Acta Math., 173 (1994), 259-281

The distortion problem

by
EDWARD ODELL(}) and THOMAS SCHLUMPRECHT(z)
University of Texas Texas ABM University
Austin, TX, U.5.A. College Station, TX, U.S.A.

1. Introduction

An infinite dimensional Banach space X is distortable if there exists an equivalent norm
|-] on X and A>1 such that for all infinite dimensional subspaces Y of X,

sup{Jyl/|z|:y,2€ S(Y;5 |- D} > A, (1.1)

where S(Y;([-[|) is the unit sphere of Y. R.C. James [11] proved that I; and ¢y are
not distortable. In this paper we prove that I is distortable. In fact we shall prove
that I, is erbitrarily distortable (for every A>1 there exists an equivalent norm on Iy
satisfying (1.1)).

The distortion problem is related to stability problems for a wider class of functions
than the class of equivalent norms. A function f:S(X)—R is oscillation stable on X if
for all subspaces Y of X and for all £>0 there exists a subspace Z of Y with

sup{|f(y)-f(2)|:9,2€ 8(2)} <e. (1.2)

(By subspace we shall mean a closed infinite dimensional linear subspace unless other-
wise specified.) It was proved by V. Milman (see e.g., [28, p. 6] or [26], [27] that every
Lipschitz (or even uniformly continuous) function f: S(X)— R is finitely oscillation stable
(a subspace Z of arbitrary finite dimension can be found satisfying (1.2)). V. Milman also
proved in his fundamental papers [26], [27] that if all Lipschitz functions on every unit
sphere of every Banach space were oscillation stable, then every X would isomorphically
contain cg or I, for some 1<p<oo. Of course Tsirelson’s famous example [38] dashed such
hopes and caused Milman’s paper to be overlooked. However Milman’s work contains
the result that if X does not contain ¢p or I, (1<p<oo) then some subspace of X
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admits a distorted norm. Thus the general distortion problem (does a given X contain
a distortable subspace?) reduces to the case X=1I, (1<p<o0).

For a given space X, every Lipschitz function f: S(X)—R is oscillation stable if and
only if every uniformly continuous g:S(X)—R is oscillation stable. Indeed if such a g
were not oscillation stable then there exist a subspace Y of X and reals a<b such that

C={yeS(Y):g(y)<a} and D={yeS(Y):g(y)>0b}

are both asymptotic for Y (C is asymptotic for Y if C.NS(Z)#& for all subspaces Z of
Y and all £>0 where C,={z:d(C, z)<e}). Since g is uniformly continuous, d(C, D)=
inf{|lc—d|[:c€C, deD}>0 and so f(z)=d(C,z) is a Lipschitz function on S(X) that
does not stabilize in Y.

If C and D are asymptotic sets for a uniformly convex space X with d(C,D)>0
then X contains a distortable subspace. For example, the norm |-| on X whose unit ball
is the closed convex hull of (AU—AUS§Ba X) is a distortion of a subspace for sufficiently
small é and any choice A€ {C, D}. If X=cg or I, (1<p<00), then by the minimality of
X one obtains that every uniformly continuous f: S(X)—R is oscillation stable if and
only if S(X) does not contain two asymptotic sets a positive distance apart. If X=[,
(1<p<oo) then this is, in turn, equivalent to X is not distortable.

T. Gowers (8] proved that every uniformly continuous function f:S(co)—R is os-
cillation stable. Every uniformly continuous f:S(l;)—R is oscillation stable if and
only if I3 (equivalently l,, 1<p<o0) is not distortable. This is seen by considering the
Mazur map [25] M:S(l1)—S(l2) given by M(:z:,-)g“;1=((signzi)\/|?,-_|):1. M is a uni-
form homeomorphism between the two unit spheres (see e.g., [32, Lemma 1]). Moreover,
since M preserves subspaces spanned by block bases of the respective unit vector bases
of Iy and I, C is an asymptotic set for /; if and only if M(C) is an asymptotic set for I,.

Gowers theorem combined with our main result and that of Milman’s yields

THEOREM 1.1. Let X be an infinite dimensional Banach space. Then every Lip-
schitz function f: S(X)—R is oscillation stable if and only if X is co-saturated.

(X is co-saturated if every subspace of X contains an isomorph of ¢p.)

In §2 we consider a generalization of the Mazur map. The Mazur map satisfies for
h=(h;)€S(l;)* with h finitely supported, M (h)=z where z€S(l;)* maximizes E(h,y)=
3, hilogy; over S(I2)*. Furthermore in this case h=2*ox where z* is the unique support
functional of  and - denotes pointwise multiplication of the sequences z and z*. These
facts are well known. We give a proof in Proposition 2.5.

The generalization is given as follows. Let X have a 1-unconditional normalized
basis (e;). This just means that |||z|||=|z|| for all z=}_ a;e;€ X where |z|=)" |aile;.
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We regard X as a discrete lattice. cgo denotes the linear space of finitely supported
sequences on N. Thus X Ncgo={z€X : suppz is finite} where supp(d_ a;e;)={i:a;#0}.
For BCN and =) zie;€X we set Bx=)_, 5 zie;. We often write z=(z;). L is a
particular instance of such an X and we use the same notational conventions for /.

The generalization Fx of the Mazur map is defined in terms of an auxilliary map, the
entropy function E: ({1 Ncgo) X X — [—00, 00) given by E(h, z)=E(|h|, |z|)=Y_; |hi|log |z
where h=(h;)€l;Nego and z=(z;) € X under the convention 0log 0=0. Fix h€l; Nego and
B=supp h. Then there exists a unique z=(z;)€S(X) satisfying

(i) E(h,z)3>E(h,y) for all yeS(X),

(ii) supp h=suppz=B,

(ili) signz;=sign h; for i€ B.

This unique z we denote by Fx(h) and we set

Ex(h)=E(h, Fx(h))=max{E(h,y):y € S(X)}.

Indeed the function E(h,-): {x€S(X)*:supprCB}—[—00,0] is continuous taking
real values on those z’s with supp z=DB and taking the value —oc otherwise. Thus there
exists £€ S(X)* satisfying (ii) and E(h,z) > E(h,y) if y€ S(X)*, supp ygB. Since (e;) is
1-unconditional and E(h,y)=FE(h, By) for all y€ X, we obtain (i). (iii) is then achieved
by changing the signs of z; as needed. The uniqueness of z follows from the strict
concavity of the log function. If suppz=suppy=B and z#y then E(h, 1(jz|+y|))>
LE(h, =)+ L E(h, o).

We discovered the map E in a paper of Gillespie [7] and we thank L. Weis for bringing
that paper to our attention. A similar map is considered in {37]. As noted there other
authors have also worked with this map in various contexts ([20], [21], [13], [30], [36],
[14]). The central objective of some of these earlier papers was to show that elements of
S(11) could be written as z*ox with ||z*||=||z||=1. Our additional focal point is the map
Fx itself. For certain X, Fx is uniformly continuous. In general Fx is not uniformly
continuous, but retains enough structure (Proposition 2.3) to be extremely useful in §3.
In addition it is known (e.g., [37, Lemma 39.3]) that whenever z=Fx(h) there exists
z*€S(X*) with z*ez=h.

We prove (Theorem 2.1) that if X has an unconditional basis and if X does not
contain {7, uniformly in n, then there exists a uniform homeomorphism F: S(l;)— S(X).
We prove this by reducing the problem, this follows easily from the work of [6] and [23],
to the case where X has a l-unconditional basis and is g-concave with constant 1 for
some g<oo. X is g-concave with constant My(X) if

(X:; Hz"ll")l/q < M.,(X)’ (é |a;=‘|q)1

/e
(1.3)
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whenever (2*)7_, CX. The vector on the right side of (1.3) is computed coordinatewise
with respect to (e;). In this particular case the uniform homeomorphism F' is the map
Fx described above (see the remark before Proposition 2.9).

One way to attack the distortion problem is to find a distortable space X with
a l-unconditional basis and having say M,(X)=1 and possessing a describable pair of
separated asymptotic sets. Then use the map Fx to pull these sets back to a separated
pair (easy) of asymptotic sets (not easy) in S({1). Our original proof that [; is distortable
was a variation of this idea using X =T7, the dual of convexified Tsirelson space. However
much more is possible as was shown to us by B. Maurey. Maurey’s elegant argument is
given in §3 (Theorem 3.4). We thank him for permitting us to include it in this paper.

In §3 we use the map Fx for X=85*, the dual space of the arbitrarily distortable
space constructed in [34] (see also [35]). As shown in [10] and implicitly in [34], [35] this
space contains a sequence of nearly biorthogonal sets: AxCS(S), A; CBa(S*) with A
asymptotic in S for all k. By “nearly biorthogonal” we mean that for some sequence ¢; | 0,
|75 (25)] <Emink,5) if k#J, 2§ €A}, z;€Aj, and Af (1—¢&x)-norms Ay. The latter means
that for all z; € Ay there exists zj € Ay with z3(zx)>1~¢r. The particular description
of these sets is used along with the mapping Fs- to show that the sets

Cr={z€ly:|z| = (|z}ozk|/ |z} ozs]1)"/? for some

z} € A}, Tk € Ay with ||z]ozi|l > 1—ex}

are nearly biorthogonal in l; (easy) and that Cj is asymptotic in l. By z*oz we mean
again the element of I, given by the operation of pointwise multiplication. Thus if
z*=Y"ase} and =) b;e;, z*ox=(a;b;)2;. ||- |1 is the {;-norm.

The sets Cy, easily lead to an arbitrary distortion of [;. In fact using an argument
of [10] one can prove the following (see also Theorem 3.1).

THEOREM 1.2. For all 1<p<oo, e>0 and n€N there ezxists an equivalent norm |- |
on ly such that for any block basis (y;) of the unit vector basis of l, there exists a finite
block basis (2;)2, of (yi) which is (1+¢)-equivalent to the first n terms of the summing
basis, (s;)7;-

The summing basis norm is

n
E ;S

i=1

1

>a

i=1

=sup{ :ISn}.

Thus for all A>1 there exists an equivalent norm |- | on I, such that no basic sequence in I,
is A-unconditional in the |-| norm. The sets Cy, in addition to being nearly biorthogonal,
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are unconditional and spreading (defined in §3 just before the statement of Theorem 3.4)
and seem likely to prove useful elsewhere.

T. Gowers [9] proved the conditional theorem that if every equivalent norm on [y
admits an almost symmetric subspace, then l> is not distortable. Theorem 1.2 shows
that one cannot even obtain an almost 1-unconditional subspace in general.

The paper by Lindenstrauss and Pelczyniski [17] also contains some nice results on
distortion. They consider a restricted form of distortion in which the subspace Y of (1.1)
is isomorphic to X.

Our notation is standard Banach space terminology as may be found in the books [18]
and [19]. In §2 we use a number of results in [6] although we cite the corresponding
statements in [19].

Thanks are due to numerous people, especially B. Maurey and N. Tomczak-Jaeger-
mann. As we noted, Maurey gave us the elegant argument of §3. The idea of exploiting
the ramifications of being able to write elements of S(I2) as v/z* oz with  in the sphere
of a Tsirelson-type space X and z* € S(X*) in attacking the distortion problem is due to
Tomczak-Jaegermann.

2. Uniform homeomorphisms between unit spheres
The main result of this section is

THEOREM 2.1. Let X be a Banach space with an unconditional basis. Then S(X)
and S(l1) are uniformly homeomorphic if and only if X does not contain %, uniformly
inn.

A uniform homeomorphism between two metric spaces is an invertible map such
that both the map and its inverse are uniformly continuous. Many results are known
concerning uniform homeomorphisms between Banach spaces (see [1] for a nice survey of
these results). Our focus however is on the unit spheres of Banach spaces. The prototype
of such maps is the Mazur map discussed in the introduction.

Before proceeding we set some notation. Unless stated otherwise X shall be a Banach
space with a normalized 1-unconditional basis (e;). We regard X as a discrete lattice.
z=(z;)€ X means that =Y z;e;, |z|=(|zi|), and Ba(X)*={zreBa(X):z=|z|}. Ba(X)
is the closed unit ball of X. For 1<p<oo, X is p-conver with p-convexity constant
MP(X) if for all (z%)2,CX,

n 1/p
lw"l”)
(=

/p

<MP(X) (g nm*‘up)l ,




264 E. ODELL AND TH. SCHLUMPRECHT

where MP(X) is the smallest constant satisfying the inequality. The p-converification of
X is the Banach space given by

1/p
<oo}.

X® = {(m:n(z»u(p)s

> faipe.
i

The unit vector basis of X(P), which we still denote by (e;), is a 1-unconditional basis
for X(P) and MP(X(P))=1. These facts may be found in [19, §1.d].

Let Fx:1l3Ncgo— S(X) be as defined in the introduction. As we shall see in Propo-
sition 2.5, Fx generalizes the Mazur map. If X=I, (1<p<oo) and h€S(l1)* Ncgo then
FX(h)=(h: /e }. Even in this nice setting however we cannot use our definitions directly
on infinitely supported elements. Indeed one can find h€S(l;) with Ej,(h)=—0c0. The
map Fy, is uniformly continuous on S(l;)Nego, though, and thus extends to a map on
S(l1). Ex is not uniformly continuous on S(l1)Ncoe but has some positive features as
the next proposition reveals. Some of our arguments could be shortened by referring to
the papers [20], [21], [13], [37] and [7] but we choose to present complete proofs.

First we define a function ¥(¢) that appears in Proposition 2.3. Note that there
exists a function 9:(0,1)—(0,1) so that

1
log 5 (\/C_H— %) >n(e) if la~1|>¢ with a>0. (2.1)
Indeed, let g(a)=log 1(a+1/a) for a>0. g is continuous on (0, o), strictly decreasing on
(0,1) and strictly increasing on (1,00). The minimum value of g is g(1)=0. Thus there
exists 7: (0,1)—(0, 1) so that ja—1|>¢ implies g(1/a )>n(e). a

Definition 2.2. (e)=en(e) for €(0,1).

PROPOSITION 2.3. Let X have a 1-unconditional basis.

(A) Let he S(l1)*Ncoo, let e>0 and veBa(X )" be such that E(h,v)>Ex(h)—1(e).
Then if u=Fx(h) there exists ACsupph satisfying (|Ah||>1—¢ and (1—e)Au<Av<

(1+€)Au (the latter inequalities being pointwise in the lattice sense).
(B) Let hy,h2€S(l1) " Neoo with ||hy~h2||<1. Let z;=Fx(h;) for i=1,2. Then

12 (21+22)|| = 1= /1 ~hall.

Proof. (A) Let u=(u;) and v=(v;) be as in the statement of (A). We may assume
that supp u=suppv=B=supph. E(h,v)2Ex(h)—¢(¢) yields

Y(e) 2 Zhi(log u;—logv;). (2.2)

i€EB
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Since 1(u+v)€Ba(X)* and u=Fx(h) we obtain from (2.2)

Ple) 2 Z hi[log 3 (ui+v;)—log v;]

i€B
= Z hi[% log ui+ 3 log v; +log & (u; +v;) —log v/uiv; —log v;
i€B

v; u;
_—Zh(logu,—logv,)+2h log = (1/ 1/vl)
i€B i€EB

The first term in the last expression is nonnegative so

¢(6)>;hlog (\/”— \/:‘) (2.3)

Now |v;/u; —1|<e if and only if (1—¢&)u; <v; <(1+¢€)u;. Let I={i€B:|v;/u;—1|>¢}. For

iel,
E o ([ [E) o) 2 »

Let J={i€ B:log % (\/ui/vi++/vi/u; ) >n(e)}. Thus ICJ by (2.4) and from (2.3),

e (Vini) @

Thus (A) follows with A=B\I.

(B) Let ||3(z1+2)||=1—2¢. Set &3==z1+ez2 and Zo=zp+ex;. Thus suppZ;=
supp &2 =supp h1 Usupp hg and H%(i‘1+i2)“ < 1-—e. We may assume € >0. For j€supp 71,
|log &1,; ~log Z2 ;| < |log e| where Z;=(%; ;) for i=1,2.

From this and #; >x; we obtain

_ T1+T
E(hy,%1) 2 E(hy,z1) >E(h1’ 2(11_62))

=E(h1, £(1+%2)) +|log(1—¢)|
2 3 E(h1,%1)+ 5 E(h1, &2)+|log(1~¢)|.

Thus
|log(1—¢)| < $(E(hy,#1)— E(hy, £2)).

Similarly,
|log(1~¢)| < 3(E(he, 22) — E(h2, £1)).
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Averaging the two inequalities yields

£ < |log(1—¢)| < H(E(h1,%1)— E(h1, &2) ~ E(h2, #1)+ E(hs, Z2))
=13 "(h1,j—ha ;)(log #1,j—log #,5)
jEB
< ;lihy —ha|l-|loge| < §[|h1 —halle™".

Thus e <3 |lhy1 ~h2|[/2. Hence ||3(z1+22)||=1-26>1—||h1 —ha||*/2. a

PROPOSITION 2.4. Let X be a uniformly convex Banach space with a 1-unconditional
basis. The map Fx: S(l1)Ncgo— S(X) is uniformly continuous. Moreover the modulus of
continuity of Fx depends solely on the modulus of uniform convezity of X.

Proof. The uniform continuity of Fx on S(I1)* Ncgg follows immediately from Prop-
osition 2.3 (B).

Precisely, there is a function g(c), depending solely upon the modulus of uniform
convexity of X, which is continuous at 0 with g(0)=0 and satisfies

| Fx (h1)— Fx (h2)|l < g(l|h1 —ha2]l)

for hy,ha€S(l1)*Nego. A consequence of this is that if h€S(l;)*Nego, z=Fx(h) and
ICN is such that ||7h||<e then ||Iz||<g(2¢). Indeed if J=N\I,

Jh

e R L

Thus since Tz=I(Fx(h)—Fx (Jh/||Jh|)),

Isll < ”Fx(h)—Fx (u—ﬁ:ﬂ) ]. <g(2).

For the general case let hy, ko €S(l1)Nego with ||hy —hgl|=¢. Let Fx(lh;])=|z;| for
i=1,2. Then z;=signhk;o|z;|, - denoting pointwise multiplication, satisfies z;=Fx(h;)
for i=1,2. Also || |h1|—|h2|||<||h1—h2||. Thus if I={j:signz; j#signzz;},
> (2151 +lw2,5)e;

lz1—zz|| < [l |z2] 22| |+

JE€I
<g(llha| =R D+ s ||+ 11122 |
< g(e)+9(2¢)+9(2¢). o

Here is a fact we promised earlier.
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PROPOSITION 2.5. Let X=I,, 1<p<oco. Then Fx is the Mazur map, i.e., if h&
S(l)*Nego then Fx(h)z(h}/").

Proof. Let heS(l;)*Ncoo, B=supph and Fx(h)=z. Then suppz=DB and the vec-
tor (zi)icp maximizes the function R% (Y)Y ;cphilogy; under the restriction
> icp ¥l =1. By the method of Lagrange multipliers this implies that there is a number
¢#0 so that h;/z;=cpz? ! for ic B. Thus wi=(cp)‘1/"h:/”. Since ||z||,=1,

c=p~! and =z;=h}/? forieB. i

If X is uniformly convex, by Proposition 2.4 the map Fx extends uniquely to a
uniformly continuous map, which we still denote by Fx, from S(I;)— S(X).

PROPOSITION 2.6. Let X be a uniformly convez uniformly smooth Banach space
with a 1-unconditional basis. Then Fx:S(l1)—S(X) is invertible and (Fx)™! is uni-
formly continuous, with modulus of continuity depending only on the modulus of uniform
smoothness of X. For z€S(X), Fx'(x)=sign(z)ox* ox=|2*|ox where z* is the unique
support functional of x.

Proof. For z€S(X) there exists a unique element z*€S(X*) such that z*(z)=1.
The biorthogonal functionals (e}) are a 1-unconditional basis for X* and thus we can
express £*=)_ zje; and write z*=(z}). The element z*oz€S(l;)* and signz*=signz.
Let G(z)=|z*|ox. G is uniformly continuous. Indeed the map S(X)>3r—z*, the sup-
porting functional, is uniformly continuous since X is uniformly smooth. The modulus
of continuity of this map depends solely on the modulus of uniform smoothness of X (see
e.g., [4, p. 36]). Let G(z;)=h;=|z}|ox; for i=1,2. Then

181 =hall = |l |23 o@1 = |25 o2l < |23 |o (21 ~z2) |+ 1| (|27] = |25 ]) o2l

< lleill-ler—2ali+ll o1l =13l - fwall < llzy — 22l + |25 - 23

which proves that G is uniformly continuous.

It remains only to show that G=Fj'. Since G(z)=sign z-G(|z|) we need only show
that G(F(h))=h for he€ S(l;)* Negp and F(G(z))=z for z€S(X)* Ncoo-

If heS(If)Ncgo and z=Fx (h) then, as in the proof of Proposition 2.5, the method
of Lagrange multipliers yields that \7E(h, z)=(hi/Ti)icsuppn €quals a multiple of
(2})icsuppn Where z* is the support functional of x. This multiple must be 1 and
hi=z}oz; or G(F(h))=h.

That F(G(z))=z follows once we observe that if h=z* oz =y* oy, all norm 1 elements,
then z=y. Assume for simplicity supph={1,2,...,n}. Define f(z)=|z||~E(h,z) for
z€U, a convex open subset of the positive cone Ba((e;)?_,)* which contains both z and

i=

19945204 Acta Mathematica 173. Imprimé le 2 décembre 1994
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y and is bounded away from the boundary of the cone. f(z) is strictly convex so V f(z)=0
for at most one point. But 6f(z)=(_). if and only if h=z2*o2. a

COROLLARY 2.7 [37, Lemma 39.3]. Let X have a 1-unconditional basis and let
heS(l)Ncgo with € Fx(h). Then there exists x* € S(X*) with z*oz=h.

Proof. We may restrict our attention to X =(e;)iecsupph- The result follows if X is
smooth from the proof of Proposition 2.6. Let ||- ||, be a sequence of smooth norms
on X with ||-l,—||-|| and such that z/||z|l.€Fx,(h). Then use a compactness argu-
ment. O

Before proving Theorem 2.1 we need one more proposition. Recall that X(®) is the
p-convexification of X. The map G, below is another generalization of the Mazur map.

PROPOSITION 2.8. Let 1<p<oc and let X be a Banach space with a 1-unconditional
basis. The map Gp: S(XP)—S8(X) given by Gp(r)=sign(z)o|z|P=({sign z;)|z;|P) for
z=(x;) 48 a uniform homeomorphism. Moreover the modulus of continuity of G, and
G, are functions solely of p.

Proof. As usual (e;) denotes the normalized 1-unconditional basis of both X and
X®). Let z,y€ S(XP) with 6=||z—y||). We shall show that
21776 < ||Gp() - Gp(w)l| < 8P+ 672 +2(1- (1- V5 )

which will complete the proof.
Let =) zie; and y=Y_ yse;.

1Go(z)Cy(w)l| = || 3 (sign(z:)las|P ~sign(ys) Iy P)es

i=1

Y (zilP~fyalP)est Y (IzalP+lifP)es

iel, iel_

where
I, = {i:sign(z;) =sign(y;)} and I_ = {i:sign(z;)+#sign(y:)}.
We denote the two terms in the last norm expression as d, and d_, respectively.
Since a? —b” >(a—b)? and a?+b">2'"P(a+b)? for a>b>0 we deduce from the 1-
unconditionality of (e;) that

lds+d [l > (| D lzsl=lysl Pes+2277 Y (lal+lysl)Pes

i€l iel_

|3 los—uilPes]| =21 Fllo -yl

>2!-
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To prove the upper estimate we begin by noting that

Z,lxi‘“yilpei

icl_

[EAES

~y|lP = 4P
<z y”(p)—5 .

Set g=1~—+/5 and c=(1—q)“1"=6"”/2. For a,b>0 with 0<b< ga we have

c{a—b)P—(a? —b") 2> ¢(1—-q)Pa? —a? =af(c(1-¢)P-1)=0. (2.5)
Let I' ={i€l, :|yi|<qlz;| or |z;|<q|y:]} and IV=I,\I,. Write d,=d/ +d| where d/,=
Zieu(lxil"ﬁyﬂ")ei and d} =d, —d/,. Thus (2.5) yields that

I < el D Nl =il e

ier’,

~0/2Vl o lIP  __ £D/2
L6774 y”(p)—é .

Furthermore,

Il < A=) 3 (el +lilP)es

i€l

<2(1-¢°) <2(1~(1-V5)). 0

Proof of Theorem 2.1. Tt follows quickly from work of Enflo that if X contains [7,
uniformly in n then S(X) is not uniformly homeomorphic to a subset of S(l;). Indeed En-
flo [5] proved that a certain family of finite subsets of Ba(I%, ), n€N, cannot be uniformly
embedded into Ba(l;) and hence neither into Ba(l;). But B(I2 ) embeds isometrically
into S(I%!) and hence these finite subsets embed uniformly into S(X).

For the converse assume that X does not contain {2, uniformly in n. We may suppose
that X has a l-unconditional basis (e;). Indeed if (e;) is a normalized basis for X,
|z|=|I3 |zileil| is an equivalent 1-unconditional norm. Furthermore the map z—z/|jz||
is easily seen to be a uniform homeomorphism between S(X,|-|) and S(X, |- |})-

By a theorem of Maurey and Pisier [23], X has cotype ¢’ for some ¢'<oco. This
implies that X is g-concave for all ¢>¢’ ([19, p. 88]). Fix ¢>¢’. There exists an equiv-
alent norm on X for which (e;) is still 1-unconditional and for which My(X)=1 ([19,
p. 54]). The 2-convexification of X in this norm, X(2), satisfies M, (X ®)=1=M?(X?)
([19, p. 54]). In particular X is uniformly convex and uniformly smooth ([19, p. 80))
and so Fy@):S(l1)—S(X (2)) is a uniform homeomorphism by Proposition 2.6. Thus
G3oFx:8(l;)~S(X) is a uniform homeomorphism by Proposition 2.8. 0O

Remark. If X has a 1-unconditional basis and M,(X)=1 for some g<oo, the map
G3oFx@=Fx. Furthermore the modulus of continuity of Fx and Fx 1 are functions
solely of ¢.

The uniform homeomorphism theorem extends to unit balls by the following simple
proposition.
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PROPOSITION 2.9. Let X and Y be Banach spaces and let F: S(X)—S(Y) be a
uniform homeomorphism. For z€Ba(X) let F(z)=|z||F(z/||z||) if #0 and F(0)=0.
Then F is a uniform homeomorphism between Ba(X) and Ba(Y).

Proof. Clearly F is a bijection. Since F~1(y)=|y||lF*(y/||ly|l) for y#0, it suffices
to show that F is uniformly continuous. Let f be the modulus of continuity of F, i.e.,
(| F(z1)—F(z2)l|< f(llz1 — z2f])-

Let z1,z;€Ba(X) with [[z1 —z2f|=6, Ai=]|z1]], Ae=]|z2]| and A1 2 As.

rt X2
wr(3) - (3)

Iy T2
< - . I i)
S(A1=Az2)+2 F(/\l) F(/\z)

IF(z1)~ F(z2)ll =

If Ay <8/ this is less than §+261/4. Otherwise

%,% - -5\—11/\—2]“21'1—)‘1172”
< ﬁ[,\lnzl =zl + A1 —A2) < )%“’:\_5\—2
< ./\%% < % =2V6.
Thus
1F(z1)~ Fiea)l| < max(5+ £ (2v/), 6+26/%). .

Remark. It is not possible, in general, to replace “uniformly homeomorphic” by
“Lipschitz equivalent” in Theorem 2.1. Indeed if S(X) and S(Y') are Lipschitz equivalent,
then an argument much like that of Proposition 2.9, yields that X and Y are Lipschitz
equivalent which need not be true (see [1]).

There exist separable infinite dimensional Banach spaces X not containing I7.'s
uniformly such that Ba(X) does not embed uniformly into l;. For example the James’
nonoctohedral space [12] has this property. Indeed, Y. Raynaud [31] proved that if X is
not reflexive and Ba(X) embeds uniformly into I3, then X admits an !;-spreading model.

Fouad Chaatit (2] has extended Theorem 2.1. He showed one can replace the hy-
pothesis that X has an unconditional basis with the more general assumption that X is
a separable infinite dimensional Banach lattice. N. J. Kalton [15] and M. Daher [3] have
subsequently discovered proofs of this result using complex interpolation theory.
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3. I, is arbitrarily distortable

Let X be a Banach space with a basis (e;). A block subspace of X is any subspace
spanned by a block basis of (e;). X is sequentially arbitrarily distortable if there exist a
sequence of equivalent norms ||-]|; on X and ;0 such that:

|- lli<||- || for all ¢ and for all subspaces Y of X, and for all 40€N there exists
veS(Y, |l lio) With |lylli <emingi,i0) for i#io.

We note that if X contains an asymptotic biorthogonal system with vanishing con-
stant (see [10]), then X is sequentially arbitrarily distortable.

If X is sequentially arbitrarily distortable then X is arbitrarily distortable. Indeed fix
i>1 and let Y be a subspace of X. Choose z€Y with ||z||;=1 and ||z||:<e1. Let ||-]|: <
|- I<Ci|l+|l» and Z=z/||z||. Then ||Z||;=1/||zl|>1/Cie1. Choose y€Y with ||y|lix1=1
and |lylli<e;. Then for §=y/|ly|l, |Fll:<e:/llyll<e:. Thus [|2):/||Fli >1/Crere;. Fur-
thermore we have

THEOREM 3.1. Let X be a sequentially arbitrarily distortable Banach space with a
basis (e;). For all neN and €>0 there exists an equivalent norm |-| on X with the
following property. Let (y;)?_, be a normalized monotone basis for an n-dimensional
Banach space. Then every block basis of (e;) admits a further finite block basis (z;)T,
which is (1+¢)-equivalent to (y;)™,.

The space S of [34] was shown in [10] to be sequentially arbitrarily distortable. The
argument used to prove Theorem 3.1 is a slight variation of an argument which appears
in {10] which, in turn, has its origins in [24].

Proof of Theorem 3.1. Choose for n€N and £>0, (Bi)fg) a finite sequence of n-
dimensional Banach spaces, each having a normalized monotone basis, such that every
normalized monotone basis of length n is (1+4¢)-equivalent to the basis of some B}. Let
(wi)f2; be a normalized monotone basis for W=(3_, ; B'),, such that the monotone
basis of each B} is l-equivalent to (w;);car for some segment A7CN. Let (w]) be the
biorthogonal functionals of (w;).

It suffices to prove that for all n€N there exists an equivalent norm || on X such
that every block basis of (e;) admits a further block basis (z;)l~,; which is (1+8/n)-
equivalent to (w;)i—,.

Let n€N, €;10 and let ||-||; be a sequence of equivalent norms on X satisfying the
definition of sequentially arbitrarily distortable. Let ¢>0 with n®¢<1. We may assume
that max; g; < %a.

Let X;=(X,||-||s)- Let (2})2, be an enumeration of all elements of the linear span
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of (e}) which have rational coordinates. Set

n in
I‘={z*=zb,~ >z ki< <k, (21,)%, is a finite
i=l j=(i—1)n+l
block basis of (e}) with z;, € 3Ba(X]),
n

2, ., €3Ba(Xy,) for 1 <ig<n®-1and Zb,-w: eBa(W*)}.
i=1
Define || on X by
|z| =sup{|z*(z)|: 2* €T}.

Then 3}jz}|: <|z|<6n2||z|| for all z€ X and so |-| is an equivalent norm on X.

Let Z be any block subspace of X. Since X being distortable cannot contain I, [11],
we may assume by [33] that Z is spanned by a normalized weakly null block basis of
(e;), denoted (2;). Using the argument that a subsequence of (2;) is nearly monotone for
any given norm |-|; and a diagonal argument we may suppose that for all ¢, |[P4ll;<2.5
whenever ACN is a segment of N with i <min A. (Here P, is the projection P4(3 a;2;)=
Dica 0i%i)

From our hypotheses we can then choose block bases (f:i)?;l of (z;), and (2}, ?:21 of
(e7) satisfying k1 <k2<...<kn2 and

(i) 2, €3Ba(X7) and 2}, €3Ba(X},) for 1<i<n?,

(ii) zzi(fj)=6,~,- for 1<i, j<n?,

(iii) |zl <3e if j#ki-1 and [|Zi]lx,_, €1.

Let z;=(1/n) X3;L (i _1yn41 5 for 1<i<n, and let || 307 awil|]=1=3"7 a;b; where
127 bwfli=1. Let

in

n
z*=2b,~ Z zx,

i=l  j=(i—1)n+1
and note that z*€I". Thus

n

z a;T;

1

P z* (zn: a,—m;) = ia,-b.- =1.
1 1

For the reverse inequality, let z2*=3 .., ¢; Z;’;(‘-_l)n +1 2m, €T with 27, €3Ba(X}),
Zm,,, €3Ba(Xy,,) for i<n? and || Y7 c;w?]|<1. Let jo be the smallest integer such that
mj, #kj,. We first deduce from the definition of I" and the choice of (Z;) that |z}, (Z;)|<e
and |2y, (Z;)|<e if i<jo, j<n® and i#j. Secondly we claim that

{mjo,mjo.,,l, eny mn2}ﬂ{kjo, kjo+1 5 reey knz} =d.
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Indeed, if not, let j>jo be the smallest integer such that m;=k; for some i>jo. If
Jj=jo then i>jo. But then (letting ko=1) z,*,,je3Ba(X,:jo_l) and ||9_3i||kjo_1<21;‘5 which
contradicts z; (Z:)=1. If j>jo then 27, €3Ba(Xy, ) and |[Zi[lm,_, <1e since m;_1 #
ki-1, yielding again a contradiction to 2, (Z;)=1.

It follows that lz;'njo(zii)|<s if i#jo and (27, (Z:)|<e if j>jo and i<n?. Let jo=
ign+8g with 0<ig<n, 1<so<n. Then

i=1  j=(i~1)n+1 j=(i-1)n+1

i
So— 1
< _;_ cia;+ —, Cio+10io+1
=1

i::a,-w,-” [1+§+%].

We used that from monotonicity the first term in the next to last inequality does not

+3

Cip+1@ig+1
n

+n*e max |a;c;|
1

<

exceed
i0 i0+1 n
maX( Zciai ) Z CiQ; ) < Zaiwi”
i=1 i=1 1
and |c;a;|<2 for all 4. O

Remark. The proof of Theorem 3.1 requires only the following condition. For all e >0
there exists a sequence of equivalent norms ||-||;<||-|| on X such that for all subspaces
Z of X and all i9€N there exists y€S(Z, || - ||;,) with ||y|li<e if i#io. Theorem 1.2 is a
special case of Theorem 3.1.

Theorem 1.2 yields that a sequentially arbitrarily distortable Banach space can be
renormed to not contain an almost bimonotone basic sequence. Since ||s; —2s2||=1, the
best constant that can be achieved for the norm of the tail projections of a basic sequence
is 2.

Other curious norms can be put on sequentially arbitrarily distortable spaces X. For
example let (w;)7_, be a normalized 1-unconditional 1-subsymmetric finite basic sequence
and let €>0. One can find a norm on X such that every block basis contains a further
block basis (2;) with (zk'.)?ﬂl't6 (w;)?, whenever k; <...<ky. This is accomplished by
taking (using the terminology of the proof of Theorem 3.1)

k;n

n
F= {z* =Y"b ). 2, :(2h,)3 is a block basis of (e])
i=l  j=(ki—1)n+1
with 27, €3Ba(X7), 2z, ,,€3Ba(Xy,) for jEN,
< 1}.

n

*
E b,-wi
1

ki<ky<..<ky, and
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THEOREM 3.2. For 1<p<oo0, |, is sequentially arbitrarily distortable.

In order to prove Theorem 3.2 we will make use of the Banach space S introduced
in [34].

The space S has a 1-unconditional 1-subsymmetric normalized basis (e;) whose norm
satisfies the following implicit equation

1
fel =max{ el s S Ea
E,<E;<..<E; -
where ¢(I)=log,(1+1).

The fact that S is arbitrarily distortable [34] and complementably minimal [35]
hinges heavily on two types of vectors which live in all block subspaces: ]+ averages
and averages of rapidly increasing 7+ averages or RIS vectors. Precisely, following the
terminology of [10], we call €S an I} + average with constant C if ||z||=1and z=)"]" ; z;
for some block basis (z;)™; of (e;) where ||z;||<Cn~? for all 5.

Let My(z)=¢~1(362%) for z€R. A block basis (z;)Y, is an RIS of length N with
constant C=1+¢<2 if each z; is an IT*+ average with constant C,

n1 2 2CMy(N/e)/2¢In2

and
%E¢(nk)l/2 2 lsupp(xk~l)l for k=2”N

The vector z=(Y, z;)/|| Zil z;|| is called an RIS vector of length N and constant C
and we say that the RIS sequence (z;)}., generates z.

LEMMA 3.3 [10]. Let £;}0. There erist integers prToo and reals 6 |0 with
(1426:) ' > 1—¢p
so that if
Ax={z € S:z is an RIS vector of length p; with constant 1+6;}

and

Pr
Ay = {:c* €Stz = 1 Zz:‘ where (z})* is a block sequence in Ba(S*)}
#(pr) 5

then:

(a) |zi(zr)| <eminry if k#L, zL€ AL and 1€ A

(b) For all keN and €Ay there exists z* €A}, with z*(z)>1—~ex. This follows
from the fact if z is generated by (z;)7%,, then || 35 || < (14 26k )i /d(Dr).

Moreover Ay is asymptotic in S for all keN.
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Using the sets A, and A}, we can define the following subsets of I3
By = {ziozr/|wil(lzxl) : ok € AL, 7k € Ay and |ak|(|zx|) = ek okl > 1—ex}-

A set of sequences B is unconditional if z=(z;)€B implies that (+z;)€B for all
choices of signs and B is spreading if =(z;)€B implies ), z;en, € B for all increasing
sequences (n;). Note that A;CBa(S*) and the sets A and A} are unconditional and
spreading. Thus the sets B, CS(l;) are also spreading and unconditional.

THEOREM 3.4. The sets B, CS(ly), k€N, are unconditional, spreading and asymp-
totic.

We postpone the proof of Theorem 3.4.

Proof of Theorem 3.2. We first give the argument for p=2. Let Cr={veS(l;):
[v|2€Bi}. Ci is just the image of By in S(Iz) under the Mazur map. Since the Mazur
map preserves block subspaces and is a uniform homeomorphism, Cj is asymptotic in
I for all k. Moreover the Cy’s are nearly biorthogonal. Indeed if vy €Cy, v;€Cy with
k#l let \ve|2=(a}ozk)/ |zt |(1zx]) and |vi|2=(z}x;)/|2}|(|z:]) be as in the definition of
By and B;. Then letting A=(1—¢;)7!

(lves o) < /\Z EANENOEAOETO

y 1/2 1/2
<A (Z |z (5)z: (j)|> (Z |} (j):vk(j)|> (by Cauchy-Schwarz)

J J
= Mlzil, le)) 2 (l27), lowl) /2 < Memingey  (by Lemma 3.3).

Define ||z||r =sup{|(z,v)|:v€CrUet Ba(l,)}.
If p#2 we use a similar argument. Let Cr={v€S({,):|v[?€B}} and Dy={veS(l,):
|v|9€ Bk} where 1/p+1/g=1. Define ||-|jx on [, by

llzlli = sup{|(z, v)| : v € DxUex Ba(ly)}.

Again, via the Mazur map, Cj is asymptotic in /.
Let v €Cy and v;€ Dy with k#l. Let |vp|P=(z}ozx)/)z}|(|2k]) and |v|9=(z]ox;)/
|27 {(|z:|) be as in the definition of By and B;. Assume p>2. Then

[{lvkls fou )] < Az ek )z (DIMP\ei (2 (5)]/

=AY It G) ) ) Plei G .
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Using Holder’s inequality with exponents 1p and p/(p—2) and the fact that 1/¢g—1/p=
(p—2)/p we obtain that the last expression is

2/p (p—2)/p
S/\(Z|$Z(J')Zk(J')Zf(j)xz(j)ll/z) (lermzmm) SN
i J

from the first part of the proof. The same estimates prevail if p<2. O

Remark. The proof yields that for 1<p<oo, 1/p+1/g=1 there exist sequences CC
S(lp) and Dy CS(ly) of nearly biorthogonal asymptotic unconditional spreading sets.

It remains only to prove Theorem 3.4 which entails only showing that each By is
asymptotic. This will follow from the following

LEMMA 3.5. LetY be a block subspace of I; and let e >0, meN. There ezists a vector
u€S which is an I*+ average with constant 1+¢ and u* € Ba(S*) with d(u*ou, S(Y))<e.

Indeed assume that the lemma is proved and let k€N and £>0 with
(14¢) 7 (1426;) 1 > 1—¢p.

From the lemma we can find finite block sequences (u;)P*, CS(S) and (u})P*, CBa(S*)
along with a normalized block sequence (y:)f%, CS(Y) and 1<\ <1+¢ for i<px such
that

(1) u=(P%, wi)/||3-F%, us]l is an RIS vector of length p; and constant (1+6k)
generated by the RIS (u;)P*,,

(2) Jlu}ou;—y:|l1<e for i< py,

(3) ufou;=0if i#5 and ||Aju}ou;|[; =1 for i<ps.

Let u*=(1/(14+¢)é(pe)) Y7 Xiuf. Then u*€ A} and from Lemma 3.3 (b)

1 . Pk > 1
(1+e)(pe) 127 uill ™ (1+e)(1+26:)

l[uoully = >1—¢x.

Thus (u*ou)/||u*ou||; € Br. Now (u*ou)/||u*oulli=(1/px) 3_1* Aiufou; and so using (2)
u*ou 1 & l
ol 2 ¥

This proves that By, is asymptotic in [;.

1 Pr .
<£— Z "A,-u,- OU,'—yi"1 < 2.
Pr T

In order to prove Lemma 3.5 we first need a sublemma. We denote the maps Eg-«(h)
and Fs-(h) by E.(h) and F,(h), respectively.
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SUBLEMMA 3.6. Let m, K be integers and let 0<7<1 be such that log (m¥)< 7K.

Let (hi)z"; be a normalized block sequence in I7. Then there exist in l} a normalized
block basis (b))%, of (h,-);"x such that

Y E.(b)-E. (Z bj) <rm. (3.1)
j=1 7=1
Proof. For each i<m¥, let v;=F,(h;). Now (1/¢(m¥)) E;“KvgeBa(S‘) and so

E, (ni hi) >EC§ i Wnl—’"‘_) iv‘)

=§:E(hi,vi)—m" log p(m*) (3.2)
1
= :{: E.(h;)—m* log ¢(m*).

Let Z;’S hi=3"7", d} where (d})7; is a block basis of (h;), each d} consisting of the sum

of m¥=1 of the hy’s. Break each d} into m successive pieces, each containing m*~2 of
the hy’s to obtain d}=)"]", d2, and continue to define d, ; for I<k and a€{1,...,m}}"*
in this fashion. Consider the telescoping sum

ESE*(hi)—E* (ni hi) =§;E*(d})—E, <f:1 d;)
i=1 i= = iz
+i [i E*(dgz‘,l)"E* (i dz',l)] +....
j=1%l=1 1=1

For 1<s< K, the sth level of this decomposition is the sum of m*~! nonnegative
terms of the form (for a€{1,...,m}*" 1)

gE*(df;,z)—E* (g d;,,) . (3.3)

If each of these terms is greater than 7m®—*+1 then the sum of all terms on the sth level
is greater than 7mX and so the sum over all K levels yields

mK TnK
Y E.(h;)~E. (Z h,—) > Krm¥
i=1 1
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which contradicts (3.2).
Thus the number (3.3) does not exceed the value 7m¥ ~** for some s and multi-
index . Let by=d5,,/||dS, |l Using E.(ah)=aE.(h) for a>0 and ||d3 [|=m*—* we

obtain
K s+1

ZE (b))~ E, (Zb,) —————=1m. 0

Proof of Lemma 3.5. Let ¢>0, me€N and let Y be a block subspace of [; with
block basis (h;). By unconditionality in S it suffices to consider only the case where
(h:)CS(lh)*. Let 0<r<%(e)/m (see Definition 2.2) and choose K €N such that 7K >
log(¢(m¥)). By Sublemma 3.6 choose a block basis (8;)7* of (h; ),_1, ()7 CS(If) with

f:; E.(b)-E. (é b)) <rm. 5.4)

Choose :c*:F,,(E ; bj) and write z —E] 1 Z; with suppz}=suppb;. For j<m let
wi=F.(b;). As we noted in §2, for each j there exists w;€S(S)* with b;=wjow; and
supp w; =supp b;. By (3.4) we have

> E, w;)—E(Z b, x) =Y [E(b;, w})—E(b;, z})] < Tm <9(e).
Jj=1 j=1

=1

Since each term in the middle expression is nonnegative we obtain
E(bj,z}) > E(bj,w])—1(e) for j<m.

By Proposition 2.3 (A) there exists sets H; Csupp b; such that || H;b;||;>1—¢ and
(1-e)H;w; <Hjz; <(14+¢)Hjw; pointwise for all 1<j<m.
H;bj=Hjw5ow; and ||H;z} — Hyw}| <€ so ||Hjb;— H;z}ow;l|1<e. Thus

b; —H,zjow;fli <2 for 1<j<m. (3.5)

From this we first note that Hj:c; (wj)21—2¢ and so for a;’s nonnegative,

iajwj >x*(§:ajwj) ZaJH zj(wj)>(zaj)(1—2s).

7=1
By unconditionality (w;)7%, is an I[* sequence with constant (1-2¢)~ L.

Secondly, set

5= 13w,
T wd s nz,l JHZ””
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w is an IT average with constant (1—2¢)~!. Furthermore

”mZb - UH)x ow \“%,i (JQIH,-):c*ow 1

1 m
—Z - Hjz* owj||s +||w—a|.

+llw—w]|

3

The first term is <2¢ by (3.5). Since || 372, w;[|>m(1-2¢), |lw - <2¢/(1-2¢). Thus

d((};jl Hy)a*ow, S(V)) <26+ 1o

which proves Lemma 3.5. O

Remark 3.7. Our proof of Theorem 3.2 actually shows that I, admits an asymptotic
biorthogonal system with vanishing constant (see [10]). B. Maurey [22] has recently
extended the results above. He has proven that if X has an unconditional basis and does
not contain [T uniformly, then X contains an arbitrarily distortable subspace. B. Maurey
and the second named author have independently shown that one can construct the sets
By, to be symmetric ((;) € By = (Tx(;)) € By if 7 is a permutation of N).

N. Tomczak-Jaegermann and V. Milman [29] have proven that if X has bounded
distortion, then X contains an “asymptotic [, or ¢”. X has bounded distortion if for
some A< 00, no subspace of X is A-distortable. A space with a basis (e;) is an asymptotic
lp if for some C < oo for all n whenever

en<21<...<2p, Jlzill=1 (i=1,...,n),

then (z;)7 is C-equivalent to the unit vector basis of I7.
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