalent
to the realization of the simplicial spectrum [n]— F(f[,))p since each F(f(,)) is a spectrum
bounded below by —1.

We write F(AxM [X]) for F(n) when 7 is the projection AxM[X]—A (sending
(a,m) to a). By Condition 1, the functor F(AxM [—]) from based spaces to based
spaces is a reduced homotopy functor in the sense of [11].

Condition 3. For all rings A, A-bimodules M, the functor F(AxM [-Dp is (-1)-
analytic and satisfies the p-limit axiom as defined in [14, 4.2 and 5.10].

We have the following variation of one of the main theorems of T. Goodwillie’s
calculus of functors.

THEOREM 0.1 (Tom Goodwillie). Let F and G be functors satisfying Conditions
1, 2 and 3. Let n be a natural transformation from F to G such that for all rings A,
A-bimodules M, and n>0, the natural map produced by n from f’(AxM[S”])Z%
é(Ax]\zf [S™)p is at least 2n-connected. Then for any map f: R—S of simplicial rings
such that mo(f) is surjective with nilpotent kernel, the diagram

F(R)—>G(R)

2 2

F(S)—1=G(5)
is homotopy Cartesian (a homotopy pull-back) after p-completion.

Reduction step. By Conditions 1 and 2, one can use the argument in §III of [10] to
reduce to the special case when f is a map of rings having a section (i.e. f has a right
inverse) and whose ideal I is square zero. We briefly recall the steps in this reduction.

Let H be the homotopy fiber of (1), and suppose that H(f) is an equivalence for
surjective ring maps f having a section and a square-zero kernel. We want to deduce
that H(f) is an equivalence for simplicial ring maps f such that only mo(f) is a surjective
ring map having a nilpotent kernel.

Suppose that f: R—S is a surjective simplicial ring map with kernel square zero.
Take a free resolution 5 =S of S (as simplicial rings) and form the fiber product

rR—I>3

Since H preserves equivalences it suffices to show that H(g) is an equivalence. By
Condition 2, H(g) can be computed degreewise and these are given by split extensions
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(having square-zero kernel) since S is free, and thus H(g) is an equivalence by assumption.
By induction applied to the diagrams

R/I"

R
L
R/In-l

we see that H(f) is an equivalence for all surjective maps of simplicial rings with nilpotent
kernel.

Now let f: R—S be a map of simplicial rings such that mq f is surjective with nilpo-
tent kernel. By the diagram of simplicial rings

f

R———S§

Ny

n
ToR —= 1y S

we see that H(f) is an equivalence if H of the two vertical maps are equivalences. Thus,
we are left to consider the case of a simplicial ring R with I a O-connected ideal and
f: R— R/I the quotient map.

In general, if ICR is a k-connected simplicial ideal, then by Lemma 1.1.7 of [10]
there exists a simplicial ideal JCS with J (k+1)-reduced (its k-skeleton is a point)
and a map of simplicial ring-ideal pairs (S, J)— (R, I) such that both S—R and J—T
are equivalences. Observe that if J is (k+1)-reduced then J®J is (2k+1)-connected
since the realization of the diagonal simplicial complex is equivalent to the bisimplicial
realization which is (2k+2)-reduced. If m: J®J—J? is the multiplication map, then
ker(m) is also (k+1)-reduced and so by the short exact sequence

0—ker(m) = J@J = J2—0

we see that J2 is (k+1)-connected when J is (k+1)-reduced. Considering the diagram
of simplicial rings

R ——— Y £

e
J

we see by Condition 1 that H(gs) is (k+1—b)-connected and since H(g;) is an equivalence
this implies that H(g) is (k+1—b)-connected, which implies (again by Condition 1) that

S/
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for I k-connected, H(R—R/I) is (k+1—b)-connected. Thus, by induction, if I is 0-
connected then H(R— R/I) is (n—b)-connected for all n and hence an equivalence.
This ends the reduction step.

Proof of Theorem 0.1. By the reduction step it suffices to show that for all rings A,
A-bimodules M and based sets Y, the diagram
F(AXM[Y]) — G(Ax M[Y))
Tu . (1)
F(A) . G(A)

is homotopy Cartesian after p-completion.

Let X be a based simplicial set. Since AxM[XVS"|=(AxM[X])xM[S™],
the homotopy fiber of F(AxM[XVS")—F(AxM[X]) is naturally equivalent to
F({Ax M[X])x M[S™)). By Condition 2, F((Ax M[X]) x M[S™]), is naturally equivalent
to the diagonal of the bi-simplicial space sending [m], [m'] to F(AxM[X,]) X M| [7:71/]]);'
The same is true for G in place of F' and for each fixed m the natural map induced by
n from F((AxM[X])x M[S™))5 to GUAXM[X,]) x M[S™]); is at least 2n-connected
by assumption. Thus, the map of realizations is also 2n-connected and the diagram

F(AxM[XVS")) —> G(Ax M[X VS™])

F(Ax M[X])) —— G(Ax M[X])

is 2n-Cartesian (homotopy pull-back in a 2n-range) after p-completion for all n0.

This shows that the map 8, F(Ax M [X]);—>61G(Al><]\7[ [X])p induced by 7 is an
equivalence for all based spaces (X,z). By Condition 3, the functors f(Ax]\Zf s
and G(AxM [-])p are (—1)-analytic and satisfy the p-limit axiom. By Theorem 5.10
of [14] we deduce that diagram (1) is Cartesian after p-completion for all (—1)-connected
spaces Y. That is, for all based spaces.

In order to apply Theorem 0.1, we recall that the functor K( -) satisfies Condition 1
by Proposition 1.1 of [20], and Condition 2 by Lemma 1.2.2 of [10]. Actually, one uses 2.7
of [9] to deduce that the diagram on p. 359 of [10] is homotopy Cartesian. Proposition 3.1
establishes Condition 3 for K(-). We show in §§1 and 2 that the functor TC satisfies
Conditions 1-3. Theorem 4.1 establishes the fact that the cyclotomic trace from K to
TC defined in [4] satisfies the conditions of 7 in Theorem 0.1. This will be deduced by
showing that the equivalence of stable K-theory and topological Hochschild homology
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proved in [7] and the p-completed equivalence of stable TC and topological Hochschild
homology proved in [15] can be compatibly combined.

Aside. The careful reader may object at this point since the cyclotomic trace defined
in [4] is not a natural transformation of functors but a natural homotopy class. This
problem can be resolved, for example, by using the definition of the cyclotomic trace
in [3, §2] which uses another model for the algebraic K-theory of an FSP which is naturally
equivalent to one used in [4]. In [8], the cyclotomic trace is defined for ordinary rings by
a natural transformation of functors to spectra (using iterations of the S-construction
for deloopings) and we can equivalently use this model for the cyclotomic trace when we
want to apply [14, 5.10].

1. The analyticity of TC(AXM[—]);

In this section we will show that TC(AxM][—]) satisfies Conditions 1 and 2 and the
analyticity part of Condition 3 for Theorem 0.1. Unless specified otherwise, we will be
using the notation and terminology of [16] and [18]. In particular, for A a ring, we
write A[—] for the FSP sending a space (pointed simplicial set) to the realization of the
simplicial A-module [n]—A[X,]/A[x]. We let S! (instead of G in [16]) be the circle
group and write C, for the subgroup of S! with g elements. We will write R, for the
restriction—the natural map TH(A)C?»" —TH(A)%"* obtained by restricting mapping
spaces to fixed points (written ¢, in [4] and [13]) and F,, for the Frobenius—the natural
map TH(A)C -TH(A)%"* obtained by inclusion of fixed points (written i, in [4]
and [13]). Following [18], for a fixed prime p and natural number n, we will call the
cofibration sequences

TH(R)hg, — TH(R)C7* =2 TH(R) o

the fundamental cofibration sequences (see for example [16, §1] or [18, 2.4.6]). An ob-
servation which we will be implicitly using in Lémma 1.1 and Proposition 1.3 is the
following. If

R VA | ﬂ)Ez—fl—)El_l—?——)El i)E‘()=>|<

is a sequence of spectra such that the homotopy fibers of each f; are k-connected then
holimy F; is again k-connected.

We now establish Condition 1 for TC. Given a simplicial ring R., we define R.[-]
to be the evident FSP determined by X —|[n]— R, [X]].
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LemMA 1.1. If f: R,— 8, is a map of simplicial rings such that |f| is k-connected,
then TC(f) is (k—2)-connected.

Proof. If f: R,— S, is a map of simplicial rings such that |f| is k-connected, then
for all spaces X, f[X]: R.[X]—S.[X] is k-connected (see for example 5.1 of [20]) and
so THp,)(f) is (k—1)-connected for each simplicial dimension [n] and hence TH(f) is
(k—1)-connected. Since homotopy orbits preserve connectivity, for a fixed prime p, it
follows from the fundamental cofibration sequences

TH(R)hc, — TH(R)C»* 2 TH(R) o

that holimg, TH(f)%" is (k—1)-connected. Thus TC(f;p) (which is the homotopy fiber
of 1—F, acting on holimg, TH(f)%") is (k—2)-connected and hence TC(f) is (k—2)-
connected by [16, Theorem 3.1].

Now we establish Condition 2 for TC. What we prove for TC is actually stronger
than Condition 2 since we show that TC always commutes with realizations. We note in
contrast that algebraic K-theory does not, in general, have this additional property.

LEMMA 1.2. For A, a simplicial ring, TC(A.) is naturally equivalent to

[} e TC(Ap)|.

Proof. For each simplicial dimension [k], |[n]—TH (An)|=THj(A.) and hence
|[n] = TH(An)| = TH(A.).

Since homotopy orbits commute with realization, by inducting the fundamental cofibra-
tion sequences we see that

|[n] — TH(An) 7| = TH(A.) %

for all primes p and natural numbers k. In general, inverse limits do not commute with
realizations but the directed inverse limit of functors to connective spectra (of weak CW-
type) which do commute with realizations again commutes with realizations (essentially
because for connective spectra finite homotopy colimits commute with homotopy inverse

limits and lim™ =0 when n>2 for directed inverse limits) and hence
|[n]+— holim TH(An)%* | ih(l)%im TH(A,)%*.
P P

Thus, TC(A,; p), which is the homotopy fiber of 1 — F,, of this inverse limit (see [16, 3.1.1]),
can be computed degreewise and hence by Theorem 3.1 of [16] so can TC(A.).
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Now we examine the analyticity of TC(AMM [-])- We recall from [14, §4] that
a homotopy functor F' is g-analytic if there is some number ¢ such that F satisfies
En(no—q, 0+1) for all n>1. Recall that F satisfies E,(c, k) if X: P(S)—C is any strongly
co-Cartesian (n+1)-cube (every face is co-Cartesian, see [14, 2.1]) such that for all s€ S
the map X' (@)— X (s) is ks-connected and ks>k, then the diagram F(X) is (—c+XZks)-
Cartesian. We simply write E,(c) for E,(c,—1).

PROPOSITION 1.3. If TH(AxM][—]) satisfies En(~n) for all n>1 then for ail
primes p, TC(Ax M [—1)p is (—1)-analytic.

Proof. Since homotopy orbits preserve homotopy fibrations and connectivity,
TH(Ax M[~])sc also satisfies E,(—n) for all finite subgroups C of S!. Induction with
respect to k on the fundamental cofibration sequences shows that TH(Ax M[—])%* sat-
isfies E,(—n) for all n. Thus, holimRPTH(AlxM [<])%* also satisfies E,,(—n) for all n.
Since TC(Ax M[—];p) is the homotopy fiber of 1—F,, acting on this, it satisfies E,(1—n)
for all n. Since p-completion preserves fibrations and connectivity, TC(Ax M =Lp)»
satisfies E,(1—n) also. By [16, Theorem 3.1], the natural map TC(F)—TC(F;p) is

o~

an equivalence after p-completion for all FSP’s F and primes p so TC(AKJVI [-])p also

satisfies E,(1—n).

In order to study the analyticity of TH(AxM[—]) we first establish some notation
for rewriting it into its homogeneous pieces. This rewriting will also be used extensively
in §2.

Notation 1.4. Following [15], we let AVM be the FSP defined by setting AVM (X)=
A[X]VM[X] with multiplication

AVM(X)AAVM(Y) 2 A[X]AA[Y]VA[X|AM]Y VM [X]|AA[Y]VM[X]AM]Y]
L, AIXAY)VM[X NYIVMIXAY] > AVM[X AY).
The first map « is the canonical homeomorphism, the second map 8 is ux,y Vix,yV
rx,y V* and the third map ~ is 1Vfold. The unit in AVM is the composite X 1—XuZl[X ]—
AVM(X). It is straightforward to check that AVM is an FSP.

We define a morphism of FSP’s from AVM to Ax M by
AXVAT[X] 22 A[X] x M[X] 2~ Ax M[X].

Using the canonical homeomorphisms which permute smash products and wedge sums,
we obtain a natural map of cyclic spaces from \/oo,To(A; M) to T(AVM) where
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To.(A; M) is the cyclic subspace of TH(AVM) determined by the a-homogeneous part.
That is,

Ta(4; M) =holim@ot-tse (Fo[S=]A...AF[5%F)),

0€j1<...<ja <k

{M lf tE{j17~~aj¢1}a

- A  otherwise.
We see that for all n>0 the natural inclusion from /o, To(A; M) to T(Ax M) is a map
of cyclic spectra and by Theorem 2.1 of [15] this natural inclusion is an equivalence of
cyclotomic spectra.

PROPOSITION 1.5. Let F be a simplicial object in the category of reduced homotopy
functors from pointed spaces to (—1)-connective spectra such that

(i) F([v]) satisfies E,(c, ) for all »,

(i) F([v])=x for 0Kv<qg—1.
Then |F| is a reduced homotopy functor from pointed spaces to spectra which satisfies
E,(c—q, ») for all 5.

Proof. Let X be a strongly co-Cartesian (n+1)-cube such that X(@)—X(s) is
ks (> »)-connected for all s€ S. By condition (i), F([v])(X) is a (—c+Xk,)-Cartesian cube
of spectra which is a (n—c+ Xk, )-co-Cartesian cube of spectra. Since homotopy colimits
commute and realization (as we are using it here) is a homotopy colimit the iterated
homotopy cofiber is the realization of the simplicial iterated homotopy cofibers degree-
wise. This simplicial spectrum is g-reduced (i.e. does not have cells in dimensions <gq)
by condition (ii) and is (n—c+Xk;)-connected in all other simplicial dimensions—so it
is at least (n—c+q+Xk,)-connected. Thus, |F|(X) is (n—c+g+Xk,)-co-Cartesian and
hence (—c+g+3Xk;)-Cartesian and |F| satisfies E,,(c—q, »).

COROLLARY 1.6. TH(AxM[-]) satisfies En(—n) for all n>1.

Proof. We first note that T, (A4; M) is (a—1)-reduced for all a and hence it is at least
(a—2)-connected. Thus, TH(Ax M) is naturally homotopy equivalent to [], To(4; M)
and it suffices to show that To(A; M[—]) satisfies E,(—n) for all n>1. Fix a. In each
simplicial dimension vza—1, T, (4; M [—])v is naturally equivalent to

X — V HA/\(v+1—a)/\HM/\a Azoo[x/\a]'
01 < <ja SV
The functor X —X®[X "] satisfies E,(c) for any ¢ when n>a and E,(0) when n<a by
the argument of [14, 4.4]. Thus T,(A; M[-]), satisfies E,(c) for any ¢ when n>a and
E,(0) when n<a also since it is the finite coproduct of functors obtained by composing
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X X% X" with linear functors (smashing with another spectrum). By Proposition 1.5,
T, (A; M[-)) satisfies Ey(c) for any ¢ when n>a and E,(0+1—a) when n<a, and hence
E,(—n) for all n>1.

2. The p-limit axiom for TC(A X M[—])

If F is a homotopy functor from spaces to p-complete spectra, then one says that F
satisfles the p-limit axiom if, for every CW-complex X, the mod p homotopy groups
of F(X) are colimits of mod p homotopy groups of F(X,), indexed by the finite sub-
complexes X,CX. To show the p-limit axiom for TC(AVM[-]) we will first make a
series of reductions and observations. To ease our notation we will write T, (or T) for
the functor T4(A; —) (or T(AV-)) from A-bimodules to cyclotomic spectra as defined
in Notation 1.4. We also recall that after p-completion, the natural map from TC to
TC(—;p) is an equivalence. Thus, it suffices to show that TC(—;p) satisfies the p-limit
axiom and we will write the functor TC(AV—;p) simply as TC(p).

GENERAL RESULTS 2.1. Let k be relatively prime to p. Then:
(a) Twpn is at least (kp™—1)-connected.

(b) T =V 50 TEP".

(c) Fp:TSw —Tor?,

kpn kpn
r C re . R
(d) Rp:Tg;’,’n —>Tk£n_i (where p~! implies *).

(e) For all n there is a natural cofibration sequence of spectra

Cpr Rp Cor—1
(Tkp")thr - Tk;;n — Tk;'n—l .

(f) Let trp be a representative for the transfer map from (Tepr)nc,. to (Tkpn)kcpr_l .
Then the following diagram of cofibration sequences commutes up to homotopy:

C ™ Rp C -1
(Tkpn)hC,ye Tiorm T, o)

[ I I

C . R Cr—2
(Tkp")hcpr-—l _)Tk;;: ! _p>T P

g) There is a natural map from (STyrpn)pst to the homotopy inverse limit of
P

(Tkpn)nc,- obtained from the transfer maps tr, which is an equivalence after taking p-

completion.

Proof. Part (a) follows from the fact that Tgpn is (kp™—1)-reduced, (b)-(e) follow
from §§2.1 and 2.2 of [15]. We obtain (f) from Lemma 3.5 of [16] and (g) (in our
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generality) is due to Goodwillie and can be found as Lemma 4.4.9 (or Remark 4.4.10)
in [18].

For k relatively prime to p, we write T(k) for /.o Txpr and hence T:\/(k,p)le(k),
and by (c) and (d) this decomposition respects both structure maps F, and R,. We
note that by (a), T(k) is at least (k—1)-connected. Since homotopy orbits preserve
connectivity, (a) and induction with (e) imply that TkC;Z is at least (kp™~"—1)-connected

for all k, n and r, and so T(k)C> is also at least (k— 1)-connected.
LEMMA 2.2. TC(p)=[holimp, T |*Fex\/, \_, [holimp, T(k) "]

Proof. By (a) and (e), holimg T(k)%" is at least (k—1)-connected, and hence
[holimg, T(k)C»" P> is at least (k—2)-connected. Thus, (using (b)) the following natural
maps are weak equivalences:

hF,
[holim TCP’]hF”z [holim V/ T(k)CP']hF” - [holim I I T(k)c"r] )
R R _ R
P P (k,p)=1 P (kp)=1

V  [holim T(k)Cer "7 =, holim T(k)C+" "
(k»P)=1[ Ry ] (k,l,:)I=1[ Ry ]

This proves the lemma since homotopy inverse limits commute.

To prove the p-limit axiom, it suffices to show that TC(p) commutes with filtered
direct limits after p-completion. Since homotopy colimits commute, we see by Lemma 2.2
that

holim TC(p) ~holim \/  [holim T(k)%"]***
(kpy=1 Fe
. . C.r1hFp
~ \/ holim[holim T (k)% |7,
(k.p)=1 By
and hence it suffices to show that [holimg, T(k)C>"]"f> satisfies the p-limit axiom for all
fixed k relatively prime to p. Thus, we now fix k.
We now recall an observation of Goodwillie (see for example 3.1.1 of [16]) which

allows us to interchange to roles of R, and Fj:

[hg)%im T(k) % " ~ [h(}}im T(k) %",

Copr

LEMMA 2.3. For each fized n, the functor holimp, T satisfies the p-limit axiom.

Proof. We will induct on n. First, the case n=0. By observation (e), we have
cofibration sequences
Cyr R
(Tr)ne,r = Ty —> *,
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and since homotopy inverse limits preserve cofibration sequences of spectra we get by
observations (f) and (g) a map

(£Tk)ns1 — holim (Ti)ac,- = holim TS

which is an equivalence after taking p-completions. The functor (XTx)s: commutes
with direct limits because T} does and homotopy colimits commute.

Since the p-completion of a functor which satisfies the limit axiom satisfies the p-
limit axiom (bottom of [14, p. 328]), we see that hOlimeTSp " satisfies the p-limit axiom.
Now assume that the lemma is true for the case n—1. We again obtain a cofibration of
spectra

h(t)lim (Tepr)hc,r = hohm T, ”r L, hohm Ty ”,, 1
Tp

The left-hand term satisfies the p-limit axiom since it is equivalent to (XTgpn)ps1 after
p-completion and Tgp» commutes with direct limits. The term on the right is equivalent
to the case n—1 by cofinality and hence satisfies the p-limit axiom. Since p-completion
preserves cofibrations of spectra and homotopy colimits commute we are done.

Since TS;;; is at least (kp™~" —1)-connected, for a fixed r, Vn>OTkp" —>Hn>0Tkpn,
and thus,

. ~1hR, . Cpr1hRp
[holim T(k) %" o [h(%;mn\;OTk;;n]
[hohm H Tkpn] [H holim Tkpn] p.
Fo n20 n20

If we write H,, for the functor holimpg Tkpn then the action of R, takes H,, to H,_; and
we get

[hohm T(k)%r "* [H H, ] = holim Hy,.
n20 P

We still need to know if we can pass homotopy colimits pass this homotopy in-
verse limit after p-completion. The fiber of HniHn_l is naturally equivalent to
(XTkpn)ns: after p-completion which is at least kp"-connected. Thus, the natural map
from holimp, Hy, to H, is at least kp™-connected after p-completion. By Lemma 2.3 the
functors H,, satisfy the p-limit axiom for all n and hence holimpg, H,, satisfies the p-limit
axiom also.
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3. The functor K(A; M) and the analyticity of K(AxM[-])

We need to recall some of the constructions and results of [7]. We let A be a ring, P its
exact category of finitely generated projective right A-modules and M its exact category
of right modules.

Definition 3.1. For M an A-bimodule, we define K(A; M) to be

K(A4;M)=0Q

H Homs,M(é, 5®AM)
CeS.P

where S is Waldhausen’s S-construction for algebraic K-theory (see [21]). We note that
K(4;0)~K(A4), K(A; A)=2K(End(P)) and that K(A; —) is a functor of A-bimodules. We
also note that K(A; M) is the usual algebraic K-theory for the exact category with objects
the pairs (P, ) consisting of PP and a an A-module homomorphism from P to P@s M
with morphisms

HOIII((P, a)’ (Q:ﬁ)) = {fe HOI’IIA(P, Q) I Bof= (f®idM)°a}'

A sequence (P",a")—(P,a)—(P’,d') is exact if and only if P’—P—P’ is an exact
sequence in P.

We extend K(A; —) to simplicial A-bimodules degreewise. That is, for M, a simplicial
A-bimodule, K(4; M.) is the realization of the simplicial space [n]—K(A;M,). Since
| Iges.» Homg, A1(C, C®4 M)| is connected, K(A; M.,) can equivalently be defined as the
loop space of the realization of the associated bi-simplicial set. By the realization lemma,
K(A; M [-]) is a homotopy functor: taking homotopy-equivalent spaces to homotopy-
equivalent spaces.

We define K(A; M[X]) to be the (homotopy) fiber of the natural retraction from
K(A4; M[X]) to K(A; M[¥])=K(A). Since K(A4;M[X]) is an infinite loop space and the
map in question is a map of infinite loop spaces, we see that K(A; M [X]) is weakly
homotopic to K(A)xK(A4; M[X]). We note that K(A; M[X]) is naturally equivalent
to limy, 00 Q" V5 eSS")P(HomsS")P(P’ P))"[X] since this is the underlying space of the
cofiber (as spectra) of the natural section from K(A) to K(4; M[X]).

We are interested in the functor K(A; M) because of its relationship with K(Ax M)
which we now recall from [7]. We let K(Ax M) be the fiber of the natural map from
K(Ax M) to K(A) produced by the ring homomorphism sending (a,m) to a. This is
a map of infinite loop spaces with a section so K(Ax M) is weakly homotopic to
K(A)><I~((AI><M ). We write B,M for the bar construction naturally considered as a
simplicial A-bimodule; in particular K(A; B, M)=K(4; M [S1)).



RELATIVE ALGEBRAIC K-THEORY AND TOPOLOGICAL CYCLIC HOMOLOGY 211

THEOREM ([7, 4.1]). For any simplicial A-bimodule M, there exists a natural weak
homotopy equivalence

W(A, M):K(A;B.M) S K(Ax M)
which factors to give a homotopy equivalence U(A, M) from K(A,B.M) to K(Ax M).

PROPOSITION 3.2. The homotopy functor X —K(A; M [X]) is 0-analytic. Thus, the
homotopy functor K(Ax M[—)) is (—1)-analytic since it is equivalent to the composition, of
the suspension functor followed by the 0-analytic functor K(4; M [-]). Since p-completion

o~

preserves analyticity, K(Ax M [~1)p is also (—1)-analytic for all primes p.

Proof. We show that for each ¢ the functor \/pegep(Homgep(P,P)) [—] takes
strongly co-Cartesian (n+1)-cubes to (g+n+X;z;)-co-Cartesian cubes. By taking ¢
of these and the limit with respect to ¢ we will obtain an (n+%,z;)-co-Cartesian dia-
gram of spectra which is equivalent to a (X;z;)-Cartesian diagram of spectra (see [14,
Remark 1.19]) and hence the result.

Let X be a strongly co-Cartesian (n—+1)-cube of spaces. We may assume that
the natural maps are inclusions of sub-simplicial sets. Suppose also that the maps
X (2)— X ({i}) are z;-connected. Thus, the maps from X'({0, ...,n}—{i}) to X({0, ...,n})
are also z;-connected. For G any abelian group, the functor é[—] is linear and pre-
serves connectivity, thus G[X] is a strongly Cartesian cube with Glx({o,...,n}—{i})]
to G[X({0, ...,n})] being z;-connected. By Theorem 1.4 of [14], we see that G[X] is an
(n+%;;)-co-Cartesian cube.

If X is a simplicial subset of Y, then the cofiber of the inclusion map is just the
degreewise quotient Y,,/X,,. Thus,

cofiber( \/ (Homgsp(P, P)) [x])~ _V  cofiber((Homgsp (P, P)) [x))
PesipP Peslp

which is (g+n+X;z;)-connected (since a g-reduced simplicial space of t-connected spaces
is (g+t)-connected).

4. Connectivity of the p-completed relative trace

For X a pointed set and E a spectrum we let X AFE be the new spectrum determined
by (XAE),=XAE,. For a pointed simplicial set X, we let X.®E be the resulting
simplicial spectrum obtained by [n]— X, AE.

Let A[l] be the simplicial set Homa(—,[1]) and let S! be the simplicial set
A[1]/8A[1]. Thus, the realization of S! is the standard CW-decomposition of the circle
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with one vertex. One can realize the rotation action of S by a simplicial model by ob-
serving that S* is a cyclic set (see for example [17]). We note that S? is a based simplicial
set with basepoint 0 and that S7 (obtained by adding a disjoint basepoint +) is a based
cyclic set. We note that M[S?] is the bar construction B, M of the abelian group M and
that M [S1] is the cyclic bar construction NYM of M. We recall that if Y. is a cyclic set
then (using the diagonal) there is a simplicial map St AY, Z%Y, which realizes the usual
circle action on |Y|. For any spectrum E we have a split cofibration sequence

S°®FE— SI®E - S'QF

obtained by identifying + with 0.

We observe that S*®TH(A; M)~T;(A4; M) by extending the simplicial inclusion
map TH(A; M)—T1(A; M) to a free cyclic one. We let o be the natural composite map
of spectra (in the homotopy category)

TH(Ax M) ~TH(AVM) -5 Ty (A; M) ~ S @ TH(4; M) = S'® TH(4; M),

where p is the projection map.

THEOREM 4.1. For M an m-connected simplicial A-bimodule the cyclotomic trace
K(Ax M) 2 TC(Ax M)

is 2m-connected after p-completion for all primes p.

Proof. We consider the diagram

K(Ax M) tre TC(Ax M)
x Tes
TH(Ax M)
S'®TH(A; M),

where tr is the usual Dennis trace map and res is the restriction map. The triangle is
known to commute up to homotopy (see for example [18, §2.6]) and the right-hand com-
posite aores is 2m-connected after p-completion by the main result of [15] (see the proof
of the result). The natural map 7 from S'@ TH(A; M) into TH(A; M[S'])=TH(4; B.M)
(obtained by including wedges into products) is an equivalence and by Theorems 3.4
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and 4.1 of [7], the spectra K(Ax M) and TH(A; B.M) are (2m+2)-equivalent by a natu-
ral map. Thus, once we establish that the composite neactr actually is a 2m-connected
map we will be finished. The rest of the paper is devoted to establishing this fact.

Let 7 be the composite map
SL@TH(A; M) =T (A; M) - TH(Ax M).

Thus, 7 is 2m~connected and aec7~n. By the Blakers-Massey theorem, the natural
map (obtained by sending wedges to products) from Si@fi(A; M)—K(A;NYM) is at
least 2m-connected. The natural fibration NYM-SBM has a section o defined by
o(mi,...mp)=((-1) X" m;,m1,...,m,). We also write o for the natural map from
K(A; BM) to K(A; N M) defined by K(A; o).

PROPOSITION 4.2. There exists a natural map (in the homotopy category)
®:K(A;NYM) - TH(Ax M)
such the following two squares commute up to homotopy:
K(Ax M) —%—TH(Ax M) <— S} ®@TH(A; M)
lz 1 T@ (2) TSL@B
K(A;BM) ——K(4; NYM) <—— S1@K(4; M),

where (3 is the natural transformation K(R;-)—>TH(R;-) of [7, 3.4]. Though we will not
need it, ® will also be 2m-connected and defined by a sequence of natural S'-equivariant
maps.

We note that once we have established Proposition 4.2 the result will follow from

the following diagram (all unlabeled figures commute by naturality):

T (~2m)

K(Ax M) —">TH(Ax M) S!@TH(A; M)

iz 1) ]cp (2m)  (2) Tﬁ@ﬁm)

~ ~ ~ ~ s1 ~2
R(4; BM) —2—> R(4; NYM) <22 g1 oR(A; M) 2252, 61 9 TH(4; M)

T : lﬂ

~ ~ ~ 1 ~
R(4;BM)~—=2"  q1gR(4; M)~ 2220 L sl TH(A; M)

Reduction. It is convenient to restrict our attention to free modules. It follows
by cofinality and Nakayama’s lemma that the homotopy types of both K (Ax M) and
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K (A; B.M) are not changed if we use only the subcategory FCP of free modules (see
for example p. 697 of {7]). We can also assume that F is an exact category of finitely
generated free modules with one object for each nonnegative integer.

TH of exact categories. In order to construct ®, we will be using the techniques
developed in [8] (also outlined in §3.2 of [18]). For A a small category, the cyclic nerve,
N®A, is the cyclic set

[fl— J] Homua(A:,Ao)xHoma(Az, A1)x...xHoma(Ao, 4r)
Ao,...,AnEA

with operators like those for Hochschild homology. For C a small linear category, we can
define a cyclic spectrum TH(C) where we use the Hom¢-abelian groups to form FSP’s
with several objects. In particular,

[p]—~  holim Map(S™A...AS*",

T0seros@n ETXH
(Hom (A1, Ao)) [SE]A...AHom 4(Ao, As) [S7°]),
Agye., Ap €A

where I is the category of finite nonempty sets having one object for each isomorphism
class and for z€1I, 5% is the sphere indexed on z. The operators are again like those for
Hochschild homology (see [8, 1.3.6] for more details). There is a natural map from N¥C
to TH(C) given by sending ag X ... X @, t0 agA...AQp,.

We can incorporate the S-construction of [21] into our construction TH as follows.
For C an exact category, each S,C can also be considered as a category with the mor-
phisms the natural transformations of functors. We can further consider this as an exact
category by declaring a sequence C”—C—C" to be exact if the associated sequences
for all i<j are exact as sequences of C. With these conventions, we can consider S.C
not only as a simplicial set but as a simplicial category or even as a simplicial exact
category. We consider the composed functor TH(SP). This is a cyclic simplicial space
whose realization is naturally an S'-space by first realizing the simplicial direction and
then giving the realization of the resulting cyclic space its usual §'-action. We list below
several propositions whose proofs can be found in [8].

FacTs 4.3. Let A be a ring, M an A-bimodule and P the exact category of
finitely generated projective right A-modules. We will also write M for the functor
HOmA(—, —®AM).

(1) [8, 2.1.5] If we consider A as a category with one object *, then the natural
linear functor from A to P (given by sending * to AE€P) produces a homotopy equivalence
TH(A, M)—-TH(P, M).
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(2) [8, 2.1.3] For all k>0 there is a natural homotopy equivalence
ITH(P, M)| = Q% TH(S® P, M)|.
(3) [8,2.2.3] For all k>0, the natural map by degeneracies
THo(S®P, M) 2%, TH(S®)P, M)

is 2k-connected.
(4) [8,2.1.6] The trace map from K(A) to TH(A) can be recovered by the composite

K(4) =QISP| 5 QTHo(SP)| - QITH(SP)| = [TH(P)| < |TH(A)|.

(5) 8, 2.1.1] The inclusion functor gives an equivalence TH(F)=TH(P) and the
trace map factors up to homotopy through the K-theory of F via the commuting diagram

K(A) =Q|SP| —+ Q|THy(SP)| — Q|TH(SP)| <=— |TH(P)| <=~ |TH(A)|

o

QISF| —— QTHp(SF)| — QITH(SF)| <=— [TH(F)| <=— |TH(4)|.

Suppose that we have a subcategory tC of C with the same set of objects and whose
morphisms are always isomorphisms. Note that NgtC is naturally isomorphic to C and
that N.tC can also be considered as a simplicial linear category with morphisms the
appropriate commutative diagrams.

LEMMA 4.4 (after [21, 1.4.1]). The natural maps by degeneracies N¥(C)—N(N,tC)
and TH(C)—->TH(N.tC) are homotopy equivalences.

Proof. We do only the statement for TH as the other is similar. By the realization
lemma, it suffices to show that TH(C)—>TH(N,tC) (given by s=TH(sg ... $¢)) is an equiv-
alence for all n. Fix n. The map s is a section to d=TH(dp ... dp) and thus it suffices to
show that sod is homotopic to the identity. This composite is equal to the map induced
by the linear functor which takes A<=t ... <2~ A, in N,tC to A,=...=A,. Since this
functor is naturally isomorphic to the identity we are done by 1.6.2 of [8].

Now we define an inverse to the first equivalence in Lemma 4.4. We define a simplicial
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map ¢ from the diagonal of N¥(N,tC) to N¥(C) as follows:

T 7o 7 7. Yi-1 ¢ i Fn T
Ag Ay — A; Ag
= ~~ PRV o ~

Yi— i n
App<L—Ap; <2— ... L Ag <L o <22 A0

0
lal(o) lal(l) lal(i) lal(o)
laﬂ (0) lan(l) lan (7') lan(o)

Ano A A, Ano
—— —— —~— ——
l¢
Ao Fo An1 by An_12 b .. Lot A fn Apyo,
Yolan(1) ... ar(1)] 7! ifi=0,
Gi= [an_i“(i)...al(i)]'yi[an_,-(i—f—l)...al(i+1)]‘1 if1<ig<n-1,
a1(n)vn if i=mn.

1t is straightforward to check that ¢ is a simplicial map and that the composite N (C) Lee,
NCy(N.tC)ﬂNcy(C) is the identity. Thus, ¢ is a homotopy inverse to the inclusion by
degeneracies.

A key observation for the commuting of diagram (1) is that when C is a groupoid
(every morphism is an isomorphism) then the diagram

N.C—L=NyN.C

la ldeg
NYC <2 N¥N.C
commutes where “1” is the map which takes every object of a category to its identity

endomorphism as an element in N§¥ and o is the map defined in Proposition 4.2. Observe
that by Facts 4.3 (4) one can factor the trace map through the cyclic bar construction
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using the natural commuting diagram

Q|SP| —L— QINFYSP| —— Q|TH,(SP)|

ldeg ldeg

QINYSP| —= Q|TH. (SP)|.

On the relationship of K(Ax M) and K(A; M). Now we recall some of the details
used in [7] to establish the relationship between K(Ax M) and K(A4;B.M) in order to
obtain a similar result for TH. We can consider F, as a subcategory of Faxps with all of
the objects (one for each natural number), but having only the morphisms (3,0). Note,
however, that for g>>1 the subcategory S;F4 of SqFaxnm does not have all the objects.

For short, write B=AX M and note that as an A-module B=A®M. For q,¢' >0
we get

Homp(A?®4 B, AY®,4 B) = Hom (A9, AY®, B)
>~ Hom4 (A%, AY®4(AGM))
=~ Hom 4 (A, A?)®Hom 4 (A9, A @4 M).

We will write a morphism of Fa as as a pair (a, 8) via this natural identification.

Let U be the exact functor from F4, as to itself defined by the identity on objects and
U(a, B)=(a,0). It is a retraction (UU=U). Recall that SqFaxn is a (full) subcategory
of the functor category (Fax M)A’[’*"] and we let §,,]—'A,< w be the image of SqF 4wy under
the endofunctor

UAT: (F g )29 S (Fppeng )29,

Let 7 be the class of isomorphisms of the form (1, 3). These are precisely the morphisms
which U takes to the identity maps. The functor F4— Faxar, given by extension of
scalars, induces a bijection of the sets of isomorphism classes of objects ([1, I11.2.12}).
This shows that we may choose a common skeleton category for the categories F4 and
UZFaxm, and more generally, that (when this is done) SF4 and gAAK » have the same
set of objects. It follows that there is an isomorphism of bisimplicial sets

N*tngxM = H B*HomSMA(F, F@AM)
FE]:A

Every object C of SqFawm is t-isomorphic to an object of gqux M, namely
Sq(U)(C). This follows from the fact that in Fa, s every short exact sequence splits.
(Every filtered object C is a split object, and so its isomorphism class is determined
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by the isomorphism classes of its subquotients C(i+1/), 1<i<g.) If  is an isomor-
phism from C to S,(U)(C) then, putting 7=Sq(U)(n), 7~ 'on is a t-isomorphism be-
cause Sq(U) (7~ on)=Sq(U)(7) 1Sy (U)(n)=n"'efj=1. Thus, N.tS;Fax s is equivalent
to N.tSqFawar and we obtain

K(Faxn) = QSFann| = QUNLtSFauae| 20| [ B.Homgz, (F, FoaM)
FES}-A

=K(Fa;B.M).

LEMMA 4.5. There is a commuting diagram of equivalences:

TH,ngKM = TH.SFawm

T

TH,N.tngKM —=» TH.N.tSFaxm,

Proof. The vertical maps are equivalences by Lemma 4.4. Since N,t§q.7-'AD< M s
simplicial homotopy equivalent to N,tS;Faxap by linear functors and THy, is functorial
for all [p], the realization lemma tells us that the bottom map is a homotopy equivalence
and hence the top one is also.

Definition. We define ® to be the natural map of cyclic spaces from K(A; NM) to
TH(Ax M) as follows. Let ®: K(A, NYM)—QTH(SF4xr) be the map determined by

&,: || Homss(F, FoaM)™*" - TH.SFaxm,
FeSF
(F; 00, oy o) = (1, a0) A AL, @),
(1,ai)GHom‘ngxM(F_®A(AKM),F@A(AD(M)).

We observe that ® can be written as a composite

H NcyHomSMA(F, F—®AM) —> Ncy(ngxM) — TH(ngKM).
F'ES}-A

We define ® (in the homotopy category) by the diagram
R(A; NYM) 2 QTHE Faar) = QTH(S Fanar) <= TH(Ax M)

(where the first equivalence is by Lemma 4.5 and the second is by Facts 4.3).
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Proof of Proposition 4.2. We first show that the following natural diagram commutes
(up to homotopy):

tr o~

K(Ax M) TH(Ax M)

oo b

K(A4;B.M) —Z=K(A;NYM).

By Lemma 4.4 and Facts 4.3 (5), it suffices to note that the following diagram commutes
(by inspection):

degol

N tSFawns NN SFanns

I s
I B.Homgz,(F,F®aM) o _ ]I N¥Homgz,(F,F®iM).
FeSFa FeSFa

We now establish that the following natural diagram commutes up to homotopy:
TH(Ax M) <—— S} @TH(4; M)

T@ (2) Ts}rcaﬂ
K(A4; NYM) <— S1K(4; M).

For each ¢>0 and F, Q€S,F, we obtain group homomorphisms

HomquA(F, Q@AM) - Hom‘gquxM (F@A (Ax M), Q@A (AxM)) (ar(0,0)),
Homs, 7, (F, @) — Homg_, . (F@a(AxM),Q04(AxM)) (B (8,0)).
These homomorphisms produce maps of simplicial spaces from TH(S,F,M) to

TH(’qu]-'AD< u) which are natural with respect to the S-operators and hence assemble
to give a map of bisimplicial spaces ¢(k} for each k>0

TH(S®F, M) 2% THE™ Farn).
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We recall that

K(AM)=1mQ* \ Homgw,(F,F®4M),
k' Festg,
THo(S® Fa; M) =holim Map(5%, V (Homgq o, (F, F®a M)) [5%])
i) @ Homs(k)MA(F,F—®AM)’
FeS® r,
~(k)
THo(S "Faxnr)

_— M T
_hgg}n Map(S?, . ~\(/k) (Hom's’(")}‘AxM(
FeS " Fu

_(Fea(Ax M), Foa(Ax M)).

Foa(Ax M), Foi(AxM))) [5%])

=, -
B g(%) Homs(k)fAK
FeS " Fa

The map 3 in (7] from I~((A; M) to limy QFTHo(S®) Fy; M) is given by the natural
map from the wedge into the direct sum of abelian groups and then taking limits with
respect to iterations of the S-construction. Thus, composition with ¥, up to natural
homotopy equivalence, is the map from R(A; M) to limy, QFTH, (§( ).7-',4,( M) determined
by the map (o (0, @)) and the inclusion of the wedge into the direct sum. We let 3’ be
the map from I~((A; M) to limg QkTHo(g(k)foM) determined by the map (ar(1,a))
and the inclusion of the wedge into the direct sum. The maps 103 and 3’ do not produce
homotopy-equivalent maps to Q’“THO(g(k)f aw M) but they are homotopy equivalent after
composing with the projection to Qkﬁ(g(k)fo M)

For k>0 we let (k) be the composite map

Si@deg
e —

~(k ~(k — ~(k
! ®THo (8™ Fanas) §' ®THE Farenr) — SLTHE P Farenr)

—— ~(k
< THE Y Fann)-
Using the above remarks, we have a natural diagram (commuting up to homotopy)

e °(S ®o) .
timg QFTHE O Fa e pr) o S1 @limy, Q¥ THy (V) Fy; M)

Icp TSi@ﬁ

K(A; NYM) deg St @K (4; M)

since ®odeg=p(St®F') and ST B ~SL (o).



RELATIVE ALGEBRAIC K-THEORY AND TOPOLOGICAL CYCLIC HOMOLOGY 221

Let A be the category with one object and morphisms the elements of A. We obtain
a commuting diagram

TH(Ax M) z SI®TH(4; M)

: :

— evo(S8Y)
PTHEE Farn) L S @QFTH(S™ Fa; M)

St @®limy QFTHo(S™ Fa; M).

The vertical arrows are equivalences by Proposition 4.2 and Lemma 4.5, and the com-
muting (up to homotopy) of (2) follows.
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