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1. I n t roduc t i on  

Let g2(x, y) be the number of integers ~<x that are free of prime factors >y, ~q(X, y) be 

the number of such integers that are also coprime to q, and g2(x, y; a, q) be the number of 

such integers in the congruence class a (mod q). Good estimates for these functions have 

many applications in number theory (for instance, to bounds for the least quadratic non- 

residue (mod p) [Bg], to Waring's problem [Va], to finding large gaps between primes [Ra] 

and to analysis of factoring algorithms [Po]), as well as being interesting in of themselves, 

and so have been extensively investigated. 

Recently Hildebrand and Tenenbanm [I-IT] have provided a good estimate for g2(x, y) 

for all x>~y>~2, and a similar method works for ~q(X, y); however their method applies 

to g2(x, y; a, q) only when q is considerably smaller than y. In general one expects that, 

for sufficiently large x, 

�9 q(X,y) (1.1) �9 (x,y; a,q),,~ r 

whenever a is coprime to q, provided that the primes ~<y generate the full multiplicative 

group of units (mod q). Buchstab [Bu] proved such a result when q and u (:=log x~ log y) 

are fixed; and extensions of this, for q up to a fixed power of log y, are considered in [LF] 

and [No]. Recently Fouvry and Tenenbaum [FT] have shown that the estimate 

q2q(X, y) gY(x,y;a,q)---- r { l + O ( e x p ( - c  l o v / ~ ) ) }  (1.2) 

holds uniformly for 

y/> 2, X ~> y ~> exp(c(loglogx)2), (1.3) 

(1) The author is supported, in part, by the National Science Foundation (grant number DMS- 
8610730) 
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and all q up to any fixed power of log x; they also gave a similar estimate (which implies 

(1.1)) for all q~exp(c lov/T~). As one might guess from these ranges for q, the methods 

used to obtain these estimates depend on an understanding of the distribution of zeros 

of Dirichlet L-functions (mod q). Here we avoid this difficulty and so increase the ranges 

in which (1.1) is known to hold: 

THEOREM 1. Fix N>O. The estimate 

~P(x'y;a'q)=~q(x'Y) { l+O( l~  \ l og  y ]  (1.4) 

holds uniformly in the range 

( a , q ) = l ,  x>~y>/2, q~min{x, yN}. (1.5) 

Note that  (1.4) only provides a non-trivial lower bound for kO(x, y; a, q) if q<y6 for 

some sufficiently small r 

Fouvry and Tenenbaum also showed that  (1.1) holds, in a certain 'average' sense, in 

a much wider range than (1.5); specifically, that  there exists a value of B>0 ,  such that  

if log y >> log x log log log x/log log x then (1.1) holds for almost all q ~< x 1/2/logB x for all 

a coprime to q. We use their theorem to obtain a result for the same values of q and y, 

but now for all sufficiently large x (independent of y): 

THEOREM 2. For each A > 0  there exist constants B=B(A)>O and C=C(A)>O, 
such that the estimate 

E max max k~(x',y;a,q) q~QX'~x (a,q)=l 

holds uniformly for 

�9 q(X', y) k~(x, y.___~) (1.6) 
r <<A log A Y 

y ~> 100, 1 ~< Q ~< exp(C log Y log log y~ log log log y), x/> Q2 logB Q. (1.7) 

Theorem 1 provides a non-trivial lower bound for kO(x, B; a, q) only when q is less 

than a sufficiently small power of Y. By using a recent result of Balog and Pomerance 

[BP] we can extend the range for q at the expense of a weaker error term: 

THEOREM 3. Fix N in the range 0 < N <  ~ and s>0 .  The estimate 

�9 (x, y; a, q) • % ( x ,  y) (1.8) 

holds uniformly in the range 

(a,q) = 1, y ~ 2, q <~ yN, x ~ max{y 3/2+r (1.9) 

We may also obtain a strong upper bound for ~(x,  y; a, q) in a much wider range 

than in Theorem 1, which can be used to improve a result of Friedlander [Fr]. 
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THEOREM 4. There exists a constant c>0 such that the inequality 

kO(x,y;a,q)<~c kOq(x'y) / min ~ q2q(Xl'Y) ~ (1.10) 
r / q ~ x ' ~ q  max{y,log 2 q} ~k ( r  

holds for all positive integers q and all x >1 q. 

Acknowledgements. The anonymous referee has made a number of penetrating and 

interesting observations, which have significantly improved and greatly simplified this 

paper. I'd like to thank him or her, as well as John Friedlander for much helpful advice, 

Brian Conrey for his illustrative observation used in Section 4, and also Professors Fouvry, 

Moree, Norton and Tenenbaum for their comments. 

Notation. Throughout c and e are taken to be absolute positive constants; however, 

they may change value from one proof to another. If d is coprime with q then we define 

7r(x; q, a/d) (or ~(x, y; a/d, q)) to be the number of primes ~x  (or the number of integers 

~x  that are free of prime factors >y), which belong to the arithmetic progression aid 
(rood q). 

2. The  key idea 

The function ~(x, y) has been extensively investigated (see [No] for a review up to 1971): 

In 1930, Dickman [Di] showed that for any fixed u>0, 

�9 (x,y) (2.1) 

where Q(u), the Dickman function, equals 1 for 0~u~< 1, and is the continuous solution 

of the differential difference equation uQ' (u) + Q(u- 1) --0 for u > 1. 

In 1951 de Bruijn [dB], by carefully treating Buchstab's equation 

z < p ~ y  
p p r i m e  

as an approximate functional equation for xQ(u) (that is with kO(x, y) replaced by xQ(u)), 
gave the estimate 

for u=logx/logy, when x>~y>~exp((logx)5/s+~), for any fixed e>0. 

Recently Hildebrand [H1] considered instead the equation 

,y logp (2.3) 
pm <~x 
p<~u 
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as an approximate functional equation for x~(u), and proved (2.2) in the much wider 

range 

x >1 2, x >1 y >/exp(c(loglogx)5/3+e), (2.4) 

for any fixed E > 0. 

Any such method has the limitation that  the approximation involved (that is, of the 

functional equation for ~(x ,  y) serving as an approximate functional equation for x~(u)) 
gets worse as u gets larger, and so limits the range of u for which (2.1) is provable. In 

fact, both De Bruijn's and Hildebrand's results depend on the size of the error term 

in the Prime Number Theorem (to determine the accuracy of the approximation); and 

Hildebrand has even shown ([H2]) tha t  (2.3) holds for all y~>log TM x if and only if the 

Riemann Hypothesis is true. However we do not believe that  (2.1) can hold uniformly 

for y=log  2-~ x, for any fixed e>0.  

The main new idea in this paper is that  we establish a functional identity for 

�9 (x, y; a, q), which remains valid when we replace each term of the form ko(t,y; b, q) 
with (1/r y). This has the benefit that  if we consider this functional identity 

for k~(x, y; a, q) as an approximate functional equation for (1/r y), then we lose 

nothing in this approximation. In Proposition 1 below we show that  this means that  we 

can reduce the question of establishing (1.1) for all x>~xo, to that  of establishing (1.1) 

in an interval of the form xo<.x~xl.  
Thanks to a suggestion by the anonymous referee, our proof of this is entirely ele- 

mentary, and so we shall prove a generalization of the result indicated above: 

Suppose that  P is a set of primes, each ~<y, none of which divide the positive integer 

q. Define ~(x ,P)  to be the number of integers ~ x  whose prime factors all belong to 

the set P,  and ~(x ,  P;  a, q) to be the number of such integers that  are congruent to a 

(mod q). Let G--G(q, P) be the multiplicative subgroup of (Z/qZ)* generated by the 

primes in P;  note that  ~(x,P;a,q)~O for some x if and only if aEG. In general one 

expects that,  for sufficiently large x, 

�9 (x, P; a, q) ,-~ 

We shall prove the following result: 

�9 (x, P)  for all a e G. (2.5) 
ICl 

PROPOSITION 1. There exists a constant c>0  such that for any non-empty set of 
primes P, each ~y,  none of which divide the positive integer q, and any ~>~0, x o = y  "~ 

xl  = y ~  ~>2Xo>~4, with ~ =min{ul ,  IPI}, we have 
~ ( x , P ; ~ q )  I I~(x' ,P;b,q) )~ 

�9 (x, P) )~ <~ max -o<--'-<-1 ~(x ' ,P)  
(2.6) 

IPl(uo+l)logyr 
c I. P; b, q)-t-)~(xo, P)}   lV(X ,P) v(x0, 
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for all x>~xo and aEG--G(q, P). 

Typically, we apply Proposition 1 with )~ equal to its 'expected value', 1/[G[. If 

u0~iP] then, in order to deduce (2.5) for all x>~xo,aEG from Proposition 1, we must 

be able to choose xl so that g/(Xo, P)IPI logy=o(~(xl, P)), and also so that (2.5) holds 

for all xo<.x<~xl, aEG. To deduce (1.1) we just consider the case where P is the set of 

all primes ~<y that do not divide q. This essentially describes the main ideas behind our 

results. 

3. The proof  of Proposi t ion 1 

We start by giving functional equations for ~(x, P; a, q) and ~(x, P), analogous to Hilde- 

brand's equation (2.3): The idea is to evaluate 

log n 
n~ z,n~a (rnod q) 

pI~=~pEP 

in two different ways. First by partial summation, and second by writing each log n as 

~-~pmln 1ogp, and then swapping the order of summation. This leads to the identity 

/1 ~ g2(x,P;a,q)logx= ~ gJ(t'P;a'q) dt ~ g2 , e ; -~ ,q  logp. (3.1) 
pC P, pm ~:g 

Summing (3.1) over all integers aEG we get 

z �9 (x,P)logx= t 
pEP, pm~x 

Notice that (3.2) is just (3.1) with each term of the form gJ(t, P; b, q) replaced by ~(t, P). 

LEMMA 1. For q and P as above, and any real k~ l, we have 

1 
gY(xy k, P) >~ ~ ~-~k IPl~'(x, P). 

Proof. Replacing x by xy k in (3.2) we obtain 

kg(xyk,p)log(xyk) >~ ~ gj(Xpy~km ,P) logp>/ kg(x,P) ~'~ log p ~ 1, 
pEP, pm ~yk pEP rn: pm ~yk 

which gives the result as ~m: p,~ ~<y~ 1 )  �89 k log y~ log p. 
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LEMMA 2. For q and P as above, and any positive real u, we have 

1 1 
Z (u+i)k~(y~,+,, p) << fi~(y=, p)" 
i~>o 

Proof. We begin by proving this when l~<IPI~<4. First note that the result for 

0<u~<l comes from the result for u~>l by missing out the first term in the sum and 

noting that fi~<4. Now, it is easy to establish that k~(x,P)~.l-lpep (logx/logp) holds 

uniformly for x ~> y. Therefore 

Z 1 
~>~o (u+i)~(Y=+i' P) 

• ( ]7- log p'~ 1 log p 1 
\p~e~p 1-~gy] Zi>~o (u+i)lPl+* • pePn 1-~g x -- ~(x, P ) '  

for u>/1, and the result follows as fi<~4. 

So now assume that IP]~>5. Let Uo=U and for each j~>0, let k s be the smallest 

integer ~> 20u s/IPI and US+l =u s +k s. Lemma 1 implies that ~(y=j+l, p)/>2~(y=j, p), 

and so q!(y=~,P)~2Sql(y=,P) for all j~>0. Thus 

1 <~ ~-, Uj+l-Uj 
Zi>>.o (u+i)qJ(Y=+~' P) S>~o"-" uSqJ(Y=~' P) 

1 kj 
< us2J' s>~o 

and the result follows as each kj/uj  << 1/uj + 1/IP I << 1/ft. 

Proof of Proposition 1. The general form of this argument owes much to the proofs 

in [H1]. Define, for each x~>l, 

t ~(x, P; a, q) A max F(x') r(x)=rq(x) :=maxoec v(x,P) and 

for each x~xo. By subtracting ), times (3.2) from (3.1), where aeG is selected so that 

]q2(x, P; a, q ) - ) ~ ( x ,  P)l is maximal, we have, for x>~2xo, 

r t)q'( t 'P)dt+ r q, ,P logp+Hq(x;P) F(x)qJ(x, P) log x <~ 
t 

o p e  P, pm <.X/XO 

where Hq(x,P) equals the contribution of those terms ~(t, P; a, q) with t<~xo in (3.1) 

plus )~ times the contribution of those terms ~(t,  P) with t<~xo in (3.2). Now, using the 

trivial inequalities 

�9 (t, P; a, q) ~< kO(Xo, P; a, q) and qJ(t, P) ~< ~(Xo, P) for all t ~< xo, 
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we find that 

Hq(x;P) <<..~maxCt(xo, P;b,q)+Aq~(xo,P)}beG 7 -4- E logp 
pEP, x / xo <~pm ~x 

~< {'max ~'(xo, P; b, q) + Aq2(Xo, P) } (IP[ + 1) log(xoy), 
" b~G 

a constant, independent of x, which we will henceforth denote by h a. Inserting this 
estimate into the inequality above, we obtain, for x~> 2x0, 

0 pCP, pm <~x/xo 

~ x (3.3) +(r*(x)-r*(�89 ~(t, P) dt + hq 
/2 t 

~< F* (�89 P) log x+  (F* (x ) -  F* ( lx))~(x,  P) log 2+hq 
by (3.2) and the trivial inequality 

~ ~(t,P) dt<~ qt(x,p) ~ x __dt=q~(x,P)log2. 
12 t 12 t 

For x~>4 we get, by dividing (3.3) through by kO(x, P) logx,  

r(x) < + hq 
�9 (x, P) log x (3.4) 

1 * 1 1 * hq 
~<~r (hx)+~F (x)+ql(x,P)logx, 

as log 2/log x ~< �89 

Now assume that x>~4xo. For any x' in the range Xo<<.x'<<.�89 we have 

r(x') r*(�89 < �89189 

as F* (t) is a non-decreasing function of t. For any x' in the range ~x<~xl ' <~x we use (3.4) 
to obtain 

1 ! 1 * , hq 
r(x ' )  ~< �89 )+~F  (x)-~ qJ(x',P)logx' 

1 * 1 hq 
~< ~r  (~x)+�89 kO(�89 P)log(�89 

as F*(t) and ~ ( t ,P )  are both non-decreasing functions of t. Combining these last two 

equations, we get 
2hq 

F*(x) ~< r*(�89 V(�89 P)log(�89 

Adding together this equation for x=2xl ,  4Xl, 8xl, ... we obtain 

1 ~< F * ( x I ) + O (  h q )  
F(x) ~< F*(xl)+2hq y]~ ii/(x12J ' p)log(xi2J) ~1~(-xl, P) ' 

j~>0 

for all x>.xo, by Lemma 2, which is (2.6). 
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4. Est imates  for small  x - - t h e  proofs of  Theorems 1, 3 a n d  4 

In [Sa], Saias gave an asymptotic series for ~(x,  y) in the range (2.4); and the analogous 

result for ~2q(X,y) was proved in [FT], for a wide range of q. An easy consequence of 

their result is 

LEMMA 3. The estimate 

r 
y) ~ v (x ,  y) 

q 

holds uniformly for any positive integer q which has <. log 2 y distinct prime factors, all 
of which are ~y, and any x=y u, �89 

At the end of this section we shall prove 

PROPOSITION 2. The estimate (1.4) holds uniformly for q<~yl/2~x<~y2. 

Using this it is easy to give the 

Proof of Theorems 1 and 4. We shall use Proposition 1 with P as the set of all 

primes ~<y, except those dividing q. 

For q>yl/2 take xo=q, xl=qmax{y, log 2 q} and A--0 in Proposition 1. Using the 

trivial upper bound ~(x ~, y; b, q)<<x'/q we obtain the bound 

k~(x,y;a,q) 1 ~ x' (uo+l)yxo i 1 x' 
k~q(X,y ) ~ -  max --  ] ~<- max 

q~o<~x'<~x,~q(x',y) ~Ui~q(Xl,y) qxo<~'<~Vq(x',y)' 

as Xl was chosen so that  ((uo+l)/~l)yxo<<xl, which implies (1.10). Now, if yl/2 <~q<~yN 
then xl=qy, and so Lemma 3, together with (2.2), gives the upper bound here to be 

O(1/r q/r log y), which imphes (1.4) for q>yl/2. 
For q<yU2 (so that  [GI=r take xo=y 1/2, x l=y 2 and ~=l/r Applying 

Lemma 1 for k = l  and u = 0  and 1, we get ~(xl,P)>~]P]2/8 as ~ ( 1 , P ) = l .  Moreover, by 

Proposition 2, 
kO(xo, P) yl/2 

max~(xo, P ; b , q ) T ) ~ ( x o , P ) < < b ~ C  r ~ r 

Thus, as IP] l o g y •  by the Prime Number Theorem, we obtain 

log 2 y 
]P](uo+ 1)log y ~max ~(xo, P; b, q)+ )~(xo, P)} << r 

c ~lkO(xl,P) -bea  

Thus, by Proposition 1 (with (2.6) multiplied through by r and Proposition 2, we 

get 
�9 (x, y; a, q) 1 << log q . log 2 y << log____qq 

kO q(X,y)/r l-~gy + yl/-------2- logy '  
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for all x~y 1/2 and (a,q)=l. 

These estimates combine to establish both theorems. 

Remark 1. If we can obtain a particularly accurate estimate for 9(x,  y; a, q) in the 

range y<~x<~y 2 then we can improve the error term in (1.4), by Proposition 1. For 

instance, if q is less than some fixed power of log y then we can apply the Siegel-Walfisz 

Theorem, and so obtain the estimate (1.2) for all x>~y>/2. If q4exp(v/]-6-~) then, by 

expressing the terms ~r(x/d; q, a/d) of (4.4) below as sums over zeros of the Dirichlet 

L-functions (mod q), we get a large amount of cancellation that  enables us to prove a 

stronger estimate than (1.4) for all x>>.y>>.2. Such results are already obtained in [FT], 

and so we do not pursue this here. 

Remark 2. One reason that  we are unable to estimate 9(x,  y; a, q) when q is much 

larger than y, is that  we have no good method to estimate IGI. Trivially, IGl~q(q, y); 

if this were equality, then we would expect that  k~(x, y; a, q),~q(X, y)/g2q(q, y) for each 

aEG, which is (~q(X,y)/r162 evaluated at x'=q. This perhaps 

explains the form of the bound in Theorem 4. 

Proof of Theorem 3. Recently Balog and Pomerance [BP] gave the estimate 

�9 (z ,  y; a, q) = y)u 

in the intersection of the ranges (1.3) and (1.9) for any N <  4. 

We shall take P to be the set of all primes ~<y, except those dividing q, 

~2(x', P;  b, q) 
x0 : y3, Xl = y~ and A = max 

~o.<.'.<.1 qJ(x', P)  
b E G  

in Proposition 1. From Balog and Pomerance's result, we see that  ~ is bounded above 

by an absolute constant times 1/r so that  the final term in (2.6) is 

IPl(uo+ 1)logy b, q)+AqY(xo, P)}  << r y) << yr c fil~(Xl,P) {~e a~r176 y~q(y3,y) 1 

by Lemma 3. Thus, by Proposition 1 we see that,  for any x>~xo and ( a , q ) = l ,  we have 

fft(x,y;a,q) ff2(x',y;b,q) 1 ) 1  
ff2q(X,y) >/ rain - - ,  >>r 

b E G  

using Balog and Pomerance's result in the last step. 

We now proceed to the proof of Proposition 2, but first we need the following easy 

lemma: 

18- 935202 Acta Mathematica 170. lmprim6 le 30 juin 1993 
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LEMMA 4. For all positive integers q, 

1 r log q+O(w(q)). 
E d q 

d~q, (d,q)=l 

Proof. Define S(x) to be the number of integers ~<x, that are coprime to q, and let 

E(x):=S(x)-(r By partial summation we get, for Xq=2 ~(q), 

1 q 

t [---t--J 1/2 A / 2  d<~q, (d,q)----1 

= r r ~a12 T+dt ~Xq~2)  d t +  ~x q E(t) dt 
/2 q 7 

= r (log q+O(1)) +O(log xq + 1) 
q 

using the trivial facts that E(t)<<.t and E(t)<<.Xq in the last two integrals. The result 

follows immediately. 

Remark. The Prime Number Theorem implies that 

logq and r 1 
log log q q log log q' 

w(q) << - -  

and so Lemma 4 implies 
1 r 

E 5 << logq. (4.1) q 
d<<.q, (d,q)=l 

Proof of Proposition 2. If y 1/2 <<.x<~y then, trivially, kO(x, y; a, q) and (1/r y) 
can both be estimated by x/q+O(1). Thus (1.4) holds as l<<(x/q)(logq/logy) for all 
q<~yl/2. 

Henceforth we will assume that y ~ x <<. y 2. Now, ~P ( x, x; a, q) - ~P ( x, y; a, q) counts the 

number of integers n<<.x of the form n=pd where p is prime, p>y and p~q, and d=-a/p 
(rood q). We count these integers n by first considering those with p<<.x/z and then the 

others (where z=min(q, x/y)), so that 

qt(x,y;a,q)=qJ(x,x;a,q)- E # { d ~ x / p : d - a / p  (modq)} 

p pr,m.,p~q (4.2) 
-- E {.(x/d; q, a /d)-r(x /z;  q, a/d)} 

d<~z 
(d,q)=l 

(note that the first sum is empty if z=x/y). Now ~(x, x; a, q)=x/q+O(1), and 

#{d <~ x/p: d -  a/p (mod q)} = x/pq+O(1) 
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for any prime p that  does not divide q. Also 

X ~r(x/d; q, a/ d) << 
r 

for any d<<.z with (d, q )= l ,  by the Brun-Titchmarsh Theorem; and log(x/qd)~logx for 

any d<~z, as q<~yl/2. Substituting these estimates into (4.2) gives 

�9 (x,y;a,q)=q(1-<~<../. ~)+O(~'(q)+ ~ r  
p prime,p~q (d ,q )~ l  

(4.3) 

and the result follows as qtq(X, y)~(r for y<~x<<.y 2, by Lemma 3. 

Remark. Taking z=x/y in (4.2) we see that  we need to estimate 

Z {r(x/d; q, a/d)-r(y; q, a/d)}. 
d<<..l~ 
(d ,q )= l  

Usually one attacks such estimates by first solving the corresponding problem with %r" 

replaced by "r (that is the sum of logp over the prime powers pm in the arithmetic 

progression under consideration); and then deducing an answer to the original problem 

through partial summation. Here, when q is a small fixed power of y, we can obtain 

an extremely accurate estimate with %r" replaced by "r  but are unable to convert 

this to an accurate estimate for the original problem. Brian Conrey gave the following 

explanation for this surprising phenomenon: 

Take y--1 in the sum above (when "Tr" is replaced by "%9") to obtain 

E r y~ ~ logp 
d<.m d<~x p m < ~ x / d  

(d ,q )= l  ( d , q ) : l  p~a't~--__a/ct(r~aa q) 

1 / x  l o g q \  �9 

= E  logp= E log n, 
n ~ a ( m o d  q) n_----a (rood q) 

where we take n=dpm; it is easy to estimate this sum with an error term O(logx). On 

the other hand, if we do the same series of steps for r then we obtain the identity 

~(x/d;q,a/e)= Z ~(n), (4.4/ 
( d , q ) : l  n::-a (rood q) 

=q0 z  )§ 
~<p.<./z ~ ]  

p prime,p~q 

by the Prime Number Theorem and (4.1). Summing this over all a coprime to q with 1 ~< 

a<~q-1, and then dividing by r we see that  (4.3) is also an estimate for q2q(X, y)/r 
Therefore 
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kO(x,y;a,q)+ E 
n---~--a (rood q) 

which is far harder to estimate as accurately. 

This leads to the further observation that a "good" uniform estimate for ~(x, y; a, q) 

is (essentially) equivalent to a "good" uniform estimate for 

~(n) ,  
n ~ z  

n ~ - - a  (rood q) 

in the range qy<~x<~y2: To see this, add (4.2) for z : x / y  to (4.4), and swap the order of 

summation for d and p, to obtain, 

win ):~(x,x;a,q)+ E #{d<.x/p:d-a/p (modq)} 
P~ Y, P~q 

1 } + O ( l ~ g y ) '  
P<Y, P~q 

in the range y 2 ) x ) y  for each (a ,q)=l .  Svmming over the arithmetic progressions 

a (mod q) with (a, q)=l ,  and dividing through by r we see that the right side of this 

equation also serves as an estimate for 

E 
(n ,q )= l  

1 {~q(X,y)+ 
r 

and so 

q~(x, 
~[q) 

. , ~  r Z.... Y 

n--~a (mod q) (n ,q )= l  

5.  E s t i m a t e s  o n  average--- the  p r o o f  of  T h e o r e m  2 

We now give an upper bound for ~(x, P)  for all x~y, using a modification of the method 

of Section 3. 

LEMMA 5. Fix e > O. The estimate 

k~(x,P)<<Cp~(x,y), where cp:= ~ ( 1 - - ~ )  (5.1) 

holds uniformly for all sets of primes P, each <~y, and for all x>/y ~. 

Proof. Let xo=y ~ and xl=2yxo, so that O(xl,y)>>~(xo,y)lP]logy, by (2.2). An 

easy consequence of the Fundamental Lemma of Sieve Theory ([JR]), is that 

v(x, P) ~< ~ 1 << r x << cp~, 
,.<. q 

(,*,q)=l 
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holds uniformly for all x>~xo, where q is the product of the primes ~x  that are not in 

the set P. This implies (5.1) for xo~x~xz ,  by (2.2). 

For each x>~xo define r(x)=qd(x, P)/cpq2(x, y) and r*(x)=maXxo~<x,~<x r(x), so that 

r*(xz) is bounded. We will proceed in a similar manner to the proof of Proposition 1: 

When x~>2x0, we can give an upper bound on qJ(x, P)  by bounding each term of 

the form q2(t, P)  on the right side of (3.2) in the following, trivial, way: 

I ~(Xo, P) = r(xo)cp~(xo, y), 

r r*(�89 

r*(x)cpkO(t,y), 

This leads to the formula 

r(x)  <~ ]rl �9 (~x)§ �89 r(xo)(IP]+X) 

which may be compared to (3.4); and then to 

for 1 ~< t ~< x0; 

for Xo ~<t~< z-x" 2 ' 

for �89 

 (x0,y)log(x0y) 
�9 (x,y) logx ' 

r*(x) <~ r*(�89 + 1) k~(Xo, y)log(xoy) 
�9 (�89 y)log(�89 " 

From this we deduce that 

~(xo,y)logy ~ 
r*(x)<<.r*(xl)+O r(xo)lPI -~(-~lly) ] '  

which we already know to be bounded. 

In order to prove Theorem 2, we shall need the following lemma which may be of 

independent interest (this is based on Lemma 1 of [HB]): 

LEMMA 6. For any given sequence of integers, and positive integer q, define Dq(x) 
to be the maximum, over those integers a that are coprime to q, of the absolute value 
o] the difference between the number of elements of the sequence <<.x that belong to the 
congruence class a (rood q) and 1/r times the number of elements of the sequence 
<<.x that are coprime to q. Suppose that for all fixed A>0 there exists a constant BI= 
Bz(A)>0 such that 

X 
Z nq(x)<<A - ~ ,  

q~XZ/2/LB1 

where, for this lemma, L:=logx. Then, ]or each fixed A>0, there exists a constant 
B2= B2(A)>O such that 

Z maxDq(x')<(A 5 "  Xt <~X 
q~zl/2/LS2 
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Proof. Let E=A+I,  C=BI(3E) and B=B2(A):=C+E/2+I. Choose any Q~< 

x1/2/2L s and let M=[LE]. Choose integer Xq<~X so that Da(xq) is maximized and 

then take j=[xqM/x]. As there are <~y/q+l integers in any arithmetic progression 

(mod q) in any interval of length y, we have Dq(xq)<<.Dq(jx/M)+x/Mq+l. Therefore, 

as Dq(jx/M)<<x/Q for any q in the range Q<q<~2Q, we obtain 

X / 2  M 
Dq(xq)2<<<~q<~2 ~ +~-~ Z Dq(jx /M)2  

Q<q<~2Q Q Q j= l  Q<q<~2Q 

X 2 X M 
< < L - ~ Q + Q j _ ~  1 Z Dq(jx/M) 

-- Q<q<~2Q 

x 2 XMX_.~_ x 2 
<< ~ -{- Q L 3 E << L 2 ~ 

by the hypothesis, as 2Q~< (x/M)I/2/L C. Then, by the Cauchy-Schwarz inequality, 

) 1/2 X 
y~  Dq(xq)<< O ~_, Dq(xq) 2 <<LE , 

Q<q~2Q Q<q~2Q 

and the result follows from summing over the relevant such diadic intervals up to 2Q-- 
xll21LZ~. 

Using this, we can now give the 

Proof of Theorem 2. In [FT], Fouvry and Tenenbaum proved that for any given 

E > 0  there exists a constant B1 = B I ( E ) > 0  such that the estimate 

max ~(x, y; a, q)-  r y) <<E 
X 

(a,q)=l r log E q<~zll2/log B1 x 

holds uniformly for x~y~2.  Then, by Lemma 6, for any given A '>0 there exists a 

constant B2 =B2 (A ~) > 0 such that the estimate 

max max ~2(x', y; a, q)-  q2q(X', Y) I <<A' X (5.2) 
x'~<a: (a,q)=l r IogA'----~ q<.xll2/log B2 x 

holds uniformly for x >~ y >~ 2. 

Let A'=A+3C+3 and B=2B2(A~)+2. Let P=Pq be the set of all primes ~<y 

except those dividing q, and define Fq and F~ to be as in the proof of Proposition 1, with 

A= 1/r For any y and Q in the range (1.7) let ul =3C log 2 y~ log 3 y and Xl =y~l, and 
Xo =yUO =max{Q2 logS Q, y2Ul/3}. 



INTEGERS, WITHOUT LARGE PRIME FACTORS, IN ARITHMETIC PROGRESSIONS, I 269 

It is well known (see [dB] for instance) that if u > l  then logQ(u)...-ulogu. Thus, 

if x<.xl then, by (2.2), 
ql(X, y) >> X~ log 3C+~ y. (5.3) 

Therefore (5.2) and (5.3) imply (1.6) for Q2 logB Q<<.x<~xl. 

Let N=[ logy]  and zi=xo(xl/xo) i/N for i=0 ,  1, . . . ,N. By Lemma 3 and (5.2), we 

get 

,r(z. y) 
- -  ~ . m.<azX " r ~ max Fq(z)~q(Z,y)<<A zi+~ 

Q _ .<~ ~~.z~~~+l ,.--, z~<z<~z~+l log A' y' 
r Q<q<~ 2Q 

and so, a s  Zi+l/~i~(zi, y)<<log3C+~ by (5.3), thus 

1 ~.< N-11  E z.<m.<~, r 

Q<q.~.2Q i=O t.l<q....zt d 
log A'-3C-l+~ y 

(5.4) 

Now, using Lemma 3 and (5.3) to estimate each ql(xl, P) ,  and also using the trivial 

bounds IGI~<r IPI logy<<y and ~(x0, P; b,q)<<xo/q we obtain, for the final term in 

(2.6), 

]Pl(uo+l)logy f .... 
c . . . . . . .  ~max~(xo,P;b,q)-t 

u l~(Xl ,Y)  (beg  
kV(xo, P)  ~ yxo 1 

r J << r y) << r 

Therefore, by Lemma 5, we get that if Xo ~<x'~< x then 

Vq(~', y)rq(z') .< Vq(X, y)rq(~) << ~ r  << Q 

using Proposition 1. 

Now, by summing (5.5) over all q in the range Q<q<~2Q, and by using (5.4) to 

estimate the resulting sum, we obtain 

max max kO(x', y; a, q) ~q(x',y) << ~ ( x , y )  
Q<q~'-~2Q x~ (a,q)=l r logA+2+~ y 

Finally, if we sum this over suitable diadic intervals and add the result to (5.2) with 

X=Xo (in case the maximum occurs for some x<~xo for some q in the sum), we obtain 

the theorem. 

6. S o m e  remarks  and e x t e n s i o n s  

For any set of primes P and modulus q we are able to prove that (2.5) holds once x is 

sufficiently large; specifically, if z is the smallest positive integer for which ~(z,  P;  a, q) ~> 1 
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for all aEG, then we can show that (2.5) holds for IP]logz+lpI21ogy=o(logx). We 

conjecture that log z<<lGI log y/IPI (which leads to the range IGl+lP[2=o(u) in (2.5)); 

currently, we can only prove that logz<<lG I logy (which leads to the range IGIIPl=o(u) 
for q>~y in (2.5)). In general one might expect that x can be taken to be substantially 

smaller than this; but, one can construct examples where (2.5) fails to hold with IPI log z= 
log x. However, in such examples, P tends to be a fairly 'thin' set of primes, and so one 

might conjecture that if P contains a 'reasonable' proportion of the primes ~<y then (2.5) 

holds uniformly when log(x/z)/logy--*co as x--*co. 

An important shortcoming of the method presented here is that the error term 

doesn't shrink as x gets larger (though it doesn't get much bigger, either). However, 

given that Selberg examined similar functional equations in his elementary proof of the 

Prime Number Theorem for arithmetic progressions [Se], we might hope that a suitable 

modification of the proof of Proposition 1 will allow us to improve the error term in (1.4) 

as u gets larger; this viewpoint will be explored further in the sequel. 

It is straightforward to prove that the estimate 

f ~ / q log 2 
V(x,y;a,q) = r 

holds uniformly for all x>~y>~2 with q<~yl/2/log2y under the assumption of the Gen- 

eralized Riemann Hypothesis: A well known consequence of the Generalized Riemann 

Hypothesis is the estimate 

7r(x; q, a) = ~r(x) _1_()(_~.1/2 log s qx). 
r  _ v , _  

We substitute this into (4.2) with z=x/y for yl/2 <.x<.y3/2/log3 y and z=xl/3/log s x for 

y3/2/log3 y<~x<~y2, to obtain (6.1) for yl/2<.x<.y2. The result then follows by Proposi- 

tion 1 with )~=l/r A similar result can be obtained by the method of [FT] though 

with the restriction that y~>log 2+~ x. By more careful considerations, along the lines of 

[BP], we might hope to further extend the range for q in which (1.1) is valid, under the 

assumption of the Generalized Riemann Hypothesis as well as certain conjectures about 

Kloosterman sums. 

7. R e l a t e d  p r o b l e m s  

Our iteration method can be used to attack many related questions. For instance, we 

can show that 

(7"1 / �9 
gY n~z 
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holds uniformly for any non-principal character X (rood q) in the range (1.5). This is 

proved by first showing (7.1) in the range yl/2 <~x<~y2, and then by establishing a result 

similar to Proposition 1, which comes from comparing the identity 

~(x'y;x)l~ f =q2(t'y;X) y~ q2(-~-~'Y;X) X(p'~)I~ 
p ~ y , p m ~ z  

P~q 

with (3.2). We thus extend the estimate ~(z, y; X)=O(koq(x, y)) to a much wider range 

than previously known, although Theorem 4 of [FT] provides a much sharper estimate 

in a limited range. 

Another interesting function to examine is ~(x, y, #):=~n<~x,pln~v~<y #(n), where 

#(n) is the MSbius function, which plays a prominent r61e in Daboussi's recent proof of 

the Prime Number Theorem [Db]. AUadi [A1] showed that 

gt(x, y, #) << ~(x, y)/log x (7.2) 

for all x>~y>~exp((logx)S/S+E), and later extended this to the range (2.4). In [H3], 

Hildebrand proved a somewhat stronger estimate for y ~< exp((log x) 1/21), which allowed 

him to extend the range of (7.2) to all x>/y>~2; and Tenenbaum [T2] has recently given 

a superior estimate for all of the range x>/y 1+~, using the saddle point method. We can 

use our methods to show that q2(x, y, i.t)<<'YZ(x, y)/log2y for all x>~y 2 with y/>2, by first 

showing this in the range y2 <x<~y4 (see [A1], Theorem 2), and then from a result similar 

to Proposition 1, which is obtained from comparing the identity 

=/1 ) ~(x,y,#)logx x q~(t,y,#)t dt Z -~--~,y,# logp 
p m ~ z  

P~Y 

with (2.3). 

A similar method works for the corresponding sum of LiouviUe's function, A(n), and 

indeed of many multiplicative functions, f(n),  with values inside or on the unit circle. 

Recently Hildebrand [H4] and Elliott [Eli have given strong results of this type, using 

the large sieve. 

Our method may also be applied to Selberg's formula [Se], to show that if an estimate 

of the form 

lr(x;q,a) ~r(x) 

holds whenever (a, q )= l  for, say, xo <~x<~xl, then a slightly weaker bound holds for all 

X >~ X o .  
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