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w 1. Introduction and statement of results 

This paper contains new proofs and extensions of some recent results by Marl6, Sad 

and Sullivan [11] and by Sullivan and Thurston [15]. It is convenient to begin with the 

following definition. 

Let E be a subset of the Riemann sphere C=C O (~o} containing at least 4 points. 

Let A, denote the open disc Izl<r in C. A map 

f'. A r X E  --> 

will be called admissible if riO, z)=z for all z EE, for every fixed 2 EAr the map 

f(2, .):E-->(~ is an injection, and for every fixed zEE the map f(. ,z): Ar--~C is holo- 

morphic (i.e., a meromorphic function of 2). 

In other words, an admissible map is a family of injections E-->(~ holomorphically 

parametrized by a complex parameter 2, [2]<r, which reduces to the identity for 2=0. 

We shall often assume that the admissible map considered is normalized, that is, 

that {0, I, ~ } c E  andf(A, ~)=~ for ~=0, 1, ~ and 2 EAr. This involves no serious loss of 

generality. Indeed, given an admissible mapfi  ArxE--->(~ and 3 distinct points ~l, ~2, ~3 

in E, let a be the M6bius transformation which takes 0, 1, ~ into ~ ,  ~2, ~3 and fl~ be 

the M6bius transformation which takes f(2, ~1), f(2, ~2), f(2, ~3) into 0, 1, oo. Then 

f." ArXa-I(E)-~C, where 

]~, s =/~ oA~, a(~)) 

is admissible and normalized. (IfY~ Ar• is normalized and admissible, then, for 

every fixed z E E -  ( oo }, the function f ( . ,  z) is holomorphic.) 

(1) This material is based upon work partially supported by the National Science Foundation under 
Grant No. NSF MCS-78-27119. 

(2) This material is based upon work partially supported by the National Science Foundation under 
Grant No. NSF MCS-83-01379. 
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The "h-lemma" by Mafir, Sad and Sullivan [11] asserts that an admissible map 

f i t ,  z) is, for every fixed h, uniformly continuous in z (with respect to the spherical 

metric) and that the continuous extension off(h, . )  to the closure of E (in C) has the 

Pesin property. 

By the Pesin property we mean the following. Denote the spherical distance in 

by 6. Let A c ~  be a set, and let w: A--~(2 be a map. For z E A  and E>0 let m(z,e) and 

M(z, E) denote the infinum and the supremum of 6(w(z), w(~)) for ~EA and b(z, ~)=~, if 

there are such r and set re(z, t)=M(z, c)= 1 if there are none. The function w has the 

Pesin property if the function 

P(z) = li--m M(z, e) 
~-.o m(z, ~) 

is uniformly bounded. 

It is known (cf, [10]) that a homeomorphism w of a plane domain is quasiconformal 

if and only if w has the Pesin property, and that if w is K-quasiconformal, then P(z)<-K 

for almost all (but not necessarily all) z in A. 

THEOREM 1. l f  f: A1XE---~C is admissible, then every ](h,.) is the restriction to E o f  

a quasiconformal self-map Fx o f  C,, o f  dilatation not exceeding. 

K= l+lhl (1.1) 
l-fhl" 

It is easy to see that the bound (1.I) cannot be improved. 

From Theorem 1 we derive the following Corollaries: 

COROLLARY 1 (Mafir-Sad-SuUivan). I f  f: AI• is admissible, then, for each 

hE Al, the map f(h,.  ) is a quasiconformal homeomorphism o f  C onto itself. 

COROLLARY 2. For each r < l  there are constants A, a, and B, depending only on r, 

such that, i f  f is a normalized-admissible map on AIxE,  we have 

8 [f(h, z),f(h', z')] ~< Ar(z,  z')a§ 

for z,z '  EE and I,tl, I,t'l~<r. Here 8 is the spherical metric. 

COROLLARY 3. Let {En} be an increasing sequence of  subsets o f  C,E=t3En, and 

{fn} a sequence o f  normalized admissible map on AIxEn. Then there is an admissible 

map f on Alx/~ and a subsequence (f~k} which converges to f,  uniformly on ArXE~ 

for each n and each r< l ,  Here E is the closure o f  E. 
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THEOREM 2. I f  f: AI• is admissible and E has a nonempty interior to, then 

for each 2 E A 1 the map J(2,.)1o9 is a K-quasiconformal homeomorphism of to into 

with K=(1 +12l)/(l -]~,l)- The Beltrami coefficient of  f(2,. )]co given by 

af(,~, z)lco /afC;~, z)lco 
, ( ; ~ , z ) =  a t  / az ' 

is a holomorphic function of  2 E Al, qua element of  the Banach space Loo(co). 

Given an admissible map f." A~xE-~C we may want to find an admissible map 

f." Alx(~--~C which extends f. This extension problem first posed by Marl6 and Sulli- 

van, seems difficult. We can state only partial results. 

PROPOSITION 1. I f  for every finite set EocC (containing at least three points) and 

for every point y ~Eo every admissible map ora l  XEo extends to an admissible map of 

A1X(EoU {y}), then the extension problem is solvable for any set E and any admissible 

map of  A 1 xE. 

By means of examples we shall establish, among other things, the following 

PROPOSITION 2. There are admissible maps f'. AlxE---,(~ with a unique admissible 

extension to Alx(~. There are admissible maps of AIxE which have several admissi- 

ble extensions to Alx(~ and such that all extensions coincide on some but not all 

components of  (~-E. 

If E is a set consisting of three points, then every admissible map f on A~xE 

trivially extends to an admissible m a p f o n  A 1 XC,  for we may assumefnormalized and 

takej~2, z)--z. The corresponding result for a set of four points is given by Proposition 3 

below which is implied by a result of Earle and Kra [6]. For a set E with n points, n>4, 

we do not know whether every admissible map on A 1 •  extends to an admissible map 

on Alx(EU {y}), for a point y E C - E .  

PROPOSITION 3. Let E={0, 1,oo,a} be a set consisting of  four points and 

f." AI• an admissible map. Then there is an admissible map f: AlX(~---)(~ which 

extends f.  

The "improved 2-1emma" by Sullivan and Thurston [14] asserts that there is an 

r>0, which they cannot estimate, such that for every admissible map f o n  A1 •  there 

is an admissible map on Arxt~ which extends~ArxE.  
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THEOREM 3. I f  f'. AIXE---~I~ is an admissible map, then 3~A1/3• has a canonical 

admissible extension f: AI/3xC--.C. 

This extension is characterized by the following property. Let I~(~, z) be the 

Beltrami coefficient o f  z~-~f(A, z) and S any component o f  (~-F., where E is the closure 

of  E in (?.. Then 

~I(2,Z)=Qs(Z) -2 ~3(2,Z) for zES, 2EAI/3 

where Os(z)ldz[ is the Poincar~ line element in S and the function ~p(2, z) is holo- 

morphic in z E S, antiholomorphic in 2 E A1/3. 

The uniqueness statement in Theorem 3 is based on a result which may be of 

interest in other connections, too (Lemma II in w 5). It gives a sufficient condition for a 

quasiconformal self-map of a plane domain which is homotopic to the identity modulo 

the set-theoretical boundary to be so modulo the ideal boundary. 

Our proofs make essential use of the theory of quasiconformal maps and of 

Teichmiiller spaces (see [5], [7], [10] and the references given there). For the con- 

venience of the reader some of the necessary results are stated in w 2. In w 7 we describe 

the connection between the extension problem and a lifting problem in Tecihmiiller 

space. 

w 2. Preliminaries 

All results summarized in this section are known. A reader familiar with Teichmiiller 

theory will scan it in order to note our notations. 

(A) We assume the basic results on quasiconformal maps, cf., for instance, [2], 

[10]. A Beitrami coefficient i ~ in a domain S c C  is an element of the open unit ball in the 

complex Banach space L~(S). A I~-conformal map F of S is a homeomorphic solution 

of the Beltrami equation 

aF aF 
c3~ az 

in S. Here the derivatives, taken in the sense of distribution theory, are required to be 

locally square integrable measurable functions. (One says that # is the Beltrami 
coefficient of F.) 

The smoothness of a/t-conformal map F depends on/~. In particular F is Co~ or 
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real analytic if/t is. Any/~-conformal map is differentiable a.e. If F~ and F2 are two/~- 

conformal maps of S, then F2oFi  -1 is conformal. 

A map is quasiconformal if it is/~-conformal for some Beltrami coefficient/~. The 

dilatation of F is the number 

l+ltull  
K(F) = . - -  

1-1 ,11  

where Itull  is the essential supremum of ~u(z)] in S. If K(F)<~A,F is called A- 

quasiconformal. 
Inverses and composites of quasiconformal maps are quasiconformal, and the 

dilatation obeys the rules: K(F)=I  if and only if F is conformal, K(F-I)=K(F) and 

K(F1 o F2)<~K(F1) K(F2). The partial derivatives of F -  l and of Fi o F2 are computable 

(a.e.) by the classical formulas. 

(B) Let/~ be a Beltrami coefficient in C. There is a unique/~-conformal homeomor- 

phism z~-~u~(z) of C onto itself which fixes 0, 1 (and, therefore, oo). This w u has a 

HOlder modulus of continuity, with respect to the spherical metric, depending only on 

]Lullo~. For every z E C, the number u/'(z) depends holomorphically on/ t  E Loo(C). 

If I~jIl| the sequence {u/j} contains a uniformly convergent subsequence, 

the limit is of the form u/' with ILull~<k. If the sequence ~uj} has the limit/t~ a.e., then 
/t=/~oo. 

Let U denote, here and hereafter, the upper half-plane in C. Every quasiconformal 

self-map to of U has a continuous extension to U O R U { oo} = U U l~; this extension will 

be denoted by the same letter. 

If / t  is a Beltrami coefficient in U, then there is a unique/~-conformal homeomor- 

phism z--.w~,(z) of U onto itself which fixes 0, 1, ~.  It has a HOlder modulus of 

continuity, with respect to the spherical metric, depending only on I~ull~. For every 

z E U U R, the number w~,(z) depends real-analytically on/~ E L~(U). 

Convergence theorems similar to the ones stated above for to" hold for w~,. 

(C) The image of 1~ under a quasiconformal self-map of C is called a quasicircle. A 
Jordan curve C passing through oo is a quasicircle if and only if it satisfies the Ahlfors 
condition: there is an M>0 such that for any three distinct finite points a, b, c on C, 

with b on the finite component of C -  {a, c}, 

Ib-a I ~ Mlc-a  I. 
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If C does not pass through ~, this inequality must be satisfied whenever b lies on the 

component of C - { a ,  c} with the smaller Euclidean diameter, cf. [10]. 

(D) We recall next some facts from the theory of the Teichmiiller space T(S) of a 

Riemann surface S which is not conformal to a sphere, a punctured sphere, a twice 

punctured sphere or a torus. As a matter of fact, we shall need only the case when 

ScC;  we assume that S has at least 3 boundary points one of which is the point ~.  

For such an S there always exists a holomorphic universal covering by the upper 

half-plane U, 

n: U ~ S ;  (2.1) 

the covering group G of n is a torsion-free Fuchsian group (discrete subgroup of 

PSL(2, R)). Note that n and G are uniquely determined by S, except that they may be 

replaced by n o a and a -  IGa, a E PSL(2, R). 

The Poincar~ line element Qs(~)ld~l, ~ E S, is defined by the relation 

es(n(z)) I n '  (z) l = 2lz- zl- 1; 

ps(z)ldzl is invariant under all conformal automorphisms of S. 

The Poincar6 metric on S can be also characterized as the only complete Rieman- 

nian metric on S which respects the conformal structure of S, i.e., is given by a line 

element ds=a(z)ldzl, and has Gaussian curvature ( - I ) ,  i.e., satisfies the partial differ- 

ential equation A log a=o  2. 

We note the monotonicity property: 

Qso(Z) >I Qs(Z) if z E S o c S. 

(E) The limit set A of G is the closure of the set of fixed points of parabolic and 

hyperbolic elements of G. If A=R U { oo } =1~, S is said to have no ideal boundary curves. 

If A~R, each component I of I~-A defines an ideal boundary curve C of S: 

C = I/Staba(I) 

where the stabilizer of I in G consists either of the identity only or of all powers of a 

hyperbolic element V in G which fixes the endpoints of I. For every a EG, C is 

identified with a(I)/Stabo(a(I)). 

Let b(S) denote the union of the ideal boundary curves of S; then S U b(S) has a 

natural topology in which S is open and dense. 
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Every quasiconformal map F: S---~F(S)cC extends by continuity to a homeomor- 

phism of S U b(S) onto F(S) U b(F(S)). The extension will be denoted by the same letter. 

(F) The Teichmiiller space T(S) is the set of equivalence classes [F] of quasicon- 

formal mappings 

F: S ~ F(S) 

where F(S) is another domain in C. (No generality would be gained by allowing F(S) to 

be any Riemann surface.) Two such maps, F and F~, are equivalent if there is a 

conformal map h: F(S)---~FI(S) such that the map 

F~lohoF: S--~ S 

is homotopic to the identity modulo b(S). An equivalent condition is that there be a 

commutative diagram 

U ~U 

' S  
F~llohoF 

such that the quasiconformal map W fixes every point of R. 

Note that the Beltrami coefficient of F determines [F], but not vice versa. 

The space T(S) is a complete metric space under the Teichmiiller distance function 

([Fd, [F2] ) = inflog K(F) 

where F runs over all quasiconformal maps equivalent to F~ oF2 -1. 
If (~ - S  consists of m points, T(S) is homeomorphic to C "-3. 

(G) Let L denote the lower half-plane in C, and let B(L, G) be the complex Banach 

space of holomorphic functions q0(~), ~ EL with norm 

I1 011 = s u p  I < oo 

(where ~=~ +it/) which satisfy the functional equation of quadratic differentials 

qg(g(~))g'(~) 2= q0(~), gEG. 
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There exists a canonical homeomorphic injection 

T(S) ,---) B(L, G) (2.2) 

(onto a bounded domain) defined as follows. Let F be a kt-conformal map of S. Lift it, 

via (2. I), to a Beltrami coefficient/~(z) in U, by setting 

/~Or(O) :r'(~). m'(O =/~(0 
and set 

:~(r = {0(~) for CE U 
for ~EL 

(We note that/~(r d~/dr and/~(~) d~/dr are G-invariant, and that walL is conformal.) It 

turns out that the Schwarzian derivative 

i.e., 

r = (w:lI., z}, 

1 2 d dwa(~) 
9u(~) = u'(~)--~u(r , u(r d(~) 

is determined by and determines [F]. Also, 9UEB(L, G) and 

I1r < 3  

The map 

- - ,  eEL,  

is the desired embedding. From now on we identify T(S) with its image. 

t 
(H) Now let q)EB(L, G') with IIq~ll<~ be given, and set 

1 

v(~)-- _~2~(~), ~e u. 

Then v(~)d~/d~ is G-invariant and 

/~(z)~e~(z)~(z) 
where 

(2.3) 

(2.4) 

(2.5) 
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with ~0(z), z E S, holomorphic; more precisely 

~p(:r(~)) :~'(~)2 = q0(~). (2.6) 

Finally, by the Ahlfors-Weill lemma [3] 

~- -q0 .  

A Beltrami coefficient/z in S of the form (2.5) will be called harmonic. (The name is 

suggested by the Kodaira-Spencer deformation theory; in [4] these Beltrami coeffi- 

cients were called canonical.) We note two consequences of what was said above. 

(a) a point q~ in T(S)cB(L,  G) with [l 0ll<�89 can be represented as [F] with the 

Beltrami coefficient i z o f  F harmonic and given by (2.5), (2.6). Thus t z depends 

holomorphically on cp. 

(b) I f  quasiconformal maps F1 and F2 have harmonic Beltrami coefficients IZl,lZ2, 

and are equivalent, i.e. i f  [F1]=[F2], then/zl=/z2. 

(I) A quasiconformal map F of S is called a Teichm011er map if either F is 

conformal or F has a Beltrami coefficient of the form 

= kl otz)l/ (z) 

where q0(z) is holomorphic in S and q0 ELl(S). 

( c ) / f  F1 is a Teichmiiller map o f  S and F2 another map with [F2]=[F1], then 

either F2=F1 or K(F2)>K(FO. 

This is a special case of Teichmiiller's uniqueness theorem, as extended by Reich 

and Strebel [12] and by Strebel [14]. 

Te&hmiiller's existence theorem implies that if [F] E T(S) and dim T(S)<oo (in our 

case, if C - S  is finite), then F is equivalent to a Teichmtiller map. 

(J) The modular group Mod (S) of T(S) is the group of holomorphic isometries of 

T(S) of the form 

[F] ~-> [Fo �9 -11 = ~.([F])  

where �9 is any quasiconformal self-map of S. If dim T(S)<oo (in our case, if C - S  is 

finite), Mod(S) acts properly discontinously. 

(K) In every complex manifold M one can define the Kobayashi pseudometric as 
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the largest pseudometric with the property: if Zl and z2 are two points in U, d the 

Poincar6 distance between zt and z2, and <I, a holomorphic map of U into M, then the 

Kobayashi distance between ~(Zl) and ~(z2) is less than or equal to d. The following 

results will be used later. 

(d) A holomorphic map o f  one complex manifold into another does not increase 

the Kobaoashi distance. 

(e) I f  S = C - E  where E is finite and contains at least 3 points, the Kobayashi 

distance in T(S) coincides with the Teichmiiller distance. 

Statement (d) follows from the definition, statement (e) by repeating the argument 

given in [13] for the case when S is a compact Riemann surface. (Cf. also [6].) 

w 3. The finite case 

In this section we prove Theorem 1 and Theorem 3 for the case when the set E is finite 

(in this case Theorem 2 is vacuous). Without loss of  generality we assume that 

E =  {0, 1 ,~ ,~ l  .....  ~,,}, n > 0 ,  

and that the given admissible map f: A~• is normalized. 

Let Mn denote the complex manifold of ordered n-tuples of distinct complex 

numbers (Zl .. . . .  zn) none of which equals 0 or 1. 

LEMMA. There is a holomorphic universal covering 

p: T((~-E) --> Mn. 

(The map p is given by the relation (3.3) below.) 

Proof. Every point r of T(C-E) is of the form [F] where F is a quasiconformal map 

of C - E  into 1~. Such an F is of the form a o u / '  where /zEL~(C), I~uH~<l, and 

a E PSL(2, C), cf. w 2(A). Since [ct o u/']=[u/'], every r is of the form [u/']. 

Now, [u/'t] = [u] 'z] if and only if there is a conformal map h of u f ' ( C - E )  onto 

uf2(C-E) such that (u/'Z)-I o h o u/'t is homotopic to the identity in (~-E. But such an 

h must be a Mfbius transformation which fixes 0, 1, o0, hence the identity. Thus 

[w u~] = [uf '2] if and only if 

(uJ'2)-lo u/ '~lC-E is homotopic to id, 

which implies that 
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(ul 'D - t  o we'l E = id. 

This shows that 

(ufl(r . . . . .  u/'(r EM,, (3.2) 

depends only on [u/'] rather than on the particular choice o f / c  It is clear that every 

point of  M,, can be written in the form (3.2) for some/aEL|174 and we 

conclude that 

[u.t'] ~.-.~p([w~]) = ((u.~(~l) . . . . .  (w~(~n)) (3.3) 

is a well defined surjection. We claim it is holomorphic. 
Indeed, let [w ~] be  a point in T (C-E)  and let ol . . . . .  o , -3  be a basis of  harmonic 

(in the sense of  w 2 (G)) Beltrami coefficients on w~(C-E).  By the results stated in w 2 (I) 

the map 

(t 1 . . . . .  t,) ~ [w 't ~ +...+'n-3 ~ o w v] 

is a biholomorphic homeomorphism of a neighborhood of  the origin in C n-3 onto a 

neighborhood of  [w ~] in T((2-E). On the other hand, 

W tl ~  ~ 0 W v ~ W u 

with 

tl Ol +... + tn_3 On_3 +V 

/~= 1 +#(t101+. . .+t ,_3 0n_3) 

where 

cOW v 2 a W  v 2 

so that/~ depends holomorphically on (tt . . . . .  tn-3) and so does the right hand of  (3.3). 

This proves the assertion. 

Now let F be the subgroup of  Mod ( C - E )  (cf. w 2 (J)) consisting of  all self-maps 

[wU]~[wUoto -1] induced by quasiconformal self-maps to of  C - E  which fix each point 

of  E. Then F acts properly discontinuously on T(C.-E). We claim that the actiorr is also 

free. Indeed, assume that to,([w"])=[u/ '] .  This means that (u/') - l  o uY~oto - !  is homo- 

topic to the identity in C - E ,  i.e., that co is homotopic to the identity, i.e., that to ,=id.  
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Now, [w ~] and [w ~] have the same image under p if and only if (w")- l o w v fixes 

every point of E, i.e., if and only if [w u] and [w v] are equivalent under F. We conclude 

that (3.3) is a Galois covering. Since T(C-E)  is a cell, it is the universal covering. The 

lemma is proved. 

The given admissible map f.'AlXE--->C may be identified w i t h a  holomorphic 

vector-valued map f: AI--->M,~ which takes 2 E A1 into 

{f(2, ~1) . . . . .  f(2, ~n)} E Mn. 

This maps lifts, via (3.3), to a holomorphic map 

f: AI--->T(C-E) c B(L, G) 

(where G is a torsion-free Fuchsian group with C - E  conformal to U/G). The map f is 

uniquely determined by the requirement that ['(0)=[id], i.e. the origin in B(L,G).  

In A1 the Kobayashi distance (cf. w 2 (K)) between 0 and 2 equals the Poincar6 

distance log K, where 

K =  I+121 (3.4) 
1-121" 

The holomorphic map f does not increase the Kobayashi distance so that the Teich- 

moiler (=Kobayashi) distance between the points [id] and f(2) in T((?.-E) is at most 

logK. This means that there exists, for each 2EAI,  a v~EL=(C), with K(wVa)<~K, i.e. 

with Ilvxll--<12l and such that 

wV~(r = f(2, ej), j = 1 . . . . .  n. (3.5) 

Theorem 1 follows (for E given by (3.1)). 

(Note that we have no reason to assume that v~ depends holomorphically on 2. 

Whether it can be so chosen, for all 121<1, is equivalent to the Mafi6-Sullivan problem.) 

Next we observe that f maps Al into the ball I[~p[l<�89 in the ((n-3)-dimensional) 

Banach space B(L, G) cf. w 2(H). By the Schwarz lemma (which is valid for vector- 

valued functions), f t akes  the disc 121<~ into the ball [l~pll<�89 By w 2 (H)(a) there exists, 

for each 2fA~/3, a harmonic Beltrami coefficient va in {~-E, which depends holo- 

morphically on f(2)fiB(L, G), and hence on A, and such that (3.5) holds. Since w"~(z) 

depends holomorphically on 2, the admissible map .~2, ~ z )=w (z), [21<1, z f C ,  is the 

extension offlAl/3XE the existence of which is asserted by Theorem 3. 

(The uniqueness of this extension follows from statement (b) in w 2 (H) and from 

Lemma II in w 5 below.) 
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w 4. Proof  of  Theorems 1 and 2 and of the corollaries 

L e t  f." A 1 xE-->C be a normalized admissible map, with E infinite. Choose a sequence of 

finite sets Ej, j-- l, 2 .. . .  such that {0, 1, oo}cEjcE for all j  and E1UE2 O ... is dense in E. 

For a fixed 2 E A, denote by /71. a K-quasiconformal self-map of C such that Fj[Ej 
=f(k, .)IEj, K being given by (1.1). Such Fj exist, since Theorem 1 holds for finite E. 

Since all Fj fix 0, 1, co and are K-quasiconformal, a subsequence converges uniformly 

(in the spherical metric) to a K-quasiconformal homeomorphism F: C-->C with F=f(2,.  ) 

on UEj. 
Had we assumed f( t ,  .) to be continuous, we could have concluded that 

F(z)=f(2, z) for z E E, but we made no such assumption. However, let c be a point in E. 

Replacing Ej by EjU {c} and repeating the previous construction we obtain a K- 

quasiconformal self-map F'  of C which coincides with f(2,. ) on OEjU {c}. But F and F '  

are continuous everywhere and coincide on UEj, hence on E, hence 

F(c)=F'(c)=f(k, c). Since c is arbitrary, FIE=f(2, .). Theorem 1 is proved. 

Remark. Theorem 1 with a weaker estimate than (1.1) for the dilatation of Fx could 

be derived from the part of Theorem 3 proved in w 3. We omit the details. 

Corollary 1 now follows by observing that, if f is an admissible map on A1 xC, then 

f12,.) has an extension which is a quasiconformal homeomorphism of C onto itself. But 

the only possible extension of f(k, .)  is f(k,.),  and so f(k,.) is a quasiconformal 

homeomorphism of t~ onto itself. 

For the second corollary, l e t f b e  a normalized admissible map on A~ xE. Then for 

each k with [kl~<r<l, the map f(k, .)  has a K-quasiconformal extension with 

K<.(l+r)/(1-r). Since (cf. w 2(B)) this extension has a H61der modulus of continuity 

depending only on K (and hence only on r), so does f(2,.). Thus there are constants A 

and a, depending only on r such that 

6 [f(~., z),f(2, z')] ~< A6(z, z') ~ 

for all Ikl<.r and all z ,z 'EE.  For a fixed z 'EE (z'4=0,1,~) the map f ( ' , z ' )  is a 

holomorphic function on A, which omits the values 0 and l. By Schottky's theorem (cf. 

for instance [8], p. 261) there is a constant B depending only on r so that 

b[f(2, z'),f(2', z')] <<- n lk -k ' l  

for [kl<.r. Corollary 2 now follows by the triangle inequality. 

To establish Corollary 3, we assume that fn is a normalized admissible map on 

AlxEn. It follows from the uniform equicontinuity expressed in Corollary 2 that a 

18-868286 Acta Mathematica 157. Imprim6 le 12 novembre 1986 
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subsequence {f,,} converges uniformly on each ArxE,,  r< l ,  to a map g: A l •  

Then for each z E E the function g(.,  z) is holomorphic. To see that g(2,-) is injective, 

we use Theorem 1 to find an extension Fk of f,,(2, .) which is a normalized K- 

quasiconformal homeomorphism of C onto t~ with K~<(1 + 121)/(1-1AI). Since the normal- 

ized K-quasiconformal homeomorphisms form a normal family, there is a subsequence 

which converges to a K-quasiconformal homeomorphism Fa of t~ onto C. Since Fa is 

an extension of g(2, .), we must have g(2, .) injective. Thus g is admissible on AlXE. 

Consequently, it is uniformly continuous on ArXE for each r< l .  From this it follows 

that g has a continuous extension f to A1 x/~ such that f t . ,  z) is holomorphic for each 

z E/~. For each 2 E A 1 the map f0 . , ' )  is the restriction to/~ of the homeomorphism Fa. 

Thus f i s  admissible on A~x/~, establishing Corollary 3. 

We proceed to prove Theorem 2 assuming that E has a non-empty interior ~o. The 

first assertion follows from Theorem 1 (as in the proof of Corollary 1). We now 

establish the holomorphic dependence on/za on ;L. 

Since Lo~(o~) is the dual of Ll(w), it suffices to show that, for every a ELl(w), 

is holomorphic in A~. A standard argument shows that one may assume a to be of 

compact support in w. In this case there is an e>O such that for zEo),a(z)~O and 

O<h<e the point z+h and z+ih lie in to. Since quasiconformal maps are a.e. differenti- 

able, 

f fx(~, z)+ifr(~,, z) 
tIJ(A) = ___l-L.a(z) fx(A, z)-ify (2, z) dx dy 

fro,  l+io~(z,h) = a ( z )  lim dx dy 
h ~ 0 1 -- itr~(Z, h)) 

where 

a~(z, h) = f(A, z+ih)-f(2, z) 
f(2, z+h)-f(2,  z) 

For fixed z (~0, 1, o0) and h, ira is a holomorphic function of 2 E A~ which never equals 

0 or 1 and equals i for A=0. One concludes easily, by Schottky's theorem, that there is a 

number r, 0<r<  1, such that for IAI <r,  lea(z, h ) -  il<~ 1/2, and therefore 

l+ia~(z, h) I <~9. 
1 - ioa(z, h) I 
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It follows, by the theorem on dominated convergence, that for 121<r the sequence of 

holomorphic functions of 2 

f f ~ , l + i ~  
�9 ~(2) = a(z) 1-iris(z, 1/n) 

converges boundedly to W(2) as n-->oo. Thus qJ(2) is holomorphic in 2 for 121<r and so is 

pa E L~(to). 

Now let 2o be any point in A1 and set s= 1-14o[, Eo=f(2o, E), too=f(2o, to) and 

g(r ,~)=f(2o+Sr,  Z) where ~=f(2o,  Z). 

Then 090 is the interior of Eo (by Theorem 1) and g: Al • is admissible. By what 

was proved above, the Beltrami coefficient of g(r,.)[tao, which we shall denote by v,, is 

a holomorphic function of r for It[ <r,  with values in L~(too). 

Let /~o denote the Beltrami coefficient of f(2o,')lra and /,a, as before, that of 

f(2, .)[to. Since 

f(2, ")[to = (g(r, ')[too)of(2o, ")[to, r = (~,-Zo)/S 

we obtain 

where 

1)r+/t,10 

. . . .  Iwz(z)l 2 
~'~(z) = v~w~z)) wz(z)------ ~ , w = 

Since ~ E L~(to) is a holomorphic function of v~ E L~(too) and v~ a holomorphic 

function of t E At, the element p~ E L~(to) depends holomorphically on 2 for 12-2ol<sr. 
This completes the proof. 

w 5. Proof of Theorem 3 

Let f : A l x E ~ t ~  be a given admissible map which we may, and do, assume t o b e  

normalized. Let E~, E2 ... .  be a sequence of finite sets such that 

(0 ,  1, oo} c E !  c E 2  c ... (5.1) 

and 
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Et tJ E 2  IJ . . .  is dense in E (5.2) 

Let j~ denote the extension of the admissible m a p  j ~ A I / 3  )<gj to A1/3)< t~ constructed in 

w 

By Corollary 2 we may assume (selecting if need be a subsequence) that {J)} 

converges to an admissible map f of A1/3 x C. Since 

j~At/3• O E2 O ...) =3qAv3• 0 E2 O ...), 

f i s  an admissible extension of J]A1/axE. 

Le t / )  denote the closure of E and let S denote, from now on, a component of 1~-/~. 

Also, let Oj{z)ldz] denote the Poincar6 metric in l~-/~j, and Os(z)ldz] the Poincar6 metric 

on S. We claim that 

lim 0j(z) = Os(Z), z E S (5.3) 
j---~oo 

(uniformly on compact subsets). 

Indeed, by the monotonicity property of the Poincar6 metric, cf. w 2 (D), 

ojlS ~ Oj+ llS ~ Os 

so that there is a limit 

!imoj(z)=o| zEw. (5.4) 

Since each 0j satisfies the partial differential equation 

0 2 log O + a2 log___.__~O _ 02 
OX 2 Oy 2 

(expressing the fact that the Gauss curvature of the Poincar6 metric is (-1)),  standard 

"elliptic" estimates show that (5.4) holds uniformly on compact subsets of S and that 

the second partials also converge. Hence 00~ satisfies the same equation, i.e. the metric 

o (z)ldzl has Gaussian curvature (-1) .  

In order to show that 

0 |  (5.5) 

it suffices to show that the 000 metric is complete, i.e. that for any rectifiable curve C in 

S, leading to a boundary point ~ of S, we have 
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fcO| = + oo. 

If ~*0, 1, oo, there is a sequence {r ~iEEi, with 

lim r = ~- 

Let r(z, r be the Poincar6 metric in C -  {0, 1, ~,  ~}. Then 

r(z, ~)ldzl = + oo 
Jc 

and also 

lim fcr(Z, r = + oo 
i--.~ oo 

(5.6) 

since r(z, ~) depends continuously on (z, ~). By monotonicity of the Poincar6 metric, 

r(z, ~i)<~ej(z) fo r j  sufficiently large, so that e| ~i) and (5.6) follows. The proof 

of (5.6) for the cases ~=0, 1, oo is left to the reader. Relation (5.3) is established. 

Now we can show that the extension f has the characteristic property asserted by 

Theorem 3, i.e., that the Beltrami coefficient ofj~S is harmonic (for every component S 

of  t2-~3.  
Indeed, by the construction in w 3 the Beltrami coefficient/zj(;t, z) of fj(2, z) is 

harmonic in C - E j  and depends holomorphically on 2, i.e., 

~(2 ,  z) = ej(z) -2 Wj(~, z) 

where ~PjO., z) is holomorphic in z E C - E j  and antiholomorphic in 2 E Al/3. Noting (5.3) 

and selecting if need be a subsequence we may assume that 

!im/zj(2, z) = es(Z) -2 ~p(2, z) for z6 S, 

uniformly on compact subsets of A1/3xS. Hence es(Z) -2 ~p(A, z) is the restriction of the 

Beltrami coefficient of the map z~j~3., z) to S, and ~p(2, z) is antiholomorphic in 4, 

holomorphic in z. The existence part of Theorem 3 is proved. 

LEMMA I. Let W be a quasiconformal self-map o f  U and F a carve in U which 

converges to a point XoEl~ in a Stolz sector. Then W(F) converges to W(xo) in a Stolz 

sector. 
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This is known and follows from the results by Agard and Gehring [1], as observed 

by the referee. We give a proof for the sake of completeness. 

We assume that Xo and W(xo) lie in R and leave the cases Xo-- ~ to the reader. Let 

F be defined by the continuous function t~-~x(t)+iy(t) E U, z'<t< l, with x(t)--~Xo, y(t)--~O 

for t ~  1. The hypothesis of Lemma I means that there is an m>0 and e>0 such that 

ly(t)t t> mlx(t)-xo I for 1-e  < t < 1. 

To prove the assertion it suffices to show that if F+ and F_ denote the lines 

y=m(X-Xo) and y = - m ( x - x o )  in U, then W(F+) and W(F_) converge to W(xo) in a 

Stolz sector. It will suffice to treat W(F+). 

Observe that W may be extended to a quasiconformal self-map of C by setting 

W(s Let R+ and R_ denote the real rays x>-xo and x<.x o respectively. The 

Jordan Curves F+ UR+ U (oo} and F+ OR_ U (oo} are both quasicircles and so are their 

W-images W(F+)UW(R+)U{oo} and W(F+)UW(R_)U{oo}; note that W(R+) and 

W(R_) are the real rays x>-W(xo) and x<.W(xo). For ~>0, set 

c= W(xo+~+im~), b= W(xo), a = R e c  

For ~ small enough the Ahlfors condition (cf. w 2 (C)) yields 

IRe c -  W(x0)l ~< MI Im c] 

(provided Re c#W(xo), but if Re c= W(xo) the above inequality is trivial). Hence the 

curve W(F+) converges to W(xo) in the Stolz sector 

lYl >~ ~ I x -  W(xo)l. 

LEMMA II. Let ScC. be a domain whose (set theoretical) boundary aS contains at 
least 3 points. Let I be the interval -A<~t<~A. Let 

w: Ix(SOOS)---~ S O OS 

be a continuous map such that 

(i) w(O,z)=zfor zESUOS, 

(ii) w(t,z)=z for tEI ,  zEOS, 

(iii) for t E L w(t,.) is a topological self-map o f  S U aS, which is 

(iv) K-quasiconformal on S for some fixed K. 

Then, for  tEL  the map w(t,.)lS is equivalent to the identity in the sense o f  
Teichmiiller space theory (cf. w 2 (F)). 
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Proof. Let U be the upper half plane and :r: U--->S a holomorphic universal 

covering with covering group G. For every t E I, let z---> W(t, z) be a topological self-map 

of U such that 

:roW(t, .) = w(t,. )o:r (5.7) 

and the point W(t, i) is a continuous function of t, with W(0, i)=i. Then W(0,. )=id, the 

map W(t,. ) is K-quasiconformal and, by known continuity properties of quasiconformal 

maps, it extends to a continuous self-map of UU 1~ (in the spherical metric); we denote 

this extension by the same letter W. 

Now W(t, z) depends continuously on (t, z) E Ix  U. The maps W(t,. ) have a modu- 

lus of continuity (in the spherical metric) depending only on the number K and the 

compact set W(I, i). We conclude that W(t, z) is continuous in t also for z E 1~. 

To prove the lemma we must show that 

W(t ,x )=x  for tEI ,  x E R  (5.8) 

Assume first that the group G is of the first kind, i.e., that the closure A of the set 

of attracting fixed points of elements of G coincides with I~. From (5.7) we conclude 

that for g E G 

gt = W(t, . ) ogo  W(t, .)-l  EG. 

Clearly, gt depends continuously on t; since G is discrete, gt=go. But go=g, so that 

W(t,.) commutes with g. Hence W(t,.) fixes the attracting fixed point of every g E G. 

Since G is of the first kind, (5.8) follows. 

Consider next the case when G is of the second kind, i.e., not of the first kind (this 

includes the case when S is simply connected, :r is bijective and G= 1). Now I~-A is 

open and dense in 1~. If Xo is a (finite) point in I~-A, there is an e>0 such that in the 

intersection of the disc Iz-xol<e with U the function :r(z) is injective. Hence, in the 

intersection of U with a disc Iz-xol<e'<e, the function :r(z) is the quotient of two 

bounded holomorphic functions. This implies, in view of the classical theorem by 

Fatou and by F. and M. Riesz, that there is a subset 0 c l ~ - A  of full measure such that 

at every x E 0 the function :r(z) has a sectorial limit :r(x), and :r(x) is not constant on any 

subset of 0 of positive measure. 

We claim that the map W(t,.) fixes 0, for each t E I, and that 

:r(W(t,x)) = :r(x) i fxE O. (5.9) 
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Indeed, let a be a curve in U which converges to x E 0 in a Stolz sector. Then the curve 

W(t, a) in U converges to W(t, x) in a Stolz sector, by Lemma I, and, by the relation 

(5.7), :to W(t, a)=w(t, ~r(a)). By continuity of w(t,.) on the closure on S we obtain that 

W(t, x) E 0 and 

~r(W(t, x)) = w(t, ~r(x)); 

since w(t,')fixes every point on aS, and ~r(x)E OS, (5.9) follows. 

Now W(t, x) is, for x fixed, a continuous function of t which equals to x for t=0. 

Unless W(t, x)=x for t E I, the set W(I, x)E R would contain an interval Io of positive 

length. By (5.9) the function :r(x) would be constant on the intersection Io fl 0. Since 

Io n 0 could not be a null-set this is impossible. Hence W(t, x)=x for x E 0 and, since 0 is 

dense in 1~, for all x. Relation (5.8) is proved and so is Lemma II. 

We return to the proof of Theorem 3 and proceed to show that ifft  and f2 are two 

admissible extensions of 3qA v3 x E to Ai/3 x ~, both having harmonic Beltrami coeffi- 

cients in each component S of C-/~,  then 

fl  =f2. (5.10) 

We observe first that 

f~(~., S) =f2(2, S) (5.11) 

for all 2 E Av3. 

Indeed, noting the continuity properties of admissible maps stated in Corollary 2, 

as well as the fact that f~(0,.)=f2(0,.)=id, we conclude first that (5.11) holds for 

sufficiently small 141. The same argument shows that the set O of those ;t for which 

(5.11) holds is open. But if (5.11) is false, for some 2=2~EAv3, then 

fz(21, s)=f2(21, S1) where $1 is a component of C- /~  distinct from S. Hence the set 

Av3-O is also open. Therefore, O=Av3. Q.E.D. 

Now let vi(2, z) be the Beltrami coefficients off~(;t, z),j = 1,2. By Theorem 2, vj(2, �9 ) 

depends holomorphically on 2 E Al/3. In particular, Iv~(;t, z)l<-k=k(e)<l if I21<i-e, for 

every sufficiently small e>0. We may assume tha t f i s  normalized (cf. w 1); in this case 

so are the maps fj and 

fj(2, z )=w ,j, vj=vj(2,-),  j = l , 2 .  

Set 

w(~,.) = j'2(~., .)- ~ o.f~(~., -). 
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This function is certainly not holomorphic in ;t but is easily seen to be continuous in 

that variable. In every component S of C- /~  and for A=~-e, e>0 and small, and for 

every real a, the function 

W(te ia, z), - A  <~ t <~ A, z E S U aS 

satisfies the hypotheses and hence the conclusion of Lemma II. Therefore fl(2, ")IS and 

f2(2, ")IS are equivalent in the sense of Teichmtiller space theory. But by hypotheses 

fl(2, ")IS and f20., ")l S have harmonic Beltrami coefficients. Hence, by w 2 (H) (b), these 

coefficients coincide. Therefore the map 

)- '  o?,(z,. )ls 

is holomorphic. Since it fixes every point of 0S it is the identity. Thus (5.11) holds on S 

and therefore on C-/~. Since this relation holds on /~ by hypothesis, it is valid 

everywhere. Theorem 3 is established. 

w 6. Proofs of Propositions 1, 2, and 3 

We begin with the proof of Proposition 1. Assume, therefore, that for each finite set E0 

and each y C Eo and every admissible f on A1XEo there is an admissible extension to 

AlX(EoU{y}). Let E be an infinite set (containing 0, 1, and oo), y~E,  and f an 

admissible map on A1 xE. We proceed to show tha t f can  be extended to an admissible 

map on Alx(EU {y}). It suffices to consider the case whenf i s  normalized. Let {En} be 

an increasing sequence of finite sets whose union D is dense in E. By assumption 

j~A 1 xE~ has an admissible extension f,, to A 1 x(E~ U {y}). By Corollary 3 of Theorem 1 

there is an admissible map f on A1x(EU{y }) and a subsequence of {f~} which 

converges to fpo in twise  on AlxD.  For m>~n and zEF,, we have 

and so for z E D 

fm('L Z) =.,~., Z), 

fO., z) = ~ . ,  z). 

Since f and f are continuous, we must have f0., z)=f(2, z) for all z E E, whence f is an 

admissible extension of f to AlX(EU {y}). 

We now suppose f is an admissible map on AIxE  and choose a countable set 

D={yn},ynr which is dense in C - E .  Set Eo=E and En=EU{yl . . . . .  yn}. By the 
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preceding paragraph we may define admissible maps f~ on A1 xE~ recursively so that 

fo=f  and f~ is an extension o f f ~ - i  from AlxEn-~ to AlXE,,. Since the closure of 

UE~ is t~, Corollary 3 asserts that there is an admissible map f on A lxC  and a 

subsequence of {f,,) which converges tofpointwise  on Eo=E. But the restriction off~ 

to A I•  is f and hence the restriction of f to A l• E is f ,  i.e. f i s  an admissible extension 

o f f  to AI• t~. This establishes Proposition 1. 

by 

We now construct some examples. 

Example 1. Let E be the unit circumference Iz[=l, and let f: AI• be given 

f()., z) = z + ).z -1. (6.1) 

Then f maps E onto an ellipse with semi-axes 1 +1).1 and 1-1).1. The map f defined by 

f()., z) = z +).~ 

is an admissible extension of f to A 1 X ( A  1 U g ) .  For each ). E A1 the map f()., ") is K- 

quasiconformal with K=(1+121)/(1-121). Teichmiiller's uniqueness theorem implies that 

3~2, ") is the only (I+121)/(1-121) quasiconformal extension off(2, .). But the first asser- 

tion of Theorem 2 is that any admissible extension f of f to A l x (A1 U E) must have the 

property that f(2, �9 ) is (I + 121)/(1 -I).1) quasiconformal. Therefore f()., �9 ) =f()., �9 ), and so f i s  

the only admissible extension of f to Al• 1 uE). 
For each real a, 0~<a~ < l, the map fa defined by 

f()., z) =f()., z) for Izl 1 

fa(2,Z) = z+2(az- l+(1-a)~)  forlzl  > I 

is an admissible extension of f to A x t~. 

On the other hand, i f E  is the set Iz]~>l and the map f." AlUE is defined by (6.1), 

then, by the reasoning above, f has a unique extension to A l x C. 

This example establishes the assertion of Proposition 2. 

Example 2. Let E=(0 ,  1, oo, ~l . . . . .  ~n} and let q~ be a holomorphic function in 

LI(C-E),  i.e. q0 is a rational function regular on Z - E ,  having at most simple poles at 

the points 0, I, ~1,..., r and vanishing to at least third order at ~. Set 

= 

We de f ine fon  AIXC by setting 
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f(A, z) = ~ ( z ) ,  

where w u~ has the usual meaning, cf. w 2 (B). Thenf i s  an admissible map of A~ x (~. Set 

f= f ]AI •  

Thus f is an admissible extension of f. For each A E A1, Teichmiiller's uniqueness 

theorem (cf. w 2 (I)) asserts that f(A,.) is the only (I +IA[)/(1- IAt) quasiconformal exten- 

sion off(A,.). Thus f(A,-) is the only admissible extension off(A,-) by Theorem 2. This 

establishes once more the first assertion of Proposition 2. 

It should be noted that now J~Av3 • C is not the canonical extension of f described 

by Theorem 3. Hence the canonical extension of f to A1/3 • C can not be extended to an 

admissible map of A lxC  to C. 

The two preceding examples depend on Theorem 1 to obtain strong restrictions on 

the possible admissible extensions. The following curious example is of a somewhat 

different nature. 

Example 3. Let E be the unit circumference Izl=l and g the function on AI•  

defined by 

g(A, z) = z+A2z -1 

Thus g(2, z)=f(A2,z), where f is the map used in Example 1. For each A E A 1 the 

function g(A,.) maps E onto an ellipse whose major axis is the segment from 

to 

Z (1 +[A[2) 
ILl 

~ ( 1 + 1 ~ . 1 2 ) ,  

and whose minor axis has length 2(1-1~1) 2. If ZoE A1 and ~ is any admissible extension 

of g to AlX(EU {z0}), then 

Im g(2, z0) ~, 0 
A 

as [AI ~ 1. Thus 

g(2, z0) _ A2_~+AA+B ' 
A 
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where B is real. Consequently, 

Since ~(0, %) = z0, we have 

g(2, Zo) = A +B2 +-'~2 2. 

g ( 2 ,  Zo) = z0+BAq-22;~0  �9 

From the fact that Ig(2, Zo)l~<2 for 2 E AI, we see that IBIs<2(1-[z01). 

If ~ is an admissible extension of g to A1 x (21 U E), then ~ must have the form 

g(2, z) = z+B(z) 2+22L (6. I) 

From the continuity and quasiconformality of ~(2,.) it follows that B is continuous on 

21UE and B(z)=0 for Izl=l. Differentiating (6.1), we obtain 

aE/az = ] + # z 2 ,  (6.2) 

= ,~B;["F2 2. 

Since B is real, B z= B----~, and the Beltrami coefficient/z of ~ is given by 

/z = 2- 2+B~__. (6.3) 
1 +2B~ 

Because tul 121, we must have IB~[~<I. 

Conversely, i f~  has the form (6.1) with B real, B(z)=0 for [zl=l, and IB~I<~I, then 

(6.3) shows that [ul~<12[<l. This together with (6.2) shows that ~(2,0) is a local 

homeomorphism. Since ~ is the identity on Izl = 1, it is a homeomorphism of [z[~ < 1 onto 

itself. 

We conclude that a function ~ on A x A is an admissible extension of g if and only if 

it has the form (6.1) with B(z) real, B(z)=0 for Izl=l and IB~I~<I. 

Observe that g is strongly restricted in its dependence on 2 but only rr;,Mly in its 

dependence on z. 

Now we prove Proposition 3, essentially following Earle and Kra [6]. Let 

E={O, 1, 0% a} and set q~(z)=[z(z-1)(z-a)] -1. For each ~E Al let/~r be the Beltrami 

differential 

m = r 

on C - E .  Define h on AI• by 
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h(r z) = ut'~(z), 

Then h is an admissible map on  AI• 

The map ~--~[uf ~] is a holomorphic map of A1 into the Teichmiiller space T(C-E). 

Teichmiiller's uniqueness theorem asserts it is injective, while Teichmiiller's existence 

theorem asserts it is onto, since tp is (apart from a constant multiple) the only 

holomorphic function in L I ( C - L - ) .  Thus T(C-E) is biholomorphicaUy equivalent to A1, 

and ~--~[ufl ~] is trivially a covering map. Thus by the Lemma of Section 3 the map 

h(. ,a) is a covering map of MI=C-{0 ,  l, oo}. 

L e t  f." A 1 • by any normalized admissible map. Then the map f(-,  a): A1-- )M 1 

lifts to a holomorphic map f: A1-->A 1 so  that 

The map f defined by 

h(f(2),a) =f(2,a) .  

A t ,  z) = h(f(;t), z) 

is thus an extension o f f  to AI• Since h is admissible and f holomorphic, f is an 

admissible extension of f to AlxC.  This establishes Proposition 3. 

Using elliptic functions, we can give a reasonably explicit representation of a 

functionfwhose existence is asserted by Proposition 3: Let P(~)=P(~, to) be the elliptic 

function with periods 1 and to which has a double pole at r and is normalized by 

P(�89 and P(~to)= 1. This function is related to the Weirestrass ~ function by 

~( r  3 p(~) - - - ,  
e2--e 3 

and satisfies the differential equation 

4(P') 2 = (e2-e3) P(P- 1) (P-a), 

where 

a =  a(to)=P~,to).  

The function a maps the region 0~<Reto~<l,lw-~l~l univalently onto the upper haw 

plane, with 0, 1 and oo going into 0, I, and oo, respectively. Thus a is the covering map 

of the upper half-plane onto C -  {0, 1 ). 

The function P(~) maps the triangle T,o with vertices at 0, 1, and to onto C and is 
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one-to-one in the interior and two-to-one on the edges. If we identify points on each 

edge which are symmetric about the midpoint of the edge, then To, becomes a 

tetrahedron with vertices corresponding to points congruent to 0, �89 ~o and �89 The 

function P maps this tetrahedron 

~, a(w), 1, and 0. 

Let ~=~+ir/. Then the function 

univalently onto C with the vertices going to 

~* = ~+wrl 

maps the tetrahedron T~ quasi-conformally and one-to-one onto the tetrahedron To,. 

The Beltrami coefficient of this map is 

i - - w  
I t -  i+w" 

Hence this map is the extremal quasiconformal map between Ti and To, taking corre- 

sponding vertices into corresponding vertices. 

Thus the function 

dO(w, ~) = P(~+wrl, co) 

is holomorphic with respect to w for each ~ E ri, and univalent in r for each oJ in the 

upper half-plane. 

Let f b e  a normalized admissible mapping on AI• 1, ~ , a} ,  where we denote 

f(2, a) by 0(4). Since the mapping a(co) is a covering mapping of the upper half-plane 

onto C-{0,  1} and 0 maps Am into C-{0,  1}, there is, by the monodromy lifting 

theorem, a holomorphic map w=~0(2) from A1 to the upper half plane such that 

Set 

where ~ is chosen so that 

0(4) = a[~o(2)l. 

]*(4, z) = P(~+~O(2) r/, ~(2)), 

P(~+~p(0) 17, ~p(0)) z. 

Then the univalence of f for a fixed 2 follows from the fact that for a fixed w the map P 

is univalent from To, to C. The function f is clearly holomorphic in 2, and hence 

admissible on A1 x C. We also have f(0, z)=z, and f(2, 0(0))=0(4). Thus f is the desired 

admissible extension off .  
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w 7. Lifting problems in Teichmiiller spaces 

In the present section we give an interpretation of our results in terms of the possibility 

of lifting holomorphic maps of A 1 into the Teichmfiller space To,. of the n-punctured 

sphere. It will be convenient for our description to choose a suitable base point P,, in 

each To, .. Let (~.} be a sequence of points in C with ~,,*r for m~=n and ~,,4:0, l, oo 

and set E~={0, 1,o0,r .... ,~n_3),n>~4. Recall (w that the Teichmfiller space 

TO,n=T((2-E.) can be realized as the set of equivalence classes [u/'] of normalized 

quasiconformal maps of C onto C, the equivalence being defined by u / ' - w  ~ if 

wUlE,,=w"lE,, and (W/~)--I O W v is homotopic to the identity in C - E . .  

Since there is a one-to-one correspondence between the normalized quasiconfor- 

mal maps u/' and their Beltrami coefficients, we may also consider To,. to be the unit 

ball/3 of Beltrami coefficients in t~-E module the equivalence #~v if u P - w  ~. The unit 

ball/3 of Beltrami coefficients on C-E, ,  is also the unit ball of Beltrami coefficients in 

C, the difference between To.n and To,mform>n being that the equivalence relation 

for To,m is more restrictive than that for To.n. Thus we have a natural projection arn,,,, 

of To,m onto To,.. We have also the natural projections zc,,:/3~To,,, which takes each 

# into [uP]. All these projections are holomorphic, and we have ~.,~ = zr.,koz0,,m 

for n<.k<.m, and ~r,~=~r.,m Jrm for m~n.  If we choose as base point p.  in To,. the point 

p.=zc.(0), then ~t.,m(pm)=p.. 

As we saw in w 3, each admissible map J2 ArXE,,----~(?. corresponds to a unique 

holomorphic map f: Ar---~To,,, with f(0)=p., and conversely. If f: Ar -->To.. with 

f(0)=p, and g: Ar---~To,m with p,,,=g(0), then the admissible map corresponding to g 

will be an extension of the admissible map corresponding to f if and only if f= I-l,,.m o g. 

We say that a holomorphic map f: A1--~T0,. with f=p .  can be lifted to a map of A1 

into To,m if there is a holomorphic map g: A1---~T0,,,, with g(0)=p,,, and f=~tn.mOg. 

Since the sequence {~n} can be chosen arbitrarily, we see that the hypothesis of 

Proposition 1 (the finite extension property) is equivalent to the statement that each 

holomorphic map A1---~To,. can be lifted to a map into To,re. This observation gives us 

the following proposition: 

PROPOSITION 4. The hypothesis o f  Proposition 1 is true if  and only i f  for  each n 

every holomorphic map Al---~To,,, can be lifted to a holomorphic map o f  A 1 into 

T0,n+l. 

This lifting problem for holomorphic maps of A~ into To,,, is a difficult open 

problem. We note that lifting from To,.toTo,.+l is not always possible for maps 
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qg"D--->To, n where D is a domain in C p. Indeed,  let D=To,nandtp the identity map. 

Hubbard [9] has shown that there is no lift of  tp into To,n+l. 

We also note that Proposit ion 1 and Theorem 2 imply that, if for each n every 

holomorphic map for AltO To,~ can be lifted to T0,n+l, then every holomorphic map 

from AltO To,~ can be lifted to a holomorphic map from A1 to the ball fl of  the 

(relevant) Beltrami differentials. 
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