Acta Math., 167 (1991), 153-206

The approximation problem for Sobolev maps
between two manifolds

by
FABRICE BETHUEL

ENPC, CERMA
Noisy-Le-Grand, France

1. Introduction

The problem of density of smooth maps between two compact manifolds M" and N*
was first considered by Eells and Lemaire ([EL)). If p>dim M", then W"?<C® (by the
Sobolev embedding theorem) and it is easy to see (using standard approximation
methods) that C*(M", N*) is dense in W"?(M", N*). Schoen and Uhlenbeck [SU2],
[SU3]J have proved that smooth maps are dense in the limiting case p=dim M". They
also gave an example of non density of smooth maps: they showed that C*(B*, $?) is not
dense in H'(B,$%); for instance the radial projection x from B® to S” defined by
a(x)=x/|x| cannot be approximated by smooth maps.

We consider in this paper two compact Riemannian manifolds M" and N* of
dimension » and k respectively. N* is isometrically embedded in R'(/ EN*). M" may
have a boundary, but not N*. For 1<p<n, we consider the Sobolev space W""?(M", N¥)
defined by:

WhP(M?, N*) = {u € W-?(M", RY); u(x) EN* a.e.}.

Since Wh?(M", N¥) is included in W"?(M", R)), it inherits both strong and weak topology
from W"P(M" R)). It is moreover clear that W"?(M", N¥) is stable under strong and
weak convergence. Note that in our definition we embed N* in an Euclidean space R/,
in order to define these spaces. This is actually the most convenient way for doing so,
and the results do not depend on the way we embed N*.

The following theorem is the main result of this paper, and gives a necessary and
sufficient condition for smooth maps to be dense in W"?(M", N*).

THEOREM. Let 1<p<n. Smooth maps between M" and N* are dense in
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WLP(M®, NY if and only if n[p](Nk)=0 ({p] represents the largest integer less or equal
to p).

. The fact that this condition is necessary is proved in [BZ] (Theorem 2) (actually in
[BZ], we only gave a proof in the case M"=B", the unit ball in R"; for a proof in the case
M" is any manifold see Theorem A0 of the Appendix). A large part of this paper is
devoted to the proof of sufficiency. Theorem 1 settles the problem of density of smooth
maps in W"?(M", N¥) for every p, since for p=n we have density.

Assume that dM" is not empty. It may also be useful to be able to approximate a
map u in W-P(M", N¥) such that the restriction of u to 9M" is continuous (resp. smooth),
by continuous (resp. smooth) maps from M”" to N¥, which agree with « on the boundary.
With some slight modifications in the proof of Theorem 1 we also have:

THEOREM 1 bis. Let 1sp<n and assume Jt[p](Nk)=0, and AM"+Q. Let u be in
WP(M", N, such that u restricted to 3M" is in W"?(OM", N)nC'OM", N*) (resp.
C*(8M", N"). If there is a map v in C'(M", N*) (resp. C*(M", NY) such that u=v on
OM" then u can be approximated in W"P(M", N¥) by maps in W"?(M", NYNC° (resp.
C*(M", N%) which coincide with u on 3M".

When JT[p](Nk)*O, by Theorem 1, smooth maps are not dense in WhP(M", NY). ;
In this case, we are nevertheless able to approximate maps in WhP(M", N¥) by maps
which are regular except on a simple set of low dimension. More precisely we
consider the class R) (resp. R;) of maps in W"?(M", N*) defined in the following way:
u€ WhP(M", N9 is in Rg (resp. R:f) if and only if u is continuous (resp. smooth) except
on a singular set Z(«), where Z(u)=U;_, X, rEN*, where fori=1,...,r, 3,is a subset of
a submanifold of M" of dimension n—[p]—1, and the boundary of Z; is smooth; if
p=n—1, 2, is a point. Actually, in the case M" is some domain of R”, we may assume
that X; is a subset of a linear subspace of R", of dimension n—[p]—1, and the boundary
9Z; a subset of a linear subspace of dimension n—[p]—2. We have the following:

THEOREM 2. For every 1<p<n, R}, (resp. R}) is dense in W"*(M", NY).
We have also the following, which is the analogue of Theorem 1 bis:

THEOREM 2 bis. Assume 1<p<n, and AM"+D. Let u be in W"(M", N*) such that u
restricted to OM" is in WHP(BM", NYNC° (resp. C*(M", N¥). If there is a map v in
CY(M", N¥ (resp. C*(M", NY) such that u=v on 3M", then u can be approximated in
WLP(M™, N*) by maps in Rg (resp. R:) which coincide with u on dM".
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When n[p](N")#:O, we also consider the problem of density of smooth maps for the
weak topology, induced by the weak topology in W"?(M", R). We have the following
theorem:

THEOREM 3. If n[p](Nk)#O, and p is not an integer, then smooth maps are not
sequentially dense for the weak topology in W"“P(M", N¥). Moreover every map in
WYP(M", N¥) which is a weak limit of smooth maps is also a strong limit of smooth
maps (in W"?(M", N¥)).

This theorem is useful when trying to minimize a functional in a certain class of
maps in W?(M", N¥) (for instance C*(M", N¥), see [W2]). For instance let M"=B", let {
be in C*(6B", N¥) and consider the energy functional

E (u)= L”|Vu|"dx

defined on W"?(B", N). If u is a C' critical point of E,, u is called a p-harmonic maps
and satisfied the Euler-Lagrange equation related to E,. Weakly p-harmonic maps are
weak solutions of that equation. In the case p is not an integer and 7 p](N")=i=0 a refined
version of Theorem 3 then shows that there are infinitely many p-harmonic maps in
WpP(B", N={u € W"?(B", N*), u=C on 3B"} (for a precise statement of the results see
Section VI).

When n[p](N")=i=0, and p is an integer, we have the following theorem:

THEOREM 5. If p is an integer and n[p](N")#O, then smooth maps between M" and
Nt are dense in W-P(M", N*) for the weak topology.

This suggests that every map in W"? is the weak limit of a sequence of smooth
maps. But unfortunately, we are not able to prove this except in the special case N*=5?
(the unit sphere in R?*!), Adapting the method of [Bel] we are able to prove:

THEOREM 6. If p is an integer, 1<p<n smooth maps between M" and S* are
sequentially dense in W"?(M", S°).

Some of the results in this paper have been obtained earlier by Zheng and the
author in special cases. For example, Theorem 1 has been proved in [BZ] for the case
N¥=S$* and p<k, Theorem 2 for Nk=§2 n=3, and p=2. Some of the arguments in this
paper rely on constructions of White ({W1], [W2]). Escobedo ([E]) has studied the
density of smooth maps in the Sobolev spaces W"?(M", $¥) with r>1 and rp<k (here r
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need not to be an integer). In another direction, in [Bel], we characterize the strong
closure of C*(B*,S? in H'(B*, §?).

Approximation theorems are a useful tool in the study of harmonic maps (see
[CG], [H], [BBCY}).

This paper is divided as follows. We first consider the case M"=[0, 1]"=C". In part
I we prove the Main Theorem and Theorem 1 bis, for M"=C", and n—1<p<n. For this
purpose we prove that we may approximate each map in W?(C", N¥), by maps in R,
that is maps in W"“?(C", N¥) smooth except at most at a finite number of point
singularities. This, in fact, is a general result (see Theorem 2; for n—1<p) and holds
even if nm(N")#:O (here [p]=n-1). Then we conclude using the fact that n,,_l(N")=0
and the following lemma, which is proved in the Appendix (see also Theorem 5 of
(BZ)):

LemMA 1. Assume n,_(N)=0 and p<n. Let u be a map in W"?(M", N*) such that
u is continuous except at a finite number of point singularities. Then u can be
approximated in W-P(M", N*) by smooth maps between M" and N*.

In part II, we prove Theorem 1 and Corollary 1 for M"=C" and n—2<p<n. We
adapt the construction of part I, and, when p<n—1, we need the following lemma
(which holds even if n[p](N")#:O):

LemMA 2. (i) Let p<n—1. Let v be some map in WP(C", N¥) such that v is
continuous except at most at a finite number of point singularities (here we do not
make any topological assumption concerning N¥). Then, v can be approximated for the
W"? norm by maps in C*(C", N).

(i) If v restricted to C" is in W'"P(3C", NN C® (resp. C*) and if there is some map
v’ in CAC", N*) (resp. C*) such that v'=v on 8C" then v can be approximated for the
W"? norm by maps in W"?(C", NYNC® (resp. C®) which coincide with v on the
boundary.

In part III we prove Theorem 1 and Theorem 1 bis for M"=C" and p<n-—2. In part
1V, we prove Theorem 2 and Theorem 2 bis for M"=C". In part V we extend the results
obtained for M"=C" to any compact manifold M" of dimension n. Part VI deals with the
weak density results, and with the problem of finding infinitely many p-harmonic maps
satisfying a given boundary condition. In part VII, we extend some results to the
Sobolev space W"?(M", N¥), with r in N*. In the Appendix we prove technical lemmas.
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We recall next some usual notations.
For n=1, B" is the unit open ball in R” and B"(y; ) is the ball of radius 6 centered at
yER". We set S"=3B"*!. We consider also the cubes

c'=[o0,11%, C'”=[——;—,%:|", C’"(a)=[——%,%]n, for a>0.
For 6>0, small enough, and for y,EN*, we set B,(y,8)=N*nBi(yyd). For
x=(x,..., X ..., x,) ER" we set

ey

For u in W"P(M", N) we set E(u)=] 2o VuP dx. If W is an open subset of M" we set
E(u; W)=, |VuP dx. Likewise if C’ is a submanifold of dimension s of M" we set
Eu,C)={ s{Vul’ do where do is the volume measure on C’ induced by the measure on
M", and when the integral is finite.

For g €N*, (N is the gth homotopy group of N*. K, K>, ... represent absolute
constants depending possibly on M", N* and p. @is some open neighborhood of N* in R/
such that the nearest point projection x from O to N* is a smooth fibration.

I. Proof of Theorem 1 when M"=C" and n—1<p<n

We assume throughout this section that M"=C", n—1<p<n, and n,,_,(N’W'—'O. Let u be
in W'?(C", N¥). We are going to approximate u by maps u, which are continuous
except at most at a finite number of point singularities (the conclusion then follows
from Lemma 1 applied to u,, and the assumption Jz,,_,(N")=0). In order to construct our
approximation sequence u,, we divide, in a convenient way, the cube C" in (m+1)"
little cubes C, having an edge of length 1/m, and we classify these cubes in two
categories. The ‘‘good cubes’’ are the cubes such that the energy of u restricted to
these cubes, and the energy of u restricted to the boundary of these cubes are small.
For these cubes, ‘‘most of”’ the image of u lies in some small geodesic ball of N*, and
we can approximate u using a standard mollifying technique. The bad cubes are the
other ones, on which we approximate uz by maps having point singularities. Next we
present a basic method for dividing C”" in small cubes C,, in a convenient way.

1.1. A method for dividing C" in small cubes C,. Without loss of generality we may
assume that u restricted to 3C" is in W"P(3C", N*) and thus continuous by the Sobolev
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embedding theorem. Indeed, in Lemma AO of the Appendix we prove that u can always
be approximated in W"?(C", N¥) by maps in W"P(C", N*) such that their restriction to
the boundary is also in W'?. For k=1,...,n, we set ¢,=(0,...,1,0,...,00ER". For
1<k=n, and a in [0, 1] we note P(a, k) the restriction to C" of the hyperplane passing
through the point A,(a)=ae, and orthogonal to e;. For m €N*, and for a €[1/4m, 3/4m]
we consider the hyperplanes P(a+j/m, k) for 0<j<m—1 and the union of these hyper-
planes W(m, a, k)=Uj";f,'P(a+j/m, k). For almost every a in [1/4m,3/4m], u restricted
to W(m,a, k) is in W"? and thus continuous by the Sobolev embedding theorem.
Moreover, we have clearly

3/4m
f E(u, W(m, a, k)) da < E(u).
1

/4m

Thus, there is some a; in [1/4m, 3/4m] such that u restricted to W(m, a, k) is in WP C?
and such that

m=1

(1) Eu; Wim, a k) = >, E(u;P(ak+ L k)) <2mE().

Jj=0

Considering now the “‘slicings’” of C" by the set W(m, a;, k) obtained by the method
described above when we change the slicing direction k, we see that we have divided
C" in (m+1)" small cubes that we note C,,C,,...,C,, ..., C(m+1)"' The cubes which are
not in contact with the boundary have edges of length 1/m (and are translates of
{0,1/m]"). The cubes which are in contact with the boundary are diffeomorphic to
[0, 1/m]" by linear maps f, such that |Vf,|<4, |Vf,”'|<4 (these inequalities are due to the
technical condition ay in [1/4m, 3/4m]). Inequality (1) then gives us:

(m+1)"
@ D Ew;dC) <K, mE(u)+E(u;5C") < K,mE@), for m large enough.

r=1

For every little cube C, we define the scaled energy E,(u;C,) by: E, (u;C)=
Ea,, ,;C'™), where i, , is the map from C'" to N* defined by i,, ,(x)=u(x/m+x,) (where
x, is the barycenter of C,), for the cubes which are not in contact with the boundary,
and in a similar way for the cubes which are in contact with the boundary (i, , is a
““blow-up’’ map of u restricted to C,). We also set E,(u; 3C,)=E(i,, ,;C'"). We have
the following scaling equalities:

6) E,(u;C)=m""Eu;C);
E,(u;C,) = m""~'E(u; 3C).
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Next we are going to classify the cubes C, in two categories, the ““good’’ and the ‘‘bad”’
cubes.

1.2. Definition of the ‘‘good’’ and of the ‘“‘bad’’ cubes. Let ¢>0 be small, to be
determined later. We consider first the cubes C, (for r=1 to (m+1)"), such that
E,(u;3C,)=¢. We note P, , the union of the cubes C, which verify this condition, and
I, the set of indexes r of these cubes (that means C,cP,, if and only if
r€l ,; Py ,=U,¢; C). We consider also the cubes C, such that E(u;C)=em™
where v is some positive constant, which is fixed and small. We note P, ,, the union of
these cubes and I, , the set of indexes for these cubes; we have P, , =U, . ,MC,. We set
pP,=pP VP, .1, =I Ul . P, isthe union of the ‘‘bad cubes’. We also consider
Qm=C"\P,,, and J,,={(1, ...,(m+1)"}\UJ,, (the set of indexes for the cubes in Q,,). Q,,
is the union of the ‘‘good”” cubes. We are going to show that the volume of P, is
“small”’. Indeed, using relation (2} and the scaling equalities (3), it is easy to verify that

#1, . <K,m" PEw)e".

Likewise the equality £’ E(u; C,)=E(u), and the scaling equality (3) give
#1, . <K,m"?P"Eu)e".

Thus we see that (#1,) m™"=vol(P,,)—0 when m— +x=. Hence E(u;P,)—0 when
m—s+oo, by Lebesgue’s theorem.

We are going to approximate u in different ways on P, and Q,,. Since E(u;P,)
tends to zero, we do not need to approximate u very closely on P,; we only have to
construct u,, on P,, in such a way that u,,=u on dP,,, E(u,,; P, )<CE(u;P,), and u,, is
continuous, except at most at a finite number of point singularities. This is the purpose
of the next construction.

1.3. Construction of the approximation map u,, on P,,. For the construction of the
map u,, on each cube C, included in P,, we use the following lemma:

LeEMMA 3. Let n—1<p<n, u>0 and v be a map in W"?(C"(u), N} such that v
restricted to 9C"(u) is in W"P(3C"(u), N©)>C°. There is an absolute constant K;
depending only on p and n, and some map w in W-?(C"(u), N¥) continuous except at
most at a finite number of point singularities, such that w=v on 8C" and E(w)<K; E(v).

Before we give the proof of Lemma 3, we complete the construction of u,, on Pp,.
Defining u,, on each cube C, in P,, as the map w obtained by Lemma 3 for u=1/m,
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C"(w)=C,, and v=u, we see that u,, is continuous on P,, except at most at a finite
number of point singularities, #,, and u coincide on 8C, and thus on dP,,, and we have:

4 Ewu,;P,)<K,Eu;P,)—>0 when n— +x.
Next we give the proof of Lemma 3.

Proof of Lemma 3. Using a simple scaling argument, we may assume without loss
of generality that C"(u)=C"=[0, 1]". We are going to use the method of Section I.1 for
dividing C" in little cubes. Thus, for every s EN*, we may divide C" in (s+1)" little
cubes C; of length 1/s (except those in contact with the boundary, which are linearly
diffeomorphic to [—1/2s, 1/2s]"), such that:

(s+D"

)] 2 E(v;3C) <K, sE(v), for s large enough.
=1

On each cube C,; (for I=1 to (s+1)"), we define a map w, by:

_ x—x, +
=Y Sl T

where x; is the barycenter of C;, and if C; is not in contact with the boundary, and in a
similar way if C; is in contact with the boundary (using the fact that, in this case C; is
diffeomorphic to [—1/2s, 1/2s]" by a linear map f; such that |Vfj|<4, |Vf]| '<4). It is then
easy to show that w; is in W"?(C", N¥), is continuous, except at the points x;, w;=u on
aC", and for each cube C; we have:

E(w;C)<K,s 'E;3C).

Adding these inequalities for /=1 to (s+1)", and combining with (5) we obtain:

(s+1)
Ew,) s—si > E(;9C)<K,K,E(@) for s large enough.
=1

Thus for s large enough, we set w=w;,, and w satisfies the conditions of Lemma 3.
This completes the proof of Lemma 3. In the next section, we construct the approxima-
tion map u,, on Q.

Remark. An alternate to the proof of Lemma 3, could be derived by choosing w as
a minimizing map for the boundary value v on 3C", and by application of the regularity
results of [F], [HL], [L] (it is known that such a map has only point singularities).
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1.4. Construction of the approximation map u,, on Q,,. On Q,,, we are going to
approximate u by maps u,, which are continuous. First we construct a map w,, such
that w,, is in W"?(C", N¥), and such that for each cube C, in 0O, the image of w,, on C,
lies in a small geodesic ball of N, (then it will be easy to construct on Q,, the map u,,,,
which is continuous, using a simple mollifying argument). For this purpose we need
two technical lemmas:

LeMMA 4. Let 6>0 be small. Let g €EN* and p>q. We consider the cube C? and a
map v in WhP(C?, N*). There is some constant &40, q, p, N*), depending only on 8,p, q
and N¥, such that if E(v)<ey(d, g, p, N¥), then the image of C? by v (which is continuous
by the Sobolev embedding theorem) lies in some domain Bg(y, d) for some y € N*.

Note that Lemma 4 is a simple consequence of the Sobolev embedding theorem,
since WP(C?, N)<C%C? N*). For technical reasons (which will become clear in the
sequel), we choose d, such that, for every y in N, B'(y, 4ndy) lies in 0. We choose also
e=¢y(0g/2n, p, n—1, N¥) (recall that ¢ is the constant needed for the definition of P,, and
0.). We need also the following result:

LEMMA 5. For 6>0 small enough, there is some constant K(9), depending only on
N* and 0, such that there is some smooth map @(y,9), for every y in N, from N* to
By(y, 9) such that |Vg(y, 9)|.<K(9) and ¢(y, 8)=1don By(y, 6).

The proof of Lemma 5 is given the Appendix. We come back now to the construc-
tion of w, on Q,. For each cube C, in Q,, we have (by the definition of Q,,)
E(u;3C)<e. If we apply Lemma 4 to C,, g=n—1, p, and each face of 3C, we see that,
(after a ““blow-up”’ of the cube) the image of 3C, by u (which is continuous on 3C, by
the Sobolev embedding theorem) lies in some domain By(y,, dp), for some y, € N,

Then we define w,, in the following way:

w,, = @(y,20)ou on C,.

Since @ is Lipschitz, by the composition chain rule of maps in W"?,w,, is clearly in
W2(C,, B (y,, 28,). Moreover, since @(y,, 28,)=Id on B,(y,, 26,), and since the image
of u restricted to 3C, is in Eg(y,, d,), we have w,,=u on 8C,. Thus defining w,, in such a
way on each cube C,in Q,, we see that w, € W'?(Q,, N*) and w,=u on 8Q,. It
remains to show that w,, approximates « on Q,,. For C,cQ,,, consider the set:

U, ,={u€C|ux)*w,(x)}.
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We have:

f |V(u—wm)|”dx=J. |V(u—-wm)|”dx<K5f (|Vuf+|Vw, ) dx
C" oum,l' %m,r

(6)
< Ky(1+K(26,)") J |Vul dx.
%m,r

Thus, in order to prove that w,, approximates u on Q,,, we only have to show that
(meas %, ) m" is small. Since it is easier to argue on ‘‘blow-up’’ maps, we consider the
maps #,, and i,, defined on C'” by:

i, (x)=u(x/m+x,); w,(x)=w(x/m+x,) where x, is the barycenter of C,

(d,, and w,, are the ‘‘blow-up’’ maps of u,, and w respectively). We also consider the
set:

A, .= {x€C" i, (x) € B(y, 20,)}.
It is easy to verify that:

n
Y m" meas U, , <meas &, ,,

since if x is in U, ,, u(x)*=w,(x) and thus u(x) § B(y,, 2dy) (the factor m" in (7) being the
scaling factor). We are going to estimate meas o, ,. We claim that:

@®) meas &, , < m"efe)(dy, NY.

Proof of the claim. For a in [—1/2,1/2] we consider the hyperplanes P(a, 1),
defined in Section 1.1. We have, by Fubini’s theorem, and since C,cQ,, implies that
E(i,;C'"M<sem™:

12
f E(i,; P(a, 1)) da < E(d,;C"™y <em™.
-12

It follows that

)] meas{a € [— %,%] ’ E(,,; P(a, 1)) < g0, N")} = l—m—Vg/so((So,Nk),
where £4(8y, N¥) is the constant arising in Lemma 4. For every a such that
E(iim; P(a, 1))<¢&y(dy, N), we may apply Lemma 4, to P(a, 1) which is a translate of
Cc"'p and g=n—1; since w(dC)cB,y,d), Lemma 4 then shows that
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i, (Pa, 1))cBQ(y,, 20,), and hence , ,NP(a, 1)=2. Inequality (8) follows from this
relation and (9), and this completes the proof of the claim. Next we complete the
estimate of [, |V(u—w,) dx.

Adding relation (7), for all cubes C, in Q,, we obtain

f IV(u—w,)P dx < K(1+K(26,)) f VP dx
Q U

red,, CumJ

(10)
< K(1+KQO)) E(4;U,¢5 Uy, ,)-
Relations (7) and (8) shows that:

meas (U,e,m U, < 2 m~"meas &, ,) < (#J,) m™"m ™V e[ey(8y, N¥)

réJ,,

since #J,<(m-+1)", we see that meas(U,., U, ,)—0 when m—+ and thus by (10),
and by the dominated convergence theorem, we have:

(1D f |V(u—w,)P dx—0 when m—s +co.
0,

m

Hence w,, approximates u in W"? on Q,.. In order to approximate # by continuous
maps, we have to ‘‘smoothen’ w,,. For this purpose we are going to use the following
lemma, the proof of which is given in the Appendix:

LEMMA 6. Let u>0, let p>1, and let B,(y,0) be some ball in N such that
Eg(y, 0)cO. Let v be in W’”’(C”(ﬂ),li-’g(y;é)), such that v restricted to 9C" is in
whrch, ég(y, OMNCO. Then v can be approximated in W'-P(C™(u), N¥ by maps v, in
WhP(C"(w), NN C, which coincide with v on 3C™(u).

We apply Lemma 6 to each cube C, in Q,,, w,, and Bg(y,, 20). Lemma 6 provides us
a map u,, such that u,,=w,,=u on 8Q,,, and such that:

(12) J VGw, —u,)P dr<—L.
0, m
Combining (12) and (11) we see that

(12) flV(u—um)lpdx—){) when m—> .
Qm

This completes the construction of u,, on Q,,.
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L.5. Proof of Theorem 1 completed in the case M"=C" and n—1<p<n. In Section
1.3 we have constructed «,, on P,,, such that u,, is continuous except a finite number of
point singularities, and such that u,,=u« on 8P,,. In Section 1.4 we have constructed u,,
on Q,, such that u,, is in W"?(Q,; N9nC® and u,,=u on 3Q,,. Thus, since u,=u on
8P,N3Q,, and since P, UQ,=C", the map u, is in W"P(C", N¥), and moreover is
continuous except at finite number of points. We have:

f [V(u—u,)f deJ' |V(u—u,)f dx+K[E(u; P,)+E(u,;P,)]-
c O

Thus combining (5) and (13) we see that | U]V(u—um)l" dx—0. This proves that we may
approximate # by maps in W'?(C", N¥) continuous except at a finite number of point
singularities. Theorem 1 then follows, in the case considered here, from the hypothesis
7,_(N9)=0 and Lemma 1.

1.6. Proof of Theorem 1 bis for M"=C", and for n—1<p<n. For n—1<p<n the
proof of Theorem 1 shows that the approximation sequence u,, agrees with « on 3C".
This completes the proof of Theorem 1 bis.

For n=p, we apply the result of Schoen and Uhlenbeck [SU1] and adapt the proof
of Lemma 6. This result is stated as Lemma 6 bis of the Appendix.

In the next section, we prove Theorem 1 in the case M"=C" and n—2<p=n-1.

I1. Proof of Theorem 1 in the case M"=C" and n—-2<p<n—1

Throughout Section II we assume that the hypothesis of Theorem 1 concerning N* is
satisfied, that is, we assume nn_l(N‘ﬁ=0 if p=n—1 and J:,,_,(N")=0 if n—-2<p<n—1t. A
new difficulty is that, in this section, we cannot apply Lemma 4 with g=n—1 (the
Sobolev embedding theorem does not hold in this situation). Note that in Section 1.1,
we have considered a (n—1)-skeleton of C", namely U™} 3C,. In order to treat the
case n—2<p=n—1, and to apply Lemma 4, we need to consider a (n—2)-skeleton of C*
(this idea will be generalized in Section III). Another difficulty, when n—2<p<n-—1is
that we have to *‘eliminate’” point singularities, even if we do not assume 7,_,(N*)=0.
This difficulty can be overcome using Lemma 2. In this section, the proof of Theorem 1
follows the same steps as in Section I. First, we show how to modify the method for
dividing C" in little cubes C,, in order to find a convenient (n—2)-skeleton of C".

I1.1. Division of C" in little cubes and the definition of a (n—2)-skeleton of C".
Let u be in W"P(C", N*). As in Section 1.1 we may assume without loss of generality
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that u restricted to the boundary is in W'?(3C", N¥). As in Section 1.1 we slice
C" by hyperplanes P(a, k) such that u restricted to P(a, k) is in W!?. This leads to a
division of C" in (m+1)" cubes C,. Each of these cubes has 2n faces that we denote by
S 15es S, peens S, 5, We set for i=1,...,2n, A, ;=35,,;, the boundary of S, ;, which is a
union of 2(n—1) cubes of dimension n—2. We note Z,=U" A, ,, Z, is a (n—2)-skeleton
of C,, and we consider the (n—2)-skeleton of C" U'"V" Z . Adapting the slicing method
of Section 1.1, we may divide C" in (m+1)" cubes C, in such a way that:

(14) The cubes C, are translates of [—1/2m, 1/2m]" except those in contact with the
boundary which are diffeomorphic to [—1/2m, 1/2m]" by a linear map f, such that
VAI=<4, [Vf, '|<4.

(15) u restricted to 8C, is in W""(GC,, NY for every rin [1,(m+1)"].

(16) u restricted to Z, is in W"? and thus continuous on Z,, by the Sobolev embedding
theorem.

The following inequalities hold:

(m+1)"
17 2 E(u;8C,) < KgmE(u)+E(u; 3C") < K, mE(u) for m large enough.
r=1
(m+1)"
(18) 2 E(u;Z) =K (m*E)+mE(u; 3CN+EW; 2)) < K, m*Eu) for m large
r=1

enough.
We have set Z=UZ" 35, where for i=1,...,2n, S; are the faces of C". We have
assumed, and that is not a restriction, that u restricted to Z is in W'” (see Lemma A0 of

the Appendix). In the next section, we are going to adapt the definition of the sets P,
and Q,,, introduced in Section 1.2.

I1.2. Definition of P, and Q... Let £>0 be small, to be fixed later. As in part 1.2 we
consider the following cubes:

® The cubes C, such that E,(u; Z,)=¢. We note P, ,, the union of these cubes, and
1;,, the set of indexes for these cubes, that is P, ,=U,¢; C,.

® The cubes C, such that E,,(u; 3C,)=em ™. We note P, ,.the union of these cubes,
and I, , the set of indexes for these cubes, that is P, ,=U, . 1, C v>0 is some fixed
constant sufficiently small).

® The cubes C, such that E,(u, C)=em™". We note P, ,, the union of these cubes
and I; , the set of indexes for these cubes, that is P, ,=U, 1, C

re
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Finally we set
Pm=Pl,mUP2,mUP3.m’ Qm=C"\Pm,
I,=1I, 0L, UL, and J,={1,..,(m+1)"}\[,.

P, is the set of “‘bad” cubes, Q, the set of good cubes. As in Section II.2 the relations
(17), (18), the scaling equalities (3) and Em(u;Z,)=m”"’ “’E(u;Z,) imply that
meas P,,—0. We are going to approximate u in different ways on P,, and Q,,. Since the
method in this section is a little more involved than the one of Section I, our approxima-
tion sequence, which we denote by w(m, i, n)(x), will depend on three parameters:
mEN* (which goes to +), 4>0 and >0 (which will go to zero). Roughly speaking,
we want w(m, u, n7) to be located, locally on Q,,, in small balls of N*, whereas we allow
w(m, 1, n) to have ‘‘singularities’’ on P,,: but these singularities can be eliminated using
Lemma 2. First we are going to construct the approximation map w(m, &, 17) on Q.

I1.3. Construction of the approximation map w(m,u,n) of u on Q,,. For psn—1
and C, in Q,, the image by u of 8C, may not lie in some domain Eg(y,, o) even if
E,(u;3C,) is small; for this reason, w(m, u, n) will not agree with u on 3C, (but will
agree with u on Z,). For 0<a<1, we consider the set C,(a) defined by:

Cla)= {x €C,

1
||x—-x,|| = E(l—a)},

where x, is the barycenter of C,. Using linear interpolations, it is easy to construct a
bilipschitz map ®(r, u, ) from C, to C(#n) such that, for x>0, #»>0 and 2p<u<l1, we
have:

O(r,u, M)(x)=x on Clu);

x—x,

19) D(r, 1, n)(x) = (1-n)+x, on 8C,; and

2lx=x,||m
IVO(r, u, )| < K8<L + 1); VO~ '(r, 1, )| < K8<L +1>_
) K=

We shall choose # of the form n=1/q, g € N*. For C,=(Q,,, We are going to construct
w(m, u, ) (we simply note w(u,n) when there is no confusion possible) on C,. For
C,.=Q,, recall that we have, by definition.

20) E (u;C)sem™;
@ E, (u;8C)<sem™;

22) E (u;Z)<e.
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Let d, be small. Since Z, is a union of (n—2)-dimensional cubes, we may apply Lemma 4
with g=n—2, p (recall that here p>n—2) to each of the cubes composing Z,. Thus if we
choose sseo(60/4n2, n—2,p, N¥), Lemma 4 and relation (22) show that the image of u on
Z, lies in some domain Bg(y,, 8) of N*,y, € N*. For technical reasons, we shall give two
different definitions of w(m, u, ) on C.(n) first, then on C,\Cy(n).

Definition of w(u,n) on C(n). The idea of the construction of w(u,n) on C(y) is
essentially the same as in Section 1.4, with some slight technical modifications. We set

(23) w(u, ) =@, 8nd)ouo® '(r,u,n) on CJn)

(0p to be determined later). Hence on C.(u) we have w(u, n)=¢(y,, 8ndp)ou, since
®(r, 1, 7)=Id on C.(u). (This corresponds to the definition given in Section 1.4, for w,,
on C, in Q,,.) The definition of w(y, n) on C,\.C/(») is more involved.

Definition of w(u, 1) on C,\C,(n). (In fact, the definition of w(u, r7) we are going to
give holds only in the case 8C,N8P,=2. In the case 8C,NIP,,+IJ the definition is
slightly different, see Section I1.4.) For i=1, ..., 2n, we consider the faces S, ;of 9C, and
we may consider, for simplicity, that for every i, S, ; is a tranlate of [0, 1/m]™'. The
idea of the construction of w(u, ) on C,\C,() is the following: In a first step, we want
to define w(u, n) on S, ;. For this purpose, we show by adapting the method of Section
L1, that we may divide §, ; in (g+ D" ! (n—1)-dimensional cubes, such that the image
by u of the boundary of these cubes lies in Bg(y,, 26,). We then define w(u, n) on the
boundary of these cubes by w(u, 7)=u. In a second step, we extend the value of w(u, 17)
to 9C, first and then to the interior of C,\.C,(s) in such a way that the definition is
compatible with the one given on 8C,(y). First we present the division of S,; in
convenient cubes:

First step of the construction of w(m, u, n) on C,\C,(n): division of the faces S, ; in
(n—1)-dimensional cubes. For k=1, ...,n—1, and a €[1/4mgq, 3/4mq] (recall that n=1/q),
let P""*(a, k) be the restricton to S, ; of the (n—2)-dimensional hyperplane orthogonal to
Aga)=ae, (here we choose coordinates such that S, =[0,1 /m]"'x{0}). For each
k=1,...,n—1, there is some a; in [l/4mgq,3/4mq] such that u restricted to
v P X(a,+j/mq, k) is in W"?<C?, and such that:

q-1 .
(24) E(u; P”‘2<ak+ 2 k)) <qEw;S, ).
=0 mq

Since for every a P""*(a, k) may be considered as an (n—2)-dimensional cube, and is in
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fact a translate of [0, 1/m]"~?, we may apply Lemma 4 to g=n—2, p and P* *(a, k). Thus
if P""¥(a, k) is such that:

Em(u;Pn—z(a’ k)) = 80(605 ""2,[7: Nk) SY8

the image by u of P""*(a, k) lies in B,(y;,26,) (since u(3P" *(a, k))=B,(y; d,) for some
¥;€EN,, since E(u; S, )<e). On the other hand, since C,=Q,, we have:

E,u;S,)<em™,
which implies that, by the same argument as in Section 1.4 (proof of the claim);

(23) meas{a € [0, L]
m

Em(u;Pﬂ—Z(a’ k)= g} < m~ 4,

We now consider, for any k in [1,n—1], the planes given by (24), such that
Em(u;P"'z(ak+ -jimq, k))=¢. If m is large enough, relation (25) implies that there is some
Bij in [ax+j/mq—1/10gm, ax+j/mq+1/10gm] such that: E, (u; P""*(B, ;, k))<e. Thus we
may replace the hyperplane P"*(a,+j/mq, k) by the hyperplane P"*(8, ;, k) in our
slicing method. Doing this for all the directions, for k=1,...,n—1, we see that we,
having divided the face S, ; of C, in (g+1)""! (n—1)-dimensional ‘‘cubes’’, which we
note 2,71, for I=1 to (g+1)""': in fact these cubes are not ‘‘perfect’’ cubes, but
nevertheless they are all diffeomorphic to [—1/2gm, 1/2gm]*~! by linear maps f;; such
that |Vf, |<5, |Vf;/|<5 and such that u restricted to 3C};' is in W"?<C°, and takes
value on Bg( ¥i, 20¢) (note that y; depends only on the value of « on §, ;). Moreover (24),
clearly remains true if we replace P""*(a,+j/m, k) by P""(ﬁk, »K), and gives:

(g+1)!

(26) > Ew;3C];") <K\ gqEW; S, )+Ew;3S,) for i=1,...,2n.
I=1

On UV aCy7! we define w(u, ) in the following way

g+

27 wu,nN)=u (on U GCZ,'-I, fori=1,...,2n).
I=1

In particular w(u, 7)=u on Z,.
Next we extend w(u,n) to S, ;, for i=1 to 2n (that is we are going to define
w(m, u,n) on 3C,).

Second step. Definition of w(u, ) on U™, S, =3C,. u restricted to each cube C}7'
is in WHP(C};', N*) and, u restricted to 3C];' is in W"?<C°. Since m,(N9)=0 (by
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assumption), we may apply Theorem 1 bis, of Section 1.6, to C;f,T‘ and u: thus u
restricted to C';' can be approximated, on C};' by maps in W"?(C};', N9n C® which
coincide with » on 3C};'. Let w(u,7) be on C};' such an approximation map of
satisfying

08 {w(,u, n)=u on 8C;;' and w(u,n)€W"P(C;;',NINC’;

Ew(u, n); C}7") <2E@w; C;7H).

Note that this definition is compatible with (27) and that, if we define w(u, ) in the
previous way on all the cubes CI7', w(y, #) is in W"?(8C,, N*)nC’ and for each face S, ;
we have

(29 E(w(u,n); S, ) <2Eu;S, ).

Finally, we only have to extend w(y, n) to the interior of C,\C/(7) (w(u,n) has yet
been defined on 3C, and C,(y), thus on 3(C,\\C/(1))).

Third step. Definition of (u,n) in the interior of C,\C/). We consider the map =,
from C,\\C,(#n) to 9C, defined by:

X=X,

7w (x) = +x,,

2|x—xim

and we consider the set /, , defined by

2n (g+1)"!
M,,=7 '\ U U G ).
i=] g=1
M, , is a union of portions of (n—1)-dimensional planes. We consider the set
Ny y=My, ,U3C,UIC,(n). We may consider that &, , is the union of the boundaries of
2n(g+1)""! cubes €;'; (which are n-dimensional), such that:
2n (g+1!

U U €=C\Cw
=1

i=1
and
2n (g+1)"!

(30) U u og.=4,,

i=1 =1

All these n-dimensional cubes are diffeomorphic to [—1/2gm, 1/2gm]" by Lipschitz
maps f;; such that |Vf, <K, |Vf;/|<K},. On M, , (that is on the faces of these cubes

12—918289 Acta Mathematica 167. Imprimé le 5 novembre 1991
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which are not included in 8C,(5) and 8C,), we define w(u, ) by:
@31 w(u,n)=wuox, on M,,.

Note that on 8C,(), we have 7,=®'(r, u, ). Since for x in M, ,NC(n), D~ (x)=7,(x)
is in U¥, Ut 3%7", u(x) lies in UB(y,200)<B(y, 8ndy). Thus w(u, n)x)=
uorx (x)=¢(y, 8nd;)ouon(x). This shows that the definitions (31) and (23) are com-
patible on ., ,N3C,(n). We see that by (23), (28), (31) we have defined w(u, 7) on the
boundaries of the cubes €';, and that, since the different definitions we gave for w(u, 77)
on the different parts are compatible on the points where they intersect, it follows that
w(u, ) is in WhPUZ, U™ a¢r, NY). Now we are able to extend w(u,7) to the
interior of the cubes %;'; using a standard radial extension of the boundary value, that
is:

. ﬁ {x)
— 1 i n_.
(32) w(p, )x) = wu, P (———*“ T 0l2 q) on €,

(Recall that ‘6’,”‘1.{—2—:[— 1/2mgq, 1/2mgq}".) It is easy to verify that (32) defines now w(u, ») on
C\C,(n), and that w(u, ) is in W"P(C,\.C (1), N¥). This definition is also compatible
with the definition of w(u, 17) on C(n) given by (23), and thus w(y, n) is in W"?(C,, N¥).
Since the value of w(u, n) on the faces of C,, S, ; for i=1 to 2n, depends only on the
value of u on this faces, defining w(u, #) on all the cubes C, in Q,, by the previous
method, we see that w(u, n) is in W'?(Q,, N¥). Note moreover that, for each cube C,
(which is not in contact with 8P,,) in Q,,, w(u, ) is continuous on C,/C1/2). We are
going to estimate now the integral [, |Vu—Vw(m,u, n)f’ dx.

Estimation of IQm|Vu—Vw(m, u, MPPdx. Let C, be included in Q,,. We consider the
set U(m, r, u)={x € C(w)| u(x) § B,(y,, 8ndp)}. We claim that we have:

(33)

[Vu—~Vw(m, u, n)f dx < Kz?(nE(u)+J’ |Vuf dx+j
u

UVEJM(CI\CI(”))

|Vulp dx) .

Qm r€d, Um, r,u)

Proof of the claim. For C, included in Q,, we are going to estimate the integral of
[Vu=Vw(u, nP on CAw), C,()—C/u), and on C,\C/(n).

On C{u). We have using relation (23) w(u, 7)=¢(y,, 8ndg)ou. This implies:

f |Vu—Vw(u, P dx = f [Vu~Vw(u, n)P dx < K5(1+K(8n60)”)f |Vu|? dx.
Clu) wkw(p, )

utw(y, 1)
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Since, by (23), {x € C.(w)| u(x)Fw(u, n) (x)} <U(m, r, u) we have

(34) f [Vu—Vw(u, p)Pdx <K, f [Vul” dx.
C.Ga WUm, v, 14}

On C(m))\C/w). We have w(u, n)=@(y,, 8ndg)ouo®d~'(r, u, 7). Thus

[ [Vu—Vw(u, n)P dx < K1+ K(8rdy)?) VO[5 |VOP, f |VulP dx.
CONNC,(w) CAMN\C ()

Since we have assumed n/u<}|V®~'|,|V®|, is uniformly bounded, and thus
(39) f (Vu—Vw(u, n)P de< Klgf |Vul? dx.
CDNC ) CN\C/w)

On C,\C/(n). Since
2n (g+1)"!

CNC=u v 4,
i=1 =1

we have

2n (g+D*!
(36) f Ve, mPdr<> > f IVuw) dx.
CN\Cin) @,

=1 I=1

Since, on every €; w(u,n) is a radial extension of the boundary value, given by (32)
we have:

(37 f |Vew(u, n)f dx < K19quE(w(,u: 7);8%]") = Kignm ™ E(w(u, 1); 96}').
%’l

i
By the construction of w(u, #) on 3€; we have
E(w(u, 7); 3%;,n3C,) = E(w(u, n); €7") <2E(u; 67 ")
E(w(u,7);3%;;n3C,m) < Ky E(u; €/7"); and
E(w(u,n);3%€,0noM, )< K, E(u; 36 Hym™".
Adding these relations we obtain
(38) E(w(u, n); 3] ) < Kp[Ew; 67 )+Ew; 36 Y nm™'].

Combining (36), (37), (38) and (26) we obtain

39 f [Vw(w, )l dx < Ky, 1 E; Z).
C,\C,(”) m
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Since [ ¢ [Vu—Vw(p, ) dx<K; [ (Vuf’+[Vw(u, nF) dx, (39) gives:
40 f |Vu—Vw(u, n)f deK24[E(u; C\C(m) +’nm'1E(u; aC,)+772m“2E(u; Z,)].
C\C,(m

Adding (40) for all the cubes C, included in Q,,, using the relations (17) and (18) and
noting that C,\\.C,(n)c=C,\\.C,{u), we obtain:

é1) J' [Vu—Vw(u, n)lP dx < Ky j |Vul dx + nE(u)
Yyes, CNC 1) U,e; CNC,0)

for m large enough. This completes the estimate on C,\C,(y). Adding (41), (35) and
(36) we obtain equality (33), and this completes the proof of the claim.

We are going to prove now that (33) implies that | Qm|Vu-—Vw(m, u, N dx tends to
zero when n goes to + o, u—0, #—0 and n/u<1/2. First we remark that

meas( U C\C,(u)<2u—0 when u—0.
r€J,
Thus, by the dominated convergence theorem

42) f |Vuf dx—0 when u—0.
Urélmcr\cr(”)

Next, we have to show that meas(U,¢; U(m,r, u))—0 when m—+c and x—0.
The proof of this convergence is similar to the proof of relation (8) (see Section 1.4). Let
ii(m, 1) be a “‘blow-up’’ map u, from C'" to N* defined by

ia(m, y)(x):u(—:;(l—,u)+x,) on C'".

We set A(m, r, u)={x€C""| ﬁ(m,y)&l?g(y,, 8ndg)}. For a in[—1/2,1/2] we consider the
hyperplanes P(a, 1) and the subsets of [—1/2, 1/2] defined by:

B, = {a € [—%%] ’ EGi(m, 1); P(a, 1) = &, = £,(0p =2, D, N")}.

Pk

B,= {a € [—-2—,%] ‘ E(a(m, u); 9P(a, 1) > sl}.

Since E(i(m, u); C'"<sem™,

meas(B))<ee;'m™".
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Likewise, since E(ii(m, u); 9C'")<em™,
meas(B,)<ee; ' m™.

Thus meas(B, UBZ)SZESI_I m~". If a is not in B, U B,, the same argument as in Section 1.4
(proof of (18))'shows that u(P(a, l))cBg( Yo 460)c1§g(y,, 8nd,). This proves that

A(m,r,u)c U P(a,1).
a€B UB,

And thus meas A(m, r, u)<2ee;' m™. This gives

m,r,y)s K28 m?'—0 when m—0.

(43) meas( U U
r€J,

Combining (42), (43) and (33), we see that

(44) f |Vu—Vw(m, u, n)f dx— 0
g

m

when m—0, u—0,7—0 and 5/u<1/2. This completes the construction and the estimate
of w(m, u, n) on Q,,. We come now to the construction of w,, on the ‘‘bad’’ cubes, that
ison P,,.

IL.4. Construction of the approximation map w(m,u,n) on P,. We consider the
connected components P,(j) of P, for j=1, ..., t(m), t(m) EN*; P,,,=Uj'-(__";) P.(j). Pu())
is a union of cubes C, with r€I,,(j), and P,,(j)=3Q,,UIC". We are going to adapt the
construction of Section 1.3 (in particular Lemma 3) to the case considered here. Instead
of considering each cube C, in P,,(j) separately, we apply the slicing method of Lemma
3 to P,(j) (as a whole). Thus, slicing P,(j) by hyperplanes P(a, k) we obtain a division
of P,(j) in little cubes that we denote by C; ,. Since w(y, ) has yet been defined on Q,,
we have to respect a compatibility condition on 3Q,,n3P,,. Indeed, if S, ; is a face of a
cube C, in P,,, which is included in 3P, the map w(u, 1) has been defined (see Section
1.3) on S, ; in such a way that w(u, ) approximates u restricted to S, ;, and moreover
w(y, )=u on U4t 37!, Thus in order to have compatible definitions we need the
following additional condition:

g+
(45) U 3¢ '=[uZ,]nS,, foreachface S,,cdP,(j)N3Q,,
=1 ’ ’

where Z; , is the (n—2)-dimensional skeleton of the cube C; , defined in the same way as
Z, for the cube C, (see Section I1.1).
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It is easy, but fastidious to prove, that we may adapt the slicing method of Section
I.1 to the set P,(j), and with a number 4 large enough of slicing planes (in the
directions given by an orthogonal basis), we obtain a division of P,, in z(k) cubes
Cj,s(h), that is P,(j)=U32, C; ,(h), such that for & large enough, we have the following
conditions:

® z(h) (the number of little cubes C; ,(h)) verifies
(46) Ky#I (i) A" < z(h) <2K,(#I, (/) h"

(where #1,,(j) is the number of cubes C, in P,.(j)).
® C; ,(h) is diffeomorphic to the standard cube [—1/2mh, 1/2mh]" by a diffeomor-
phism f, such that |Vf,|<Ky,, |Vf;'|<K,,.
® y restricted to 9C; ,(h) is in W"”(@Cj(h),N") and u restricted to Z; ,(h) is in
Wl"’(Zj’ »(h), NYC?, and for h large enough, we have:
2(h)
' E;9C, (b)) < Kyo(#1,()) mhEu; P, (j));
@) p
> EW; Z, (1) < Ku(#1,())) m*h*E(w; P, (/).
b=1

e Relation (45) holds.

We consider now a face S, ; which is included in 8Q,,N3P,.(j); thus S, ; is a face of
some cube C;, in Q,,. In Section I1.3, we have constructed the value of w(y, n) of S, ;, in
such a way that w(u, n) is continuous and

g+1

(48) w(u,n)=u on U 8(6,'},.'1 and E(w(u,n);S, )<2Ewu;S, ).
I=1

Using the same method as in Section I1.3, we may, moreover assume that we have
constructed w(u, #7) in such a way that

z(h)
49) w(u,M)=u on UZ (HNS, .
b=1

Since we have relation (45), relation (48) is automatically satisfied, and the remainder of
the construction of w(u,#n), and our estimation on fc; IVu—Vw(u, )l dx are left un-
changed by this slight modification. On the set Ui‘i), Z; ,(h) we define w(u, n) by

2(h)
(50) w(u,m)=u on bL_Jl Zj_ »(),
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which is of course compatible with (49). On Uj%, 3C; ,(h), we set

51) w(u, ) =§,

where & is a map in W"?(U3®, 8C; ,(h); NN C°, such that £=u on UL, Z, ,(h) such that
E(&; Ui, 8C; ,(R)<2E(u; UL, 8C; ,(h)), and such that & agrees with the value of w(u, )
on S, ; defined by relation (49). The existence of such a map & can be proved using
Theorem 1 bis of Section 1.6, as was done previously in Section I1.3 for defining a
continuous value of w(u, #) on S, ; which satisfies (48). On each cube C; ,(h) we extend
w(u, n) by a radial extension of the boundary value:

1 b(x)

52) w(u, n)(x) = g(f;‘(h)m
b

> on C; ,(h).

It is then easy to verify that w(u,7) is in Wh2(P,( j), Nb, is continuous except on a
finite set of points, which are the barycenter of the cubes C; ;. Since we have relation
(49) holding, our definitions are compatible on 8Q, N3P,. Thus w(u, ) is in
WhP(C", NY). We estimate now [, |Vw(u, n)f dx: using relation (47) we have

Ew(k, 1), C; y(h) <K, #E@, 9C; () < 2K, E(u; 9C, ,(W)(mh)™".

Adding the previous inequality for all the cube C;, and combining with (47) we obtain
(53) E@w(y, n); P,) < Ky, E(u; P,).

Since meas(P,,) goes to zero when m—-+o, E(w(m,u,n);P,) goes to zero when
m—+. Combining (53) and (44) we see that E(u—w(m, u, n))—0 when m—+, u—0,
n—0 and 5/u=<1/2. This shows that w(m, u, ) is an approximation sequence of u. In
order to complete the proof of Theorem 1, when M"=C" and n—2<p<n—1, we have to
show that w(m, u, ) can be approximated, in W"?(C", N¥) by maps continuous except
at most at a finite number of point singularities. (The proof of Theorem 1 in the case
considered here then follows from Lemma 2.)

IL.5. Proof of Theorem 1 completed (n—2<p<n—1): w(m, u,n) can be approxi-
mated by maps continuous except on a finite set. Note first that on P,,, w(m, u,n) is
already continuous except on a finite number of points. In order to approximate
w(m,u,n) on Q, by maps having only a finite number of point singularities, we are
going to adapt the mollifying argument of Section 1.5. Let ¢ be a smooth radial function
from R” to R” such that supp(¢)=B"(0,1) and [, ¢(x) dx=1. We consider the map ¢°
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from R" to R* defined by ¢°(x)=0""g(x/0). First, we extend w(u,n) outside C" by
w(u, Mx)=w(u, n)(x/||x|)) if x € C". Note that, by the constructions of Section II.3 and
Section 1.4, w(u, n) is continuous on the boundaries of the cubes C,. Hence w(u, )
restricted to 8C" is in W'P(3C", NynC®, and the extension of w(u, 7)(x) to R*™\\C"
defined above is also continuous on R™\ C". For x in R" we consider the map

w’(x) = f ¢’(x—2) wlu, n) (z) dz.
.

It is well known that w’ is smooth on R”, taking value in a bounded domain of R, and
that w’ tends to w(u, ) in Wh?(C", R)). We consider now a cube C, included in Q,,. We
are going to modify w’ in such a way that the new map takes value in Nt and is
continuous except at a finite number of point singularities. On C,(n) we have

w(u, 7)) = @(y,, 8nd)ouod".

Hence, the image by w(u, n) of Ci(y) is in B,(y,, 8nd,). Moreover if one considers the
way w(u,n) is defined on C,\C/), it is easy to check that w(u,7n) takes value in
ég(y,, 8ndy) on C,\CA27/3). Thus, for ¢ small enough w’ takes value on C,\C () in
the convex closure (in R) of Bg(y,, 8nd,) which is in O, for dy small enough. We choose
0Oy in such a way that this assumption holds (note that J, has not yet been determined).
On C,\C,(n) we are going to modify w’ in such a way that the new map takes value in
0, and has only point singularities. Recall that (see Section I1.3) C,\C,(n)=U €/;. For
simplicity, we may consider that 4, is the cube C'"(1/mq)=[—1/2mq, 1/2mq]", that

3% .nC,(n) = {—1/2mq} x[—-1/2mq, 12mq)"",

that
5%, = (1/2mq} X[~ 1/2mq, 1/2mq)"”",
and that:
(54) w(u,n)(x)=w(u.n)[ x ]
||x||2mq

(the real situation can be deduced from the situation considered here, using the
diffeomorphism f;; which maps €}, onto [—1/2mgq, 1/2mql”). We consider now
the set D"=C""(1/mq)"\.C'"(1/2mq). Since, by construction w(y, n) is continuous on
3% \C,n) and takes value in By, 8nd,) on 3% ,nC(y), it is easy to see, using
relation (54) and the properties of mollified maps, that for ¢ small enough, w® takes
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value, on D" in 0. Moreover since w’ converges strongly to w(u, ) in W"P(C", N¥)
there is some 7€[1/2,2/3] such that: For ¢ small enough,

(55) E(w"; aC'"(i-)> < Ky E(w(u, n); 6.

mq
On €}; we define a map 4’ by:

%’ =w’ on <g,",.\c'"<L);
, m

w” = wa <—££_) on C”' (L)
j2zmgq mgq

On €4’ is in W"P(%fi, 0), continuous except at one point singularity, the bary-
center of €;. Moreover, we have:

(56)

57) EW’; €') < Ky, E(w(u, n); €7) for o small enough.

We defined w° in the previous way, on the cubes €}, for every C, in Q,,, which is not in
contact with oP,,. If 8C, intersects dP,, we adapt the definition of @ in such a way that
w’=w(u, n) on 3C,N3P,,. This can be done using the same methods as in the proof of
Lemma 6 (cf. Appendix). Then we set on P,,, w’=w(u, 1), and clearly w° € whr(cr, 0),
for o small enough. Moreover, for ¢ small, we have using (57):

(58) f IV’ = Vw(u, P dx < Ky Ew(u, n); U,y C\C).
C’l

Thus when m—0, u—0, —0, 0—0 (chosen in a convenient way), E(’—w(u, ) goes
to zero. We set:

59 f’=nmnow’ on C

f?is in W'P(C", N%), continuous except at a finite numbers of point (f° has the same
singularities as ). Moreover '

60) E(f'-w(u,n)—0, when m-—0,u—0,7—0 (n/u<1/2) and c—0.

Since w(u, n) approximates u in W"?, (60) shows that « can be approximated in W'? by
maps, continuous except at a finite number of points. In the case p=n—1, since we
assume n,,_l(N")=0, Theorem 1 follows from Lemma 1, applied to f°. In the case
n—2<p<n—1, Theorem 1 follows from Lemma 2 (the proof of which has not yet been
given), applied to f°. The next section is devoted to the proof of Lemma 2, and this will
complete the proof of Theorem 1 in the case considered in this section.
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11.6. Proof of Lemma 2. We consider a map v in W"?(C", N¥) (p<n—1) continuous
except at most at a finite number of singularities. Let A be a singularity of v and
B"(A, 0y) a neighborhood of A such that v has no other singularity than A in B"(A, gy).
For every 0<o<a,, the homotopy class of v restricted to dB"(A, o) is independent on o:
we call it the homotopy class of v at the singularity A. In order to prove Lemma 2, we
present a basic construction for ‘‘removing’’ a singularity (a similar construction is
given in [Bel}]). This construction is stated as Lemma 7 (for the proof of Lemma 2 we
shall actually use the more general version Lemma 7 bis).

II.6.1. A basic construction for removing a singularity. We consider more
generally an open domain W in R", such that W is smooth, and a map v in
WhP(W; N*) (p<n—1) such that v has only one point singularity A, and such that v is in
C*(W\{A}; N"). We assume furthermore that there is some point B on the boundary
of W such that [AB] is included in W, and that there is some neighborhood B"(A; gp) in
W, of A such that

(61) vx)=v (x_—A__ +A> on B'(A;0).
lx—Al g,

Then we have the following lemma:

LeMMA 7. Let v be as above and p<n—1. There is a sequence of smooth maps
U, € C*(W; N¥) converging strongly to v in W"P(W; NY which coincide with v outside
some small neighborhood K,, of [AB], such that meas K,,—0 when m—+®.

Proof of Lemma 7. For simplicity we may assume that W is flat in some
neighborhood of B and that 8W is orthogonal there to [AB] (the general case is
technically more involved but the method remains essentially the same). We may
choose orthonormal coordinates such that A=(0,0,0) and B=(0, 0, d), where d=|A—B|,
and such that 9WNB"(B, r;)=B""'(0,r,)x{0}, for some r; small enough. For m EN*
large enough, we set a,,=d/(2m—2) and we consider the subset K,, of W defined by:
K,=[-a,,a,)" ' X[~a,,d]. We are going to construct a map v}, € W"?(W;N*) such
that v),=v on W\ K,,, v, converges strongly to vin W"?, and such that v,, is continuous
on K,, except at a finite number of point singularities at which the homotopy class of v
is trivial. Then, we apply to v;, Lemma 1 bis of the Appendix, which shows that v, can
be strongly approximated by smooth maps: this will complete the proof of Lemma 7.

We divide K,, in m n-dimensional cubes C, ; (which are in fact translates of
[—a., a,)" defined by:

C,;=["apa,]" ' ¥X[(-1+)) a,;(1+))a,], for j=0,..,m—1.
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Let o be such that 0<<o<0y/2. Since v is smooth on W\ B"(4, o) there is some constant
d(0) such that |Vu|.<d(g) on W\ B"(A, 0). For the cubes C,,; which do not intersect
B(A;0) we have |Vv|.<d(0), and thus

(62) E@w;9C, )<2'n d(o)Pa’t.

For the cubes C,, ; which intersect B"(A, o), we have relation (61) holding for these
cubes, and thus it is easy to verify that sup{|Vu(x)|, x € 8C,, ;}<K/a,,, which leads to the
inequality

(63) E(v;3C,, )<Kya'"'"? for C, NB"(A,0)*Q.

Since we have at most T,,(0)=0/a,,+1 cubes C,, ; which intersect B(A, 0) combining (62)
and (63) we obtain

m—1
(64) > E@;9C,, ) < Ky (0a > +d(of a& ' m).
j=0

In order to complete the proof of Lemma 7, we shall use the following lemma, the
proof of which will be postponed after the completion of the proof of Lemma 7.

Lemma 8. Let >0, >0, p<n—1, and ¢ be a smooth map from 3C'"(u) to N*.
There is some 0<ay<u/2, depending only on |Vv|. and € such that for every 0<a<ay,
there is some smooth map ¢ from 8C'"(u) to N* having the following properties:

The homotopy class of ¢ is trivial;

(65) @ =@ on 3C""(u)\B" 10, a)x {%}

E(¢?B"_I(0, a)X{%}) < e+E<<p;B""(0, a)x{%}).

Proof of Lemma T completed. As a first step, we are going to define a smooth map
Uy, On Uj";f,‘ 9C,, ; such that v,=v on 9K,, and such that the homotopy class of v,
restricted to each 8C,, ; is trivial (afterwards we will extend v}, inside each cube C,, ).

Definition of v, on Uj”;?,l 0C,, ;- Let e>0 be small. We first apply Lemma 8 to C,, ,,
to @=u restricted to aC,, 4, and a=min(ea,, ag). Lemma 8 provides us with a map ¢
from 3C,, , to N*, satisfying (18). On 3C,, , we define v}, by

v,=¢ on 3C, ,.



180 F. BETHUEL

It follows that v}, has the following properties: The homotopy class of v;, on 3C,, , is
trivial, v},=v on 3C,, \B""'0, ®)x{a,,} and E(v,;B""'(0,a)x{a,})<e. Hence v}, is
equal to v on 9C,, (N3K,. We now consider the next cube C, =[-a,, a,]" " 'x
[a,, 3a,,] and the smooth map &, from 3C,, , to N* defined by

©6) 0,,= v}, on 8C,, ,N3C,, |, that is, on the face [—a,, a,]" ' x{a,}
0,,= v elsewhere, that is, 3C,, ;\[~a,, a,,]"" ' %{a,}.

It is easy to see that the homotopy class of 4,, on 8C,, ; is the same as the homotopy
class of v restricted to 3C,, ,. We apply once more Lemma 3 to 9,, and 8C,, ;. Lemma 3
provides us with a new map from 3C,, | to N* satisfying (18). We take v}, equal to this
new map. Note that this definition of v,, on 8C,, | is compatible with the previous
definition of v,, on 8C,, ,. Moreover the homotopy class of v;, on 3C,, , is trivial and
um=von dC,, ;NJK,,. Repeating this argument m times, we define a smooth map v, on
Uj";?,1 8C,, ; such that v,,=v on 3K,, and such that the homotopy class of vj, restricted to
each boundary 8C,,, ; is trivial.

Definition of v,, on K, =U72;' C,, ;. For each cube C,,; we extend v, defined on
9C,,; on C, ; in the following way:

xX—Xx;
(67) v (x) =0, <| |x—xj i am+xj> where x; is the barycenter of C,,, ;.
j

It is easy to see that v,=v on 8K,,, that v}, is in W"P(K, ; N*) continuous except at the
points x;, where the homotopy class of v;, is trivial, and for every small neighborhood of
the points x;, Lipschitz outside this neighborhood. Easy calculations, combining (67),
(66) and (65) show that

E(v,;C, )< K(E@;3C,, )+e)a,,

and adding all these inequalities for j=0, ..., m—1 we obtain, using (64)

m—1
(68) Ew,;K,)< Ka,,,(E (E(v; 8Cm,j)+s> < K;,s(aa:‘n_l +d(0)?a,,+de).

j=0

If we let m go to +, and ¢ go to zero, we see that

(69) lim E(v,;K,)=0.

n—+ow

Since vj,=v on 8K,,, we may extend v}, to W by v,,=v on W\ K,,. Since we have (69),
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and since v, has only point singularities, at which v}, has a trivial homotopy class, v},
can be strongly approximated by smooth maps, equal to v}, and hence to v outside K,,
(see Lemma 1 bis of the Appendix). This completes the proof of Lemma 7. Before we
present the more general version of Lemma 7, namely Lemma 7 bis, we give in the next
section, the proof of Lemma 8, which has been postponed.

Proof of Lemma 8. Since it will be easier to work on spheres rather than on
boundaries of cubes, we consider the sphere §”~!, and a bilipschitz map g, from 8C""()
to §”~! such that: [Vgol<K,u™";|Vgy'|<Kyou, such that g,0,0, —u/2)=(0,...,—)=P_,
8,0, ...,0, +u/2)=(0, ...,0,+1)=P_, and such that g, preserves the orientation. Let
£>0 be small. We set:

V(B)=S""'nB"P,,B) and W(B)=S5""\V(B).
Since V(B) and W(p) are diffeomorphic, there is a map ® from $"~! to W() such that

(70) yly, = dly,.

We consider the subsets of 3C'"(u) defined by: ¥, ,=gg "VB); W p=80 w(By.
(Note that ¥,, , and W, ; are diffeomorphic.) For >0 small enough,

V., 5 B0, @)X {u}.
We consider the map i defined from 3C'"(u) to N* by:
Ug= vO(gg’OQﬂOgo).

Note that, since @ is homotopic to a constant map, U is also homotopic to a constant
map. (70) shows that Gs=v on 8%, 4. In order to complete the proof of Lemma 8, we
recall the following result of B. White {W1]:

LEMMA 9. Let M and N be Riemannian manifolds, with OM+*Q. If M and N are
two Lipschitz maps from M to N such that f=g on 3M, and such that f and g are [p]-
homotopic relatively to M (that means, homotopic, relatively to M, on some [p]-
skeleton of M). Then for every >0, there is some Lipschitz map f' which coincides
with f and g on 83M homotopic to f relatively to OM, and such that ||f' —g||<e.

Proof of Lemma 8 completed. We apply Lemma 9 to M=Y, 4, f=0z, g=v. Since
Vo, p is diffeomorphic to B!, and since p<n—1, any [p}-skeleton of 87, gisalsoapl-
skeleton of ¥, g. This shows that 4 and v are clearly [ p]-homotopic relatively to 8%, s.



182 F. BETHUEL

Thus the theorem gives us the existence of a Lipschitz v’ homotopic to s on Ving
relatively to ¥,, 5, such that v'=v on 3%, s and such that

EQW; Y, ) <E(; Vapte

we set @=v’ on ¥, 5 and ¢=v, on 8C""(u). Then @ is homotopic to s on dC""(u) and
thus the homotopy class of @ is trivial. It is easy to verify that ¢ satisfies the conditions
(65), and this completes the proof of Lemma 8.

In the hypothesis of Lemma 7, we have assumed that v € C*(W\ {4} : N and that
(61) is satisfied. In fact this technical assumption can be omitted, and we have the more
general result:

LEMMA 7 bis. Let v be WHP(W: N¥) (p<n-—1), such that vECO(W\{A};Nk) (resp.
C*(WN\{A};N"). There is a sequence of maps v, in W-P(W;NHNC® (resp. C*)
converging strongly to v in W“?(W;N¥) which coincide with v outside some small
neighborhood K,, of (AB] and such that K,,—0 when m—+®.

Proof of Lemma 7 bis. It suffices to prove that v can be approximated by maps in
whrn C*(WY\{4}; N¥), which verify (61). This can be done using the idea of the proof
of Lemma 1 (cf. Appendix, proof of the general case). Using Lemma 7 bis, we are able
now to complete the proof of Lemma 2.

11.6.2. Proof of Lemma 2 completed. Let (A), <, be the point singularities of v.
Let (B),<;<; be points on 8C", chosen in such a way, that there is a tubular neighbor-
hood W; of [A;B;] in C" such that W;,nW=0, if i#j. We apply Lemma 7 bis to v
restricted to W,, for i=1, ..., k. This lemma provides us with a sequence of maps v,, in
W'P(C", N9 n C° and of some small neighborhood K,, ; of [4;B] in W; such that

k
meas(u Km’,.>—>0 when m—0,

i=1
lim E(v,;K,, )=0 and
m—+w

k
v,=v on C'\NUK, .

i=1
Thus v,,—v in W"P(C", N¥). This completes the proof of Lemma 2(i).

Proof of Lemma 2(ii). We may assume without loss of generality that 0 is not a
singularity of v. Let 0>0 be small and o’'<o, be such that E(v;dB"(0"))<2E(v; B"(0)).
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Let B; be points on 8B"(g), such that there is a tubular neighborhood W, of [A;B;] in
C"™\\B"(0), such that W;+=W, if i#j. Lemma 7 bis gives us the existence of a sequence of
maps v,, in W"?(C*"\\B"(¢')) N C°, and of some small neighborhood K, . of [A;B] such
that K,, ;n3C"=@, lim,,_,, ., E@,;K,, )=0, v,,=v onC"\(UL K, ;,UB%(¢")) (and thus
on 3C"), and moreover lim,,_, . E(v,;3B"(¢"))=E(v;dB"(¢")) (for this last equality, see
the construction of v, given by Lemma 7 near B). We extend v, on B"(¢’) by
Um=Un(xc'/lx]). Then it is easy to see that v,—v in W'P(C", N¥) when m—+, and
0—0, moreover v, is continuous except at the point singularity 0. Since there is some
continuous map v’ such that v'=v on 3C’" the homotopy class of v,, at 0 is trivial. We
apply then Lemma 1 bis to v,, and this completes the proof of Lemma 2(ii).

I1.7. Proof of Theorem 1 bis when M=C" and n—2<p=<n—1. The construction of
Section I1.5 shows that v can be approximated on W'?(C", N*) by maps continuous
except at a finite number of point singularities, and which agree with v on the boundary
(the conclusion then follows from Lemma 2(ii)).

II1. Proof of Theorem 1 when M"=C" and 1<p<n-2

We introduce first some notations. For gssn € N* and for x=(x;, x,, ..., x,) in R", we set

Ilx|l, = min{max |x}, S is a k-element subset of {1,2,...,n}}.
ies

If 4>0, we define a skeleton [C'"(u)]; of the cube C'*(u) by:
[C™"(w)], = {x EC""(W)/||xll, = 1/2}.

Clearly [C"(w)],=C"(w), [C""(W)],_,=3C""(u) and [C""(w)],_,=Z(w) as defined in Sec-
tion II. More generally, for k<n—1, [C'"(u)]x is a union of k-dimensional cubes, which
are translates of C”‘(u), and [C'"(w)],_, is the union of the boundaries of the k-
dimensional cubes composing [C'"*(u)]i. Since we have to consider sets C which are
diffeomorphic to standard cubes C'"(u) (for instance C,, €:;»-..) we define the s-
skeleton [Cl; of C by:

[Cl, =f“([C'"(,u)]k)

where fis a diffeomorphism from C to C'"(u).
Throughout Section III, we will assume that 1<p<n-—2, that m p](N")=0. s repre-
sents the largest integer strictly less than p; that is s=[p] if p is not an integer, s=p~1 if
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p is an integer, and we shall consider a map u in W"?(C", N¥). In order to prove
Theorem 1 in the case 1<p<n—2, we are going to adapt the proof given in Section II for
the case n—2<p<n-—1, and we mainly follow the same steps.

II1.1. Division of C" in little cubes C,. We may assume without loss of generality
that for s<sék<n-—1, u restricted to [C"); is in Wl"’([C"]k, NY. 1t follows then by the
Sobolev embedding theorem that u restricted to [C"]; is continuous. Slicing C" by
hyperplanes P"(a, k) we may obtain a division of C" in (m+1)" cubes C,, which are
translates of [—1/2m, 1/2m]" (except those in contact with the boundary, see Section
L.1), such that:

® yrestricted to [C,], is in W'*? for every s<k<n-—1. Thus u is continuous on [C,],.
® The following relation holds, for m large enough:

(m+1)"
(71) Z Ew;[C])<K,m"*E(w), forevery s<k<n.

r=1
Next, we shall define the ‘‘bad’’ and the good cubes.

1I1.2. Definition of P,, and Q,,. Let £>0 be small, to be determined later. Q,, is the
union of cubes C, such that:

E,(u;[Cl)<¢;
72)

E (u;[Cl)<em™ where v>0 is small, and for s<k<n.

We set P,,=C"\Q,,. We have:
(73) E,(u;[C,]9 = m*PE@;[C,]y) for ssk<n.
(72) and (73) imply that meas P,,—0 when m—+ . We first define w(m, u,n) on Q,,.

I11.3. Definition of w(u,n) on Q,. We consider a cube C, in @, such that
dC,NdP,=D (the case 8C,NAP,+ is an adaption of the previous and will be
considered in Section II1.4). Since E(u;[C,],)<e, and since [C,], is a union of 2n!
s-dimensional cubes, we may apply Lemma 2 to u restricted to these cubes. Choosing
£<gy(0y/2"n!, s, p, NY, we conclude that the image of [C,], lies in some domain B(y,, d)
of N¥, for some y, in N*. Next we shall define w(m, u, n) on C(#n) and then on C,\C,().
(We choose 7 such that n=1/q, g € N*, as in Section II.)

Definition of w(im, u,n) on C,(n). We set:
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(74) wim, p, 1) = @(y,, 2" 'n1d)ouo @~'(r, . ),
thus on Ci(p), w(m, u, M=@(y,, 2"'n!dy)ou.

Definition of w(m, u,n) on C,\C{n). We use the same method as in Section 11.3.
We divide each face S, ; in (g+1)"~' cubes 4/;', as in Section I1.3. We may adapt the
method in such a way that we have:

® y restricted to [6];'], is in W"? for every ssks<n. Thus u is continuous on
n—1
[C

s°

(m+1y!

n—1
(75) > E(u;[%,",:‘]asKw(EE(ui%z:'[s,,,-],>q"k)-
t=k

=1

o The image of u restricted to [%ﬂf‘]s lies in B,(y;, &) for some y; in N* depending
only on the restriction of u on §, ;.

On [€;'], we set:
(76) w(u, n)=u, whichisin W>nC’([€7'],, NY).

Let A, ,(s) be the (s+1)-dimensional set defined by:

2n (g+1)"! )
— n—
‘N‘y,n(s) - iL=J1 Il__J] [Cgl,i ]s+l’

and 4, ,(s) be defined by

-, 2n (g+1)*! »
Ny o(8)= N, (sINOC,USC () =, (U v [€7])

=1 I=1
On 4, ,(s) we set:

an w(p, n) = u(z(x)) on M, (s).

Note that (76) and (77) are compatible. Combining (74), (76) and (77) we see that w(u, n)
is defined on [€]',],. In order to extend w(u, 7) to €', we proceed inductively. Suppose

that w(u, n) has yet been defined on [ 4] ]« Let A¥*L be the (k+1)-dimensional cubes

1,i,j
composing [ 6], and suppose w(u, 1) has not yet been defined on some Aff}

aAﬁ}c[(@,’fi]k we may extend w(m, u, ) to Af‘f} by a radial extension of the boundary

value:

Since

13-918289 Acta Mathematica 167. Imprimé le 5 novembre 1991
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_ S0/ >>
78 T Al e
78) w(m, p, 1) = w(m, u, n) <f l»vf<z||ﬁ,,.,,-(x)llmq

where f,;; is a diffeomorphism from Af}}to C***'(mg) such that |Vf, |<

K, |Vf;i|<K,,. Applying this method to each A;}} where w(m, 1, 7) has not yet been
defined we see that we have defined w(m,u,n) on [€]],,,, and finally on €, if we

proceed inductively. Moreover, it is easy to check that:

w(u, n) is in W-?(C \.C,(n)) and coincides with (74) on 8C(),
n—§
(79 Ew(u, n); 61) <K, (%E(u; aC)+ <%) E(w;[6 i]s) ,

the image of w(u, ) on c, lies in B (y,, 2"*'ndy).

1I1.4. Definition of w(u,n) on P,. As in part I1.4 we consider the connected
components P,(j) of P,,, and a division of P,, in z(h) n-dimensional cubes C; ,(h), for
Isb<z(h), such that the compatibility condition (45) holds on every face
S, <dP,(j)N3Q,, and such that:

® For 1<b=z(h), u restricted to [C; ,(h)]i is in W'? for every k in {s,...,n} and
thus u restricted to [C; ,(h)], is continuous.
® The following inequality holds, for 4 large enough and s<k=<n-—1:
z(h)

(80) > EW;[C, ()]0 < Kmh)" ™ E(u; P,,(j).
b=1
2(h)
(80") > EW;[C, ,(W]NS, ) < Kolmh)' ™ Ew; S, ).
b=1

We consider, for s<k<n the set G(h, k) defined by:

z(h)
Gh, b= U [C, (],
(clearly G(h, k)= G(h, k+1), and G(h, k) is a union of k-dimensional cubes). On G(h, 5), u
is continuous. For & large enough, we set:
(81) w(u,n)=u on G(h,s).

We are going to extend the value of w(u,n) defined by (81) to the sets G(h, s+1),
G(h, s+2),...,G(h,n—1). Let A°*! be one of the (s+1)-dimensional cubes composing
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G(h, s+1). 3A**'=G(h, s), and thus u (and w(u, )) is continuous on 3A**'. Applying
Corollary 1 of Section I to A**! and « in the case p is not an integer (then nm(N")=0),
and the result of Schoen and Uhlenbeck in the case p is an integer, we deduce that u
restricted to A**! can be approximated in W?(A**', N) by maps in W'P(A5*!, NN C9,
which agree with u on A**!. Hence, let w!(u, n) be a map defined on A°*! such that:

wi(u,n) isin WhPAH  NONC? and w'(u,7)=u on A
E(w!(u, n); A < 2E(u; A*).

Constructing w{(u,n) in the previous way on every A’*', we define w(u,n) on
G(h,s+1), and w'(u, )€ WHP(G(h, s+1), NOYNCC. Next we consider a cube A**? in
G(h, s+2). Since 3A° 2= G(h, s+1) we may extend w’(u,n) on A**? by a radial exten-
sion of the boundary value:

f A(X)
(82) w;(ﬂ’ )= w( ’ ) (f (____..___.__._. on As+2’
A VT TAE
where £, is a diffeomorphism between A**? and [—1/2mh, 1/2mh]**!. Note that wi(u, n)
is in W'P(G(h, s+2), N, continuous except at a finite number of point singularities. In
order to approximate w’(y, 7) by a continuous map, we shall use the following lemma,
which is provided in the Appendix (and which is a version of Lemma 2):

LEMMA 10. Let u>0. Let p>1, let s be the largest integer strictly less than p. Let
dEN*, d=s+3. Let v be in W"P(3C% ), N*) continuous except at a finite number of
point singularities, which are not on {8CHuw)),. Then v can be approximated in
WhP(3C% u), N by continuous maps, which coincide with v on [3C(w)];.

Applying Lemma 10 to each cube A**2 in G(h, s+2), it is easy to see that there is a
continuous map w,,(u, n) defined on G(k, s+2) such that:

w, (u,n) isin WG, s+2))n C%
(83) w () =w(u,n)=u on Gh,s);
Ew!, (4, n), Gh, s+2))) <2Ew!(u, 1), G(h, s+2)).

Using the same construction as for wi(y, ), we may extend w,, ,(u,n) to G(h, s+3) by
(82), and w,(u, n) is continuous on that set except at a finite number of point singulari-
ties. We then define w!,(u«,7) using Lemma A9. Repeating this argument (n—s) times
we finally define a map w,,_,(u, ) such that:
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® w,_ (u,n)EW"P(P, (j), N9 and is continuous except at a finite number of
points,

(84) w!_,(u, n) restricted to G(h, s) coincides with u;

n-2
®5) E@),_(u, n), P <Kg (ﬁ) E(u; Glh, 5));

n—s—1
(85") E(w,_(u,m), S, )<K, (Lh) E(u; G(h, 5))NnS, ) forevery face S, on oP,.
. ’ m ’ ’

On P,(j) we set w(u, n)=w,_,(u, n).

Combining (80) and (85) we see that (for & large enough)
(86) Ew(u, m), P, (J)) < Ky E(u; P, ()
Likewise, combining (80") and (85'), we have, for every face S, ; in 3P, N30,
@7 Ew(u,n);S, )< Ky Ew;sS, ).

The relations (85’) and (87) show that our construction of w(u, ) on P,, is compatible
with the construction on Q,,. Thus w(u, %) is in W"?(C", N¥).

I11.5. Proof of Theorem 1 completed in the case 1<p<n-—2. First we shall estimate
f C,,|Vu—Vw(/4, n)P dx. Let C, be a cube in Q,,. Using the same argument as in part 1.3,
(relations (39) and (40)), and combining (79), (78), (75) we obtain:

n:2 n—t
f IVw(p, )P dx < K,s-L E@;3C)+ Y, (l) E@;[C,])-
[SANeR ()] m m

t=s
Then following the calculations of part 11.3 ((33) to (44)) we prove that

(88) f |Vu—Vw(u, n)f dx—0 when m— +o, u—0,7— 0 and —;‘L<%
On

On the other hand (86) shows that
(89 E(w(u,n), P,)—0,

since meas P,,—0. Combining (88) and (90) we see that w(m, i, n) is an approximation
sequence of «. Then using the same method as in Section II.5, it can be showed that
w(m, u, ) can be approximated by maps in W"?(C", N¥), continuous except at a finite
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number of point singularities (note that on P,,, w(u, n) is continuous except at a finite
number of points). We conclude using Lemma 2 as in Section II.5.

II1.6. Proof of Theorem 1 bis, in the case 1<p<n-—2. The proof is the same as the
proof of Corollary 1 in the case n—2<p<n-—1.

IV. The case m;,(N)+0

When 7, ,(N*)+0 smooth maps are not dense in W"?(M", N) as the results of [SU2] and
[BZ] show (see also Theorem A0 for an extension of the result to the case M” is any
manifold of dimension n). Nevertheless, we are able to aproximate maps in
Wh?(M", N) by maps which are smooth except on a singular set, of dimension
n—{p]—1, which has an analytic shape (see the introduction). These results are stated
as Theorem 2 and Theorem 2 bis. For simplicity, we assume in Section IV that M"=C".
The general case will be considered in Section V.

IV.1. Proof of Theorem 2. Let u be in W"?(C", N¥). We use the same construction
as in part III. On Q,, let w(m, u, n) be the map given by the construction of Section
II1.3. We consider each set P,(j), and we define first w(u, ) on G(h, s) by:

w(u,M)=u on G(h,s).

Thus w(u, 1) is continuous on G(k, s). Let A**! be a cube composing G(h, s+1). If p is
an integer, s+1=p, we may apply the result of Schoen and Uhlenbeck [SU3] to u

restricted to A**!, and define w(u,n), as a continuous map, which agrees with » on
3A**! and such that:

E(w(u, n), A**) <2E(u; A**Y).

If p is not an integer, we set

~ fix)
_ o Ja® s+2
w(,u,ﬂ)—“<fA <2mh||f,,(x)ll)) on A

Hence w(u, n) is in W"?(G(h, s+1), N¥), continuous except at a finite number of points.
For s+1<k<n, we are going to define w(u,#n) inductively. Suppose that w(u,n) is
defined on G(h, k—1). For each cube A* composing G(h, k) we set

w(u, n) = wlu, n) (fA (2mhl|fA(x)ll on A
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(note that dA*cG(h, k—1)). For each k, s+1<k<n, w(u, 1) is hence in WEP(G(h, k), N
continuous except on a singular set Z; of dimension k—[p]—1, which has an analytic
shape, as described in the introduction. Finally, w(u, #) is in W"”(Pm, N*) continuous
on P,, except on a singular set = of dimension n—[p]—1, which has an analytic shape.
Moreover w(m, u, ) is an approximation sequence of u in WP(C", N¥) (the calculations
are the same as in Section III). Thus in order to prove Theorem 2, we only have to
prove that w(m, u, 77) can be approximated by maps in Rg. The method for doing that, is
essentially the same as the method of Section I1.5, and this completes the proof of
Theorem 2.

1V.2. Proof of Theorem 2 bis. The proof of Corollary 2 follows essentially the same
ideas as the proof of Theorem 2, combined with the ideas of the proof of Corollary 1.

V. Extension of the results to the case M" is any compact
Riemannian manifold of dimension n

Let M"” be any connected compact Riemannian manifold. Let u be in Whe (M, NF).
Following the ideas of B. White {[W1] (section 1, remarks p. 129), we may realize a
“‘cubeulation’ of M" that is, we may regard M" as a union of n-dimensional cubes,
which are diffeomorphic to C*, and such that any two of them are either disjoint or
intersect along a lower dimensional face. Using the ideas of [W1] (section 3, lemma p.
135) we may also assume, that, for s<k<n the restriction of u to the k-skeleton (as
defined in Section III) of the ‘‘cubeulation’’ is in W"?. Assume now that 4 p](N")=0. In
order to prove Theorem 1 in the general, we distinguish two different cases:

® OM"+. Adapting the construction of Section III to each cube of the *‘cubeula-
tion”” we are able to show that # can be approximated in W'? by maps in W"P(M", N,
which are continuous except at a finite number of points. If n—1<p<n we conclude
using Lemma 1. If 1<p<n—1, we use Lemma 2 (i), and we ‘‘evacuate’’ the singularities
toward the boundary. This gives our approximation of # in W"?(M", N¥) by smooth
maps.

® IM"=@. We set M=[0,1]xM", and we define a map & from M to N* by
a(t, x)=u(x), for t€[0, 1], x EM". Thus 4 is in W"?(M, N*), and dM={0, 1} xM". Apply-
ing the previous case to M, we see that & can be approximated by smooth maps in
C*(M",N". 1t is then easy to conclude that u can also be approximated by smooth
maps, and this completes the proof of Theorem 1 in the general case.

Theorem 1 bis, Theorem 2 and 2 bis are proved following the same ideas.
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VI. Weak density results

VIL.1. Proof of Theorem 3. We first have to show that, if p is not an integer, and
n[p](N")=|=0, then smooth maps are not sequentially dense for the weak topology. For
this purpose, we have to produce a map in W"?(M", N¥) which is not the weak limit of a
sequence of smooth maps.

VI.1.1 A map which is not the weak limit of a sequence of smooth maps. We
restrict our attention to the case M"=C" (the general case can be treated in the same
way, see Theorem A0 of the Appendix). We consider the map f€ W'»(C", N¥) intro-
duced in [BZ], Theorem 2. For proving that this map cannot be approximated, for the
weak topology by a bounded sequence of smooth maps, our argument is essentially the
same as in [BZ], Theorem 2 (where it is proved that f cannot be approximated by
smooth maps for the strong topology), except that we use Theorem 2.1 of [W2] instead
of the result of [W1] used in [BZ]. Note that this result holds only if p is not an integer.
In fact, for instance for M"=B* and N*=$?,,(§?)+0, smooth maps are sequentially
weakly dense in W-P(B%, §?) (see [Bel]). Next we are going to prove the second part of
Theorem 3, namely:

VI1.1.2. Weak limits of smooth maps are also strong limits of smooth maps. We
consider only the case M"=C" (the general case in technically more involved but the
idea remains essentially the same). We consider first the case n—l<p<n.

The case n~1<p<n. Let u be in W''P(C", N¥) such that u is the weak limit of a
sequence of maps in C*(M", N), and let u,, be such a sequence in C*(M", N¥) converg-
ing weakly to u in W"?(M", N*), and such that E(u,,)<C. We shall prove that « can be
approximated, for the strong topology by smooth maps, and for this purpose we are
going to adapt the method of Section I.1. Since u,~—u in W"?, u,—>u strongly in L',
using the Sobolev embedding theorem. For a in [0, 1], let P(a, k) be a slicing plane as
considered in Section I.1. Let ¢; be small to be determined later, and let y>0 be small.
By Egoroff’s theorem, there is a subsequence of «,, (which for sake of simplicity we
will also denote by u,,) such that

(90) meas{ a€lo,1]

€
J lu—u,,| dx?—]} <y,
P k) 2n

Let myEN*, be large (and fixed for the moment). Using relation (90), and adapting
the slicing method of Section 1.1, we may divide C" in (my+1)" cubes C, in such a way
that relation (2) holds, and that moreover there is some m; such that
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(C28] E(uml;aC,)sK“moC for r=1,...,(my+1)"

%2) f lu—u,|dx<e for r=1,...,(my+1)".
ac

r

Note that relation (91) is a simple consequence of relation (2). Relation (92) can be
derived from (90) if we choose, for instance, y<1/5(my+1). We claim that (91) and (92)
imply that the restriction of u« to every 8C, is homotopic to a constant map. Since Up, is
smooth on C,, the restriction of «,, to 8C, is homotopic to a constant map. On the other
hand, we have, for every #,>0

max{lu(x)—uml(x)l, x€3C,} sn(E(u—u,,); 8C,)+K(77,)f ju—u,,|dx
ac,

<9,(E(u;8C)+Eu,, ;8C)+C(p)) ¢,

<1, Kigmy+C(,) &3

where K(,) and C(7,) are a constant depending on 7, (here we follow the outlines of the
proof of Theorem 2.1 of [W2] and use a Morrey-type inequality (see [W2], Theorem
1.1)). Let 6,=d(0, N¥). We choose 7, so small that 5, K4 m,<0,/2. Then we choose ¢,
such that C(7,) £,<6;/2. Then we have

93) max{|u(x)—u,, (x)|, x€IC,} <6,

Relation (93) shows that « and u,, are homotopic on 3C,, and thus  restricted to 8C, is
homotopic to a constant map.

We consider now a cube C,, which is in P,,,o. Using the construction of Lemma 3,
Section 1.3, we divide C, in little cubes C,, Applying the previous method to u
restricted to C,, and since u restricted to 3C, is homotopic to some u, we see that u
restricted to each 3C, , is also homotopic to U, ,and thus to a constant map. This shows
that, on P, , the map w,, restricted to P, has only point singularities which have a
trivial homotopy class, and thus can be approximated by continuous maps in
W"”(C,, N¥) (see Lemma 1 bis). The proof of Theorem 3 can then be completed, in the
case n—1<p<n adapting the methods of Section 1.

The case 1<p<n-—1. The proof of Theorem 3 in that case follows essentially the
same ideas, though technically more involved (we have to use the construction of
w(myg, u, n) of Section III instead of the construction of W, of Section I).



THE APPROXIMATION PROBLEM FOR SOBOLEV MAPS BETWEEN TWO MANIFOLDS 193

Remark. When p is not an integer, Theorem 3 (in the case Jt[p](Nk)*O), and
Theorem 1 (in the case :r[p](N")=0) show that the strong closure and the sequentially
weak closure are always equal.

Adapting the method of the proof of Theorem 3, we may prove the following:

THEOREM 3 bis. Let M" be such that OM"+D. Let p<n be such that p is not an
integer, and n[p](N")#O. Let u be in W-(M", N¥) such that u restricted to OM" is in
WhP(BM", NYNC®, and is homotopic to a constant map. Let u,, be a sequence in
WP (M, NN C° such that u,=u on M" and u,~u in W". Then u can be approxi-
mated for the strong topology in W"? by maps in W"P(M", NYNC?®, which coincide
with u on the boundary.

In the following section we give an application of Theorem 3 bis, when we wish to
minimize, the energy among smooth maps, with a given boundary value.

V1.2. An application of Theorem 3 bis. We restrict our attention to the case
M"=B". Let 1<p<n, such that p is not an integer, and we assume moreover that
71,/(N)*+0. We consider a smooth map ¢ from 8B” to N¥, such that  is homotopic to a
constant map. Let Wé”’ be the set defined by

Wp? = {u€W"P(B", NY;u| . = &}

and let V, be the strong closure of C*(B", N¥) in W"?(B", N%). Clearly W;” and V; are
not empty. Theorem 3 bis shows that the infimum of the energy in V; is achieved.
Indeed let u,, be some minimizing sequence for E(u) in V;; we may extract some
subsequence converging weakly to some map iy, which is thus the weak limit of a
sequence of maps in C*(B", N*). By Theorem 3 bis, ity is in V; and clearly is a minimizer
for E in V;. It is not difficult to see that 7, is a weakly p-harmonic map. Indeed consider
for every @ in C7(B", R)) the map u,=iiy+1@, for small |f]. Clearly if |f| is small enough,
u(x) is in O for a.e. x. Thus #,=n(u(r)) is in W"?(B", N¥). Moreover since i, is in
C;(B", N, @, is also in C;(B", N*) Hence E(it)=E, (i), and thus dE,(@)/dt=0. The
latest equality then yields the conclusion. Adapting the regularity theory for minimizers
for E in W}?, developed by Schoen and Uhlenbeck in the case p=2 ([SU1], [SU2)) and
by Hardt and Lin [HL], Fuchs [F], and Luckhaus [L] in the general case, we may prove
the following:

THEOREM 4. Assume n[p](N")#:O, p is not an integer and C is as above then

inf{Eu), u€ W;*n C;(B", NV}
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is achieved by some map iy, (in C?(B", N which is weakly p-harmonic. Moreover iy is
smooth outside a closed singular set Z on zero (n—[pl—1) dimensional Hausdorf
measure. If n—1<p<n, @iy has only a finite number of isolated point singularities, at
which iy has a trivial homotopy class, and which are not on the boundary.

The proof of the partial regularity of & is rather technical and will be given in a
forthcoming paper.

VL.2.1. Remark. We consider the special case M"=B>, N*=5? and p=2a, where
1<a<3/2. Let g be a smooth map from 3B® to S* having degree zero. We set
Wo2(B*, §H={u€ W"**(B?,§%),u=g on 3B}, and we consider the strong closure of
C;(B’, $H={u€ C*(B*, 5%, u=g on 8B}, in W"?*. Then Theorem 3 bis and Theorem 4
tell us that the infimum of the energy E, (u)={ ,|Vu|** dx is achieved in C;(B*, ) and
that the minimizers are weakly 2a-harmonic maps, smooth except at most at a finite
number of points, where the degree of these maps is zero. More generally, let g be in
N*, let A,...,A,...,A, be points in B’, and let d,,...,d,...,d, be in Z* such that
Y1 ,d=deg(g) (here and in the sequel, we shall not assume that deg(g) is zero). We
consider the subsets T,(A,, ..., A ;d,, ...,d,) of W;**(B*, S?) defined by:

T(A,,....A;d,s....,d)={UEW,(B’,§);u€EC*(B°\(4,, ...,A,); §7);
deg(u;A)=d, fori=1,...,q}.

It is easy to verify that T[(A,,...,A.d,,...,d) is not empty. Using the ideas of the
proofs of Theorem 3 and Theorem 3 bis it is then possible to show that the strong
closure of T(A,,...,A.;d,,...,d) is stable under weak convergence. This implies that
the infimum of the energy E,, is achieved in Tg(A,, .»Agd,,...,d)) by a map which is
weakly 2a-harmonic. On the other hand, if g and ¢’ are in N* then:

T(A}, ... Aydy, ..., d)NT (A}, ..., AL3dy, .. d) =@
if and only if

(A, d), Ay ), .., (A, d)}E((A} d1), o, (AL, dl)}.

In other words, if we look for minimizers of E,, on each set T (A, ...,A;d,, ..., d,) we
find infinitely many (and in fact uncountably infinitely many) different weakly 2a-
harmonic maps in W.*%B*,§?). Adapting the previous ideas to the case N is any
compact Riemannian manifold of dimension &, and considering singular sets of dimen-
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sion n—{p]—1, we may prove the following:

THEOREM 4 bis. Let 1<p<n, such that p is not an integer, and such that
Jr[p](Nk)=1=0. Let & be a smooth map from 3B" to N* such that Wé‘P(B", N¥ is not empty.
There are uncountably infinitely many p-harmonic maps in Wé”’(B", N¥.

VL.2.2. Remark. Let p and N* be as above and let & be any constant map. Then
Theorem 4 bis provides an infinity of weakly p-harmonic maps which are constant on
the boundary. On the other hand there are no smooth harmonic maps which are
constant on the boundary (see [Wo] and [KW)).

As pointed out, the proof of Theorem 3 and Theorem 3 bis, cannot be extended to
the case p is an integer. In this case we have nevertheless a weaker result (Theorem 5).

VL.3. Proof of Theorem 5. We consider first the case p=n—1.

The case p=n—1. In this case, we know that maps, smooth, except at a finite
number of point singularities (this is, maps in R;_,) are dense in WhP(M", N¥) for the
strong topology. In order to prove Theorem 3, it thus suffices to prove that any map in
R;_, can be approximated, for the weak topology, by smooth maps. For this purpose,
we shall use the following lemma:

LeEmMA 8 bis. Let u>0, >0 and p=n—1. Let ¢ be a smooth map from 3C'"(u) to
N*. There is some 0<ay<u/2, depending only on |Vv|_ and e, and some constant F
depending only on the homotopy class of @, such that for every 0<a<ay, there is a
smooth map ¢ from 3C'"(u) to N* having the following properties:

@ is homotopic to a constant map,

G=¢ on SC’”(M)\B"“(O,a)X{—/;—},

E(¢; B" (0, a)X{%} < E<<p;B"—‘(o, a)x{%})ﬂﬂr.

We postpone the proof of Lemma 8 bis, and we complete the proof of Theorem 5,
in the case p=n~—1. Let v be in R;_,. Let g; be the singularities of v, for i=1,...,k, and
F; the constant arising in Lemma 8 bis, corresponding to the homotopy class of v at the
singularity a;, We claim, that there is a sequence of smooth map v, in C*(M", N*) and
some smooth open subset K, of M” such that:
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%4) measK,,—0 when m— 4o,
k
(95) lim E@,,K,)<,F,
n—+x i=1
(96) v,=v on M\K,,.

The construction of this sequence is exactly the same as the constructions given in
Lemma 2 and Lemma 7, except that we replace Lemma 8 by Lemma 8 bis, and ¢ by ¢.
We may easily deduce that v,~v in W"”. Indeed, since E(v,,; M") is bounded (by (95)
and (96)), passing to a subsequence if necessary, v,, converges weakly to some map v’
in W?(M", N*). Since v,, converges to v almost everywhere (by (94) and (96)), v'=v.
This completes the proof of Theorem S, in the case p=n—1.

The case p<n—1. In this case the proof of Theorem 3 is technically more involved.
The main idea is essentially the same, but we have to combine it with the constructions
given in Section III.

Warning. We are only able to prove that smooth maps are dense for the weak
topology, when p is an integer, but we are not able to prove that smooth maps are
sequentially dense for the weak topology, which is a more difficult question.

We come now to the proof of Lemma 8 bis.

Proof of Lemma 8 bis. The notations are the same as in the proof of Lemma 8. We
consider the map o=vog,' from §"' to N*. Set

F,=inf{E(&; S"")|EE C*(S""", N¥) is homotopic to v}.

(Note that it is not known, in general, whether this infimum is achieved or not.) We
consider a map 0, from $"~! to N*, homotopic to & such that:

E@, S" )< F0+%.

We set ¢5=0¢(0,0, ..., —1) (e, € N¥). It is easy to construct a map o;, homotopic to & such
that d,=¢; in some small neighborhood of (0,0, ..., —1), and such that

E@,, 5" < E(b,, s"“)+%.

Let 75 be the stereographic projection from $"~! to R*™'. We consider the map @,
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from R™! to N* defined by:
&, =0,0m;".

Since p=n~1, and 75 is a conformal map, we have E@,, R"")=E(131, S and for
some large ball B*'(C) (C>0), ®,(x)=e, on R" '\ B""!(C). Since the energy is invari-
ant by scaling (p=n—1), we may always assume that C=1, and thus ®,(x)=¢, on aB”'?.

We consider now the cube C'"(u). Set e,=v(0,0, ..., —u/2) (e; € N¥). We consider a
geodesic between ¢, and e, and a parameterization of that geodesic Cel from [1/2,1] to
NF, such that L. (12)=¢,, £, ()=¢,. We may choose C, in such a way, that there is a
constant F; depending only on N* such that max, ¢y, 1; { |VE, (|} <F,, for every e, EN*.
For a<u/2 small enough, we consider the map ¢ from 8C""(x) to N* defined by:

gx)=v(x) on C’”(/A)\B"'I(O;a)x{%} (e=1(x), %5, ..., %)),

¢(x)=¢>1(%) on B”"(O;—;—)x{—%}, where x’=(x1,x2,...,x,,_1)€R”'l,

’

x—) on B""(o,a)\B"-‘(o,i‘i)x{i}.

@ is Lipschitz on 8C'"(u) and it is easy to see that ¢ is homotopic to a constant map,
and that

E(¢;B""(0; a)x{%D < Fy+K, F,+e<F+e.

This shows that ¢ satisfies the conditions of Lemma 8 bis, and completes the proof.
In the special case, where p is an integer and N*=5", we are able to prove that
smooth maps are sequentially dense in W!'P(B", §) for the weak topology (Theorem 6).

V1.4. Proof of Theorem 6. The case p=n—1 has been treated in [Bel]. For the
general case p<n—1, the proof will be given in a forthcoming paper.

Remark. In [Bel] we were able to characterize the maps u € W"?(BP*!, §¥), p EN*,
which can be approximated by smooth maps: let D be the standard volume form on S?
and D* the pull-back of this volume form by u« (when u is in W"P(B**!, 57), the
coefficients of D* are in L'); 4 can be approximated by smooth maps if and only if
dD*=0 (in a distributional sense). Does this result hold for the space W!"?(B", §?), for

n>p+1? More generally what would be the equivalent result, for the space W"?(B", §7)
with k+p?

In the next section, we extend some of our result to the Sobolev spaces W"?,
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VII. Extension of the results to the Sobolev spaces W"P(M", N¥)
We have the following

THEOREM 7. Let rEN*, n EN* and p>1 be such that rp<n. Smooth maps from M"
to N¥ are dense in W"P(M", N*) if and only ifn[,p](N")=0.

The fact that this condition is necessary, was proved by Escobedo in [E}. The
reverse, namely that the condition n[,p](N")=0 is sufficient for smooth maps to be dense
in W"P(M", N*), can be proved by adapting the proof of Theorem 1 with some slight
changes. (Note that when rp=n smooth maps are always dense in W"?(M", N¥).)

When r is not an integer, one may conjecture that the result of Theorem 7 still
holds. This is a more difficult question, and we are only able to extend the result of
Theorem 7 in the case r=1—1/p, that is in the case of trace spaces. The idea of the proof
is to use a lifting (in R') of the map, and to adapt the proof of Theorem 1 (details will be
given in a forthcoming paper).
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Appendix

In this appendix K{, K3... will represent absolute constants, depending only on Nf n
and p. We have the following result, which is used in the proof of Theorem 1.

THEOREM A0. Assume n[p](N")#:O. There is some map in WYP(M",N¥) which
cannot be approximated by smooth maps in W'?(M", N*).

A.1. Proof of Theorem AQ. In the special case M"=B", the proof of Theorem A0
has yet been given in {[BZ]. We are going to show how this proof can be extended to the
case M" is any manifold. In order to do this, we need the following result.

Claim. There is a map fin W"?(B", N¥), such that frestricted to a neighborhood of
dB" is a constant map, and f cannot be approximated by smooth maps.

Before we give a proof of this claim, we first show how Theorem A0 follows from
the claim. Let x, be some point in M", and for &, small enough, consider the geodesic
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ball Bj(x,, 6,) centered at x, of radius do. Let ® be a diffeomorphism from B(x,, &) to
B,. On BZ(xO, d,) we consider the map g defined by

g(x)=fod(x) for x,€ B;’(xo, Oy).

Since fis a constant map on 8B", g is a constant map on 8Bg(xy, 6p). Let a be the value
of g on OB,. We extend g to M" by

glx)=a for x&§M"\Bj(x,,0).

Clearly g is in W“P(M", N. Since f cannot be approximated by smooth maps in
C™(B", N*), g cannot be approximated by smooth maps in C*(M", N¥), and this com-
pletes the proof of Theorem AO.

Proof of the claim. The case n—l1<p<n. Here [p]l=n-1, and we assume
7,_(N9=0. Let ¢ be a smooth map from $"~! to N¥, such that ¢ is not homotopic to a
constant map, and @ is constant on V' '=8""1n{(x,,...,x,) ER"x,<1/2}. We set

E" = {(x;,...,x,)ER"|x, <0}, E"={(x,,....x,)ER"|x,=0},

=

1 1

P = (0,0,...,—7> and P, = (0,0,...,+—2—).

We define a map f from R” to N* by

x—P_ N
f(x)=(p<|x_P-|> for x in E";
_ x—P, . —
=g 1x—P+|> or x in E;

It is easy to verify that f is constant outside Q=(B"(P_; )NE")U(B"(P;1)NE"), and
that fis in W'P(R", N¥). Thus for r=3, fis constant on 3B"(r), and one can show that f
cannot be approximated by smooth maps, using the same argument as in [BZ],
Theorem 2 (note that f has two point singularities P, and P_). The map f is then
obtained by

fx)=f(3x) for x€B".

The general case: n—1<p. We set g=n—[p], and we are going to argue inductively
on g (the case g=1 has already been settled in the previous paragraph). Assume that we
have found a map £, in W"?(B", N*) such that f,=a (a constant) on 3B" (a € N*) and f,
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cannot be approximated by smooth maps. We extend f, to R" by f;=a on R"™\\B". In
R"*! we consider the domain Q=Q,U Q,UQ; where

L].
’ 2 I

,_:| = Cm+1(A+;2)’

0o | =

Q = c'"(z)x[—
5

Q,=C"2)x [—

1

Q,=C"(2)x [— 5T % =C"NA™;2),

| SO

Q= c'"(z)x[—%,%],

(we have set A*=(0,0, ...,3/2), A"=(0,0, ..., —3/2)). We define a map f,,, on R**' with
value in N* in the following way. On Q, we set

fq+1(x1,x2, s Xy Xy 1) =fq(x,, ey X,).
On 9Q,\ 3R, we set

[ =a for x€3Q,, x€3Q,

and likewise on 9Q;\8Q;, we set

fori®=a for x€0Q,, x€3Q,.

Finally, on Q, we define £, , by:

_f [y XA A+)
e

(note that 2(x—A™)/||lx—A*||+A* €8Q,), and likewise on Q;, we define £, by

_ 7 x—A" -
S1®) _fq+1(2||x—A'H +A )

It is easy to verify that £, is in W"?(Q, N*) and that the value of f,,, on the boundary
dQ is constant, namely a. Moreover using the same method as in [BZ], it is easy to see
that f,, , cannot be approximated by maps in C*(Q, N¥). We extend f,+1t0 R" by setting:

frm@=a if x¢Q

for r=4, we see that f,,,=a on 8B"*'(r). Thus if we set
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fo1=f@x) for x€B™'

we clearly see that £, ,, is a map in W"?(B™", N*) such that f=a on B", and that cannot
be approximated by smooth maps. This completes the inductive argument, and the
proof of the claim.

Remark. The singular set of fis actually homomorphic to §* 71,

A.2. LemMA AO. (i) Let u be in WP(C'", N*) (p<n). Then u can be approximated
in WhP(C'™, N*) by maps such that their restriction to 3C'" is in W*P(3C"", N¥).

(ii) # can be approximated in W"?(C'", N) by maps in W"P(C'", N¥) such that their
restriction to [C'"); is in WI’P([C’];',N") Jor every s<k<n—1, where s is the largest
integer strictly less than p.

Proof of Lemma AQ. (i) For u>0 we consider the cube C'"(1—) and its boundary
8C"™(1—u). For almost every u, u restricted to dC'"(1—u) is in W'? and we have

u
J E(u;8C""(1-pw)) du < K| E(u; C'"™\C""(1-p)).
(1]

Thus there is some a in [0, ] such that « restricted to C'"(1—a) is in W7 and

E(u;aC"‘(l—a))siK; Ew; C"(1-)

then we consider the map v’(u) defined on C'" by
vV(w=u on C"™\C"(l-a)

v'(u)=u (ﬁ(l—a)) on C"\C'"(1-a).

Clearly v'(u) is in W"P(C'", N¥), the restriction of v'(u) to 8C’" is also in W"” and it
is easy to see that v'(u)—>u in W"”, This completes the proof of Lemma AO0(i). The
proof of Lemma A0(ii) is technically slightly more involved but follows essentially the
same idea.

Next we give the proof of Lemma 1.

A3. Proof of Lemma 1. Since the problem is mainly local (as later considerations
will show), we may assume that « has only one point singularity centered at zero. So
we assume that u€ W"?nC%B"\ {0}, N*). We shall first treat the simpler case
uEC™(B"™\\{0}, N)). Afterwards, we will consider the general case.

14—-918289 Acta Mathematica 167. Imprimé le 5 novembre 1991
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First case: u€ C*(B"™\ {0}, N%). Let r<1 be small. We consider the set:
M(r) = {p ELip(B", NY), ¢ = u on B"\B"(0,1)}.

Since 7, _,(N¥)=0, #(r) is not empty. We set:
u(r) = inf E(@;B"(0;r)).
@EM

We claim that:

¥+1
1-377"

a1 u(r) <

E(u; B"(0;r)).

Proof of the claim. Let ¢ € #(r). We consider the map ¢ defined by:

() = p(3x) if |x|s—;,
) x [ 4 |x|>> e r 2r
=l —=|——— f —<slx|s=,
o) (p<|x| < 3 r ! 3 al 3

P =0 it W=

Clearly ¢ € /(. Easy calculations show that
E(¢; B"(0;r)) < 377"E(@; B"(0; )+ (3°+1) E(u; B"(0; r)).
Taking a sequence @, € 4 such that E(g,; B"(0;r))—u(r) we obtain
u<3¥"u+3+1)E; B"(0;r)

which leads to (1’), and completes the proof of the claim.
For r<1 small, we consider a map u, € /4, such that

P+1
1-37"

E(u,;B"(0;n)<2 E(u; B*(0; r)).
It is then easy to show, using (1’) that u, converges to « in W"? when r goes to zero.
This completes the proof of Lemma 1 in the first case.

The general case: u € C°(B™\ {0}, Ny n W"”. 1t suffices to construct a sequence of
maps u, € C*(B"\ {0}, N n W"? which converges to u in W"? (then, we may apply the
first case). In order to construct u,, we extend u to B"(0;2) by u(x)=u(x/|x|), and we
consider a mollifier £ from R"—>R" such that fR,, &(x) dx=1 and supp(§)<B"(0, 1). For
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0>0 small we set £%(x)=0""&(x/o). For x in B", and o small, we consider the map u°
defined by:

u(x)= f E°x—u(z)dz for xEB".
R’l

u’€C*(B";R") and u° converges to # in W"?, and uniformly on every compact subset of
B™\{0}. Let 0<r<1 be small. Choose ¢ small such that:

E(“G;B"(O" r)\B”<0;_;_>) sZE(u;B"(O; r)\B"<0;%>) and
max{ |u’(x)— ux)|; x € B"\\B" <o ; %) } <r.

Choose ry€[r/2, r] such that:
B’ S,) s—2—E<u";B"(0; r)\B”(O;%)) $%E(u;B(0;r)).
¥

We consider the map u, defined by:
u,=nmou’ on B"\B"0;ry
xry

u,= nmf(——) on  B"0;r,).
I

u, is in C*(B"™\{0}; N9n W'”, and it is easy to see that u,—u in W"?, then r goes to
zero. This completes the proof of Lemma 1 in the general case.

Remark. Using exactly the same method, we may prove the following (which is
used in the proof of Lemma 7):

A4. LEMMaA 1 bis. Let u€ W"?(M", N*) (p<n) be continuous except at most at a
finite number of points. Assume that the homotopy class of u at each singularity is
trivial (we do not assume that nn_l(Nk) is trivial). Then u can be approximated in W'?
by smooth maps between M" and N*.

A.5. Proof of Lemma 5. We consider first the ball By, d) in R’ (recall that N*cR’
and the smooth map &, 5 from R' to B'(y, 8) defined by:

&, 5@=2z ifzisin B(y,d);

é"(y,a)(z):—é:—;’lé if z is not in B(y, 0).



204 F. BETHUEL

Note that & ,(2) € 3B!(y,0) if z& B/(y, 8). Next we claim that there is a smooth map
P, 5 from B'(y, ) to B,(y, 6)=B'(y, 9)n N* such that:

P, )=z if z€BJy,6)=B'(y,d)nN
VP, 5l.=<2 if 6 is small enough.

Indeed, in the case Bg( v, 0) is linear, P, s can be easily constructed using an orthogo-
nal projection onto B,(y, ). The general case follows by linearization. We set:

@y, 0)(x) = P, 50&, 5(x) for xEN-
It is then easy to show that @(y, 0) satisfies the conditions of Lemma 5.

A.6. Proof of Lemma 6. For simplicity we replace C"(x) by B". For r>0 small we
consider the map #, defined from B"(2) to Bg(y, d) by:

ux)=ux) if 0<|x=<1-2r;

2) u,(x)=u<ﬁ> it 1-r<s|x<2;

i(x)= u(2x+(2r—l)ﬁ> if 1-2rs|x<l-r.
x

It is easy to verify that &,€ W"?(B", B (y, 6)) and that &,—u in W"? when r—0. We

consider a mollifier £ from R" to R* such that [_,&(x) dx=1 and supp(§)=B". For 6>0

we set §°=0""&(&/o) and we consider on B" the map i, , defined by

i, ,= J. E(x—2)a(2)dz.
R"

i, ,is in C*(B"; Bi(y, 6)) and &, ,~u, in W"?(B",R') when o goes to zero. Moreover
since #, is continuous on the set 1—r<|x|<2 (as (2') shows) and equal to u(x/|x|), the
restriction of i, , to 8B" tends uniformly to the restriction of u to 3B", when 0—0. We
consider now the map u, , defined by:

u, xy=moi, (x) if 0<|x|<1-2r;

u, (x)=moa, a(2x+(2r-—l)ﬁ) if 1-2rsix|<si-—r;
’ x

u, ()= n[—:-(l—|x|) u<i> + %(|x|—(1—r)) u(i)] it x|=1-r.

I I
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u, . is in C°(B", B,(y, 8))n W"?. Moreover easy calculations show that i, ,—u in W"?
when r—0, 0—0. This completes the proof of Lemma 6.

Combining the method of the proof of Lemma 6, with the proof of the approxima-
tion result of Schoen and Uhlenbeck ([SU2], [SU3]), we may also prove the following,
which is the equivalent of Theorem 1 bis for the case p=n:

LEMMA 6 bis. Assume p=n, and let v be in W"P(C", N*) such that v retricted to 3C"
is in W' CO. Then v can be approximated by maps in W' nC%C", NY which
coincide with v on the boundary 3C".

A.7. Proof of Lemma 10. For simplicity, we may assume that u=1 and work on
C"%. In order to prove Lemma 10, we need the following:

LEMMA All. Let p>1, and let d>p. Let v be in W"?(3C"%, N¥) continuous except
at one point singularity A then the homotopy class of v at A is trivial.

The proof of Lemma Al1 is straightforward.

Proof of Lemma 10 completed. We are going to use a construction similar to
the construction of the proof of Lemma 2(ii). Without loss of generality, we may
assume that P*=(0,0, ..., 1/2) is not a singularity of v. Let 0>0 be small, and 0<o’'<o
be such that E(v;8B% (0")x {1/2})<2E(v; B¢ ' (0)x{1/2}). We set V(o")=B* }(0")x
{1/2},W(0")=C"*\V(0"). Let (A)),;<; be the point singularities of v. For two points A
and B in W(¢’) we note [A, B), a geodesic line joining A and B. Let (B), ;< be points on
oW(a'), such that [A;, B;], does not intersect [0C '4,, and does not intersect [4; B], if
Jj=Fi (it is always possible to find such points (B)), <, since the codimension of [3C"’], in
3C' is at least 2). As in Lemma 2(ii), we apply Lemma 7 bis, which gives us the
existence of maps v, in W'P(C*\\B%0"))NC?, and of small neighborhoods K,,; of
[A; B}, such that K, .nK,;=@, if i*j, K, ,n[8C"" =0, lim,_. E@,;K, )=0,
v,=v on W(e')\UL K, ; (and thus on [8C'?]). We extend v, on B,(o') by
Um=Un(x0"/|x]). Then v, € W"?(C"%, N), v,=v on [8C'?], and v,, has only one point
singularity at P*. Moreover it is easy to see that v,—v in W"?(C’¢, N¥) when m—+,
and 0—0. The conclusion then readily follows from Lemma All and Lemma 1.
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