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1. Introduction 

Let ~ be an open set in R n and let l < p < ~ n  be a fixed number. Consider the quasilinear 

partial differential operator 

T u  = - div ̀ 4(x, Vu), 

where uEWllo'Pc(~) and ,4(x,~).~-.[~lP; the precise assumptions on ,4 are listed in Sec- 

tion 2. The principal model operator is the p-Laplacian 

T u  = - A p U  = - div([Vulp-2Vu), 

and so the ordinary Laplacian A=A2 is included in our study. 

A boundary point x0 of bounded fl is regu lar  if the solution u to the Dirichlet 

problem 
T u = O  in f/ 

u-f e 
has the limit value f ( x o )  at x0 whenever f eWl ,p ( f l )  is continuous in the closure of ft. 

In [23] Wiener proved that  in the case of the Laplacian the regularity of a boundary 

point x0E0fl can be characterized by a so called Wiener test, where one measures the 

thickness of the complement of f~ near Xo in terms of capacity densities; we soon come to 

the precise formulation of this test. In the fundamental work [17] Littman, Stampacchia, 

and Weinberger showed that  the same Wiener test identifies the regular boundary points 

whenever T is a uniformly elliptic linear operator with bounded measurable coefficients; 

then the regularity of a boundary point is independent of the particular operator. 

For general nonlinear operators the classical Wiener test has to be modified so that  

the type p of the operator T is involved. Maz'ya [18] established in 1970 that  the 
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boundary point x0 is regular if 

wp(n~ \~, zo) = +or 

where Wp(Rn \~ ,  x0) is a Wiener type integral defined for an arbitrary set E by 

~ -  ~01 [ c a p p ( B ( x o , t ) n E ,  . . . . .  . ~l/(p--1)at , 

Wp(E, xo) ~, capp(B(x0, t), B(xo,  2t)) ] t 

and capp(E, G) is the p-capacity of a set E in G (see Section 3 for the definition). Later 

Gariepy and Ziemer [5] extended this result to a very general class of equations. 

The question whether regular boundary points of 12 can be characterized by using 

the Wiener test has been a well known open problem in nonlinear potential theory; see 

e.g. [1]. The problem was partly solved in the affirmative when Lindqvist and Martio [16] 

proved that  if p equals n, the dimension of the underlying space, the divergence of the 

integral W n ( R n \ ~ ,  xo) is not only sufficient but also necessary for the regularity of x0. 

Unfortunately, their method cannot be extended to cover all values l<p~<n; it worked 

only for p > n -  1. 

In this paper we establish the necessity part of the Wiener test for all pE(1, n] and 

prove: 

THEOREM 1.1. A finite boundary point xoEOl2 is regular i f  and only i f  

Wp(Rn \ ~ ,  xo) = c~. 

An immediate corollary is: 

COROLLARY 1.2. The regularity depends only on n and p, not on the operator T 

itself. 

Note that  no boundedness assumption on ~ was made in the theorems above, for 

we extend the definition of regularity for boundary points of unbounded sets in Section 

5.3 below. Also observe that  the similar question could be asked also for p>n.  However, 

then all points are regular and the corresponding Wiener integral always diverges because 

singletons are of positive p-capacity; see [10, Chapter 6 or 9]. 

The uniformly elliptic linear equations are included in our presentation; hence we 

extend the result in [17]; no Green's function is involved in our proof. Let us also point 

out that  our methods can be applied to the equations with weights so that  the results of 

this paper are easily generalized to cover the equations considered in [10]. 

There is another variant of the Wiener criterion problem, known among specialists 

in nonlinear potential theory. A set E c R  '~ is said to be p-thin at a point x0ER n if 
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Wv(E, xo)<+oo. This concept of thinness was first considered in nonlinear potential 

theory by Adams and Meyers [3]. See also [2], [6], [9], and the references therein. Note 

that  because each singleton is of p-capacity zero it does not have any effect on the p- 

thinness of E whether or not the point x0 is in E. Also it is trivial that  E is p-thin at each 

point in the complement of E. How is p-thinness related to ,4-superharmonic functions 

(defined in Section 2)? An interesting answer to this question was given in [9], where 

the sets that  are p-thin at x0 were characterized as those sets whose complements are 

~4-fine neighborhoods of x0; here .A-fine refers to the fine topology of .A-superharmonic 

functions. However it remained unsolved if the p-thinness is equivalent to the so called 

Cartan property: "there is an .A-superharmonic function u in a neighborhood of x0 such 

that  

l iminf u(x) > u(x0)." 
xeE\{xot  

(The sufficiency part was established in [8].) We answer affirmatively to this in the 

following result. 

THEOREM 1.3. Let E C R  n and x o E E \ E .  Then E is p-thin at Xo if and only if 

there is an j4-superharmonic function u in a neighborhood of xo such that 

lim inf u(x) > U(Xo). (1.4) 
X---+~0 
xEE 

The proofs of Theorems 1.1 and 1.3 are based on pointwise estimates of solutions to 

Tu = # (1.5) 

with a Radon measure # on the right side. In [14] we established estimates for ,4- 

superharmonic solutions of (1.5) in terms of the Wolff potential 

"(.(B(x0, t)} 
W~,p(x0, r) = ~0 \ ~ ] T "  

One easily infers that  W~,2(x0 , c~) is the Newtonian potential of #. This estimation gives 

a solid link between the two nonlinear potential theories; cf. [2], [6], and [10]. 

In [14] we were able to control the solution from above only when p > n - 1 .  In our 

second main theorem we dispense with this restriction and derive an estimate which 

improves that  in [14] even for p > n - 1 .  

THEOREM 1.6. Suppose that u is a nonnegative A-superharmonic function in 

B(xo,3r).  If  #=Tu ,  then 

c lW~p(XO;  r )  • U(X0) < C 2 inf u-t-c3W~,p(xo; 2r), 
' B(xo,r) 
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where Cl, c2, and c3 are positive constants, depending only on n, p, and the structural 

constants a and 13. 

In particular, u(xo) <co if and only if W~,p(x0; r) <co.  

In [12] it was indicated that  the necessity of the Wiener test follows from an estimate 

like that  in Theorem 1.6. In the present paper we choose another route, more natural 

and direct. 

Moreover, we deduce from Theorem 1.6 a Harnack inequality for positive solutions 

to (1.5), where the measure # satisfies for some positive constants c and e 

U(B(z, r))  .< cr (1.7) 

whenever B(x, r) is a ball. Iterating the Harnack inequality in a standard way one 

sees that  the solutions are HSlder continuous; moreover, we show that  if the solution of 

Tu=I~ is HSlder continuous, then # satisfies a restriction like (1.7). Tha t  (1.7) is almost 

equivalent to HSlder continuity was first observed by Rakotoson and Ziemer [20]. Our 

result extends theirs, for they imposed an additional strong monotonicity assumption 

on the operator T. While writing up the manuscript we learned that  Gary Lieberman 

independently has arrived at a Harnack inequality for solutions to (1.5), (1.7).(1) 

As a further consequence of Theorem 1.6 we characterize continuous Jl-super- 

harmonic functions in terms of the corresponding Wolff potentials. 

Our method is applicable to other problems as well. To illustrate this we apply 

our results and verify that  the regular points for the obstacle problem coincide with the 

Wiener points of the obstacle (Theorem 5.7); this result was partially proved in [19] and 

[8]. The similar problem for double obstacle problems (cf. [15]) can also be treated so 

that  the main result of [4] is extended to nonlinear operators. 

Acknowledgement. We thank Esko Nieminen who called our attention to a flaw in a 

previous version of this paper. 

Notation. Our notation is standard. Throughout  the paper we let ~ be an open set 

in R ~ and l<p<.n a fixed number. The letter c stands for various constants. For an 

open (closed) ball B=B(xo,  r) (B=B(xo,  r)) with radius r and and center x0 and a > 0 ,  

we write a B  (aB)  for the open (closed) ball with radius ar and center x0. The barred 

integral sign fE  f d x  stands for the integral average IE[-lfE fdx ,  where [El is Lebesgue 

measure of E.  

(1) See Comm. Partial Differential Equations, 18 (1993), 1191-1212 
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2. Prel iminaries  

We assume throughout this paper that  .4 :R n x Rn--* R '~ is a mapping which satisfies the 

following assumptions for some constants 0 < a ~ / 3 < c r  

the function x~-~`4(x,~) is measurable for all ~E R '~, and 
(2.1) 

the function ~ ~-, ~4(x, ~) is continuous for a.e. x E Rn; 

for all ~ E R  n and a.e. xER'~: 

whenever ~ # ~, and 

.A(~, ~).r i> ,~I~I p, 

I.A(~, ~:)I < ~I~I ~-x, 

(r ~)-.,4.(z, r162 > 0 

for all h e R ,  A#O. 

The operator T is defined such that  for each ~ E C ~ ( f l )  

Tu(~) = ~ `4(x, Vu)-V~ dx, 

where ueWllo~(~). In other words 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Tu = - div A(x, Vu) 

in the sense of distributions. 
1,p A solution uEWlo r (12) to the equation 

Tu=O (2.6) 

always has a continuous represent ative; we call continuous solutions u E Wllo~ (12) n C ( fl ) 

of (2.6) A-harmonic in ft. 

A lower semicontinuous function u: f~-~(-c~, c~] is called .A-superharmonic if u is 

not identically infinite in each component of 12, and if for all open D CC fl and all h E C(D), 

`4-harmonic in D, h<.u on OD implies h<.u in D. A function v is A-subharmonic if - v  

is ~4-superharmonic. 

Clearly, min(u, v) and Au+a are ~4-superharmonic if u and v are, and a, AER, A~>0. 

The following proposition connects ,4-superharmonic functions with supersolutions of 

(2.6). 
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PROPOSITION 2.7 [7]. (i) If U E W I o  c I / i8 such that Tu>~O, then there is an .A- 
superharmonic function v such that u=v a.e. Moreover, 

v(x) = ess lira inf v(y) for all x E fL (2.8) 
y---*z 

(ii) If v is A-superharmonic, then (2.8) holds. Moreover, Tv>~O if VEWllo'cP(~'~). 

(iii) If v is A-superharmonic and tocany bounded, then vEWllo'ff(12) and Tv>>.O. 

Let uEWllo'Pc(f~) be an Jt-superharmonic function in fL Then it follows from Propo- 

sition 2.7 that #=Tu is a nonnegative Radon measure on f~. If f~ is an open subset of 

f~ with uEWI,p(f~'), the restriction v of # to f~' belongs to the dual space (W~'P(f~')) ' of 

W~'P(IT). By a standard approximation we see that  

~ ~4(x, Vu)-V~a dx = ~ ,  ~o dp 

for any test function ~ E W~'P(IT), where the last integral is the duality pairing between 
~E W~'P(fl ') and vE (wl 'n(f l ' ) )  '. 

For the reader's convenience we record here an appropriate form of Trudinger's weak 

Harnack inequality (see [14, 3.2], [10, 3.59] or [22], and Proposition 2.7 above). 

LEMMA 2.9. Let B=B(xo,  r) and let u be a nonnegative j4-superharmonic function 
in 3B. If q>O is such that q (n-p)<n(p-1) ,  then 

( ~2B Uq dx)l/q ~ cinf u, 

where c=c(n, p, q, a, ~) >0. 

3. Ft-potentials and capacity estimates 

In this section we recall the definition of p-capacity and A-potentials, and discuss their 

relations. 

3.1. p-capacity. First we define the p-capacity and record some facts that can be 

found e.g. from [10, Chapters 2 and 4]. 

For a compact subset K of f~ we let 

.capp(K, 12) --- inf ~ [Vu[ p dx, 
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where u runs through all uEC~(f~) with u~>l on K.  The p-capacity of an arbitrary set 

E c l 2  in f~ is 

capp(E, ft) = inf sup .capp(K, lq). 
G C ~  open K c G  

E c G  K compact 

Then capp(-,  f~) is a Choquet capacity and 

,capp(K, = capdK, 

if K is compact. 

If r > 0  and 2r<~R~lOOr, then there is a positive constant c, depending only on n 

and p such that  for all x E R n 

c-ir  n-p <~ capp(B(x, r), B(x, R)) < cr "-p. 

We say that  a set E is of p-capacity zero if 

Capp(Ef3B, 2B) = 0 

whenever B is an open ball in R'L Equivalently, E is of p-capacity zero if and only if 

capp(EN f~, f~) = 0 

for all open sets Ft. Moreover, for p<n this is further equivalent to 

Capp(E, R = 0. 

We say that  a property holds p-quasievevywhere in f~ if it holds in f~ except on a set 

of p-capacity zero. 

It is well known that  each function uEWa,P(f~) has a representative for which the 

limit 

lim - ]  udy (3.2) 
r--*0 J B(z,,') 

exists and equals u(x) p-quasieverywhere in l~ [24]. These representatives are called p- 

refined. In what follows we usually consider only the p-refined representatives of functions 

in WI,p(~); note that  for a locally bounded A-superharmonic function u, the limit in 

(3.2) exists and is equal to u(x) for every x [10, 3.65]. Moreover, we use the fact that  for 

Ecf~ 
P 

f~) = inf Jn  tVulP dx, C a p p ( E ,  

where the infimum is taken either over all uEW~'P(f~) such that  u = l  in an open neigh- 

borhood of E,  or over all p-refined uEW~'P(f~) such that  u~>l p-quasieverywhere on E. 
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3.3. A-potentials. Suppose that  E be a subset of ft. For xEfl  let 

(fl; A) (x)  = inf 

where the infimum is taken over all nonnegative A-superharmonic functions u in fl such 

that  u~> 1 on E. The lower semicontinuous regularization 

R~(f l ;A)(x)  = lim inf n~(f l ; ,4 )  
r-*O B(x,r) 

of R~(f l ;A)  is called the A-potential of E in ft. The A-potential R~(f l ;A)  is A- 

superharmonic in l) and A-harmonic in f l \ E .  

If fl is bounded and ECCf l ,  then the A-potential u of E belongs to W~'V(~) and 

(see the proof of [8, 2.2], [10, 9.35, 9.38]). 

3.4. A dual approach to capacity. Let fl be bounded. If # is a Radon measure in the 

dual (WI'p(fl)) ' of W~'P(fl), we write u~ for the A-superharmonic function in fl such that  

uuEWol'P(~) and Tu~--g. The existence and uniqueness of u~, are well known; cf. [18, 

Proposition 1] and Proposition 2.7. The function u~, can be regarded as the A-potential 

o f# .  
For E C ~ we define 

CA(E, f l)= sup{/~(l)): # E (W~'V(fl)) ', supp # C E and u• < 1}. 

THEOREM 3.5. 

Then 
Suppose that ~2 is bounded and E c f l  is a Borel (or capacitable) set. 

1 CA(E, f~) ~< ( ~ ) "  capp(E, f~). capp(E, fl) ~< 

Proof. We may clearly assume that E is compact. To prove the first inequality of 

the assertion, let u = R l ( ~ ;  A) be the A-potential of E in fl and #=Tu.  Then we have 

that  u6W~'P(~), 0~<u~<l, and hence 

cA( , f. ud = f. w).w  
/> a ffl ]Vul p dx >1 a capp(E, fl). 
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For the second inequality, suppose that # is a measure in (W~'P(f})) ' such that ug ~< 1 

and supp#CE.  Let rECk(D) be such that v=l on E. Then 

#(f~)= L vd#= L A(x, Vu~,)'Vvdx 

[ ~ \(p-1)/p/ r \l/v (3.6) 

Let vl=max(v, u~). Because u~ is A-superharmonic in fl and A-harmonic in f l \E ,  it 

follows that 

L A(x, Vu,)'V(v-u,)dx= L A(x, Vu,)'V(vl-u,)dx+L,EA(x, Vu,)'V(V-Vl) dX 

= Jn A(x, Vat).V(Vl -u~) dx >~ O, 

for v-v~ eW~'P(fl\E) and vl -u ,  eW~'V(fl) is nonnegative. Hence 

,Vu.l'dx< f A(x, Vu.) Vu. dx< f A(x, Vu.) Vvdx 
p \(p-1)/pl f \lip 

so that 

L IVu"lPdx<~ (-~) in IVvl'dz. 
Taking the infimum over all v's we infer from (3.6) that 

l # ( z )  /7 " ~ < ( ~ )  cap,(E, f~), 

and the theorem follows. 

The measure/~ in the following lemma can be regarded as the A-distribution of the 

set E. See [2] for an analogous result for another type of capacitary distributions. 

LEMMA 3.7. Suppose that f} is bounded and ECCfl .  Let u=J~( f~ ;A)  be the A- 
potential of E in fl and #=Tu. Then 

r capp(ENU, fl) ~(u)  <~ <xp_----- i- 

whenever U C f~ is open. 

Proof. Let Gcf~ be an open set containing EAU and choose an increasing sequence 

of compact sets Kj such that G=UjKj. Let uj be the A-potential of (ENKj)U(E\U) 

10-945201 Acta Mathematica 172. Imprim6 le 29 mars 1994 
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in D and #j=Tuj. If vj is the restriction to U of pj, then the support of vj is contained 

in G and u~ ~<1 in ~. Hence we have by Theorem 3.5 that 

J3P capp(G, 12). u j ( v )  = v j (v )  <. ,~,,_----f 

Since uj increase to u (see [8, 2.2]), the measure # is the weak limit of #j and therefore 

Z~ 
#(U) ~< ~ capp(G, f~). 

Taking the infimum over all open sets GDENU we obtain 

t3P capp(ENU, 12). #(u) ~< ap_--- ~ 

COROLLARY 3.8. Suppose that 12 is bounded and ECCfL Let u=,~(12 ;A)  be the 
A-potential of E in ft and #=Tu. Then 

f~P capp(E, 12). capp(E, 12) ~ #(~) ~ ap_---- Y 

Proof. The second inequality of the assertion follows from Lemma 3.7. For the first 

inequality the reader is asked to mimic the proof of the first part of Theorem 3.5. 

We conclude this section with a simple lemma that is needed later. 

LEMMA 3.9. Then for 
~>0 it holds that 

Suppose that uEW~'P(I~) is A-superharmonic with Tu=#. 

~p-1 capp((x e a: u(x) > hi, a) .< ~(n) 

Proof. Since 

a ~ IV rain(u, A)[ p dx<~ fn A(x, Vu) .V min(u,A)dx 

= J ,  rain(u, ~) d~ .< ~.(~), 

the lemma follows, for rain(u, ,X)/A is admissible to test the capacity. 

4. P o t e n t i a l  e s t i m a t e s  

In this section we derive estimates for A-superharmonic functions in terms of their Wolff 

potentials. In particular we prove Theorem 1.6. As examples of its consequences we 
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establish a Harnack inequality for a class of positive ,4-superharmonic functions, and we 

give necessary and sufficient conditions for ~4-superharmonic solutions of Tu=# to be 

HSlder continuous or continuous. 
1,p Because an .A-superharmonic function does not necessarily belong to Wlo c ([2), we 

extend the definition for the operator T: If u is an .A-superharmonic function in 12, then 

we define g b  

= Jr klim r V min(u, k)).~7~o dx, Tu(~) 

~,oeC~r By [14, 1.15] 

lim A(x, V min(u, k)) 

is locally integrable and hence -Tu  is its divergence. (Since rain(u, k)eWllo'P(fl) and 

V min(u, k) = V rain(u, j )  

1,1 a.e. in {u<min(k,j)}, the limit exists. It is equal to .4(x, Vu) if ueWlo c ([2), which is 

always the case if p>2-1/n.) Our definition of Tu overrides the difficulty that arises 

from the fact that  for p<.2-1/n the distributional gradient Vu need not be a function. 

Indeed, the above definition of Tu is merely a technical tool to treat all p's simultaneously. 

We refer to [14] or [10, Chapter 7] for details. 

In [14] we showed that if u is ,4-superharmonic in [2, there is a nonnegative Radon 

measure # such that 

Tu=# 

in [2, and conversely, given a finite measure # in bounded 12, there is an .A-superharmonic 

function u such that Tu=# in [2 and min(u, k)EW01'P([2) for all integers k. 

We start with an auxiliary estimate. 

LEMMA 4.1. Suppose that u is .A-superharmonic in a ball 2B= B(xo, 2r) and #=Tu. 
If a is a real constant, d > 0  and p-l<~/<n(p-1)/(n-p+l) ,  then there are constants 
q=q(p,~/)>p and c=c(n,p,~,~,~/)>O such that 

(d-~r-n /Bn{~>a}(u-a)~ dx)'/q <~ cd-~r-n ~Bn{u>a}(u-a)~ dx +cdl-'rP-n ~(2B), 

provided that 
12Sn{u > a}l < ld-~ f (u-a) ~ dx. (4.2) 

2 JSn(u>a} 

Proof. Without loss of generality we may assume that a--0. We first assume that 

u is locally bounded and hence uEWIlo~(2B). We shall estimate the left hand side in 

several steps. Set 
P7 

q -- P-7 / (P-  1)" 
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Notice that p<q<p*, where p* denotes the critical Sobolev embedding exponent. Using 

(4.2) we obtain 

d-'r SBn{o<~<~) u~ dx <~ lBO{u > O}l <~12Bn{u > O}l <~ l d-~ iBnO~>o} U~ dx; 

therefore 

di~SB u'Ydx<~2d-',f u'Vdx~cSBwqdx , (4.3) 
n{u>O} JBn{u>~d} 

where 

Note that 

] /  U q- V I  q w=tl+---~) -1. 

All / U q- v / q  -1 
Vw = ~-~ t l + - ~ -  ) Vu + �9 

Pick a cut-off function ~6C~~ such that 0~<~/~<1, y = l  on B and [Vy[~2/r. The 

Sobolev inequality yields 
,~p/q \p/q 

r-" dx ) (r-niBwqdx) <'( LB(W~)q (4.4) 

By substituting the test function 

where 

V= 

we obtain 

fBnO,>o} IVu[V (l+u/d)" rl p dx 

1 " u+ \1-7\ 
I 

"r 
T ~  i~ p-  

OZ--1 L .A(x, •u). ~Tu BnO,>0) (l +u/d) ~ tip dx 

pd (1 • 1--'r --1 
�9 

d L vd# 
q" a (T -- 1 - - ~  B 

~<~ ca LBN{u>O} [VuIP- I~- I  iV'[ dx-~-cd L B  ~p d~t 

"~ 2 Bn{~>0} (l+u/d) ~ \ r /  J2Bn{u>O} \ a/ 

+ cd LB zip d#, 



T H E  W I E N E R  T E S T  A N D  P O T E N T I A L  E S T I M A T E S  149 

and 

uk = rain(u, k) 

#k = Tuk. 

Then (4.2) holds for uk if k is large enough. Hence by collecting the estimates (4.3)-(4.7) 

we arrive at the estimate 

(d-Tr-'~ f u~ dx f / q  ~ cd-Tr-n ~ uTk dx +cdl-prP-n #k(supp y) , 
JBn{~>o} Bn{,.,>o} 

where c=c(n, p, a,/3, 7)>0. Now letting k--*oo and using the weak convergence of #k'S 

to # [14, 2.2] we conclude the proof. 

THEOREM 4.8. Suppose that u is a nonnegative .A-superharmonic function in 
B(xo, 2r). If #=Tu, then for all 7 > p - 1  we have that 

11 - 945201 Acta Mathematica 172. lmprim6 le 29 mars 1994 

where in the last inequality we employed Young's inequality. Hence 

B J2BN{u>O} (l+u/d) ~ 
(4.5) 

{ } 

Keeping (4.2) in mind we obtain 

and, consequently, because w q <~ (1 + u / d) 7, 

r" ~B w']V~}'V dx <~ c ~B w" dx 

<~ c ( ~  B wq dx)'/ ' ,2BA{u > O}, 1-'/q (4.7) 

<~ cd -~ [ u ~ dx. 
J2Bn{,~>0} 

Now we remove the assumption that u is locally bounded. For k>d we write 
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where c--c(n,p,a, j3,'~)>O. 

Proof. By HSlder's inequality we may assume that  

n(p- 1) 

< n-p+1 

We fix a constant 5E(0, 1) to be specified later. Let Bj=B(xo,rj), where rj=21-Jr. We 

define a sequence aj recursively. Let ao = 0 and for j >/0 let 

aj+i =aj+5-i (r-jn /B~+ln{u>a~}(u--aj)'Y dx)l/'Y. 

Note that  aj <c~ for all j (see Lemma 2.9 or [10, 7.46]). We first derive the estimate 

a " - - a  "-  i ~/ # (  B j ) c5 ( , ( 4 . 9 )  
\ aj+l --aj / r'~ -p 

if j/> 1 is such that  aj+l  > aj and q= (p(p- 1)~/)/(p(p - 1) -~/) is as in the proof of Lemma 

4.1. From now on we assume that  5>0  is so small that  

Since 

~ < 2-"-lff"lBjl. 

f 
IBj n{u > aj} I ~ (aj - a j _ l )  -~ JBjni~>aD(u-aj_l)~ dx 

< (aj --aj_l) -')'/BjN{u>a~_x}(?.t--aj--1)'~ d,T = ~ ? r ~ _  1 

=2"r']5~=2"(aj+l-a~l-~ /B (u-ajp d~, 
i+ln{u)a/} 

we have that  

(4.10) 

IS~n{~ > aj}l ~< �89 (4.11) 

and the hypothesis (4.2) holds with 

dj = 2-(n+2)/7(aj+l - a j ) .  

Hence Lemma 4.1 yields 

~< ~ T f f "  JB/~n{.>o~) (~- aj)~ dx + cd~-~-"~(Bj). 
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Finally, because 

a mffl{u>aj } A{u>a~- i}  

151 

we arrive at 

\ 3 JBj+ln{u>a.~} 

<- c d ; ~ r 9  [ ( u - a j )  "Y d x + c d J - ' ~ - n # ( B j )  
aBjn{u>aj}  

<~ c5 "~ c P n 

and (4.9) follows. 

Next we show that 

f l j + l -a j  <.~ l ( a j - a  , '' c[#(B))~ ll(p-1) 
,--1)-r" t r~'--" ) " 

(4.12) 

If aj+l - -a j~  l ( a j - - a j - 1 ) ,  the estimate (4.12) is trivial. If a j - a j - 1  <2(a j+ l - a j ) ,  then 

(4.9) implies that 

~l~/Iq <~ c~'Y_{_c(aj+l _ a j ) l - p / ~ ( B j )  
r']-p 

Now choosing 0<6=5(n,p,  a,/3, 7)~ <1 small enough we obtain 

6 ~ / q  > 2c~ ~ 

so that 
(aj+l-a~) "-~ ~< ~ ~(Bj). 

7.~--P ' 

hence (4.12) holds also in this case. 

Now we are ready to conclude the proof. First we deduce fxom (4.12) that 

k 

a k - - a l  ~ ak+l - -a l  ---- Z ( a j + l  - -a j )  
j = l  

g t.L k k z ,,.,..~ , . \ 1 / ( p - - 1 )  
�9 ~-- - , IPtJJ j )~ 

"~ 2 y~(a~ j = l  = 
k 1/(p-1)  

1 
- -  +c #(Bj) 
- -  - ~ a k  
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and hence 

lim ak-<2a--  '~-~['tt(Bj)'~I/(p-1) ( / B  \1/~ 

j--1 \ t j  / 1 

Now the theorem follows because by (4.11) 

inf u ~< aj 
B~ 

for j = l ,  2, ..., and (for u is lower semicontinuous) we conclude that  

U(Xo)<~ .lira i n f u ~ l i m i n f a  j. 

Proof of Theorem 1.6. The first inequality was established in [14]. The second in- 

equality follows from Theorem 4.8 because by the weak Haxnack inequality in Lemma 2.9 

we may pick 7=7(n, p ) > p - 1  such that  

u ~dx <~c u ~dx <.c inf u. 
(~o,r) (zo,2r) B(xo,r) 

COROLLARY 4.13. Let u be an ,4-superharmonic function in R n with in fR-u=0.  If  

#--Tu, then 

ClW ,p(xo; u(xo) < c2w ,p( o; 

where Cl and c2 are positive constants, depending only on n, p, and the structural con- 
stants (~ and/3. 

Remark 4.14. Because .A-superharmonic functions axe lower semicontinuous and 

satisfy the minimum principle, we can replace infB(~o,r) u in Theorem 1.6 by inf0B(~o,r) u. 

4.15. Harnack's inequality. As the first application of Theorem 1.6 we establish a 

Harnack inequality for equations Tu=#. 

THEOREM 4.16. Suppose that u is a nonnegative ~4-superharmonic function in 

B(xo, 7r) and let #=Tu.  If  there are e>0  and M > 0  such that 

#(B(x, Q)) <~ MR n-p+e 

whenever xE B(xo, r) and 0< ~< 4r, then 

sup u<~cl inf uWc2r e/(p-1), 
B(zo,r) B(xo,r) 
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where cl =cl (n, p, (~, ~) and c2 =c2 (n, p, ~, ~, M, c) are positive constants. 

Proof. This is a direct consequence of Theorem 1.6 because 

W~,p(Xo; 4r) = ~o4~ ( ~( B ~  o) ) )l/('-l) ~ 

~o 4~ do M 1/(p-l) ~o~/(p-1) __ = cre/(P-1). 

By a standard iteration (cf. [10, Chapter 6], [19, p. 1441] or [21, p. 269]) it follows 

from Harnack's inequality in Theorem 4.16 that  certain A-superharmonic functions are 

HSlder continuous. 

COROLLARY 4.17. Suppose that u is .A-superharmonic in ~ and Tu=#. If there 
are positive constants M and e such that 

#(B(x, r)) <. Mr n-v+~ 

whenever B(x, 2r)C~, then there is ~/=7(n,p,c~,f~,e)>0 such that for each compact 
subset K of ~ there is a constant C > 0 with 

lu(x)-u(Y)l < C I x - y l  ~ 

whenever x, yEK. 

We next show that  the restriction for the measure # in the above theorems is essen- 

tiM; cf. [20]. 

THEOREM 4.18. Suppose that u is ~4-superharmonic in B(xo, r). If there are posi- 
tive constants C and "7 such that 

lu(x)-u(Y)l < CIx-yl ~ 

for every x and y in B(xo, r), then 

].t( B(xo, ~o) ) • cCp-l  ~ n-p+~I(p-1) 

whenever 0<Q<�89 here c=c(n,p,a,B)>O. 

Proof. We apply the estimate in Theorem 1.6 to the ,4-superharmonic function 

u--infB(xo,3~) U and obtain 

and the theorem follows. 

<~ Jo \ tn-v 

<. c(u(xo)- inf u) <~ cCo "~, 
B(xo,3~) 

4.19. Continuity of.A-superharmonic functions. Next we characterize the continuity 

of ~4-superharmonic functions in terms of their Wolff potentials. 
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THEOREM 4.20. Suppose that u is .A-superharmonic in fl and Tu=#.  Then u is 

real valued and continuous at xo if and only if for each e > 0 there is r > 0 such that 

r) < 

whenever xEB(xo, r). 

Proof. Suppose first tha t  U(Xo)<Cr and tha t  u is continuous at Xo. Fix 6>0  and 

choose r > 0 such tha t  

lu-u(xo)I < �89 

in B(xo, 4 r ) C ~ .  Then for xEB(xo, r) we have by Theorem 1.6 tha t  

inf u~<e cW~,v(x,r) <~ u ( x ) -  inf u=u(x)--u(xo)+u(xO)--S(x,3r ) 
B(x,3r) 

as desired. 

For the converse, we may assume that  u (xo)=0,  for u(xo)<Cx~ by Theorem 1.6. 

Because u is lower semicontinuous we may choose r o > 0  such that  u > - E  in B(xo, 4ro). 

If  r<ro, we now have for all xEB(xo,r)  tha t  

u(x) <. c2 inf u-t-(c2-l)g-{-C3Wl~,p(x; 2r) <~ ce, 
B(~,~) 

and the assertion follows. 

4.21. Specific order principle. The proper ty  of the next proposition was called the 

specific order principle in [13], where it was established for p > n - 1 .  Now we prove it for 

all p > l .  

PROPOSITION 4.22. Suppose that u and w are .A-superharmonic in ~ such that 

O<<.u,w<<.l and Tu<~Tw. If  x j , xoE~ are such that limj__,~ xj=xo and 

lim w(x~) = w(xo), 
j ---* oo 

then 

rim u(x ) = u(xo). 
j---*or 

Proof. Fix e > 0 and choose ro > 0 such tha t  

w(zo)-  

on B(xo,6ro)C~. Let v=u-u(xo)  and for r>O write 

m(x , r )=  inf v. 
B ( x , r )  
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If r~=lxj-xol<ro, then m(xj,rj)<~O and we have by the potential 

Theorem 1.6 that  

v(xj)-m(xo,4rj) < c inf (v-m(xo,4rj))+cW~,~(xj; 2rj) 
B(xj ,r j )  

~< ~ ( x j ,  r~)-c~(xo, 4 r j )+cW~(x j ;  2rj) 

<. -cm(xo, 4rj) + c(w(xj) - w(xo) +r 

Since m(xo, 4r/)--~0 and w(xj)---*w(xo), we obtain 

lim sup u ( x ~ )  - u (x0) = lim sup v (xj) <~ ce, 
j-~oo j--,c~ 

as desired. 
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estimate in 

5. T h i n  se ts  a n d  r egu la r  po in t s  

In this section we apply Theorem 1.6 and show that  sets that  are thin in the sense of 

the Wiener integral axe also thin in the sense of A-superharmonic functions, that  is, we 

establish Theorem 1.3. As a corollary we obtain a characterization of the p-fine topology 

in terms of the Cartan property (Theorem 5.2). We also treat the boundary regularity 

problem and prove Theorem 1.1. Finally, obstacle problems are briefly discussed. 

Proof of Theorem 1.3. The sufficiency part was established in [8, Section 4]. We 

are going to prove the necessity. Let E be p-thin at x0 ~ E. We may assume that  E is 

open [8]. Write Bj=B(xo,2-J), r / = 2 - J ,  and Ej=ENBj. Let k~>2 be an integer, to 

be specified later. Let u=R~E~(Bk_2;A) be the .A-potential of Ek in Bk-2 and #=Tu: 
Then u>~l on Ek and it remains to prove that  (for some k) u (x0)<l .  If A=infBku, we 

have by Lemma 3.9 that  

)~P-lr;-P < C)~ p-1 capp({u > A}, Bk-2) <~ c#(Bk-2) = c~t(Sk-1), 

and so 
[ #(Bk-1) ) 1/(p-1) 

i n fu~<c[  
B~ \ r k _ l  

Moreover, it follows from Lemma 3.7 that  for j>k-2  

#(Bj) ~ ccapp(Ej, Bk-2) ~ ccapp(Ej, Bj-1). 

Hence, keeping (5.1) in mind, we obtain from Theorem 1.6 that  

U(Xo) <<. cinf u+cW~,p(Xo,rk 1) 
Bk 

_ ~ fcapp(Ej,Bj-1)~ 1/(p-1) 1 
<<" ~ 2_, | -~--e j <~ ~' 

j=k--1 \ rj 

(5.1) 
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where c=c(n, p, a,/~) >0 and the last inequality follows by choosing k large enough. This 

completes the proof. 

Using Theorem 1.3 we have that the Cartan property characterizes fine topologies 

in nonlinear potential theory. Recall that the A-fine topology is the coarsest topology in 

R n that makes all A-superharmonic functions in R n continuous. 

THEOREM 5.2. Suppose that E c R  n and xo E E. Then the following are equivalent: 

(i) Xo is not an A-fine limit point of E \  {xo}. 

(ii) E is p-thin at xo. 

(iii) (Cartan property) 

of Xo such that 

There is an A-superharmonic function u in a neighborhood 

liminf u(x) >u(x0). 
x~E\{xo} 

(iv) There are open neighborhoods U and V of Xo such that 

R~nu(V; A)(x0) < 1. 

Proof. It was shown in [9] that (i) and (ii) are equivalent. In [8] it was established 

that (iii) implies (iv) and that (iv) implies (ii). The missing link that (ii) yields (iii) 

follows from Theorem 1.3. 

5.3. Boundary regularity. Next we show that regular boundary points can be char- 

acterized by the Wiener test, that is, we prove Theorem 1.1. 

We begin with recalling the Perron process. Let f:  o n - , [ - c o ,  co] be a function. 

Here we make the convention that if ~ is unbounded, the boundary On is taken with 

respect to the one point compactification RnU{co} of R n. Hence 0n  is always compact. 

Define the upper Perron solution Hf in n to be the function 

m 

Hf = inf{u : u E Llf}, 

where/4f consists of all A-superharmonic functions u in n such that u is bounded below 

and that liminfx_~ u(x )~ f ( y )  for all yEOn. 

The lower Perron solution _Hf is defined analogously via A-subharmonic functions 

so that 

Hf = -_H_f. 

It is fundamental that in each component of n, Hf is either A-harmonic, or H f - c o  or 

g1=-co [11]. 
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Moreover, it was shown in [11] that  if f :  012--*R is continuous, then H/--_H I in 

and H / i s  A-harmonic there; if p=n one must assume in addition that  R n \ f l  is not of 

n-capacity zero. 

We call a boundary point Xo E 012 regular if 

lira H/(x)= f(x) 
~g--)X 0 

whenever f :  0f~-+R is continuous. If 12 is bounded, this definition results in the same 

regularity concept as it was mentioned in the Introduction. Indeed, if fEWI,P(~/) is 

continuous on ~, then HI-fEW~'P(12) (see [11, 6.2] or [10, 9.29]). Hence by the unique- 

ness we have that a point x0, which is regular in the sense of Perron solutions, is also 

regular in the sense of the Introduction. Conversely, let x0 be regular according to the 

definition in the Introduction and approximate a continuous function f uniformly on 0fl  

by functions f j  EC~(lCtn). Then 

lira Hf(x)= f(xo) 
X--+~gO 

because H/,-fjEW~"(12) and HI, converges to H I uniformly in ~ [10, 9.30]. 

Now we axe ready to prove Theorem 1.1. 

Proof of Theorem 1.1. That  the divergence of the Wiener integral Wp(Rn\12,xo) 
implies the regularity of x0 was proved by Maz'ya [18] if 12 is bounded; the general case 

was treated in [11]. See also [10, 6.16 and Chapter 9], where a somewhat simpler proof 

for Maz'ya's estimate is given. 

For the converse, suppose that  

w p ( R ~ \ n ,  xo) < ~ .  

If x0 is an isolated boundary point, it never is regular as easily follows by using the 

maximum principle and the removability of singletons for bounded A-harmonic functions 

(cf. [7], [11]). Hence we are free to assume that xo is an accumulation point of E= 
R n \ ~ .  Because E is p-thin at x0, we now infer from Theorem 1.3 that there are balls 

Bi=B(xo,ri), i=l, 2, such that rl<r2 and an A-superharmonic function u in B2 such 

that 0~<u~<l, u=l in B2fTE\{xo} and U(Xo)~�89 Next, choose a function ~oEC~176 n) 

such that ~o~<u in E N B I \ { x 0 }  and that ~0=1 in a neighborhood of xo. Consider the 

upper Perron solution H~ taken in the open set B1Nf/. Because the set of the irregular 

boundary points of B1N~ is of p-capacity zero [11, 5.6] and because H~ E WI'p(B1N~) 
(see [11, 6.2] or [10, 9.29]) it follows from the generalized comparison principle [13, 3.3] 

that  

U~<.u 
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in B1 fqfL In particular, 

l iminf_~(x)  < liminf u(x) = u(x0) ~< 1 < 1 = ~(x0). 
~'--~0 X'--~g0 

ZEN 

Hence x0 is not regular boundary point of B1 \ f t .  Since the barrier characterization for 

regularity [11] implies that  the regularity is a local property, it follows that  Xo is not a 

regular boundary point of f~. Theorem 1.1 is proved. 

In [13] we termed a boundary point x0 of a bounded fl exposed, if there is a contin- 

uous function h: ~--~R, ~4-harmonic in fl, such that  h(x0)=0 and h > 0  on ~\{x0}.  

By the barrier characterization of the regularity ([10, 9.8], [11]) an exposed boundary 

point is always regular. In [13, 4.1] it was proved that  also the converse is true provided 

that  the operator T obeys the specific order principle 4.21. By Proposition 4.22 this is 

always the case so that  we have: 

THEOREM 5.4. A boundary point xo of a bounded open set f~ is regular if and only 

if it is exposed. 

5.5. Obstacle problems. There are several other problems in nonlinear potential 

theory that  have been solved for p > n - 1  only, but rather straightforwardly follow once 

Theorem 1.3 is established for each p �9  n]. In this respect we mention here obstacle 

problems. 

Let r Rn--+R be a bounded function. A function u is said to be a local solution to 

the obstacle problem at the point Xo if there is an open neighborhood f} of x0 such that  

Let 

where 

Write for e > 0 

u �9 Wl,p(f~), 

u ) r p-quasieverywhere, 

fn A(x, V u ) . V ~ d x  >>, 0 whenever ~ �9 W~'P(f~) 

is such that  u + ~  >/r p-quasieverywhere. 

(5.6) 

z~(Xo) = inf p-ess sup r 
r > 0  B(xo,r) 

p-ess sup r = inf{t : r ~< t p-quasieverywhere in B(xo, r)}. 
B(xo,r) 

Ee = {x: r  ~> ~S(x0)-~}. 

Now we have: 
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THEOREM 5.7. I f  no Er is p-thin at xo, e>0 ,  then each local solution to the obstacle 

problem (5.6) is continuous at Xo. 

Conversely, if EE is p-thinforsome c>0 ,  there is a local solution to (5.6) that cannot 

be made continuous at Xo. 

Proof. The first assertion is well known and it was proved by Michael and Ziemer 

[19]; see also [8]. 

The second assertion was established in [8] under the additional restriction that  

p > n - 1 .  Next we show that  it follows from Theorem 1.3 for all pE(1, n]. To this end, 

suppose that  there is e > 0  such that  E~ is p-thin at x0. Appealing to Theorem 1.3 we 

infer that  there is a bounded .A-superharmonic function u in a ball B=B(xo ,  ro) such 

that  u = s u p r  on E~\{x0} and 

u(xo) 

Because u is lower semicontinuous, we may assume that  

u > r  

in B. Also there is no loss of generality in assuming that  uEWI'P(B) (see Proposition 

2.7). Let v be the .4-superharmonic solution to the obstacle problem (5.6) with ~ = B  

so that  u - v e W l ' p ( B ) .  Since u~>r p-quasieverywhere, we have that  v<.u in B (cf. 

[7, 2.8]). It follows that  v cannot be continuous at x0, since 

lim inf v(x) <~ ess lim inf u(x) -- u(xo) 
X--->X0 ~ff---~X0 

< r  = inf p-ess sup r 
r~>O B(xo,r) 

~< lira sup v(x), 
X ~ X  0 

for v ~> r p-quasieverywhere. 

Remark 5.8. A similar problem for double obstacle problems was studied in [15, 

Theorem 5.2]. The sufficiency part of the Wiener test was established there for all p's 

but  the necessity was proved only if p > n - 1  or if the operator in question is linear. By 

using Theorem 5.7 one can use the argument in [15, Theorem 5.2] and easily establish 

the necessity part without any restriction for the type p of the operator. 
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