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w Introduction 

Let f be a meromorphic function on C": then we define the set Ff of its periods as 

{ylf(z+7)=f(z) Vz E C~}. 

(0.1) Ff is indeed a closed complex Lie subgroup of C ~, and therefore there exists a 

complex vector space decomposition C~=AO)B such that Fs=At~F'  with F' discrete in 

B. 

Definition 0.2. The funct ionfis  said to be non degenerate if its group of periods Ff 

is discrete. Otherwise we define more generally its rank r to be the dimension of the 

subspace B as above. 

By (0.1) one can easily reduce to the study of non degenerate meromorphic 

functions. 

The basic problems in the theory of periodic meromorphic functions are the 

following ones: 

Problem 1. Given a discrete subgroup F of C n, when does there exist a non 

degenerate (resp. non constant) F-periodic meromorphic function? More generally, 

given a subgroup F of C n, when does there exist a meromorphic function f such that 

r = F f ?  

Problem 2. Given a discrete subgroup F as above, try to completely describe the 

field of the F-periodic meromorphic functions. 
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The results of the present article give a complete solution to the first problem, and 

provide key steps towards the solution of problem 2. To be more explicit and precise, 

we need to set up some notation. 

Definition 0.3. Given a discrete subgroup F of C", the quotient Lie group X=C~/F 

is said to be a quasi-torus. In other words, quasi-tori are exactly the connected Abelian 

complex Lie groups. X is said to be a torus if it is compact, and more generally a 

Cousin-quasi-torus if Hol(X), the ring of holomorphic functions on X, consists only of 

the constants. 

For further use, we denote by n : Cn---~X the quotient map. 

(0.4) Let RF be the real subspace of C ~ generated by F. Then K=RF/F is the 

maximal compact subgroup of X, viewed as a real Lie group. 

We let F be the maximal complex subspace contained in RF; clearly zl(F) is 

contained in K and we shall see in w 1.1 that it is indeed dense in K provided X is Cousin 

(i.e., HoI(X)=C). We denote, for further use, by m the complex dimension of F. 

(0.5) (i) We may assume that F spans C n as a complex vector space. Otherwise, X 

would be a product X ~ C ' x X ' .  

(ii) In this case the closure of ~r(F) equals K iff (if and only if) X is Cousin (cf. 

w 1.1). 

(iii) There is, in general, a decomposition of X, unique up to isomorphism, as a 

product 

Xw_ Ca• ', where X' is Cousin. 

This is the so called theorem of Remmert-Morimoto (cf. [Mo 2], also w 1.1). 

Therefore, for the problem of existence of non degenerate meromorphic functions, 

one can easily reduce to the case of a Cousin quasi-toms. Whereas, for problem 2, 

since every meromorphic function is the quotient of two sections of a line bundle, it is 

enough, by the Ktinneth theorem, to study the space of sections of line bundles in the 

separate cases of (C*) b (this is done in w 1.4) and of a Cousin quasi torus X (cf. w 2.1). 

Problem 1 (existence) is completely solved by the following 

MAIN THEOREM. Given a discrete subgroup F o f  C n, there exists a non degenerate 

F-periodic meromorphic function if  and only i f  the following generalized Riemann 

bilinear relations are satisfied: there exists a Hermitian form H on C n such that 
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(i) Im(H), the imaginary part of H, takes values in Z on F•  

(ii) H]F, the restriction of H to the maximal complex subspace F of the real span of 

F, is strictly positive definite. 

Remark. Condition (ii) can be replaced by the following: H is positive definite (cf. 

Step I of Theorem 2.4). 

A brief historical digression seems appropriate at this point. 

(1) The result, in the case of a torus (X compact, F = c n ) ,  goes back to Poincar6 in 

1898 ([Poi]); essential use is made of the hypothesis of compactness, which allows to 

prove the so called "Theorem of Appell-Humbert" (linearization of the system of 

exponents). 

(2) The case when n=2 was completely settled by Cousin in [Cou 2], although his 

formulation of the generalized Riemann relations is not so explicit. 

(3) The formulation given here of the GRR (Generalized Riemann Relations) is 

taken from Andreotti-Gherardelli ([A-G 1 ], [A-G2]) who proved in 1972 the sufficiency 

of the GRR, using only linear systems of exponents. 

(4) A weaker result concerning the necessary conditions (ii) being replaced by: 

Im(H) is not identically zero on FxF)  was proved, in the special case where the rank of 

F equals n+ 1, by Huckleberry-Margulis in 1983 ([H-M]). 

(5) A weaker result in the general case was proved in the Ph.D. thesis of the junior 

author ([Cap]): (i) holds, and Hie must be positive semidefinite and not zero. 

The noncompact case is more difficult because of the existence of nonlinearizable 

(wild) systems of exponents, which was first observed by Cousin in [Cou 2], and then 

rediscovered by several authors: Malgrange ([Mal]), who interpreted it as a property of 

the first cohomology group Hi(X, Ox) of being non Hausdorff, and later by Vogt ([Vo]) 

and the present authors. 

(0.6) To explain what is a wild system of exponents, recall that a meromorphic 

function on C a, by a theorem of Poincarr, is a quotient of two entire functions; hence 

our F-periodic meromorphic function is a quotient of two entire functions satisfying a 

functional equation 

h(z+~) = kr(z) h(z) (V~ E F) 

where kr(z) is a cocycle defining a line bundle L on X. 



30 F. CAPOCASA AND F. CATANESE 

Writing the cocycle kr(z) as e(f~(z)), where the symbol e(t) stands for the exponen- 

tial of 2zcit, the functions fr(z) were classically referred to as a system of exponents. 

A given system of exponents is equivalent to another one whenever, chosen an 

entire function g, one replaces fy(z) by adding to it the function g(z+v)-g(z).  

A cocycle kr(z) is said to be tame (or linearizable) if it is equivalent (cohomolo- 

gous) to the exponential of a system of exponents which is linear, i.e. given by 

polynomials of degree at most 1. A cocycle which is not tame is said to be wild, and a 

quasi-toms X is said to be wild if it admits some wild cocycle. 

Regarding wild quasi-tori, we have the following result: 

THEOREM 1. Wild quasi-tori form a Borel set W which & 

(1) empty i f  m (=dim F)=n (i.e., X is a torus) 

(2) non empty and o f  Hausdorff  codimension 2m i f  m<n. 

We remark that part (1) is the classical Appell-Humbert theorem, for which we 

give a new elementary proof; this proof uses only conditions for the convergence of 

Fourier series which in turn form the basis for the proof of statement (2). 

A second new result that we obtain is the characterization of sections of line 

bundles on (C*) n, in terms of a certain Frechrt space of entire functions in one variable 

which decrease exponentially in the real direction (w 1.4). 

Let us now explain the principal steps of the proof of the main theorem. 

The key step consists in showing first a Lefschetz type theorem, i.e. that the 

existence of a non degenerate meromorphic function implies the existence of a holo- 

morphic immersion of X into a projective space. 

In the classical theory this was proved by Lefschetz using the linearization of the 

system of exponents; in other terms, in the classical theory the embedding theorems 

are a consequence of the Riemann bilinear relations. 

Here, instead, the basic trick consists in reversing the classical chain of arguments, 

since there are systems of exponents which cannot be linearized. Thus we deduce the 

Generalized Riemann Relations (in w 2), from the existence of the above holomorphic 

immersion, simply by pulling back the Fubini-Study form on projective space and 

integrating over the maximal compact subgroup K of X. 

The main ingredients of proof of the key step are three. The first one is a general 

lemma which, by use of the group law on X, produces a meromorphic map, generically 

with injective differential, out of the given non degenerate meromorphic function. 

The second ingredient is a normal form for the system of exponents which was first 



PERIODIC MEROMORPHIC FUNCTIONS 31 

deviced by Cousin in the case of 2 variables, and then was extended to the case of more 

variables first by Andreotti and Gherardelli ([A--G1]), and then by Vogt ([Vo]). For this 

result we refer to these two papers. 

The main property of the Cousin normal form is that the nonlinear part of the 

system of exponents is given by F-periodic holomorphic functions. 

At this step the crucial hypothesis that X is a Cousin group guarantees that ~(F) is 

dense in K, and with standard geometrical arguments about generic translates of 

divisors we can prove a first weak version of a Lefschetz type theorem (in w 3). 

It seems worthwhile to mention an important corollary of our main theorem, 

namely that the quasi-tori admitting a non degenerate meromorphic function have some 

algebraic group-structure, and therefore coincide with the quasi-Abelian oarieties 
introduced by Severi ([Sev]) and later studied by Rosenlicht ([Ro 1]) and Serre ([Ser]). 

Finally, we postpone to a future paper the explicit description of the (infinite 

dimensional) vector spaces of sections of line bundles in the noncompact case. We 

conjecture here that a sufficient condition in order that this space is non empty is that 

the first Chern class cl(L) can be represented by a positive definite Hermitian form. 

Modulo this conjecture, in section 3.3, we can give then a strong version of a 

Lefschetz type theorem, which is almost as good as in the compact case; moreover, we 

can characterize the Kodaira dimension of a line bundle L in terms of semipositive 

Hermitian forms H representing the first Chern class c~(L), and we relate this integer 

with the rank of meromorphic functions. 

The main body of the paper is divided into three paragraphs: 

w 1. Systems of exponents and wild tori 

w 2. Generalized Riemann bilinear Relations 

w 3. Lefschetz type theorems. 

Each paragraph is divided into sections whose contents are as follows: 

1.1. Tame and wild systems of exponents 

1.2. The theorem of Appell-Humbert and conditions for linearizability 

1.3. Hausdorff dimension of the set of wild tori 

1.4. Line bundles on (C*) n 

2.1. Sufficiency of the GRR (via theta functions) 

2.2. Chern class of a line bundle on X and associated Hermitian forms 

2.3. Proof of the Main Theorem: the key step implies GRR 

2.4. Conditions for the existence of meromorphic functions 
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3.1. Generic immersion lemma 

3,2. Cousin normal form 

3,3. Lefschetz type theorems and the key step 
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w 1. Systems of exponents and wild tori 

1.1, Tame and wild systems of exponents 

In this section and almost always in the rest of the paper F shall he a discrete subgroup 

of C ~ with the property of spanning C ~ as a complex vector space (cf. (0.5)(i)). 

Therefore, as in (0.4), we denote by n+m the rank of F, and clearly m is at most equal 

to n. It is easy then to see that the maximal complex subspace F of the real span RF of 

F has complex dimension m. 

PROPOSITION 1.1. A quasi-torus X is Cousin (i.e., the only holomorphic functions 

on X are the constants), i f  and only if  :r(F) is dense in K=RF/F.  More generally, any 

quasi-torus X admits a Remmert-Morimoto decomposition X~-Cax (C*) b •  where X' 

is Cousin. 

Proof. First of all it is enough to prove the theorem when F spans C ~ as a complex 

vector space (cf. (0.5) (i)). Assume then that :r(F) is not dense in K=RF/F ,  and denote 

by H the closed subgroup given by the closure of  :r(F): H is connected, :r(F) being 

such. H is a real torus, of dimension (n+m-b);  if we let V be the (real) vector space 

:r-l(H), then V spans a complex subspace U' of dimension ( n - b ) a n d  F splits as a 

direct sum F ' ~ F "  where F' is a lattice in V and F" has rank b. Let  U" be the complex 

span of F". Then clearly X ~ X ' x  (C*) b and so firstly X is not Cousin, secondly our proof 

is accomplished if we show the converse, i.e., that X is Cousin whenever z (F)  is dense 

in K=RF/F.  But in this case i f f i s  holomorphic on X, f i s  bounded on K, hence its pull- 

b a c k f '  is constant on F; by the density of  :r(F), f '  is constant on RF, and therefore on 

its complex span C ~. Q.E.D. 

From now on, we shall assume that X is a Cousin quasi-torus. Since F generates 

C n, we can change basis in C n and assume that we may write 

(1.2) F = Z ~ ~ A 

where Im(A) has rank m. 

Then every holomorphic function on X can be written as a Fourier series 

(1.3) f(z) = E cpe((p,z)) 
p E Z  n 

where  ( . . . . . . .  ) denotes the standard scalar product in C n, and the above expression is 

equivalent to the Zn-periodicity o f f .  

3-918285 Ac ta  Mathemat ica  166. Imprim~ le 15 f6vrier 1991 
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We also have A-periodicity if and only if, for each vector 2 E A, we have 

f(z+;O=f(z), i.e., for each p EZ", cpe((A,p))=cp. This equation clearly holds if and 

only if either cp=0, or (2 ,p)  is an integer. Therefore, if we set 

(1.4) Jz = {p E z"l(~,,p) EZ V2 E A), 

then H~ Ox)=Hol(X) consists of the space of Fourier series (1.3) where %=0 unless 

pESz. 

(1.5) In particular X is a Cousin quasi-torus iffJz = O. 

We turn now to the consideration of meromorphic functions on X. As it is well known, 

every meromorphic function f is the quotient of two relatively prime sections of a line 

bundle L on X. The pull back of L to C" is a trivial line bundle, and any line bundle L on 

X arises as the quotient of C~• C by an action of F such that 7 E F acts sending the pair 

(z,w) to (z+7, ky(z)w), where, for each ~EF, ky(z) is a nonvanishing holomorphic 

function o f  z satisfying the cocycle condition 

(1.6) kr+r,(z) = kr,(z+F) kr(z). 

As in (0.6) we write also kr(z) as e(fr(z)), and two systems of exponents give rise to 

isomorphic line bundles if and only if their difference is congruent modulo Z to a 

system of exponents of the form g(z+y)-g(z), for a suitable holomorphic function g(z) 
on CL 

In this framework the (integral) Chern class of the line bundle L is the bilinear 

alternating function 

(1.7) A: F x F - *  Z 

obtained as follows: by the cocycle condition (1.6) we have that 

(1.8) 

is an integer, moreover 

(1.9) 

e(e, ~') = fy+~,(z)-f~,(z+e)-L(z) 

A(Z, 7') = �89 [E(7, 7') "E(7', 7)] 

is in fact bilinear and alternating. 

Definition 1.10. A line bundle L is said to be tame or linearizable if it can be 

realized by a linear system of exponents (this means that the f~(z) are polynomials o f  

degree ~< 1). Otherwise, L is said to be wild. 
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Remark I. 11. If  L is tame, it is not difficult to find, as in the classical case, that 

there exists a Hermitian form H on C n such that the restriction of  its imaginary part to 

F x F  coincides with A. Such a form H is not unique in the noncompact  case, but two 

such Hermitian forms differ by a Hermitian form vanishing on FxC n, and taking real 

values on R F x R F .  L admits then a cocycle in the so called Appell-Humbert normal 
form 

(1.12) kr(z)= o(~')e(-2 [H(z, 9')+ l H(9', 7)]) 

where Io(?)l= 1, and 00 ' )  is a semicharacter for the alternating form A, i.e., O(7+y')= 

0(7) O(7')e(�89 y')). 
In fact, even when L is not tame there exists a Hermitian form H on C n such that 

the restriction of  its imaginary part  to F x F  coincides with A, and we have the following 

normal form similar to (1.12) 

(1.13) 

where now fy(z) is an additive cocycle,  i.e. f~+r,(z)=fy,(z+y)+fy(z). 
We postpone the proof  to section (2.2). Here  we observe that L is linearizable iff 

fy(z) is cobordant  to a constant  function, which means that there exists a holomorphic 

function g(z) such that 

(1.14) fy(z)-g(z+~)+g(z) is a constant.  

We are therfore led to the study of  H~(X, Ox). 

1.2. The theorem of AppeH-Humbert and conditions for iinearizability 

First of  all we take coordinates in C n as in (1.2), such that we can write F=Zn0)A.  Then  

X appears a s  a quotient  o f  Y=(C*) ~ by the homomorphic  i m a g e  of  A. Since 

Ht(Y, Or)=O, we have that 

(1.15) HI(X, 0 x) = HI(A, H~ Or)). 

We can therefore represent  the above cohomology classes by cocycles 3~(z), given for 
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all X E A, which have the following Fourier series expansion 

(1.16) f~(z) = ~ Cp,~e((p,z)). 
p e g  a 

The cocycle condition translates into the following equality: 

(1.17) %,;t+,v=%,;,e((p,t'))+%,~,=%,;t,e((p,t))+%,,~ O/t, t '  E A). 

We set for convenience r(p, t )=  e((p, t ) ) -1 ,  and we notice that if p is not 0 (since 

by our assumption Jz=0), there exists a vector t (p)  such that r(p, t(p)) is not zero. 

Moreover we can choose t(p)  to be an element of a fixed set of generators of A. 

Therefore, by (1.17) we have 

(I. 18) Cp, a = Cp,Mp ) r(p , 4) r(p , t(p)) -I. 

Recall now that the cocycle is linearizable if we can find a Fourier series 

g(z) = ~ ape((p,z)) 
p E Z  n 

such that 

(*) fa(z)-g(z+t)+g(z)  is constant. 

(*) is clearly equivalent to the following equality 

(1.19) %,a=aur(P, t )  0 / t E A ,  pEZn-{0}) .  

For each p E Zn-{0} we can.therefore set 

(1.20) ap = cp.;t(p ) r(p, t (p)  ) -I, 

and (1.19) is then automatically satisfied by virtue of (1.18). 

The main problem now is that (1.20) shows that if such a function g(z) exists, then 

it is unique, but indeed (1.20) only defines g(z) as a formal Fourier series, and we have 

to see when is it convergent. 

Remark 1.21. It is ~ e a s y  to see,  by the cocycle condition, that the 3~(z)are 

convergent Fourier series iff this holds for t belonging to the set of m vectors which 

generate A. 

We now want to write a sufficient condition to ensure the convergence of the 

(formal) Fourier series g(z) assuming that j~(z) is convergent. 
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3 N E N - { 0 }  such that VpEZn-{0} 32(p) such that 

(1.22) dist[((p, 2(p))), Z] > N -~1 

for: a suitable element 2(p) of a fixed set of generators of A. 

PROVOSITION 1.23. I rA  satisfies property (1,22) then 

HI(x, 0 x) = Hi(A, C). 

Proof. It is sufficient to show that the series g(z)defined as in 0.20) is convergent. 

In general a Fourier series Epezn ape((p, z)) is convergent if? Epezn lapl k p is conver- 
gent for each k E (R+) n. In our case, therefore, the formal Fourier series g(z) converges 
iff 

E Icp, ao,)l I r(p, 2(P))] -lkp 
p~(Z)E 

is convergent. F o r  each e>O le t  (Z)e= {p E Z~[ Ir(p, 2(p))[ > e}. Surely, the series 

Ir(p,2(p))l -'kp 
pE(Z)e 

is convergent since, by the assumptions we made, the series 

fa(z) = E cp, ae(<p, z>) 
p E Z  n 

are convergent. So we can consider only the terms which do not belong to (Z)e. Since 

the map z--->e(z) is a homeomorphism of C/Z onto C*, there exists, i fp  does not belong 

to (Z)e, a positive constant M such that: 

dist[ (p, 2(/)}, Z] < Mlr(p, ~.(i))1 

where 2(/) (i= 1 . . . . .  m) are the elements of a fixed set of generators of A. Thus we have: 

E 
pr 

Icp, x(p){ Ir(P, 2(P))[ -'kp < ~ 1% x(p)l M(distt(p, Z(p)>, Zl)- 'k p 
pr 

< E Icp, x(p)l MN~Ikp 
pr 

< M  ~ ~ Icp,~(ol((l+N)k~ '. 
i = l . . . . , m p E Z  n 
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The last series converges since the Fourier series which define the ~(z) are 

convergent. Q.E.D. 

Remark 1.24. Property (1.22) is invariant under changes of basis in the subgroup A. 

In fact let V be a matrix whose columns are the coordinates of a set of generators of A. 

Thus (1.22) is clearly equivalent to the following: 

(1.25) 3NE N -  {0} such that Vp E Z ~- {0} dist(tVp, Z m) > N -~'1. 

Note that here and in the following we consider the Euclidean distance, and we shall 

denote by [o[ the Euclidean norm of a vector v in C ~, whereas for a matrix W we shall 

denote by IlWll the operator norm. 

Changing basis in A, amounts to acting on the vector tVp by a fixed invertible 

integral unimodular linear transformation B and therefore, since B is a product of 

elementary transformations, to prove our assertion, it suffices to verify that in R 2 the 

transformation (x, y)--->(x+y, y) affects the distance d of a vector from Z 2 by substituting 

d with d' such that: 

We can now give as an immediate corollary, an elementary proof of the so called 

theorem o f  Appell-Humbert. 

THEOREM 1.26. I f  X is a complex toms, every system o f  exponents on X is 

linearizable. 

Proof. We can observe that, if n=m, we can choose a basis in C ~ as in (1.2) such 

that, if V is the matrix in (1.25), Im V is invertible. Thus 

dist(tVp, Z m) ~> IIm 'Vpl >I kp 

where k-'=ll(Im'V)-'ll. Q.E.D. 

1.3. Hausdorff dimension of the set of wild tori 

Given a discrete subgroup F in C n of rank n+m, as above, we have already seen that F 

can be represented as F = Z n ~ A  and that A is generated by the columns of a matrix V 

(nxm) such that ImV has rank m (cf. 1.25). 
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Let us consider, in the space M(n, m, C)~C nm, the open set of the matrices V such 

that Im V has maximal rank m. Now let us consider the following equivalence relation 

in M(n, m, C): 

(1.27) Two such matrices V and V' are equivalent iff there exist a matrix A in 

GL(n, C) and a matrix M in GL(n+m, Z) such that: 

(E~, V') = A(En, v) m 

where En is the identity matrix of dimension n, and A gives a linear automorphism in C ~ 

which sends the subgroup F in the subgroup F' generated by the columns of the matrix 

(I, V'). 

If we write the matrix M in suitable block form: 

(M,, M,2 ~ 
(1.28) M =  \M21 M22J 

then the relation (1.27) reads out as 

A -I =MIl+VM21 and (M.+VM21) V' =Ml2+VM22. 

Then it is clear that A is determined by M and then the previous relation of equivalence 

can be written as follows: two matrices V and V' in M(n, m, C) are equivalent iff 

(1.29) There exists a element M in GL(n+m, Z) such that: 

(i) (MIl+VM21) is invertible; 

(ii) V' =(M, + VM21)-I(M12 + VM2~). 

Consider now the condition on V which is just the contrary of (1.25) (we shall see 

that it implies that F is wild). 

(1.30) VNEN-{0} ~pEZn-{0} and q E Z  m such that dist(tVp,-q)<,N -~l. 

PROPOSITION 1.3 1, If  V satisfies the previous property, then the associated quasi- 
torus is wild. 

Proof. It suffices to show the existence of a (convergent) cocycle 

fa(z)= E %,a e((p, z)) 
p E Z  n 
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such that the corresponding formal Fourier series 

g(z) = X ap e((p, z)), 
p E Z  n 

given by (1.20), is not convergent. 

By (1.30) V N E N - { 0 ) 3 p = p ( N ) E Z " - { O }  such that dist(tVp, zm)~N -L~ Since 

for N ' > N  we have that N-~'I>N'-t~ we can assume all the p(N) to be different, and we 

consider the formal Fourier series 

g(z) = ~ e((p(~V), z)), 
N 

which is clearly divergent. The correspondingJ~(z) is, though, converging since for each 

k we have 

X k~{N)IN-~'{N)I = X (k/N)~'[N)I < ~" Q.E.D. 
N N 

We define a matrix V' coarsely equivalent to V if V' can be obtained from V by a 

sequence of operations of  the form: 

(i) replacing V by MI V, with M1 ~ GL(n, Z); 

(ii) replacing ReV by ReVM2, with M2E GL(m, Z); 

(iii) replacing ImV by ImVB, with B E GL(m, R). 

One may observe that if V, V=ReV+i  ImV, satisfies (1.30), also every V' which is 

coarsely equivalent to V still satisfies the above property (1.30). 

Hence, by a suitable choice of MI, M2 and B, we can find a matrix V', coarsely 

equivalent to V and of the form: 

(1.32) t V' = (b I +ie I . . . . .  bm+ie m, a I +id 1 . . . . .  an_m+idn_m). 

In this expression, e l  . . . . .  ern is the standard basis in R m and all the vectors ai, b. dz, are 
in R m. 

Then the set W of matrices which generate wild quasi-toil can be thought of as 

being given by points of a real space of (real) dimension m(2n-m).  Moreover, property 

(1.30) can be rewritten as: 

(1.33) W = n u WN, p,q 
N E N + p E z n -  {0} 

qEZ '~ 
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where we have set: 

(1.34) Ws, p, q = ( V[ [['Vp+qll <~ N -~'1} 

For further use, we set: 

and IIx+iyll = max{Ixl, [Yl}- 

W N : U W N ,  p, q 
pez~-(o) 

qE Z m 

W(iN ) : ~.~ WN,  p, q 
p E Z n, pi*O 

q E'Z m 

W (0= n W~. 
N E N  + 

Remark 1.35. The conditions defining WN, p, q can be expressed as foUows: 

(i) ~Olbl +... +Pmbra+pm+l al +... +pnan_m +q[ <~ N -~'1 

(ii) ~Ole~ +... +Pme,~+pm+l dl +... +p~ dn_m[ <~ N %'1 

and then if p E Z ~ is such that pm+~=... =p~=0, then WN, p,q is empty if N >  1. Thus: 

/1 

(1.36) WN= U W~. 
i = m + l  

Now we can state the main result of this section, and so complete the proof of Theorem 

1 stated in the introduction. 

THEOREM 1.37. The set W of  the wild quasi-tori is a Borel subset in R mC2n-m) and its 

Hausdorff codimension #quals 2m. 

Proof. First of  all, ff we fix p E Z n such that pi#0,  for a suitable i>~m+ 1, and q E Z m, 

then W contains Zpq, where 

Zeq= n WN, p,q. 
N E N  + 

Note that Zpq is a non empty affine subspace of real codimension 2m and then W has 

codimension at most 2m. Note also that the union of the Zpq, with p and q varying in Z n, 

resp. in Z m, gives the set of quasi-tori with Jz*0 .  

Also we note that W is a Borel set by virtue of (1.33) and (1.34). Consider now the 

subset W' of W such that the  elements of W' are those matrices V such that the real 

parts of their entries are between 0 and 1. It is easy to verify, using the relation (1.29), 
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that every element in W is equivalent to an element in W'; then the equality dim W= 

dim W' holds. 

In order to prove the theorem it is sufficient to show that: 

(1.38) r e > 0 ,  ll~m(2n_m_2)+e(W' ) = 0 

where/z~ denotes the Hausdorff measure of dimension 6. In fact, in this case we should 

have d i m ( W ' ) < . m ( m n - m - 2 ) .  Recall that/z~=supa>0(/z~, a) where, B(x,  r) denoting the ball 

with centre x and radius r, 

, inf 1% ;t(A) = E ( r f  . 
AcOiB(x v u ri~<2 - 7  

Since, now" 

(1.39) 

we have: 

(1.40) 

By virtue of (1.36), we can infer: 

w ' =  n 1%. 
NEN + 

~o,a(W') ~< inf ~,a(W~v). 
N---~ oo 

i=m+ 1 

and then in order to conclude the proof it is sufficient to show that: 

(1.41) Ve>O,  Vm>O, V i = m + l  .. . . .  n, inf/~,(mn_m_2)+~,z(W'~) =0.  
N - - ~  

Moreover, since, by virtue of (I .29), the matrices in W'~ are all equivalent to elements 

of W ' ~  re§ it suffices to prove (1.41) in the case i = m + l .  Let us consider now the 

following projection: 

r I :  w t ( m + l )  " "" N ~ [ 0 ,  1)rn(n-I)•  rn(n-m-l) s u c h  t h a t :  
(1.42) 

H: (b I . . . . .  b m, a 1 . . . . .  a n _  m, d I . . . . .  dn_m) = (bt . . . . .  b m, a 2 . . . . .  an_ m, d 2 . . . . .  d n - m ) .  

It is easy to check that H is surjective. By the general properties of the Hausdorff 

measure with respect to the product, it is sufficient now to prove that, if FN is a fiber 



of H, 

(1.43) 
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r e > 0 ,  Wt>0 ,  inf /z~,x(Fu)=0. 
N---~ 

Set now hol=[pd+ ...+hon[ and observe that 1.35 (i) gives that [qj[6lP] for eachj. Since we 

have: 

then 

FNCT. [.J N FN, p, q 
Pm+l :~0 q, Iqjl~lPl 

(1.44) i~,,a(Fu) <~ ~ (21Pl) m maxl~,a(FN, p,q) 
p q 

where in the above expression one sums over those elements p of Z" such that pm+l~-O. 
But FN, p, q is the product of two spheres whose radii are N-~llpm+d -t. Hence it 

follows that: 

I~,,a(FN, p, q) <~ K(N-tPqp,,+,l-')z"2-ZmA ', 

for a suitable positive constant K. Then we can write: 

..t- - xmle-2m ~, r-2m(pl +'" +Pn)--2m 

Pm+l ~1Pl=O Pn=O 

where we stress the fact that, with a suitable new choice of the constant K, in the sum 

appear now only non negative values of the pi's. 

If the Pi are positive there is a constant K '  such that 

(Pl +.. .  +Pn) m ~ K'p ' f  ... p:' 

and therefore with a new choice of K 

tz,,~(FN) <~ KM-Zm P~+1 N-2mpTn+t 1 @ Z N - 2  " 

pm+l=l j= l  \ py=l 
j,#m+ l 

Let us introduce the function 

(1.45) gk(z) = ~ hkz h. 
h=l 
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This power series' radius of convergence equals 1 and also: 

I~, a(FN) <- K~t,t-2mg-m(N-2m)(1 + g m ( N - 2 m ) )  n-I �9 

Thus, since gk converges to zero when the argument tends to zero, we have: 

inf I~,,~(FN) < K,~ e-2m lim [g_m(N -2m) (I -gm(N-xm))  n-l] = 0 
N---,~ N--*~ 

and thus we are through with the proof of (1.43) and of the statement of the theo- 

rem. Q.E.D. 

We want to conclude this section accomplishing the proof of Theorem 1 stated in 

the introduction via the following result, obtained independently by Vogt (cf. [Vo]). 

PROPOSITION 1.46. F o r  e a c h  in teger  m,  l< -m<,n -1 ,  there exis t  wi ld  quas i ' tor i  

X=Cn/F wi thou t  n o n c o n s t a n t  ho lomorph ic  f u n c t i o n s  a n d  such that  F has rank  n + m .  

Proof .  First of all we can consider the space T corresponding to the matrices V as 

in (1.32) such that d~=... =d,_m=0. The conditions (1.35) give immediately that, if the 

pj 's  withj~<m are not all zero, the intersection of T with WN, p,q is empty. 

Otherwise, i f  p l = . . . = p m = O ,  

TfqZp,  q c ((b I . . . . .  b m, al, ..i, a,_m) I e I . . . . .  era, a I . . . . .  a,_ m are Q-linearly dependent}. 

Our strategy shall therefore consist in finding some matrix V in Tn W such that 

e~,. . . ,  era, al . . . . .  an- m are Q-linearly independent. Let us consider any pair of sequences 

(q(h))hEN and (p(h))hEN , respectively of vectors of Z m and of Z", such that  plh)=0 for 

i= 1 .. . . .  m and plh)=th for i = m +  1 . . . . .  n (these clearly exist). 

Assume that there do exist a vector a not in Qm and a sequence of integers Nh such 

that: 

(1.47) lim N h = + ~  , Ith a--q~h) I < N h  t~. 
h---~ 

Then it is easy to verify that we obtain an element of Tn  ( W - l p ,  q) in the following way: 

we simply complete the set a, el, . . . ,  em to a system a, e I . . . . .  em, al . . . . .  an_m_ ~ of Q- 

independent vectors, we set a,-m equal to a - a ~ - . . . - a , _ m _  ~, and choose b~ . . . . .  b m 

arbitrarily. 

It remains to show that we may choose a, and a sequence Nh such that (1.47) 
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holds. Notice for this that if (1.47) holds, then necessarily it must be a=limh_,| 
and therefore the sequence  (q(h)thl) must be a Cauchy sequence. 

It is easy to see that we may choose sequences Nh, q(h) and t h SO that: 

(1.48) (i) The sequences Nh and t h are increasing; 

(ii) q(h) and t h are relatively prime; 
(iii) ( r ~ ( h ) t - l ) - - ( r ~ ( h + l ) ' - I  ~1 ~" 9 - h t - l  l ~  "-th 

~'~/ ~h ! ~t,/ ~ h + l / I  ~ ~h ' ' h  " 

Then the sequence (q(h)thl) is a Cauchy sequence and its limit a=limh~(q<h~th ~) is a 

vector not in Q'~, because of (1.48)(ii) and since, as we shall show, (1.47) holds. In fact, 

(1.47) amounts to [a--q~h!t~l[<thlNh th but indeed 

la--(q~h'th~)l < E I(q~"t;l)--(q~l+"t~+~)l < E 2-'thi---t'lv h 
I=h . . . . .  oo I=h . . . . .  

and thus (1.47) is satisfied. This argument ends the proof. 

(by 1.48) 

Q.E.D. 

1.4. Line bundles  on  (C*) ~ 

In order to study meromorphic functions on complex abelian Lie groups, the Kiinneth 

formula for line bundles on a product manifold allows us to analyze separately the 

various factors in the Remmert-Morimoto decomposition (0.5) (iii). 

In this section we want to examine the case of Y=(C*) ~. Since H/(Y, Or)=0 if i>~l 

we have: 

(1.49) n l (o •  ~ H2(y, Z) = n2(z n, Z). 

The previous isomorphism is obtained as  follows. Given an alternating matrix (nxn) 

A=(a,~) with integral entries, we can consider the bilinear alternating form on Z~xZ~: 

(1.50) a(p,p') = Ea~ipipj, p,p'  E Z n. 

We can extend the form (1.50) to a bilinear form o n C  ~, a(z, w)=Eaijziwj. To this form 

we associate the element of HI(O~) represented by the cocycle 

(1.51) (fp(Z))peZ~ such that fp(z) = e(a(z,p)). 
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Its coboundary is in fact: 
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~m. [log(fp+p,(Z)) log(fp log( fp, ] (z +P!)) (z)) l 

= a(z ,p+p ' ) -a(z+p ' ,  p) -a(z ,  p') = a(p, p'). 

Definition 1.52. If  t 6 Z  let L(t) be the line bundle on (C*) 2 determined by the 

cocycle fp(z)=e(t(p2zl-pl z2)) with p 6 Z  2 and z 6 C  2. Analogously, let LA be the line 

bundle on (C*)" defined as in (1.5I). 

As it is well known, by the theorem of Frobenius,  there exists a change of  basis in 

Z" such that, in this new basis, the alternating matrix A has the following form: 

A =  0 
- T  

where T=diag(h, ..., tk) and t iEN-{O},  ts]ti+ 1. 

Remark 1.53. It is easy to see that, in this situation, there exists the following 

isomorphism: 

((C*) n, LA) = ((C*) 2, L(tl)) x ... x ((C*) 2, L(tk))• "-2k, 1) 

where 

(X, LI)X(Y , L2) = (XX Y, x~(L~) |  

and ((C*) q' l) is the trivial bundle on (C*) q. 

By virtue of  this remark and of  the KOnneth formula we have to study only the case 

k = l ,  n=2.  

In order to determine the holomorphic sections of  a line bundle on (C*) 2, we can 

easily see that it suffices to seek for holomorphic functions g(z, w) on C 2 such that: 

(1.54) g(z + I, w) = e( tw) g(z, w) 

(1.55) g(z, w+ I) = e(-tz) g(z, w). 

Remark 1.56. Given the functional equation: 

(1.57) f ( z + l )  = e(k)f(z), kEC,  

we observe that e(kz) is a solution and every other entire function which is a solution 
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f(z) = e(kz) F( e(z) ) 

(sincef(z) r must be Z-periodic). Therefore, by (1.55), we have 

g(z, w) e(twz) = F(z, e(w)). (1.58) 

Thus 
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of the line bundle L(t) on (C*) 2. 

In fact, it suffices to define 

fi+2tm(Z) = f / (z-m) 
(1.62) 

and finally let 

for m E Z  and i = 0 , . . . , 2 t - 1  

F(z, e(to)) = ~ fq(z) e(qw) 
qEZ 

g(z, w) = F(z, e(w)) e(-twz).  

It easy to check that the so defined g(z), at least formally, verifies the conditions (I .54) 

and (1.55). Q.E.D. 

Clearly g is convergent on C 2 if and only if F(z, ~) is convergent on CxC*. 

Remark 1.63, I f f i s  an entire function on C, the expression Epe z fp(z+p) r defines 

a holomorphic function on CxC* if and only if 

F(z + 1), e(w)) = g(z + 1, w) e( t(z + 1) w) 
(1.59) 

= g(z, w) e(tw) e(tw) e(tzw) = F(z, e(w)) e(2tw). 

We can write down F(z, ~)=Epez fp(z)~P and then the relation (1.59) gives the equality 

F(z+ 1, r ~) r and equivalently 

Z = E 4 z)  q+2, 
pEZ q~Z 

In turn the last equality forces the following: relation between the coefficients: 

(1.60) fp (z) = fp + 2,(z + 1). 

Remark 1.61. I f  we give an arbitrary set f0, .-.,fzt-~ of entire functions it is possible 

to define a formal power series which (formally) verifies the conditions to be a section 
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(1.64) For each compact subset K of C and for each e>0 there exists a positive 

integer qo(K, e) such that: if [ql>qo(g, e) then [[fllK+q<e Iql. 

In fact, it easy to see that for each  compact K and for each •>0 the series 

~qEZ [f(z+q)[ oq converges uniformly on K. 

Remark 1.65. The functions which verify property (1.63) form a non empty space 

W; for example, f ( z )=exp( - z  2) is an element of W. More generally, every function of 

the form 

(1.66) f(z) = exp(a2~ Z2n +azn_ I Z2n-1 +'"  + ao) 

where a2~ is a negative real number, belongs to W. 

In fact, if K is a compact subset of C, then onthe  strip K+R,  if x denotes the real 

part of z, [[f(z)[[=exp(a2~x2~+O(x2n-l)) and therefore: 

I l f l l~+q = [If(z+q)llx = exp(aE~(x+q)2n+O((x+q)2n-l)) 

= exp(-[a2nlq2n-bO(q2n-l)) 

(where the constants depend upon K). 

Moreover, in the same fashion we see that all the functions obtained as a product 

g(z)f(z), with f(z) as in (1.66), and g(z) such that [[g(z+q)l[x<<.exp(bq2~), with b<[a2,[, 

are elements of W. Among the functions g(z) which satisfy this property there are, e.g., 

polynomials and exponentials of polynomials of sufficiently low degree. Restricting W 

to the real line, we get a subspace of the Schwartz class. 

We can summarize the above discussion as follows 

THEOREM 1.67. The space o f  sections o f  the line bundle L(t) on (C*) 2 defined in 

(1.52) is isomorphic, via the correspondence set up in (1.61), (1.62), to the direct sum o f  

2t copies o f  the space o f  entire functions W defined in 1.65. 

w 2. Generalized Riemann bilinear Relations 

2.1. Sufficiency of the GRR (via theta functions) 

We have already seen (cf. 1.2) that, if the subgroup F spans C n, then it is possible to 

choose a suitable system of coordinates on C n such that, in these coordinates, F is 

generated by the columns of a matrix of the form (En, V) where E~ is the identity matrix 
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and W=Im V has maximal rank m. Then, acting with a permutation of the standard 

basis of C ~, we can assume that the square matrix B2 obtained by taking the last m rows 

of Vr is invertible. Let B~ be the matrix obtained by taking the first (n-m)  rows of W. 

Let us consider the following further change of coordinates on C n. 

(2.I) u = z ' - B I B ~ l z  ", v = B ~ l z  " 

where tz'=(zl . . . . .  Z~-m), tZ"=(Z~-m+l, ".., Z~) are the old coordinates and 

(2.2) tu = (U 1 . . . . .  Un_m)  , 1 v = (V 1 . . . . .  Vm ) 

are the new ones. 

The so defined coordinates (u, v) are said to be apt coordinates. We can point out 

that, in these apt coordinates 

(i) the subspace F is defined by the system of linear equations ul=.. .  =u,_,~=0, i.e., 

by the vector equation u=0; 

(ii) the real subspace RF of C" is defined by the vector equation Im u=0; 

(iii) the standard vectors e~ . . . . .  e~-m can be completed to a basis of F. 

Definition 2.3. A system of coordinates (u, v) satisfying the above properties 

(i)-(iii), is said to be an apt system o f  coordinates. 

We want now to give a quick proof of the sufficiency part of the Main Theorem, 

essentially along the same lines as in [A--G2], but without appealing to the correspond- 

ing statement in the compact case. 

THEOREM 2.4. Given a discrete subgroup F o f  C ~, there exists a non degenerate F- 

periodic meromorphic function i f  the following Generalized Riemann bilinear Relations 

(GRR) are satisfied: 

there exists a Hermitian form H on C ~ such that 

(i) Im(H), the imaginary part of  H, takes values in Z on F• 

(ii) Hip, the restriction o f  H to the maximal complex subspace F of  the real span of  

F, is strictly positive definite. 

Proof. We shall give the proof through a sequence of steps, and we can obviously 

assume that F spans C n. Thus we can use a system of apt coordinates as above. 

Step I. We can assume that H is positive definite on all of C ~, since (cf. I. 11), we 

can alter H, keeping (i) and (ii) satisfied, by adding a Hermitian form H' whose 

imaginary part vanishes on the real span of F (in a system of apt coordinates, H'  is 

4-918285 Acta Mathematica 166. Imprim~ le 15 f~vrier 1991 
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given by a form in the u variables and with real coefficients). In fact H+H' is positive 

definite, by the criterion of the principal minors, iff all the determinants of the minors 

formed by the last i rows and i columns are positive (we are now working in a system of 

apt coordinates). It is easy to see that this can be achieved with a suitable choice of  H '  

a real diagonal matrix with sufficiently large coefficients. 

Step II. We choose a line bundle L together with a cocycle in the Appell-Humbert  

normal form (1.12), and we show that if L has a non zero section, then this section is 

represented by a nondegenerate function in the trivialization associated to the chosen 

cocycle. 

In fact, such a section is given by a function in C" satisfying a functional equation 

(2.5) h(z+7) =ky(z)h(z), where k y ( z ) = ~ ( ~ ) e ( - i [ H ( z ,  7)+lHo,,y)]~. 
\ e L  2 J /  

If h were degenerate, after a change of coordinates in C" we could assume that C~l(h(z)) 

is identically zero, where al=a/az~. 
From (2.5) we infer that ~l(ky(z)) is also identically zero, and from the explicit form 

of k~(z) we deduce that H(el, 7)=0, for each 7 E F, hence el belongs to the kernel of H, a 

contradiction. 

Step III. Let  h(z) be as in step II. Then (Lefschetz'  trick, cf. 3.7) it is easy to see 

that, by (2.5), for every vector a in C", the quotient 

(2.6) fa(z)=h(z+a) h(z-a)h(z) -2 is a F-periodic meromorphic function, 

and therefore it suffices to show that fa(Z) is non degenerate for some choice of  a. 

As in step II, otherwise, after a linear change of coordinates, we may assume 

al(f~(z)) is identically zero as a function of  a and z. This implies that al(logf~(z)) is 

identically zero: using (2.6), we get 

cOl(log(h(z+a))+logh(z-a)) = 2a1(logh(z) ). 

If the function h is a unit, we obtain that the imaginary part A'  of H vanishes on F x F ,  a 

contradiction. I f  instead {h=0} defines a non empty divisor D, pick a vector a such that 

D,D+a,D-a, have no common components.  We again derive a contradiction if 

cOt(logh(z)) is not identically zero, since, in the previous formula, the right hand side has 

a pole at D, whereas the left hand side does not. 

Finally, al(log h(z)) being identically zero contradicts the assumption that h be non 

degenerate. 
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Step IV. By the previous steps, the proof is reduced to the following assertion (cf. 

[A-GI], [A-G2], [Cap]), which should be valid more generally also in the wild case. 

CLAIM 2.7. A line bundle L on a quasi-torus X, gioen by a linearized cocycle in the 

Appell-Humbert normal form (2.5) with H positioe definite, has some non zero section. 

Proof. The assertion follows immediately from the following Proposition 2.8, 

implying in particular that we can find a lattice F '  containing F and such that the 

imaginary part of H, A', takes integral values on F ' x F ' .  We have now a torus X' and 

(extending the semicharacter of L) a line bundle L' on X' which pulls back to L. Since 

the Riemann Relations hold for L', it suffices to take a classical theta function for L'.  

Q.E.D. 

PROPOSITION 2.8. Let H be a positioe definite Hermitian form on C ~ whose 

imaginary part A' takes integral values on FxF,  where F is a discrete subgroup of  C ~. 

Then there do exist lattices (i.e., discrete subgroups of  maximal rank) F1,F2~F, such 

that F1 fl F2=F, and such that A'  takes integral oalues on Fi• for i= 1,2. 

Proof. We prove first a very useful auxiliary result. 

LEMMA. Let F be as abooe, and let B be a finite subset of  CL Then one can find a 

vector a such that 

(i) for each element y E F, A'(a, y) is an integer; 

(ii) the subgroup F " = F ~ Z a  is a discrete (of rank=n+m+l); 

(iii) the oector a does not belong to the Q-span of  B. 

Proof. Consider C n as a real vector space V. Then the imaginary part A' of H, 

being non degenerate, defines an isomorphism, which we still denote by A',  of V with 

its dual vector space V v. Let i be the inclusion of RF in V, and let p be the surjection of 

W onto (RF) ~. 

Inside (RF) ~ we consider the Z-dual F ~ of F. We seek for a vector a inside 

A'-l(p-l(F~)), which does not belong to RF, and furthermore does not belong to a 

countable set (the Q-span of B). 

Notice that p(A'(i(RF))) has codimension equal to the dimension of the intersection 

RF N Ann(RF). We have two possibilities: 

(I) RFNAnn(RF)=0: then for any a' in F v, A'-l(p-l(a'))  is an affine subspace 

intersecting RF in only one point, and we can choose a different point a not belonging 

to the countable subset given by the Q-span of B. 
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(2) p(A'(i(RF))) does not coincide with (RF) v, and we can choose a' in F v not 

contained in p(A'(i(RF))). Then A'-l(p-l(a')) is an affine subspace not intersecting RF, 

and we choose a outside of the Q-span of B. Q.E.D. for the lemma 

We can now apply the previous result inductively, constructing discrete subgroups 

F ~ , F ~ F ,  such that F~ nF~=F, and such that A' takes integral values on F~xF[, for 

i= 1,2. Each time we want to replace each F[ by a discrete subgroup of higher rank it 

suffices to apply the lemma letting B be the union of respective bases of the F~'s. Then 

the condition F~ NF~=F is still preserved. Q.E.D. for 2.8. 

2.2. Chern class of a line bundle on X and associated Hermitian forms 

In this section X shall be any quasi-torus, and L shall be a line bundle on X. We have 

already represented (1.7) the Chern class of L as an element in H2(X, Z)~H2(F, Z) given 

by a bilinear alternating function A: FxF--*Z. Now, using the de Rham isomorphism, 

the Chern class of L is also represented by a closed differentiable 2-form on X which is 

of type (1,I), and, given a metric h on the line bundle L, is obtained as follows: 

1 
(*) to = - - -  aO(log h). 

2ati 

On the other hand, we have 

PROPOSITION 2.9. The operator av defined on the space o f  differential forms on X 

and defined by averaging with respect to a Haar measure on the maximal compact 

subgroup K o f  X has the properties: 

(i) ifto'=av(to), then to' has K-invariant coefficients, where K is acting on X by 

translation; 

(ii) if to is a closed differential form, to is cohomologous to to'; 

(iii)/fto is o f  type (p, q), then also to' is o f  type (p, q); 

(iv) the restriction o f  to' to V• Vx . . .  x V, where V is the tangent space (=RF) to K, 

has constant coefficients. 

Proof. Parts (i) and (iii) are trivial. Furthermore it is easy to see that to' is a closed 

form if to is closed. In fact 

to" = fx  w(z+k) dk 
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hence 
/" 

dto' --- JK dto(z+k) dk 

and to' is a closed form. 

In order to prove that to and to' are cohomologous one can use de Rham's theorem 

(it suffices to know it for R, S 1, and products of these manifolds). In fact to and to' are 

cohomologous iff, r being the total degree of to (r=p+q) for every parallelotope P 

spanned by r vectors in F, we have that 

We have 

fp to = fpto'. 

since the paraUelotopes P+k are all homotopic to each other. 

Alternatively, as the referee points out, since the inclusion of K in X is a homotopy 

equivalence, in order to verify that two closed differential forms are cohomologous, it 

suffices to take their restriction to K; we are then reduced to the case of a torus where 

the average is just the harmonic part. 

We can observe now that from the differentiable viewpoint X is diffeomorphic to 

K x R  "-m and we can use in C" the apt coordinates (u, v); setting y=Imu,  u=w+iy, 

x=(w, v), to' can be written, being K-invariant, as follows: 

to' = Z ftj(y ) dxAl A dy ̂ J 

and therefore its differential is: 

do)' = 2 aaf~ll dYhAdX^1Ady^3 
Yh 

In turn, to' being closed, we see, by inspecting in the above formula for dto' the 

terms where the differentials dy appear with degree 1, that the coefficients j% where the 

set J is empty are constant. This is exactly statement (iv). Q.E.D. 

PROPOSITION 2.10. Every closed differential form to o f  type (p, q) is cohomologous 

to a form to^ o f  type (p, q) with constant coefficients. 
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Any such to^ can be simply obtained just by evaluating the coefficients o f  to' (cf. 

2.9) at any given point o f  X: therefore we can achieve that to^ and to' have the same 

restriction to V x V x . . . x V  (V=RF as in 2.9). 

Proof. It suffices to show that, fixing a point in X, e.g. the 0 of the group law, and 

constructing to^ as above (to^ is closed having constant coefficients), then the differ- 

ence to'-to  ̂  =to" is cohomologous to zero. Using the same type of coordinates as in the 

proof of Proposition 2.9, we can write 

to" = E f i j ( y )  dxAt Ady m, 

where now3~j(y)=0 if the set J is empty. Since X is diffeomorphic to K x R  n-m it follows 

that the differential forms fu(y ) dy ̂ J are exact, and then we easily obtain that also to" is 

exact. Q.E.D. 

COROLLARY 2.11 (First Riemann bilinear Relation). Let L be a line bundle on X 

and let A: FxF--~Z be the bilinear alternating function representing the Chern class o f  

L. 

Then there exists a Hermitian form H on C n such that the restriction of  its 

imaginary part Im(H) to F x F  coincides with A. 

Proof. It suffices to apply the previous Proposition 2.10 to a form of type (1, 1) 

representing the Chern class Cl(L) of L as in (2.8): we obtain thus a form of type (1,1) 

and with constant coefficients which also represents Cl(L). To this last form is naturally 

associated a Hermitian form H on C n, and the desired assertion follows from the above 

mentioned isomorphism H2(X, Z)----H2(F, Z). Q.E.D. 

Remark 2.12. The same argument as in (1.11) gives that the Hermitian form H is 

not unique, but indeed the restriction H" of H to F x F  is uniquely determined. 

In fact if 

to = - 2 1  aS(log h) 

is a Cheru form for L, and to', as in (2.2), is equal to av(to), then the proof of (2.11) 

shows that the restriction to F x F  of to' is a (1, 1) form with constant coefficients whose 

associated Hermitian form is precisely/-/". 
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2.3. Proof of the Main Theorem: the key step implies the GRR 

In this section X shall be a quasi-torus which admits a non degenerate meromorphic 

function f. The following result shall be proven in section 3.3 (Theorem 3.9): 

Key step. If a non degenerate meromorphic functionfis  obtained as the quotient of 

two relatively prime sections of a line bundle L, then there exists a holomorphic map 

~ : X ~ W ,  given by sections of a suitable power L '| of a line bundle L' with 

cl(L')=Cl(L), which is an immersion. 

We state again the Main Theorem about the existence of meromorphic functions: 

MAIN THEOREM. Given a discrete subgroup F o f t  ~, there exists a non degenerate 

F-periodic meromorphic function if and only if the following Generalized Riemann 

bilinear Relations (GRR) are satisfied: there exists a Hermitian form H on C ~ such that 

(i) Im(H), the imaginary part o f  H, takes values in Z on FxF;  

(ii) Hie, the restriction o f  H to the maximal complex subspace F of  the real span o f  

F, is strictly positive definite. 

Proof. First of all the sufficiency of GRR was shown in section 2.1. In order to 

prove the necessity of GRR, we shall use the immersion ~ :  X ~ P  ~ provided by the key 

step. Using this, we can consider, as a Chern form for L, the pull-back of the Fubini- 

Study form on P~ (divided by m). That is, 

1 a~(log I*1). 
~o = 2~ri 

With this choice, since ~ is an immersion, the Chern form o~ gives a Hermitian form on 

the tangent bundle of C ~ which is positive definite at each point of C n. 

Basic remark. The set of positive definite Hermitian forms is a convex cone, 

therefore an average of positive definite Hermitian forms is still positive definite. 

The above remark shows that the (1, 1) form o/=av@o) (cf. Proposition 2.9) also 

provides a Hermitian form positive definite at each point of C ". The rest of the proof 

follows now immediately from Corollary 2.4 and from Remark 2.12. Q.E.D. 

2.4. Conditions for the existence of meromorphic functions 

In the previous section, we have established the Main Theorem, which gives necessary 

and sufficient conditons for the existence of a non degenerate meromorphic function 

on X. 
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Here we want to generalize this result, concerning the existence of meromorphic 

functions of a given rank r. 

First of all we make an important observation: 

Remark 2.13. If there is on X a non constant meromorphic func t ionfof  rank equal 

to r, then, as we saw in (0.1), there is a complex vector space decomposition C~=A@B 

such that F f = A ~ F " ,  with F" discrete in B. Therefore F fits into an exact sequence 

0~F*--->F~F'---~0 where F*=FAA, and F is the projection o f f  in B. We have thus an 

exact sequence of quasi-tori 

(2.14) O--*X*--->XP-->X'-->O, where X*=A/F* ,  X ' = B / F ' .  

We can rephrase the equality Fs=A0)F" by saying that f i s  the pull-back under p of a 

nondegenerate function f '  on X'. In particular: 

(2.15) I f f i s  given as the quotient of two relatively prime sections of a line bundle L 

on X, then L is isomorphic to the pull-back under p of a line bundle L'  on X'. 

We can also observe that if X is Cousin, then necessarily X' is Cousin, too. 

PROPOSITION 2.16. There exists a meromorphic function on X o f  rank r, i f  and only 

if there is an exact sequence o f  quasi-tori as in (2.14), with dim(X')=r and a Hermitian 

form H on C ~ such that 

(i) the restriction o f  its imaginary part Im(H) to F x F  takes integral values, and its 

kernel contains F*=FAA 

(ii) H is positive semidefinite, has r positive eigenvalues, and has as its kernel 

exactly the complex subspace A. 

Proof. Giving such a Hermitian form H as above is equivalent to giving a Hermi- 

tian form H' on B=Cn/A satisfying the Generalized bilinear Relations for the quasi- 

torus X'. We can thus apply the Main Theorem and step I of Theorem 2.4. Q.E.D. 

Remark 2.17. Let us consider the set of positive semidefinite Hermitian forms H 

on C n such that: 

(i) the restriction of the imaginary part  Im(H) to F xF  takes integral values; 

(ii) the image F '  of F into Cn/ker H is discrete. 

This set is indeed an Abelian semigroup: in fact it suffices to show that property 

(ii) holds for a sum H=H1+H2 if HI,H2 are as above. But then ker(Hl+H2)= 
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k e r H l n k e r H  2, and C ' /kerH naturally is a subspace of C"/kerHl~C~/kerH2, so 

that F'  is discrete, being a subgroup of F~0)F~. 

Definition2.18. Let A be the intersection of all the subspaces kerH, with H as in 

2.17, or equivalently the smallest such subspace. Then the image F ~ of F into Cn/kerH 

is discrete, and we define 

(2.19) X r = (Cn/ker H)/F ~, 

the quasi-Abelian (or meromorphic) reduction of X. 

THEOREM 2.20. Every meromorphic function f on X is a pull-back of a meromor- 

phic function fl, on the quasi-Abelian reduction X ~ of X. In particular the maximal 

rank of a meromorphic function on X equals the dimension dim(X ~) of the quasi- 

Abelian reduction of X. 

Proof. By Proposition 2.16 it is clear that there exists a non degenerate meromor- 

phic function f*~ on X r hence the second assertion follows from the first. But if f is 

non constant on X there exists, cf. Remark 2.13, an exact sequence 

O ~ X * ~ x P  x ' ~ o  

as in (2.14) such that f i s  the pull-back of a non degenerate function on X', and we can 

take a Hermitian form H as in 2.16 whose kernel equals A. Therefore the projection 

p:X--~X' factors through the projection of X onto X ~, and we are done. Q.E.D. 

w 3. Lefschetz type theorems 

3.1. Generic immersion lemma 

In this section we shall prove, using the group structure on X, that the existence of a 

non degenerate meromorphic function f on X implies the existence of a meromorphic 

map F: X ~ I  ~ whose differential is of rank equal to n on an open dense set. 

We can actually prove a slightly more general statement if we recall the concept of 

rank of a meromorphic function. 

Definition 3. I. Let f be a meromorphic function on a complex Lie group G: then 

the rank of f is defined to be the difference between the (complex) dimension of G and 

the dimension of the subgroup Ff of periods of f .  
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The proof of the following result is almost obvious: 

PROPOSITION 3.2. Le t  f b e  a meromorphic funct ion on C ~ (or, more generally, on a 

complex Lie group G). Then i f  r is the rank o f f ,  then (n - r )  is the dimension o f  the 

vector space o f  homogeneous first order differential operators with constant coeffi- 

cients which annihilate f .  

We come now to the main result of this section: 

THEOREM 3.3. Let  f be a meromorphic funct ion on C n o f  rank r. Then r is the 

maximal integer k such that there do exist vectors al . . . .  , ak in C n such that, setting 

(#) F(z) = ( f ( z  +a 1) . . . . .  f(z+ak)) E C k, 

the meromorphic map F has differential o f  maximal  rank =k on an open dense set o f  
C n . 

Proof. Let k be the maximal integer as above. It is immediate to verify that k is ~<r, 

since the rank of the differential of F is given by the rank of the matrix 

B ( [~( rt j J , i= l  ... . .  n '  

j = l  ..... k 

where the symbol 3~ stands for a f / O z i .  

We denote, for further use, by J(il . . . . .  ik) the determinant of the minor of the 

matrix B obtained by choosing the rows il . . . . .  ik. 

We can clearly assume that J=J(1,  ..., k) be not identically zero. By the maximality 

of k it follows that, for each vector a in C n, the matrix B' obtained from B by adding the 

column (fi(z+a)), has also rank equal to k. We choose now z*, a?, .... a~, vectors such 

that J*=J(z*,a? . . . . .  a~) is not zero, we set w=z*+a,  and we consider the matrix B* 

obtained from B' replacing z, al . . . . .  ak, respectively by the constants z*, a*, .... a~. We 

observe that thus the first k columns of B* have constant entries, whereas the last 

column is given by fj(w). Also B* has rank equal to k, therefore all the (k+ l )x (k+l )  

minors of B* obtained by choosing the first k rows and the ith one (i=k+ 1 . . . . .  n) have 

zero determinant. Expanding these determinants by Laplace's rule according to the last 

column, we obtain, for each i=k+ 1 . . . . .  n, a relation of linear dependence with constant 

coefficients among the partial derivatives fl(W) . . . . .  J~(W), and f/(w), where the coeffi- 

cient off(w) equals J* which is not zero. Therefore we have shown that r is ~<k, hence 

k=r, and the proof is accomplished. Q,E.D. 
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COROLLARY 3.4 (Generic immersion lemma). Let f be a meromorphic function o f  

rank r on a quasi-torus X. Assume that f is the quotient o f  two relatively prime sections 

of  a line bundle L. Then there exists a line bundle L' ,  whose Chern class cl(L') is r 

times the Chern class cl(L) o f  L, and (r+l)  independent sections o f  L' giving a 

meromorphic map d~:X---~P', whose differential is o f  maximal rank on an open dense 

set o f  X. 

In particular, if f is nondegenerate, then we obtain a meromorphic map 4P:X--->P ~ 

which is a generic immersion. 

Proof. It suffices to consider the meromorphic map F defined in the previous 

Theorem 3.3. Follwoing standard notation, given an element a of the group X, we 

denote by T~: X--->X the translation by a (i.e., T~(z)=z+a), and by L~ the pull-back of 

the line bundle L by T~. It follows immediately by (1.8) that the Chern class of L~ equals 

the Chern class of L. We can see moreover rather easily that the meromorphic map F is 

given by (r+ 1) sections of the line bundle 

L' = Lal| | 

From the previous remark we see that cl(L')=rcl(L). Q.E.D. 

3.2. Cousin normal form for the system of exponents 

In this section we shall consider a given quasi-torus x=Cn/F, and a system of apt 

coordinates (u, v) in C ~ for F (cf. section 2.1). We recall that in these coordinates F is 

defined by u=O, whereas RF is the real subspace where Im(u)=0. 

As mentioned in the introduction, we defer the reader to [A-G1] or to [Vo] for the 

proof of the following result: 

THEOREM 3.5. Let L be a line bundle on the quasi torus X, let A: F• be the 

bilinear alternating function representing the Chern class of  L, and let H be (cf. 

Theorem 2.4) a Hermitian form on C ~ such that the restriction o f  its imaginary part 

Im(H) to F•  coincides with A. Let (u, v) be a system o f  apt coordinates: then L can 

be represented by a cocycle in the following Cousin normal form: 

(3.6) k~(z) = O(Y) r  Y)+ I H(y, y)]+~Oy(u)), 

where, as in (1.12), 0(Y) is a semicharacter for the alternating form A, and ~p~(u), as the 
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expression suggests, is a F+ Zn-periodic holomorphic function (and so it is given as a 

Fourier series in the u variables). 

COROLLARY 3.7 (Lefschetz '  trick). Let L be a line bundle on X, and let al, .... a~ be 

vectors in the subspace F such that ~i=1 ...... ai=O. Then L ~r is isomorphic to 

L' =L, |174 (Here, by abuse of  language, given a vector a in C n we still denote by 

La the line bundle obtained as the pull-back of  L by the translation on X induced by a.) 

Proof. Since ai is a vector in F,  the u coordinate of z equals the u coordinate of 

(z + ai). Therefore kr(z +ai)=kr(z) e(-i/2H(a, y)). Hence 

H ky(z~ai) = ky (z)r' 
i=1, . . . ,r 

as wanted. Q.E.D. 

3.3. Lefsehetz type theorems and the key step 

In this section, on the one hand we shall generalize the classical theorems of Lefschetz 

about linear systems on Abelian varieties to the case of quasi-toil. 

On the other hand, we shall finally prove the key step, and provide also the tools 

we invoked in section 2. I. 

THEOREM 3.8. I f  the line bundle L admits a non zero section s, then for r>-2 the 

linear system ]L| has no base points (in other terms, L | is generated by global 

sections). 

Proof. Using the Remmert-Morimoto decomposition (Proposition 1.1), and by the 

Kiinneth formula, it suffices to prove the result for X a Cousin quasi-torus or in the case 

when L is linearizable (cf. 1.4). 

If X is Cousin, we choose vectors at . . . .  ,a t  in the subspace F such that 

Y~i=I ....... ai=O. Let  a* be zc(a~) EX; by Lefschetz 's  trick (Corollary 3.7) II,.= 1 ...... s(x+a*)is 

a section of L | 

We just have to prove that all these sections do not have common zeros. Other- 

wise, there would be a point x in X such that s(x+a*)=O for each vector in F (fixing x 

and pulling back to the F ~-1 given by Y'i=l ...... ai--O we see that some s(x+a*) has to be 

identically zero in a~', and one concludes since ai can be an arbitrary vector in F).  We 

know that the closure of  ~t(F) equals K, hence s vanishes on x+K. Hence the pull-back 
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of s vanishes on a translate of RF, and therefore on its complex span, and we obtain 

that s has to be identically zero, a contradiction. 

In the case when L is linearizable, we can take arbitrary vectors al . . . . .  ar, and the 

proof is even simpler. Q.E.D. 

THEOREM 3.9 (key step). Let  f be a meromorphic function o f  rank r on a quasi- 

torus X,  and assume as usual that f is the quotient o f  two relatively prime sections o f  a 

line bundle L. Then there is an integer d<-2r(n+ 1), a line bundle L" with cl(L")=d cl(L), 

and a space U o f  sections o f  L" giving a holomorphic map ~:  X--*P u whose differential 

has everywhere rank at least r. In particular, i f  f is non degenerate, we obtain a 

holomorphic immersion ~:  X--~P u. 

Proof. First of all we apply Corollary 3.4, obtaining L' with cl(L')=rcl(L),  and 

such that its sections give a meromorphic map with differential generically of rank r. 

Then we apply Theorem 3.8, obtaining as new bundle L ^ = L  '| some sections of 

which give a holomorphic map in some projective space with differential of rank r '~r  

on the complement of some hypersurface A in X. Choose general points b 1 . . . . .  bn+ p 

such that the (n+l)  hypersurfaces A-b~ . . . . .  A-bn+ 1, have empty intersection and 

finally choose 

t " = t ; | 1 7 4  . 

We can conclude observing that the tensor product of two line bundles L~ and L2 

generated by global sections is also generated by global sections, and that the set of 

quotients of sections of the tensor product contains the two subsets given by the 

quotients of sections of Ll, resp. L2. Hence L" is generated by global sections and for 

each point x of X we can find (r+ 1) sections of L" giving a map which is holomorphic 

and with differential of rank r at x. It is easy now to find a space U as required. Q.E.D. 

Remarks 3.10. The preceding theorem gives a much weaker result than the 

theorem of Lefschetz in the compact case. 

In fact in the compact case we have that if H is positive definite, then 

(3.11) L | gives an embedding for d~3, and L | gives a generically injective 

holomorphic map unless L has only one section. 

(3.12) There exists a nondegenerate function f whose group of periods coincides 

with F. 
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(3.13) There exists a F-periodic function f of rank ~>r iff the transcendence degree 

of the field Mer(X) of meromorphic functions on X is at least r. 

(3.13) is the only statement which cannot have an analogue in the noncompact 

case: in fact Hefez, in [Hef], proves that ifX is not compact either Mer(X) consists only 

of the contants, or its transcendence degree is infinite. 

The correct analogue of (3.13) is thus, the following 

PROPOSITION 3.14. There exists a F-periodic function f o f  rank >~r iff  there is a 

meromorphic map o f  X into a projective space such that its image has dimension at 

least r (or, equivalently, cf. what follows, i f  there is a line bundle L on X with Kodaira 

dimension at least r). 

Proof. By Theorem 2.20 the maximal rank of a meromorphic function on X equals 

the dimension of the quasi-Abelian reduction X # of X; moreover, by Corollary 3.4, X # 

admits a generic immersion in a projective space. Conversely, if we have a meromor- 

phic map ~: X--->P', whose differential is generically of rank m, we can pick a point x in 

X where ~:X--->I w is holomorphic and with differential of rank =m. Hence there are 

meromorphic functions fl . . . . .  fm which can be completed to a set of holomorphic 

coordinates centered at x: if we choose f=f~+.. .  +f2,  then the Hessian matrix of f a t  x 

has rank equal to m: this implies a fortiori that the rank o f f  is at least equal to m (notice 

that x is a critical point for f ,  hence the rank of the Hessian matrix does not depend 

upon the choice of a system of coordinates). Q.E.D. 

We recall some by now standard notation: 

Let L be a line bundle on a complex manifold X. Then the associated graded ring 

~(X, L) is the direct sum 

(3.15) ~(X, L) = Omen H~ L | 

and we further define Q(X, L) to be the field of the homogeneous fractions of degree 

zero of the ring ~(X, L) (Q(X, L) is a subfield of Mer(X)). 

We recall that the Kodaira dimension of L is defined to be - I if the ring ~(X, L) 

consists only of the constants, and is defined otherwise to be the maximal dimension of 

the images of X under the maps into projective space given by the finite dimensional 

vector subspaces of the H~ L| 

In the compact case, obviously the Kodaira dimension, when it is non negative, 
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coincides with the transcendence degree of the field Q(X, L). In our case we can 

compare the Kodaira dimension of L with another integer, which we now define. 

Definition 3.16. Let L be a line bundle on a complex Lie group X: then the rank of 

L is defined to be the maximum rank of a function f in Q(X, L). 

Remark 3.17. Unlikely the case of a torus, when the rank of a nonconstant f in 

Q(X, L) equals the rank of the unique Hermitian form H representing cl(L), in the case 

of a quasi-torus such rank can vary with the choice off ,  as can be easily seen with the 

case where L is linearized (pick for example X to b e  quasi-Abelian, fibering with 

noncompact fibres onto an Abelian variety X', and let L be the pull-back of a line 

bundle L' on the Abelian variety X': then we can consider on the one hand the pull- 

back of a meromorphic function on X', but also on the other hand a nondegenerate f i n  

Q(X, L) whose existence is shown in Theorem 2.4 (notice, concerning the proof of 2.4, 

that the rank of a section of a line bundle is not an intrinsic notion, since it depends 

upon the chosen trivialization)). 

Given the pair (X, L) we can define, in an analogous fashion to what we did in 2.18, 

its reduction (X',L'), 

Definition 3.18. The reduction of the pair (X,L) is a triple (X',L',p) with p a 

surjective group homomorphism p:X-~X', such that 

(i) L is isomorphic to p*(L'); 

(ii) under the above isomorphism ~(X, L)=p*(~(X',L')); 
(iii) (X',L',p) is universal in the following sense: for every other such triple 

(X",L",p") there exists p':)C'--,X', such that L" is isomorphic to p'*(L'), and p factors 

as p" followed by p' .  

Definition 3.19. Given a line bundle L, define the numerical rank of L to be the 

maximal rank of a semi-positive definite Hermitian form H on C n such tht the restric- 

tion of the imaginary part Im(H) to F x F  represents c~(L) and the image F' of F into 

Cn/kerH is discrete. 

Remark. Considering the set S of all the Hermitian forms as in 3.19, we see, as we 

did in 2.17, 2.18, that this set has an element H such that kerH is the intersection of all 

the subspaces ker H' for H' in S. Indeed given H1,//2 in S, if we set/-/"=�89 l+Hz), then 

H" is in S since ker(Hl+H2)=kerH 1 N kerH2, and Cn/kerH " being naturally a subspace 

of Cn/ker H~GCn/ker Hz, the image F' of F into Cn/ker/-/" is discrete (being a subgroup 

of FI0)F~). Proceeding by induction we obtain the desired H. 
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THEOREM 3.20. Let (X, L) be a pair consisting o f  a quasi torus X and o f  a line 

bundle L. Then we have the following inequalities: 

numerical rank o f  L >t rank o f  L >I Kodaira dimension o f  L. 

Moreover, i f  L has a non zero section, then there exists a reduction (X', L ' ,p)  of(X, L). 

Proof. We notice first of all that we can reduce to the case when X is a Cousin 

quasi-toms, by the theorem of Remmert-Morimoto and the Ktinneth formula (the 

above 3 integers equal the dimension in the cases of C" and of (C*)', cases in which the 

pair concides with its reduction). Furthermore, since a line bundle with a section either 

is trivial or it has positive Kodaira dimension, we can easily assume that the Kodaira 

dimension of L (and hence also the rank of L) is at least 1. As in the case of the quasi 

Abelian reduction of X, we consider the numerical reduction of L. 

I.e., among the semi-positive definite Hermitian forms H on C n such that the 

restriction of the imaginary part Im(H) to F x F  represents Cl(L) and the image F' of F 

into C"/kerH is discrete, we choose one such H with kerH smallest and we let X" be 

the quotient quasi-toms Cn/kerH/F '. 

Next, let G be the intersection of all the subgroups of X occurring as the group of 

periods of a function f i n  Q(X, L): G is clearly a closed subgroup, and we define X' to be 

the quotient X' =X/G. 

By the Main Theorem, the projection of X onto X' factors through the projection 

onto X": in fact, if Gf is the group of periods off ,  there is a H' representing c~(L) which 

is positive definite on Cn/Gf, hence GfDH'DkerH, and G=kerH.  

If F is a holomorphic map of X to a projective space given by sections of some 

multiple of L, and with differential generically of rank Kod(L), then we saw that for 

each point x there is a function f in Q(X, L) of rank greater or equal to Kod(L), hence 

the desired inequalities follow. Next, we construct the reduction of (X, L), in the case 

where L has a nonzero section. 

Let s be a non zero section of L: by Theorem 3.8 and since the Kodaira dimension 

of L is at least I, we can pick an integer r and 2 relatively prime sections s 1, s 2 of L | 

such that s r is also relatively prime with s~, s2. Set f=s~/s~: then f is the pull-back of a 

meromorphic function f '  on X', and if we express f '  as the quotient of two relatively 

prime sections of a line bundle L" on X', the divisor of zeros o f f '  is r times an effective 

divisor, hence we find a line bundle L' on X' such that L is isomorphic to the pull-back 

ofL ' ,  and, more precisely, a section s' of L' on X' such that s differs by the pull-back of 

s' by an invertible holomorphic function on X. 
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Finally let t by any (holomorphic) section of some power L | of L: then t[sd=g is a 

meromorphic function on X'. We have a meromorphic section of L '| given by 

t' =g(s') d, whose pull-back is holomorphic on X, and thus t' itself is holomorphic. In 

fact, t differs by the pull-back of t' by an invertible holomorphic function on X, i.e., a 

non zero constant, since we reduced to the case where X is Cousin. Therefore we have 

shown that ~(X, L)=p*(~(X, L')), and thus that (X',L')  is the reduction of (X, L). 

Q.E.D. 

Remarks 3.21. (i) The hypothesis that L has a non zero section is necessary in the 

above theorem in order to guarantee the existence of a reduction of the pair (X, L), as it 

is easily seen in the case where X is compact, and L is non trivial but is a torsion bundle 

in Pic(X). 

(ii) It is easy to see that every meromorphic map to projective space given by 

sections of a multiple of L factors through the projection of X onto X'. 

The result of the above theorem can be improved to yield equality of num. rank, 

rank, Kodaira dim., provided one can show that some multiple of L yields an embed- 

ding of X", since then we would have X' =X". 

In turn, it is sufficient for this purpose to show that when H is strictly positive 

definite, then a multiple of L gives an embedding of X. 

We shall show that this statement does indeed follow, provided the following 

conjecture holds true: 

CONJECTURE 3.22. A line bundle L with Cl(L) representable by a positive definite 

Hermitian form has a section. 

We believe that the answer to this question should be positive, and we plan to 

return on this matter in the future. We notice that in the case n=2 a positive answer is 

provided by the results of Cousin [Cou2]. 

We are going now to show some stronger Lefschetz type theorems than 3.9, one of 

which is still conditional, since it depends upon the validity of Conjecture 3.22. 

THEOREM 3.23. I f  L is a tame line bundle on a quasi-torus X, with Cl(L) being 

positive definite on the subspace 17, then L | gives an embedding o f  X for d>~3. 

Proof. Fix first of all a Hermitian form H which is positive definite on all of C n and 

is such that its imaginary part A ' = I m H  restricted to F x F  equals Cl(L). 

By Proposition 2.8 we can find two compact quotients Xl, resp. X2, of X such that 

X embeds in the product of X1 and X2. 
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Since moreover the line bundle L on X is a pull-back of a line bundle Li on the torus 

Xi, can apply the classical Lefschetz theorem for these two complex tori Cn/Fi (cf. 

[Cor], [Mum]), obtaining a finite dimensional subspace of H~ L | yielding a holo- 

morphic embedding of X, as it is easy to see. Q.E.D. 

TrtEOREM 3.24. Let F be a subgroup of  C a for which the generalized Riemann 

relations hold. Then there is a meromorphic function f on C" such that F coincides with 

the subgroup Ff of  periods off .  

Proof. We consider a tame line bundle L with cl(L) being positive definite on the 

subspace F (this exists by the GRR), and again by 2.8 we have two lattices F~ and F2, 

with intersection equal to F and such that, denoting by Xj, X2 the respective quotient 

tori, the line bundle L is the pull back of respective line bundles L1, L2. 

It suffices to choose, for i= 1,2 a section s /o f  L; on X,- whose divisor of zeros is 

irreducible and has no periods on X~ (both assertions are known in the compact case, 

the first one being Bertini's theorem, the other holding since the period group of the 

sections can only vary in a finite set and for each such we have a proper subspace of the 

space of sections n~ Li)); finally we setf=sl/s2, which is F-periodic, but cannot have 

a larger group of periods F ', otherwise also the divisor of zeros and the divisor of poles 

o f f  would be F'-periodic. Q.E.D. 

COROLLARY 3.25. A subgroup F of C a is the subgroup of periods of a meromorphic 

functions if and only if there exists a positive semi-definite Hermitian form H on C a 

such that: 

(i) the restriction of  lm(H) to F x F  takes integer values 

(ii) the kernel of  H equals the connected component of the identity in F. 

CONDITIONAL THEOREM 3.26. Let L be a line bundle on a quasi-torus X with c~(L) 

representable by the imaginary part of a positive definite Hermitian form H. Assume 

that Conjecture 3.22 holds. 

Then L | gives an embedding of X for d>-5. 

Proof. We can assume that L is given by a cocycle in Cousin normal form 

0(7) e(- ~[H(z, y)+�89 7)]+fy(z)). Let L',L" be respectively given by the following 

cocycles: 

2 H(z, 7)+1H(7, y) +df~(z) 
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Then L| by virtue of Theorems 3.23 and 3.8, the assertions follow 

from the following well known lemma (cf. e.g. Mumford's book [Mum]), whose proof 

we omit. 

].EMMA 3.27. Let X be a complex manifold, and let L, M be line bundles such that 

M is generated by global sections, and the sections of  L give an embedding of  X: then 

the sections of  L |  give an embedding of X. 

Q.E.D. for Theorem 3.26. 

Remark 3.28. After showing that the Kodaira dimension is the correct analogue in 

the noncompact case of the transcendence degree of Q(X, L), we observe that the 

transcendence degree of Mer(X) is uncountable. In fact Pothering ([Pot]) showed even 

that the subfield Q(X, L) of meromorphic functions obtained as quotients of sections of 

powers of a fixed tame line bundle L has uncountable transcendence degree. 

Some interesting questions are in our opinion: 

(3.29) Which is, in the hypotheses of 3.26, the smallest integer d such that L | 

gives an embedding of X? 

(3.30) Can the results about the index of a line bundle (i.e., the characterization of 

the set S of integers i such that Hi(x, L) is non zero, cf. [Mum]) be generalized in the 

noncompact case? For instance, if p is the number of positive eigenvalues of H on the 

complex subspace F, and r is the number of negative ones, is it true that S is contained 

in the interval [r, m-p]  (where m is the dimension of the complex subspace F)? 

[A--G1] 

[A-G2] 

[Con] 

[Cor] 

[Coul] 
[Cou2] 

[Cap] 

[Gun] 

R e f e r e n c e s  

ANDREOITI, A. & GHERARDELLI, F., Estensioni commutative di variet~ abeliane. Qua- 
derno manoscritto del Centro di Analisi Globale del CNR, Firenze, 1972, pp. 1--48. 
Some remarks on quasi-abelian manifolds, in Global analysis and its applications. 
I.A.E.A., Vienna, 1976, pp. 203-206. 

CONFORTO, F., Abelsche Funktionen und algebraische Geometrie. Springer, Berlin, 
1958. 

CORNALBA, M., Complex tori and Jacobians, in Complex analysis and its applications. 
I.A.E.A., Vienna, 1976, pp. 39-100. 

COUSIN, P., Sur les fonctions periodiques. Ann. Sci. Ecole Norm. Sup., 19 (1902), 9--61. 
- -  Sur les fonctions triplement periodiques de deux variables. Acta Math., 33 (1910), 

105-232. 
CAPOCASA, F., Teoria delle funzioni sui quasi-tori. Dissertazione di dottorato, Pisa, 

1987. 
GtrNNIN~, R. C., The structure of factors of automorphy. Amer. J. Math., 78 (1956), 

357-383. 



68 F. CAPOCASA AND F. CATANESE 

[Hef] 

[H-M] 

[Mall 

[Mol] 

[Mo2] 

[Mum] 
[Poi] 

[Pot] 

[R-V] 

[Roll 
[Ro2] 
[Ro3] 

[Ser] 
[Sev] 
[Sie] 

[Vo] 

HEFEZ, A., On periodic meromorphic functions on C n. Atti Accad. Naz. Lincei Rend., 
64 (1978), 255-259. 

HUCKLEBERRY, A. T. & MARGOULIS, G., Invariant analytic hypersurfaces. Invent. 
Math., 71 (1983), 235-240. 

MALGRANGE, B., La cohomologie d'une variet6 analytique ~t bord pseudoconvexe n'est 
pas necessairement separ6e. C.R. Acad. Sci. Paris, 280 (1975), 93-95. 

MOmMOTO, A., Non compact complex Lie groups without constant holomorphic func- 
tions. Conference in complex analysis, Minneapolis, 1966. 

- -  On the classification of non compact complex abelian Lie groups. Trans. Amer. 
Math. Soc., 123 (1966), 200-228. 

MUMFORD, D., Abelian Varieties. Oxford Univ. Press, 1970. 
POINCARr H., Sur les propri6t6s du potentiel et sur les functions ab61iennes. Acta 

Math., 22 (1898), 89-178. 
POTHERING, G. J., Meromorphic function fields of  non-compact Cn/F. Ph.D. Thesis, 

University of Notre Dame, 1977. 
REMMERT, R., & VAN DE VEN, A., Zur Funktionentheorie homogener komplexer Man- 

nigfaltigkeiten. Topology, 2 (1963), 137-157. 
ROSENLICHr, M., Generalized Jacobian varieties. Ann. of  Math., 59 (1954), 505-530. 

Some basic theorems on algebraic groups. Amer. J. Math., 78 (1956), 401--443. 
Exensions of vector groups by abelian varieties. Amer. J. Math., 80 (1958), 
685-714. 

SEI~E, J. P., Groupes Alg~briques et Corps de Classes. Hermann, Paris (1958). 
SEVERI, F., Funzioni quasi-abeliane. Pont. Acad. Sci., Vaticano, 1947. 
SIEGEL, C. L., Topics in Complex Function Theory, vol. III. Tracts in Mathemaics no. 

25. Wiley interscience, New York, 1973. 
VOGT, C., Line bundles on toroidal groups. J. Reine Angew. Math., 21 (1982), 197-215. 

Received August 7, 1989 


