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1. Introduction and preliminaries

1A. As is well-known, one can always extend a Mobius transformation of R”
(=R"U{x}) to a Mobius transformation of the hyperbolic (n+1)-space
H"* '={(x1, ..., %, 1) ER""!:x,,,;>0}. For instance, this can be done as follows.
Let zEH"*!, Pick a triple x=(u, v, w) E(R")* of distinct points such that z is on the
hyperbolic line L with endpoints # and v, and such that the hyperbolic ray R with
endpoints z and w intersects L orthogonally. Then we write

z=p(u, v, w) = p(x). (1.1
If now g is a Mébius transformation of R”, then the extension of g to H"*! is given by
£(z) = p(g(u), g(v), g(w)) = pg(x). (1.2)

If g is a Mobius transformation, then (1.2) is independent of the choice of the triple
satisfying (1.1), but this is not true of non-Mobius g. However, and this observation
started this paper, if g is quasiconformal, then (1.2) defines a kind of fuzzy image of z
for z € H"*! which satisfies a certain type of Lipschitz condition. We explain this now
in more detail.

First, if two triples x, x’' € p~!(z), then the hyperbolic distance

d(pg(x),pg(x")) <m, (1.3)

where m=0 depends only on n and on the dilatation of g (Theorem 3.4). Thus the
indeterminacy in the image of z is uniformly bounded for z € H"*'.
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Second, there are constants M=0 and L=1, depending only on n and on the
dilatation of g, such that if z,z’ € H"*! and d(z, z')=M, then for any x€p~'(z) and
x'€p~i (@),

d(z,z"YL=<dpgx),pg(x') <Ld(z,7'), (1.4)
cf. Theorem 3.6.

1 B. This paper is an application of these ideas to the following problem. Let G be
a group of Mobius transformations of R” (whose action can be extended to
H*''=H"*1yR") and let f be a homeomorphism of R” which is G-compatible; that
is, there is a homomorphism ¢: G—G’ onto another Mébius group G’ such that

p(g) f(x) = fg(x)

whenever f(x) is defined (in which case we say also that f induces ).

We wish to find an extension F of f to H"*! which is also G-compatible and
preferably also a homeomorphism. Furthermore, if fis quasiconformal, then we wish
the extension also to be quasiconformal.

If n>1, then we do not know whether such an extension always exists. But the
next theorem is a step in this direction.

THEOREM 1. Let G be a group of Mébius transformations of R" and let f be a G-
compatible homeomorphism of R". Then there is a G-compatible and continuous
extension F of f to a map H"*'H"*! such that F(H"*")cH"*!.

Furthermore, if K=1, then there are M=M(K, n) and L=L(K, n)=1 such that if f is
K-quasiconformal, if z,z’ € H"*! and if d(z, 2')=M, then

d(z,2')/L<d(F(z),F(z'))<Ld(z, 7). (1.5)

This will be proved in Section 3. We give here only the definition of F in H"*!. If
XcH™! is non-empty and bounded, there is a well-defined hyperbolic disk of minimal
radius containing X. Let P(X) be the center of this disk. We set for z€ H"*!

F(2)=Pefp™'(2).

Note that the set p~!(z) is compact and hence the continuous image pf(p~'(z)) of it is
bounded. Here we used f also to denote the map (u, v, w)—(f(u), f(v), f(w)).

Then obviously F(H"*)cH"*! and by Theorem 3.1 we get in this manner a
continuous and G-compatible map H"*!—H"*! extending f which satisfies (1.5) by
Theorems 3.4 and 3.6.
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A map F:H"''S>H™ ! which satisfies (1.5) is called a pseduo-isometry. This
notion is due to Mostow [25]; actually, his definition is slightly stronger since he
requires that the right-hand inequality of (1.5) is valid for all z, z' € H**'. One knows
that pseudo-isometries of H"*! admit continuous extensions to R” such that the maps
of R” so obtained are quasiconformal homeomorphisms of R”; see [31] where the proof
uses the stronger definition of a pseudo-isometry, but the result is valid also for the
weaker one. This theorem is essentially due to Efremovic and Tihomirova [10]. Thus
Theorem 1 is also a converse to this result.

1C. The main theorem. It is natural to try to deform the pseudo-isometry of
Theorem 1 to a quasiconformal extension of f. Indeed, if G={id}, then this can be done
since in this case one can find a homeomorphic pseudo-isometric extension [41]. Here
we apply the preceding ideas to show that, if n=1, quasisymmetric maps allow a
quasiconformal G-compatible extension.

We say that a homeomorphism f of R is quasisymmetric if f()=c and if for some -

k=1 and all x,t€ER, >0,
fx+D—fx)
Vksi—" " <k
S Fo—fo—0)

in which case we say also that f is k-quasisymmetric. Note that f may be also

(1.6)

orientation reversing.
We find it convenient denote the open and closed upper half-planes of R2=C by U
and U instead of H? and H>. We then have

THEOREM 2. Let k=1. Then there is K=K(k)=1 such that if G is a group of
Mébius transformations of R and if f is a G-compatible k-quasisymmetric map of R,
then f can be extended to a G-compatible K-quasiconformal homeomorphism of U.

We prove this theorem in the course of this paper, and the proof is completed in
Section SE. We indicate here only the main lines of the proof.

Only the case of discrete G is difficult; if G is non-discrete then fis almost always a
Mobius transformation. The case in which it need not be is easily reduced to the
discrete case and the theorem is shown to be true with the same K, cf. Section SE.

So assume that G is discrete; i.e., a Fuchsian group. For simplicity we assume that
G does not contain parabolic elements. We first show that, given k, there is M=M(k)
such that if

dix,gx)=M (1.7
for all x€EU and g € G\ {id}, then there is a K(k)-quasiconformal extension of f, cf.
Theorem 5.2.
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To construct the extension in this special case, we first find a G-invariant triangula-
tion 7 of U whose triangles are large, that is, their angles are small, cf. Theorem 4.5.
The degree largeness depends on k. We then fix for every vertex a of J a triple z such
that p(z,)=a, p as in (1.1). We do this in a G-invariant manner. If T is a triangle of J
with vertices a,,a,,as, then there is a non-degenerate hyperbolic triangle T’ with
vertices pf(zai) (Theorem 3.8). We define the extension in such a way that F(T)=T’,

and, indeed, in this manner one obtains a homeomorphic G-compatible extension
(Corollary 3.9) which can be made K(k)-quasiconformal.

If G is finitely generated and does not contain parabolic elements, then G has a
normal subgroup N of finite index which satisfies (1.7), ¢f. Lemma 5.4. Thus there is a
K(k)-quasiconformal, N-compatible extension of f. Now Lemma 5.5 implies that then
there is also a G-compatible, K(k)-quasiconformal extension of f. Lemma 5.5 is based
on the existence and uniqueness of Teichmiiller’s extremal mapping.

If G is not finitely generated, there is a sequence G,=G,c... of finitely generated
subgroups whose union G is. Let F; be a G-compatible, K(k)-quasiconformal extension
of f. Now a normal family argument gives the G-compatible, K(k)-quasiconformal
extension of f.

If G contains parabolic elements, then we assume in the first step of the proof that
(1.7) is true for all x€U and g€ G\ H, where H,={id} or H, is a cyclic group
generated by a parabolic element of G. Now the triangles of J may also contain
hyperbolic triangles with one vertex in R; this vertex is fixed by some parabolic g €G.
Otherwise the proof is unchanged.

Finally, we remark that Theorem 2 was proved for finitely generated Fuchsian G
by Kra [13] (with K depending on G and f). If fis a G-compatible homeomorphism of
R, then one knows that f has a G-compatible homeomorphic extension to U by
[33, Theorem 3] (cf. also [32, pp. 31-33)) if G is discrete and by Section 5E if G is not.

1D. Estimates for K. Our proof does not give an estimate for K in Theorem 2
(except the estimate (5.6) for k near 1). It does not appear impossible to give such
estimates but this would entail further complications in an already complicated proof.

If k is not very large, Lehto [17] showed that one can use the Ahlfors-Weill method
to obtain the extension, and then it is easy to estimate K. In fact, we can take

2671

=7

(1.8)

if k<223, cf. (2.7).
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1E. The case n=2. It seems that our methods can be applied also if n=2 to
construct a quasiconformal extension of a quasiconformal homeomorphism f of R?
which is compatible with a discrete Mobius group of R2. This is due to the fact that in
dimension 2 the complex dilatation allows one to decompose f as f;o...0f; where the
dilatation of f; is near 1 and each f; is G-compatible when G;=f,_, G,_, fi} and G,=G.
In case of near-conformal f, the construction of Theorem 5.2 can be carried out also for
suitable triangulations of the hyperbolic 3-space whose simplexes need not be very
large. Thus the idea is the same as in the quasiconformal extension from R? to R in
Ahlfors [1], only the euclidean geometry is replaced by the non-euclidean, which
guarantees G-compatibility.

It is probable that this method works for all discrete G and certainly for all
geometrically finite G. In fact, in an earlier version of this paper, we included some
results for this case. After this version was written, we were informed of chapter 11 of
Thurston [31]. This chapter is as yet incomplete, but in it Thurston intends to prove the
same theorem using analytic methods, which should allow a smoother proof than the
above combinatorial approach.

1 F. Quasiconformal maps of R. We adopt the following convention regarding
quasiconformal maps of R. Let fbe a homeomorphism of R (not necessarily orientation
preserving). It is quasiconformal if the following is true for some K=1. If a, b, c, dER
are distinct and follow one another in R, let M(a, b,c,d) be the modulus of the
quadrilateral with vertices a, b, ¢, d and interior U, cf. [18, 1.2.4] where this was defined
for such a, b, ¢, d which are on positive order on 3U=R; if they are in negative order,
we set M(a, b, c, d))=M(d, c, b, a). Then

M(a, b, c, /K < M(f(a), f(b), f(c), f(d)) < KM(a, b, c, d) (1.9)

for all such quadrilaterals. We say also that fis K-quasiconformal. The smallest number
K=1 satisfying (1.9) is the dilatation K(f) of f. If f fixes =, then fis quasisymmetri¢,
that is (1.6) is true for some k=1. The smallest number k=1 satisfying (1.6) is the
quasisymmetry constant Q(f) of f. The advantage of the notion of quasiconformality
for us is due to the fact that we can now freely compose f with Mobius transformations
without changing the dilatation. Also, we can define a metric in the universal Teich-
miiller space (cf. Section 2 B) by means of dilatation since now K(fo g)<K(f) K(g) and
K(f~Y)=K(f); these relations are not true if we replace K() by Q().

We note the following relations between Q(f) and K(f). If fis the restriction of a
K-quasiconformal map of U, then K(f)<K. Since every k-quasisymmetric map can be
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extended to a k*-quasiconformal map of U (Beurling-Ahlfors [8, Theorem 1]) we have
first of the inequalities below, which are valid for all quasisymmetric f,

K()<Q(f)* and Q(f) <e&D-VA (1.10)

where A=0.2284. The second inequality follows from [8, p. 131]. Note that, together
with (1.10), the Beurling-Ahlfors extension of a quasisymmetric map implies that every
K-quasiconformal self-map of R can be extended to a K’(K)-quasiconformal self-map of
U.

The proof of our Theorem 2 makes use of (1.10) whose first inequality is obtained
by means of the Beurling-Ahlfors extension of a quasisymmetric map. Hence our
extension is not independent of the Beurling-Ahlfors extension. However, it is also
possible to prove (1.10) directly. Thus the dependence is not essential, and we get a
new extension also for the case G={id}. Actually, we only need to know that if f R—>R
is k-quasisymmetric and if g and 4 are Mobius transformations such that gfi(cc)=o,
then gfh is k’-quasisymmetric for some k'=k'(k). This follows by Viisili [43, Section
3].

1G. Notation and terminology (in addition to the ones given before). A Mébius
group G of R” is a group of Mébius transformations of R”. The action of G extends to
H"*' and we do not distinguish between these two groups. Note that these groups
may contain also orientation reversing elements. A Mobius group has a natural topo-
logy, and a Fuchsian group is a discrete Mobius group of R. If x € H™*! the stabilizer
of G at x is G,={g €EG: g(x)=x}.

The hyperbolic metric of H**! is given by |dx|/xp+1, X=(x1,...,Xp+1). Note that
the formulae of hyperbolic trigonometry are valid for this metric. The diameter of a set
and the distance between two sets are denoted d(A) and d(A, B). These notations are
used also for the euclidean metric of R”; if confusion is possible we say which metric
we mean. The euclidean distance between two points is [x—y|. The hyperbolic and
euclidean closed disks with center x and radius r are denoted D(x,r) and B(x,r),
respectively

B"(r)=B"(0,r), B"=B"(1) and S$"={xER"*!:|x|=1}.

The standard basis of R is ey, ..., e,, and a map of R” is normalized if it fixes 0, e,
and . There is a natural correspondence between homeomorphisms of R” and the
ones of R” fixing , and we often do not distinguish between them. We identify R®
with the complex plane C and C=R?=C U {«}. The closure cl A and boundary bd A of a
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set A are taken in H"*!; bd is also sometimes denoted 3, and int denotes the interior.
We denote by id the map A—A, x—x, for any set A.

2. Some consequences of Theorem 2

Theorem 2 has some interesting consequences for Teichmiiller space theory. Before
passing to the proof of Theorem 2, we describe them here.

2 A. Let G be a Fuchsian group. Following Lehto [17] we define Q(G) to be the set
of G-compatible, univalent maps of the lower half-plane L={z€C:imz<0};
A(G)=Q(G) is the subset of maps that can be extended to G-compatible quasiconformal
maps of the whole plane. We denote A(1)=A({id}). Then A(G)cA(1)NO(G).

It is known that if G is finitely generated (and does not contain orientation
reversing elements), then

A(G) = A()NQ(G), @.n

cf. Kra [13] (stated in a slightly different but equivalent manner.) Bers [5, 6, 7] has
drawn attention to the question whether (2.1) is in fact valid for all G. It is a
consequence of Theorem 2 that this is indeed so.

THEOREM 2.1. Equation (2.1) is valid for every Fuchsian group G.

Proof. Lehto [17] has shown that (2.1) is a consequence of Theorem 2. Lehto
assumes that G is of the first kind and does not contain elliptic nor orientation reversing
elements. However, the proof is valid even without these assumptions. The only place
where they are used is the footnote on p. 243 to establish that the group G’ of Mébius
transformations of U with {g|R:g€G'}={fgf ':g€G)} acts discontinuously in U
whenever f is a G-compatible quasisymmetric map. That this is valid for every
Fuchsian group G can be seen, for example, from Theorem 2.

2B. Metrics on the Teichmiiller space. We define the Teichmiiller space T(G) of a
Fuchsian group G as the set of all normalized, G-compatible and quasisymmetric maps
of R. The universal Teichmiiller space T(1) is the Teichmiiller space of G={id}.
Obviously then T(G)<=T(1) for all G. One often adds in the definition of T(G) the
condition that every f€ T(G) can be extended to a quasiconformal G-compatible map of
U, but we now know by Theorem 2 that this is a consequence of the other conditions.
One can identify T(G) with the subset of A(G) consisting of normalized maps, cf. the
proof of Theorem 1 in [17].
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One can define several natural metrics on T(G). The Teichmiiller metric dg is
defined for f, g € T(G) by

di(f, g) = inflog K(FoG™ ) 2.2)

where the infimum is taken over all quasiconformal G-compatible extensions F of f and
G of g to U. By Theorem 2 such extensions exist. K(h) is the maximal dilatation of h.
This metric depends on G, since there may be many groups G such that fand g are G-
compatible. In particular, fand g are always G-compatible for G={id}, and in this case
we denote

d U= d {id}-

Then dy{f, g) is given by (2.2) where now F and G run over all quasiconformal
extensions of f and g. Another natural metric dp is given by the dilatation of a
quasisymmetric map as defined in Section 1F; thus

do(f, g) =log K(fog™") 2.3)

which is defined for all f, g € T(1) viewed as quasiconformal self-maps of R. Note that if
we replace in (2.3) K(fog™') by the quasisymmetry constant Q(fog~') we do not get
a metric, cf. 1F.

If NcG is a subgroup of finite index it follows by Lemma 5.5 that

dnT(G) = dg 2.9

where we have abbreviated d|JAXA as d|A. Bers [6, p. 274] has raised the question
whether dy|T(G)=ds. A result of Strebel [30] shows that this is not true even when
T(G) is finite dimensional. The following theorem shows that, however, a Lipschitz
condition can still be obtained.

THEOREM 2.2. Let G be a Fuchsian group and let AcT(G). Then A is bounded in
one of the metrics dg, dy or dg if and only if it is bounded in all of them. In addition, if
A is bounded, there is a constant L=1, which can be determined as soon as one of the
numbers di(A), di(A) or dp(A) is given, such that

dolA<dylA<dglA<LdplA.

Proof. 1t is obvious by the definitions of the metrics that dy<dy<dg. Theorem 2
implies that every dp-bounded set is also dy- and dg-bounded. Thus it suffices to find
L such that dglA=<LdplA if dp(A)<e. We can assume that G does not contain
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orientation reversing elements, otherwise we can pass by (2.4) to the subgroup of
orientation preserving elements.

We observe first: If f€ T(G) and Q(f)<2??, then there is a G-compatible quasicon-
formal extension F of f with

KB)=1 5 0(f)"~1
KE)+1 7 o+

(2.5)

This is seen as in Lehto [17, § 4], using the Ahlfors-Weill method. For the convenience
of the reader, we recapitulate the main points, although Lehto’s argument is un-
changed; we simply use a result of Lehtinen (instead of Beurling-Ahlfors) to improve
the estimate.

We start from the fact that there are conformal mappings f, and f; of the upper and
lower half-planes U and L onto the complementary domains of a Jordan curve such that
on R

fa=fiof,

see [17, p. 242] and [18, I1.7.5]. Then one sees as in [17, proof of Theorem 1] that f; is
G-compatible; that is, f; € O(G).

Now, Lehtinen [16] implies that if Q(f)<1.9 then f has a Q(f)*?-quasiconformal
extension i to U. Then fjoy defines a Q(f)**-quasiconformal extension of f; to C.
Hence the Schwarzian S of f, in L satisfies

s= sup 4'|S@)|<6QU)-DIQNH*+1)<2, (2.6)

7=x+iy€L

cf. Kithnau [14, Satz 3*].

In view of (2.6), one can apply the Ahlfors-Weill method [2] to construct a
quasiconformal extension w of f,. Since f, is G-compatible, the Schwarzian of f; is a
holomorphic quadratic differential for G. Hence the complex dilatation of w is a
Beltrami differential of G and so w is G-compatible. Then F=f;'ow defines a G-
compatible quasiconformal extension of fto U. Its dilatation is that of w which equals
s/2 and (2.5) follows.

Hence, if Q(f)<2%3, there is by (2.5) a quasiconformal G-compatible extension F
of f with dilatation

200 -1 _ 1+2Q(H**-1)
K< = .
® -0 1-(Q(H)"*-1)

2.7
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Thus if Q(f)*?<1.009, then

log K(F) <3.01(Q(f)**-1) < 4.56log O(f). (2.8)

By (1.10), log Q(H)<(K(f)—1)/0.2284=<¢*%!log K(£)/0.2284 if log K(f)<0.001. In
view of (2.8), we get now by passing to the metrics

dg(h, g) <20dy(h, g) 2.9

for all &, g € T(G) such that dy(h, £)<0.001.

Let now h,g€A be arbitrary. If dy(h, £)<0.001, then dg(h, g)<20dy(h, g) by
(2.9). If dyh, g)=0.001, then dg(h, g)<dx(A)<(ds(A)0.001)dy(h,g). Thus
dglA<L dplA when L=max (20, dG(A)/0.001).

Now dg(A)=d(A)=dg(A)=M(dy(A)) where M is an increasing function whose
existence follows by Theorem 2. This implies that we can form an estimate for L from
above as soon as one of the numbers dp(A4), di(A) or di(A) is known, and the theorem
is proved.

Remarks. Actually, we could get this theorem also by estimating the maximal
dilatation of the extension of f constructed in Theorem 5.2 when Q(f) is near 1 (see
(5.6)), but the advantage of the above method is that we now have the explicit estimates
2.7)H2.9).

If one knows that fhas a K-quasiconformal extension to U with K<2, then one can
use this extension for the map y above and get that f has a G-compatible quasiconfor-
mal extension F with

K=

2K~1
= 2.10)

K ’
cf. (2.7). This implies that if we consider in (2.9) the metric dy, instead of dg, we get
that

dg(h, g) < crdulh, 8) 2.11)
if h, g € T(G) and dy(h, g)sk<log2 where c,—3 as k—0.

2C. Nielsen’s theorem. Theorem 2 gives also a new proof of the following
theorem which we call Nielsen’s theorem since Nielsen [26] proved it in case that G is
the cover translation group of a compact surface. For a different proof and references
to other proofs see Marden [21].
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THEOREM 2.3. Let G and G’ be finitely generated Fuchsian groups of U which are
of the first kind. Suppose that ¢:G—G' is an isomorphism such that @ carries
bijectively parabolic elements of G onto parabolic elements of G'. Then there is a
quasiconformal homeomorphism F of U inducing ¢.

Proof. By Theorem 2, we must only show that there is a quasiconformal homeo-
morphism f of R inducing ¢. The existence of such an f is well-known from Mostow’s
rigidity theorem. One first constructs a pseudo-isometry 4#: U— U inducing @. Then A is
extended to U, and f=h|R is quasiconformal and induces ¢. See for instance [37,
Theorem 3.3]. If U/G is compact, then an especially simple proof of the existence of f
can be given, see Margulis [22].

The noteworthy feature of this proof, in contrast to other known proofs, is that no
special surface topology is involved. In fact, the construction of the pseudo-isometry
h: U-U is quite general and the proof in [37] is valid in all dimensions. Neither does
Theorem 2 involve specific surface topology as a perusal of our proof in this paper
shows. Note that the proof of the existence and uniqueness of Teichmiiller’s extremal
mapping in [4] does not make use of a specific knowledge of the topology of U/G, once
it is known that there is a quasiconformal map inducing @ (which in the present case is
constructed using Theorem 5.2). Only some knowledge of the action of G near
parabolic cusps is needed.

The moral is that there is a non-surface-topological proof of Nielsen’s theorem.
This should be compared with Mostow’s rigidity theorem [24, 25] which says that if
@:G—G’ is an isomorphism between discrete groups of isometries of hyperbolic
n-space, n=3, whose orbit spaces have finite volume, then ¢ is a conjugation by a
Mobius transformation. The first step in the proof of this theorem is the same as in the
proof of Theorem 2.3: to show that there is a quasiconformal map f of R*~! inducing
@. At this stage there is no essential difference between the cases n=2 and n>2. Then
the regularity of quasiconformal maps (if n>2) allows one to show that this quasicon-
formal map is in fact a Mobius transformation. Here the proof breaks down if n=2 since
quasisymmetric maps may be very irregular. In fact, f must be then very irregular if it is
not a Mobius transformation ([15, 25, 38)): it is a completely singular map which cannot
have a non-vanishing, finite derivative at a point x unless x is fixed by a parabolic
element of G.

Remarks. (1) By Marden [21], it suffices to assume in Theorem 2.3 that ¢(g) is
parabolic whenever g is. We can recover this result easily as follows. By passing to a
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subgroup of finite index, we can assume that G is torsionless. Let Py, ..., P,cG be the
conjugacy classes of maximal parabolic subgroups of G, that is, there is a parabolic
g:€P; such that P={hg*h™":h€G and kEZ, k+0} and that g; is not a power of an
element of G. Define similarly P, ..., P,cG'. Since g* and hgh™! are parabolic if and
only if g is, the assumption that ¢(g) is parabolic whenever g is, implies that @(P;)=P;}
for some j. We can assume that @(P;)=P; if i<r. We must show that r=s. If r<s, we
obtain a contradiction as follows. Let NcG and N'cG’ be the normal subgroups
generated by P;U...UP, and P{U...UP;, respectively. Then G/N is the fundamental
group of a compact surface. If r<s, G'/N’ is the fundamental group of a compact
surface with at least one puncture. This readily gives a contradiction.

(2) Suppose that ¢: G—G’ is an isomorphism between finitely generated Fuchsian
groups and that f is a homeomorphism of R which induces ¢. If now f is locally
quasisymmetric at all points which are not limit points of G, then fis quasisymmetric
(cf. Remark 2 in Section 4 B of [37]), and hence one can apply Theorem 2 in this case to
obtain a quasiconformal G-compatible extension of f.

3. The triple space

It is a fundamental observation of this paper that it is possible to assign to a triple
(x,y, z) of distinct points of R" a point w € H"*' by projecting z orthogonally onto the
hyperbolic line joining x and y. We now examine this situation in more detail, especially
how it is affected by homeomorphisms of R".

3A. The triple space. Given n=1, we define the triple space T" by
T" = {(xy, x2, x3) E(R")*: x; distinct}. 3.1
We define a projection p: T"—H"*! as follows. If x€ H"*! and y ER" are distinct, let
L(x, y) = the hyperbolic line or ray with endpoints x and y. (3.2)
(Note that y ¢ L(x, yy and x € L(x, y) only if x€ H"*'.) Now we set for (x,y,2) ET",
p(x, y, ) = the orthogonal projection of z onto L(x, y); (3.3)

that is, L(x,y) and L(p(x,y, z),z) intersect orthogonally at p(x, y, z). We often find it
convenient to extend p to a map T"UR"—H"*! by setting for x ER"

p(x)=x. 3.4)
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There are two facts about 7" which make it useful for us. The first is that the fiber
-1
p(w)

is compact for all w € H™*! since it is homeomorphic to the space of 2-frames of R**!,
Thus, in a sense, 7" is not very different from H"*!. The second is that if fis a
homeomorphism of R”, then f induces a homeomorphism of T”, which we denote also
by f, by the formula

f(x,y,2) = (f(0), f), f(2)) (3.5

and furthermore, if fis a Mobius transformation, then it preserves fibers as a map of
T". That is,

p(f()) = f(p(u)) (3.6)

for all ¥ € T" and for all Mobius transformations f of R”.

Consequently, if f is a homeomorphism of R” which we try to extend to H"*!, we
can employ the strategy of first extending f to T” and then trying to project f back to
H"*'. We now give an example of this strategy of which Theorem 5.2 will be a more
refined version.

Suppose that the homeomorphism f of R” is G-compatible for some Mobius group
G. That is, there is an isomorphism ¢ of G onto another Mobius group G’ such that

flg(x) = @(g) (f(x)) 3.7

for all x ER”. It also remains true if we interprete the maps in it as maps of T”. This fact
allows us to extend f to a G-compatible map H"*'— H"*! (which is not in general a
homeomorphism) in the following manner.

If XcH™*! is non-empty and bounded in the hyperbolic metric, let

P(X) = the center of the smallest closed hyperbolic disk containing X. (3.8)

Then a simple calculation shows that P(X) exists and is well-defined (p. 75 of [36],
where n=1 but the proof is valid for n>1 as well). Now pf(p~'(x))cH"*! is compact
and hence

fx)=Ppfp~'x) (3.9)

defines an extension of fto H"*!. It is an immediate consequence of (3.7) that the
extended f if also G-compatible. In an obvious sense the sets fp~'(x) and fp~!(y) are
near each other if x and y are near each other. This implies the continuity of fin H"*!
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(see (8) of [36] whose proof is again valid regardiess of dimension). We will see that the
extension is continuous also in R” and hence we have

THEOREM 3.1. Let f be a homeomorphism of R" which is compatible with a
Moébius group G. Then the extension of f to H**! defined by (3.9) is continuous and G-
compatible.

Proof. We must only establish the continuity at R”. Let x€ER” and let W be a
closed neighbourhood of f(x) such that SWnH"*! is a hyperbolic n-plane. The next
lemma implies that there is a neighbourhood V of x such that f(VNR")cW and that
pfp~(y)cW for all yEVNH"*'. Now the center f(y) of the smallest hyperbolic disk
containing pfp~!(y) must lie in W since otherwise one could find a smaller hyperbolic
disk Dopfp~!(y) whose center is the orthogonal projection of f(y) onto W, as a simple
geometric argument shows. (See the argument on p. 75 of [36]. Note that we obtain also
that f(y) € W by a limit process from (A) of [36] when r—® in (A).)

LEMMA 3.2. Let xER" and let r>0. Let y=(y,,y2,y3) €T". Then
(a) if at least two of the points y, are in B"(x,r), then p(y) EB™(x,(V2+D0r),
(b) if at most one of the points y, is in B"(x, r), then p(y) ¢ B '(x, r/(V 2 +1)).

This is true also for x== if we set B(o,r)=R*\ B*(1/r).

Proof. If y,,y,€B™(x,r), then p(y)€L(y;,y,)cB"*'(x,r). Suppose then that
¥i, Y3 €EB"(x, r), i<2. Let z be the orthogonal projection of p(y) onto L(y;, y3). Then the
hyperbolic triangle with vertices y;, p(y) and z has a zero angle at y;, an angle of 7/4 at
p(y) and a right angle at z. Then hyperbolic trigonometry implies ([3, 7.9])

coshd(p(y), z) = cosh d(p(y), L(y,, y;)) = l/sin /4 =V 2 (3.10)

Since L(y, y;)=B™*'(x,r) and arcoshV2 =log(V 2 +1)=d(@B"*'(x, V2 +))n H"*',
B"*\(x,r)), case (a) follows.

In case (b), if y,,y>€¢ B"(x, r), then L(y,,y;)NB"(x,)=@ and hence p(y) ¢ B*(x, r).
Suppose then that y,y;éB"*!(x,r). Now as above (3.10) implies that
p() & B (x, rI(V 2 +1)).

Finally, the argument for x= is the same.

3B. Hyperbolic triangulations and maps of R". We now define what one means
by a hyperbolic triangulation of H"*!. We first give the definition of a hyperbolic k-
simplex.
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If vy, ...,u, €H"*', we denote by Co(vy,...,v,) the smallest subset A of H"*!
such that v;€ A and that AnH"*! is hyperbolically convex. A (hyperbolic) k-simplex
of H"*! is a set T which is of the form T=Co (v, ..., v,) N H"*! such that the points v;
are not contained in cl A for any hyperbolic m-subplane of H**', m<k. If T is an
(n+1)-simplex, then an easy induction argument shows that int 7+@ and that 3T is a
union of n-simplexes. A face (or m-face) or T is a simplex T’ which is of the form
T'=Co(uy, ..., 4y) NH"*! where u; are distinct and {uo, ..., 4} <{vg,...,V,}. Ver-
tices of T are the points v; and it is easy to see that the set 7 defines uniquely the set of
vertices of T.

A (hyperbolic) triangulation of H"*! is a collection J of (n+1)-simplexes of
H™*! such that

() T is a locally finite cover of H**', and
(i) if T, SE€ T, then TnS is either empty or a common face.

A vertex of T is a vertex of some simplex of J.
Let f be a homeomorphism of R* and J be a triangulation of H"*!. If
F:H""' S H"1 is a map, we say that F is compatible with f and 7 if it is true that

(a) for every vertex v of J, there is 7,€ T"UR" such that p(z,)=v and that if TET
has vertices vy, ..., Up+1, then

F(T) = Co(pf(@,), ... pf(z, ),
(b) if TET, then F and f define together a continuous map cl\T->H""!,

We show that F and f define in fact a continuous map of H"*! and give a natural
condition when it is a homeomorphism.

THEOREM 3.3. Let f be a homeomorphism of R" and J a triangulation of H™*!.
Suppose that F: H"*''S>H"*! is compatible with f and J. Then F and f define a
continuous map H**'-H"*'

Furthermore, suppose that F|T is an embedding for every T€ J which is always,
independently of T, orientation preserving or reversing. Then F and f define a homeo-
morphism of H**!.

Proof. Since 7 is locally finite in H"*!, (b) implies that F is continuous at points
of H**!. Hence it suffices to consider the continuity at R".

Let x ER”. In view of Lemma 3.2 and the compatibility of F with fand 7 (since f'is
in any case continuous at x), the continuity follows if we can prove:
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Let W be a neighbourhood of x in H**'. Then there are a smaller neighbourhood
V of x and simplexes Ty, ..., T,, of T such that if TET, T+ J;, and TN V*QD, then

TcW.

If this is not true we can find a sequence Sy, S5, ... of distinct simplexes of  such
that there are points a;, b;€ S; for which

limg;=x and limb,=y=*x.
Let u€L(x,y). Then every neighbourhood of u« intersects with an infinite number of
S;’s which contradicts the local finiteness of 7.

This proves the first paragraph of the theorem. We now denote also by F the map
defined by F and f.

The second paragraph of the theorem follows from the properties of the degree of
the map F, cf. [9, 27]). We follow here the exposition of Dold [9].

The map F is a map of the pair (A"*',R" onto itself and hence it induces a
homomorphism F, of the homology group H,.,(H"*!,R") onto itself. There is an
integer degF such that F,(u)=(deg F)u for u€H,,,(H"*', R"). This integer is the
degree of F. Since F|R" is a homeomorphism of R”, we have

degF =1,

cf. [9, IV.4.2].

We conclude the proof by showing that for every x€ H"*!, F~'x consists of
exactly |[deg F|=1 point. Since F~'xcH""' is compact, 7 is locally finite, and F|T is
an embedding for every T€ 7, in any case F~'x is finite,

F"x= {x,,...,xq}

for some g=0. In particular, this means that the local degree of F (regarded as a map of
H"*Y) over x, denoted deg, F, can be defined as in [9, IV.5.1]. By [9, IV.5.6],

deg, F=degF=*1,

Pick now disjoint open balls B,c H"*! with center x;. Let F;=F |B;. Again, deg, F;
is defined for all / and [9, IV.5.8] implies that

*l=deg F= i deg, F,.

i=1
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Suppose now that F~'xcU{int T: T€ J}. Then we can choose the balls B; so small
that each F; is an embedding, which is then by assumption always orientation preserv-
ing or reversing independently of i. Hence then either deg, F;=1 or deg, F;=—1 for all
i. Then the above sum formula gives that in this particular case indeed g=1 and F~'x is
a point.

We get the general case now as follows. Choose a ball B with center x such that
BNF(@B)=¢ for all i. Then [9, I1V.5.12] implies that

deg, F; = deg, F;
for all y€EB and all i.

Pick now an integer j€[1,q] and T€ J such that x;€T. In view of (a), there is
ZEB;NintT such that, setting y=F(z), yEB and F~lycU{intT:TEJ}. As we ob-
served above, then F~'y = a point ={z}. It follows ([9, IV.5.4 and IV.5.8]) that
0 ifi=j,

degyF":deg*F":{il if i=].

This is a contradiction if g>1 since the integer j€[1, q] can be chosen arbitrarily. Also
the case g<1 is impossible since then deg, F=0 by [9, IV.5.4]. This is a contradiction
since deg, F=deg F=+1 as we observed above. Hence ¢g=1 and the theorem is proved.

Remark. Suppose that £ R"—R”" is a continuous map and F: H"*'>H"*! is a
map such that F satisfies (a) and (b) with respect to f and a triangulation I of H"*!
when we extend the definition of p for non-distinct x, y, zER” by p(x, y, 2)=w if at least
two of the points x,y,z equal w. Then one sees as above that F and f define a
continuous map H**'> A"+,

3C. Quasiconformal maps and the triple space. Our discussion in the preceding
sections was valid for all homeomorphisms f of R”. We now consider the situation for
quasiconformal f. For this class of mappings we prove results which are generalizations
of the facts that Mébius transformations preserve the hyperbolic metric of H**! and
that they induce mappings in T" preserving the fibers p~!(x)cT” for x€ H"*!.

Both of our theorems in this section depend on the fact that the set of normalized
K-quasiconformal homeomorphisms of R” is compact, see [42, 20.5 and 21.1] for n>1
and for n=1 either [8, Theorem 2] or [40, 3.4-3.7].

THEOREM 3.4. Let n=1 and K=1. Then there is my=0 such that if f is a
K-quasiconformal homeomorphism of R" and if x,y € T" and p(x)=p(y), then

d(pf(x), pf(y)) < m.

12-858286 Acta Mathematica 154. Imprimé le 15 mai 1985
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Proof. If g is a Mobius transformation of R”, then the extension of g to H"*!
preserves the hyperbolic metric, the map of T" induced by g preserves fibers p~'(x)
and g commutes with p (see (3.7)). These facts imply that by using auxiliary Mobius
transformations we can assume that p(x)=p(y)=e, 1 and that f is normalized.

Let A={h(u):u€p~'(en+1), h a normalized K-quasiconformal homeo‘morphism
of R"}. Now both p~!(e,+;) and the set of normalized K-quasiconformal maps of R”
are compact and hence so is A. It follows that the map AXA—R, (v, v)—d(p), p(v)),
attains a maximal value mj for which the theorem is true.

Our next theorem is based on the well-known fact that quasiconformal maps are
Holder continuous ([23, 3.2]; for quasisymmetric maps see [40, 3.10 and 3.14]. Since
the argument of [40] is very simple for quasiconformal homeomorphism of R”, we give
the theorem we need here.

LEMMA 3.5. Let n=1 and K=1. Then there are a=1 and C=1 such that if fis a K-
quasiconformal homeomorphism of R" and if x,y, zER" are distinct and |[y—x|<|z—x]|,

then
(=AW (=l
¢ (Iz—xl> <If(z)—f(x)|<c<|z—x|> ' @10

Proof. There are a€(0, 1) and b>0 such that if 4 is a normalized K-quasiconformal
homeomorphism of R”, then |u|<a implies |h(u)|<1/2 and |u|<1 implies |A(x)|<b. Using
auxiliary similarity maps we get now that, if f,x,y, and z are as in the lemma and
r=|y—x|//|z—x| and r'=|f(y)—f(x)|/f(z)—Ax)|, then r<a implies r'<1/2 and r<1 implies
r'sb. A recursive argument, using a sequence y; such that |yo—x|/|y—x|€[a, 1] and
k+1 a*] implies r'<b27* This implies the
right-hand inequality and a similar argument gives the left-hand one.

[vi«1—x|/ly;—x|=a, now gives that r€|a

THEOREM 3.6. Let n=1 and K=1. Then there are Ly=1 and My=0 such that if fis
a K-quasiconformal homeomorphism of R" and if x€EH"' and u;€p~\(x;) for

i=1,2, then
d(x,, x,)/[L} < d(pf(u,), pf(u,)) < Ly d(x,, x,) (3.12)

provided that d(x,, x)=My.

Proof. As in the proof of the preceding theorem, we can assume that fis normal-
ized, x;=e,+, and that x,=te,,, for some 0<t<1. If u}€p~(x;), then

|d(pf(u,), pf () —d(pf (), pf(uy))| < 2mi (3.13)
by Theorem 2.4.



QUASICONFORMAL EXTENSION OF QUASISYMMETRIC MAPPINGS 171

In view of (3.13), it suffices to estimate the middle term of (3.12) for u;=(0, =, €y)
and u,=(0, =, te;). Then f(u;)=u, and f(u,;)=(0, =, f(t e,)) and thus

d(pf(uy), pf (u2)) = d(ep+1, | fter)|en+1) = [logf(tey)|. (3.14)

Since d(x;,x2)=d(€,41, te,+1)=logt, we obtain from this and (3.11), where we set
x=0, y=te; and z=e,,

—~log C+d(x,, x2)/a < d(pf(uy), pf(uz)) <log C+ad(xy, x2) (3.15)

provided that |f(te;)|<1 which is true if +<C~¢ by (3.11). Combined with (3.13) this
implies the theorem. .

Remarks. (1) By [23, 3.2 and 3.4], we can choose a=K"""" in (3.11) if n>1.
Consequently (3.12) is true with L%—K"™"Y as d(x, x,)—>, cf. (3.15).

(2) It is not difficult to define a metric in 7" (resembling the hyperbolic metric of
H™) in such a way that if a map of 7" is induced by a Mébius transformation of R",
then it is an isometry, and if it is induced by a K-quasiconformal map, then it is an
(L, M)-pseudo-isometry with L and M depending only on K and n.

3D. Transformation of angles. Next we study how quasiconformal maps of R"
affect angles of hyperbolic triangles, the transformation for triangles being affected via
the triple space T".

We first prove a result which shows that for large hyperbolic triangles the angle at
a vertex and the distance to the opposite side are closely connected.

LEMMA 3.7. Let T be a hyperbolic triangle of H"*! (possibly with zero angles).
Let vEH™ ! be a vertex of T, let a€(0,7) be the angle of T at v and let r be the
distance of v to the hyperbolic line containing the side of T opposite to v. Let ay and a;
be the other two angles of T, a;<a,. Then

2cos az/coshr < a <2cosa,/sinhr<2/sinhr. (3.16)
If T has a right angle and a=+n/2, then
cosf/coshr < a <cosf/sinhr=<1/sinhr. 3.17)

when B is the other angle of T not equal to n/l2.

Proof. We prove only (3.17) which then obviously implies (3.16). So let the
situation be as in (3.17). Then

a>sina = cos f/coshr (3.18)
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by [3, 7.11.3], and we have the left-most inequality. Using again the equality in (3.18),
we get

a < sina/cos a = cos B/cosh r(1—(cos B/cosh r)?)12
= cos Bl(cosh? r—cos?g)'?

< cos fB/sinhr < 1/sinh r, 3.19)
and we have also the other inequalities of (3.17).

Now we can prove our theorem on distortion of angles which is similar to Theorem
3.6.

THEOREM 3.8. Let n=21 and K?l. Then there are B € (0, 1] and s=s3=1 with the

following property. Let T' be a hyperbolic triangle, possibly with zero angles, and let
x! €A™', i<3, be the vertices of T'. Let a! be the angle of T' at x! and assume that

0<a!<pB: for i<3. Let f be a K-quasiconformal homeomorphism of R" and let
7,€p~'(x)). Set x}=pf(z) and let T* be the hyperbolic triangle with vertices x2, i<3.
Then T? is a non-degenerate hyperbolic tridngle such that if a,? is the angle of T* at x,?,
then

(@) (@) <a?<(a)'.

(b) Let n=1. Let T' have the orientation induced by the triple (x,, x;, x}). Suppose

that T' is oriented compatibly with the natural orientation of U=H". Then this is true
of T? if and only if f is orientation preserving.

Proof. Since f~! is also K-quasiconformal, it suffices to prove only the right-hand
inequality of (a). We can also assume that x} € H"*' since this then implies the general
case by a limit process, ¢f. Lemma 3.2.

Let L! be the hyperbolic line containig the side of T' opposite to x! and let

rl=d(x!,L}). (3.20)
In view of (3.16), the right-hand inequality of (a) follows if we can prove:
There are r=r(n, K)>0 and c=c(n, K)>0 such that if r}?r for i<3, then T? is non-

degenerate and
cri <d(x, LY (3.21)

when L? is the hyperbolic line containing the side of T* opposite to x2.
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We proceed to prove (3.21). Clearly, we can assume that i=1 and that the situation
is such that fis normalized, x| € L(e,,,0), and x;, x} € L(e,, —e,). If r=1, which we now
assume, (3.16) implies that all the angles of T' are acute and hence x} and x} are in

different components of L(e;, —e;)\\{€,+1}. Thus we can choose the notation in such
a way that

x €Le,,,,0), x.€EL(e,,;.e;) and x;EL(e,,,,—e,). (3.22)

We have d(x},e,, )=ri—>® as r—® in (3.21). By (3.16), the angles of T—0 as
r—o. By (3.17), then also d(x}, e, ,;)— and d(x},e,, )—>® as r—» (see (3.22)). As a

consequence we obtain that

Jxj—x]|<é (3.23)

where x;=0, x,=e, and x3;=—¢, and where 6=030(r)—0 as r—»>». Lemma 3.2 implies
then that

at least two points in the triple z, are in B"(x, (V 2 +1)9). (3.24)
We prove next that, given £>0, there is r'=r'(n, K, ¢) such that if r}?r’, then
I—fx)| <e. (3.25)

Now, the family of normalized K-quasiconformal maps of R” is equicontinuous (for
instance, one can prove this using (3.11).) In the present situation this means that we
can find 6'=8'(n,K,e)€(0,1) such that if w,vEB"2) and |u—v|<d’, then
|f()—f(W))|<e/(V'2 +1). Choose now r'=r'(n,K,8")=r'(n, K, €) so big that (3.23) is
true with 6=0'/(V 2 +1) if ri=r'. Then by (3.24) and by equicontinuity, at least two
points in the triple f(z;) for each i<3 are in B"(x,, e/(V 2 +1)). This implies (3.25) by
Lemma 3.2.

Since f is normalized, f(x;)=f(0)=0 and f(x;)=f(e;)=e,. However, f need not fix
x3=—¢,, but (3.11) implies that

|f(x3)|=C"" and |f(xs)—ef|=C7!, (3.26)

where C=C(n, K)=1.
Fix '=r"(n, K)=2 such that (3.25) is true with e=1/4C if r}?/’. Then by (3.25) and
(3.26), the points x7, i<3, are distinct and hence the line L? passing through x2 and x? is
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well-defined. Let « and v be its endpoints. Again (3.25) and (3.26) imply that
u, v§¢ B"(1/2C) and hence

L} c H™'\B"*!(120) (3.27)

if r'=r. By (3.25), x2€B"*!(¢)=B"*!(1/4C) and hence, in particular, T* is a non-
degenerate triangle.

By (3.22), x!=te,,, for some t€(0,e™")=(0, 1/5). Thus, by Lemma 3.2, at least
two of the points of the triple z, are in B"((V'2 +1)¢t). Then (3.11) implies that at least
two of the points of the triple f(z,) are in B(C(V 2 +1)"21/%) where a=a(n, K)=1.
Again by Lemma 3.2, we get, if r}=r",

2 =pf(z) EB"(C(V 2 +1)+Vagllay, (3.28)
Now rj=d(x], L(—e,, e,))=d(x}, e,,,)=—logt, and then, by (3.27) and (3.28),

d(2, LY = d@B™'(12C)n H™*', 8B (C(V 2 + D)!*Vatayn H**Y)
=rl/a+log1/2C—log C(V' 2 +1)!*Va (3.29)

if r/=r". It is now apparent that (3.21) is true for such c and r as claimed and (a) follows.

Part (b) of Theorem 3.8 is an immediate consequence of (3.25) and (3.26), and it is
true as soon as £<1/2C in (3.25).

Combining Theorem 3.8 with Theorem 3.3 we get as a

COROLLARY 3.9. Let f be a K-quasiconformal homeomorphism of R and let T be
a triangulation of U such that the angles of triangles of I do not exceed the constant
Bx of Theorem 3.8. Suppose that F: U—U is compatible with F and J (see Section
3B). Then F(T) is a non-degenerate triangle for every TE J, and if F|T is always an
embedding, then F and f define a homeomorphism of U.

Remark. Note that we cannot generalize Theorem 3.8 for (n+1)-simplexes of
H™"*'if n>1. Even if T' is a hyperbolic (n+1)-simples of H"*! whose vertices are on
R” (and hence the distance of a vertex to the hyperbolic n-plane defined by the
opposite face is infinite), then one can always find a quasiconformal map of R" such
that if the hyperbolic (n+1)-simplex T? is defined as in Theorem 3.8, then T? is
degenerate.

Similarly, part (b) of Theorem 3.8 and Corollary 3.9 cannot be generalized for n>1.
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4. Tessellations of the hyperbolic plane

We now describe a method to obtain tessellations of the hyperbolic plane U=H? whose
set of vertices is a given set A which needs to satisfy only a boundedness condition.
This tessellation is dual to the familiar tessellation whose 2-cells are

F,={x€U: d(x,a)<d(x, b) for bEA}, 4.1)

a€A, used to construct fundamental domains for discrete groups of hyperbolic isome-
tries. However, we construct this tessellation directly, without making use of the
tessellation {F,}.

A set Xc U is convex if it is convex in the hyperbolic metric. In this section we say
that a set Xc U is closed if it is closed as a subset of U. We denote the closure and
boundary in U by cly and by bdu (or 9y); recall that ¢l and bd (or 9) are the closure
and boundary in R2. We also use this notation if X¢ U in which case

duX=bdXnU.

Here we consider only the 2-dimensional case. Higher-dimensional tessellations
have been constructed in [39] using the present method.

4 A. The tessellation J(A). Let AcU be a discrete set of points. Given A, we
define a subset V=V(A) of U as follows.

If veU, then vEYV if and only if there is r>0 such that setting B,=D(v, r)=the
closed hyperbolic disk with center v and radius r, then

intB,nA=¢9 and A,=B,NA 4.2)

contains at least three points.

Note that this is the set of points of U that are at least in three cells F,, a€A,
where F, is defined by (4.1). That is, VnU is the set of vertices of the tessellation
{Fa}-

If vER, then v is in V if and only if there is a horoball B, of U at v (i.e. B, is a
closed ball in the spherical metric, B,cUU {v} and 3B, is tangent to R at v) such that

intB,NnA=@ andif A,=B,NA, 4.3)

then 8y, B,\A, consists of a countable number of intervals both of whose endpoints
are in A,.

Later, when we consider Fuchsian groups of U, the set VNR will be the set of
parabolic fixed points of the group.
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We attach to every vEV a 2-cell C, as follows. If a € A,, there is a unique interval
I, of 3B, \A, such that if I, is oriented compatibly with the orientation of 3B, induced
on 3B, by the natural orientation of B, (as a subset of R?), then a is the beginning point
of I,. Let S, be the hyperbolic line segment with the same endpoints as I,. Then there
is a unique 2-cell C,=B,N U such that

Then obviously C, is a closed and convex subset of U such that 3C, is a topological
2-cell. It is compact if and only if vEVNU.

A vertex of C, is a point of A, and a side of C, is a segment §, for vEA,,.

We can now define the tessellation 7=J(A) corresponding to A as

T={C,vEV}.

A point is a vertex of J if it is a vertex of some C,, and a hyperbolic segment is a side of
T if it is a side of some C,. We denote the set of vertices of 7 by T, or To(A), and the
set of sides of I is 7, or J1(A). We can also denote J,=F which is the set of cells of
7.

We now show that the name ‘‘tessellation’’ for J is justified by

THEOREM 4.1. Let A be a non-empty discrete subset of U. Then I=J(A) is a
tessellation in the sense that if C,C' € IJyU T U T, are distinct, then

cne’

is either empty, a common vertex or a common side. If C€J;, C'€J;, and CNC' €T,
then j<max(i,i’).

Proof. Assume that CNC’'+@. Assume first that both C and C’ are in 9,. Then
C=C, and C'=C, for some distinct v, v’ € V. If int Cnint C’+@, then there is a vertex
a either of C or of C’ such that a€intCnintC’. If, say, a is a vertex of C, then
a€int B, which is impossible by (4.2) and (4.3). Hence intCnintC'=@.

Since both C and C’ are convex, it now follows that CnC’ is contained in a side s
of C and in a side s’ of C’. These are hyperbolic segments whose endponts lie on 3B,
and 9B, respectively. Hence one sees as above that either sNs’ is a common vertex or
s=s'. In the latter case s=CNC’ which is now a common side.

This proves the theorem if C and C’ are 2-cells. Other cases follow easily from this.
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Note that in general J is not a tessellation of U since it need not cover U. For
instance, this is always so if A is finite. We now give an additional condition which
guarantees that J covers U.

Let
Uy = UN\(U{B,:vEVNR)}) 4.4

which depends only on A and suppose that there is M>0 such that

Uyc U D@M) and 3y;B,c U D(a, M) (4.5)
a€A a€A,

for every v€ V. Under these conditions we have

THEOREM 4.2. Let A be a discrete subset of U satisfying (4.5). Then T=J(A) is a
locally finite cover of U whose set of vertices is A and

diF)<4M (4.6)
whenever F is a side or a compact cell of J.

Proof. We prove first (4.6). Suppose first that F is a compact cell. Then F=C, for
some vEVNU. If vEU,, then there is a€A such that d(v, a)<M. It follows that
d(v, a'y<M for a’ €A, and hence d(C,)<2M<4M '

If v¢ Uy, then vEB, for some u € VNR. There are consecutive points a;,a, €A,
such that if L; is the hyperbolic line with endpoint 4 and passing through a;, then v is in
the closure of the subdomain D of U bounded by L, and L,. In view of (4.3), a simple
geometric argument now shows that

A,cclD\intB,

since otherwise there would be b € {a,, a,} such that d(v, b)<d(v, a) for a € A, which is
impossible.
Let BoB,, be the horoball of U at u such that d(8y B, 3y B,)=M. Then also

A,cB\intB,

since otherwise by (4.5) there is h€A, such that d(v, b)<d(v, a) for a€A,. These
inclusions imply that
d(C,) =d(A,) <d(Dn(B\intB,)) <4M

since two of the four arcs bounding Dn(B\intB,) have diameter M and one has
diameter <2M.
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We have shown that (4.6) is true if F is a compact cell. Thus, if F is a side, then
d(F)<4M if F is a side of a compact cell of 7. If this is not the case, then F is a side of
some C, where v€ VNR and then d(F)<2M by (4.5). Hence (4.6) is true also for sides.

Next we show that J is locally finite in U. Let x€ U and set

V,={v€V: x¢intC, and int D(x, 1)NC, + D}.

We show that V, is finite which implies the local finiteness of J since x €int C, for at
most one vE€ V by Theorem 4.1.

If veV,, then intD(x, )NC,+D. Hence there is a side S of C, such that
D(x, )nS+@. By (4.6), both endpoints of S are in the set

A,={a€A: d(a,x)<4M+1}

which is a finite set. Hence the set of sides S of J for which D(x, 1) N §+@ is finite. By
Theorem 4.1, a side of J is a side of at most two cells C, for v€ V, and it follows that
V, is finite. We have shown that J is locally finite.

Since every T€ J is closed in U, it now follows that UJ is closed in U. Hence, to
show that J is a cover of U, it suffices to show that (a) UJ+® and that (b) UJ is open.

Now UJ=@ if and only if V=@. We show that V+@ by showing that VNR=@
implies VnU+@. Assume now that VNR=0 and pick a € A. There is such a by (4.5).
Choose then a ray R with endpoint a. Let u be the first point on R from a such that
there is bEA\ {a} with

d(a, u)=db, u)<d(c, u)

for c€A. There is such point by (4.5). Let L be the line
L=L,,={z€U:d(z,a)=d(z, b)}. 4.7)

Note that u € L and let R’ =L be either of the rays with endpoint u. Let v € R’ be the first
point from « such that there is cEA\ {a, b} with

da,v)=db,v)=d(c,v)=<d(c’,v)

for ¢'€A. Again by (4.5), there is such v and then veEVNU+D. It follows that
V+@+UJ.

Finally, we show that every x€UJ has a neighbourhood contained in UZJ. If
x€int C, for some vE YV, this is clear. Suppose then that x € § for some side S of 7 and
that x is not an endpoint of S. If S is a side of two cells of J, then x has again a
neighbourhood in UJ. So we will prove this.
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In any case § is a side of at least one C, for some vEV. Let a and b be the
endpoints of S and define

S'={z€U: d(z,a)=d(z,b)<d(z,c) for cEAN\{a,b}}.

Then S’ is, if not empty, a hyperbolic line, segment, or ray. We claim that

(a) v is an endpoint of S’ (and hence S’'+@), and
(b) if u is the other endpoint of S’, then ¥ €V and S is a side of C,,.

These imply that S is indeed a side of two cells of 7, as claimed.

Note first that (a) is clear if v € U. Suppose then that vER. Let L=L,,>S’ be as in
(4.7). We claim that points of L near v are in S’ which implies (a). Let D be the domain
of U whose boundary consists of the two hyperbolic lines with endpoint v and passing
through a and b, respectively. If w € D\ B, and z € L, then one sees easily that

d(w, z) = d(a, 2)+d(w, 3B,)+o(w, 2) 4.8)

where o(w, z7)—0 as z—v on L uniformly for w € D\ B,
If zELNB,, then

d(a,2)<d(c,2)

for c€(A\{a, b})\D. By (4.8), this is true also for c€(A\{a, b})ND if z is near v.
These facts imply (a).

Again, to prove (b), it is clear that u€V if ¥ € U and that then a, bEU. If u€ER,
then, by (4.5), points of S’ near ¥ must be in some B,., u' € VNR. Hence u=u'€V.
Choose now c€A,. If a¢ A, then, like in (4.8), one sees that d(z, c)<d(z, a) for ZE S’
near 4. Hence a €A, and, similarly, b€EA,,.

Since SnintC,=@ by Theorem 4.1, a and b must be consecutive points on A,
(c<d8B,), and thus S is indeed a side of C,, and (b) is true.

Finally, we show that if x is a vertex of 7, then UJ contains a neighbourhood of x.
Since 7 is locally finite, the number of cells of J with vertex x is finite. Since every side
of 7 is a side of two cells of &, as we have shown, we can arrange the cells of J with
vertex x in order as Cy, ..., C,=C, such that C;nC;,, is a common side with vertex x.
Then C,U...UC,_; contains a neighbourhood of x. Hence UJ is open, and conse-
quently 7 is a cover of U.

Finally, if a€ A, a is in some cell C, of 7 and then (4.2) and (4.3) imply that g is a
vertex of C,. It follows that Ac %, and since the opposite inclusion is trivial, A is
indeed the set of vertices of 7, and the theorem is proved.
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In the actual situation where we use tessellations of this kind, the points of A are
not too near each other, and in this case we have

LEMMA 4.3. Let AcU be a set such that d(a, b)zm>0 if a, b€ A are distinct. Let
C,, VEV(A), be a cell of the tessellation J(A). Let a€ A, and let a be the angle of C,, at
a. Then

a < 2/sinh (m/2).

Proof. Pick a side S of C, such that a is an endpoint of S. Let b be the other
endpoint of S and let « be the bisector of S. Let T be the hyperbolic triangle with
vertices a, u and v. Since d(v, a)=d(v, b) (or, if vER, a and b are on a horoball tangent
to R at v), T has a right angle at u. Hence d(a, u) is the distance of a to the hyperbolic
line containing the side of T opposite to a. Then (3.17) implies that the angle of T at a
<1/sinh d(a, u)=1/sinh (d(a, b)/2)<1/sinh m/2. Since the angle of C, at a is the sum of
two such angles, the lemma follows.

4B. G-invariant triangulations. Our aim in this section is to construct certain
triangulations invariant under a Fuchsian group. We now fix such a group G and
assume that there is an M>0 such that if x € U, then

dx,gx))=M 4.9

either for all g€ G\ {id} or at least for all g€ G\ H, where H, is a cyclic group
generated by a parabolic element (which depends on x.) (Here H, is not a stabilizer at
x; no g € H\ {id} fixes x.) Observe that G cannot contain elliptic elements.

We fix some notation. Let

P = {x€ER: x is fixed by some parabolic g €G},

and if vEP, let
G,={g€G: gv)=v},

which is a cyclic group generated by a parabolic element. We fix for every vEP a
horoball B, of U at v such that

d(x, g(x)) = M/3 4.10)
if x€3y B, and g is a generator of G,. Then (4.9) and (4.10) imply that

d@yB,,3yB,)=M/3 4.11)
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for distinct v, u € P. Finally, we set

U= U\( (§] B,,). 4.12)
vEP
We first construct a G-invariant set A which is then used in the construction of a G-
invariant tessellation J(A) as in Section 4 A.

LEMMA 4.4. There is a G-invariant set AcU such that

(i) U'cUqeaD(a, M/3),
(ii) d(a, b)=M]/3 for distinct a,bEA,
(iii)) AnB,=G,a, for some a,€38y B, when vEP.

Proof. Pick first a G-invariant set A’cH"*! such that
A'nB,=Gya,

for some a, € B,. We then construct inductively sets Ag, Ay, ... as follows. Pick first a
set X={x1,x,,...}c U’ which is dense in U’. Set Ag=A’. If A, has been defined, we set
A;;1=A; if there is a€A; such that x;.;€D(a, M/3); otherwise we set
A;+1=A;UGx;,,. An inductive argument, using (4.10) and (4.11) for Ay, now easily
shows that A=AygUA, U... satisfies the conditions of the lemma.

We then consider the set Ve U defined by (4.2) and (4.3) using the set A construct-
ed in Lemma 4.4. It is obvious that

VAR=P 4.13)

and that the horoballs B, defined by (4.10) and (4.3) coincide. Hence the set U’ of (4.12)
is the set U, of (4.4). Thus conditions (i), (iii) and (4.11) |mply that A satisfies (4.5)
when one substitutes M/3 for M.

It then follows by Theorem 4.2 that the tessellation 7=J(A) is a locally finite
cover of U. Since A is G-invariant, so is J and thus we can form a G-invariant
hyperbolic triangulation of U (see Section 3 B) by dividing the cells of 7 into hyperbolic
triangles. We do this in the following manner.

If C, is a compact cell of J (that is, if vE U), then we choose u€A, and let
ANA{u}={uyp, ..., uz} where u; and u;,, are consecutive points on B,. Let T; be the
triangle with vertices u, u;_, and ;. Then {T,,...,T;} is a subdivision of C, into
hyperbolic triangles.

If C, is non-compact (that is, if v ER), then we enumerate A, as a;, i €Z, where q;
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and a,,; are consecutive points on 8B,. We let T; be the hyperbolic triangle with
vertices v, a; and a;.,. Again, {T;:i€Z} is a subdivision of C, into triangles.

We denote the resulting triangulation of U by #. Obviously, we can do the
subdivision in such a way that ¥ is G-invariant (which has bearing only on subdivision
of compact cells). If a triangle T of ¥ is compact, then T is a finite triangle, otherwise T
is an infinite triangle. A side of ¥ is a side of some triangle of %, again such a side can
be finite or infinite according to whether it is compact or non-compact. A vertex of ¥ is
a vertex of some triangle of ¥. Thus also points of VNR are vertices of %; again, these
are called infinite vertices of %, others are finite vertices. The set of vertices of ¥ is
AU(VNR)=AUP.

We introduce the following notation for a triangle T of X, a side S of ¥#, and a
vertex v of X:

T=intT,
$ = S\ {endpoints of S}, and
b={v}nl.

We enumerate the properties of & needed later in

THEOREM 4.5. Let G be a Fuchsian group acting in U which satisfies (4.9). Then
there is a hyperbolic triangulation X of U such that

() g(H)=X for all g€G,
(i) ghnT=0 if g€ G\{id} and T is a triangle, side or a vertex of X,
(iii) if T is a finite side or a finite triangle of ¥, then

d(T)E[M/3,4M/3],
(iv) if a is an angle in a triangle of J, then
a < 2/sinh (M/6),

(V) the set of vertices at infinity of ¥ is the set P bf points of R fixed by some
parabolic g €G, and

(vi) if a triangle TE X has vertex vEP, then the other two vertices u and u' of T
are in U and satisfy

du,u’)=M/3

and u'=g(u) for a generator g of G,.
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Proof. It is easy to check that ¥ is locally finite since  is, and part (i) is true since
J(A) is G-invariant and we subdivided J(A) into & in a G-invariant manner.

Since G acts without fixed points in U, it is obvious that 4N g(&)= if u is a vertex
of # and g € G\ {id}. For this same reason, int C,Ng(int C,)=9 if C, is a finite cell of
J(A). It follows that Tng(T)=@ if T is a finite triangle of % and g € G\ {id}. If vE P,
then int C,ng(int C,)=@ for g € G\\G, by (4.11). Considering how the subdivision of
C, was performed, it follows that 7n g(7)=2 if g € G\ {id} and T is an infinite triangle
of X.

Finally, if S is a side of &, then the above considerations and the fact that G acts
without fixed points in U, imply that $ng($)=2 for g € G\ {id}. Thus (i) is true.

Since A satisfies (4.5) with M/3 substituted for M, part (iii) is a consequence of
(4.6) and part (ii) of Lemma 4.4. Part (iv) is a consequence of Lemma 4.3 and (ii) of
Lemma 4.4.

Part (v) follows from (4.13) and (vi) from (iii) of Lemma 4.4 and from (4.10).

5. Quasiconformal extension

In this section we first construct a quasiconformal extension of a quasisymmetric map
in a special case (Theorem 5.2) and then prove some auxiliary results which allow to
reduce the general case to the special case. Finally, we put all threads together and
prove the general extension theorem (Section SE).

SA. Canonical maps between hyperbolic triangles. Let a, b, c € U be three dis-
tinct points of the hyperbolic plane not lying on a hyperbolic line. Then there is a non-
degenerate hyperbolic triangle with vertices a, b and ¢ which we denote by T{a, b, c).

We now construct a canonical homeomorphism between two such triangles
T,=T(a,) and T,=T(a,) where a,=(a}, a}, a}) € U’. We denote this homeomorphism by
fla,,a))=f and it is defined by the following conditions where we have denoted by s}
the side of 7; not containing a!.

(1) fla)=a; for j=1,2,3.

v} f(s})=s} and f |sJ' is a linear stretch in the hyperbolic metric, j=1,2,3.

(3) Ifx€si, let 5. be the hyperbolic segment joining x and a'. Then f(s})=sk,, and

1 s . . . .
fls, is a linear stretch in the hyperbolic metric.

Obviously in this manner we get a well-defined homeomorphism between triangles
not having vertices in R. However, in the triangulations we later consider, some
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triangles may have one vertex in R. Therefore we need to define f(a, b) also for such
triangles.

We now define such a map. We use the above notation and assume that if a triangle
T=T(a, b, c) has vertices a, b, c of which one is in R, then cER and a, b€ U. So assume
that ;€ Ux UXR and let L] be the hyperbolic line containing s/. Let

r= min d(aj, L).
ij=1,2
Then there are points 4 € s; and a; € s{, ai+a, such that, for i, j=1,2,

d@, L= rl2. .1

We now divide T; into three triangles as follows. Let T,=T(a}, a}, a}), T,=T(a\,a},a’)
and T;=T(a}, d,,a}). Then (5.1) implies that T,, and T,, are conformally equivalent:
There is a Mobius transformation g of U such that g(a;)=a} and that g(a})=a’ for
Jj=1,2. Using this map g and the maps f(a, b) defined above we can now define a
homeomorphism f=f(a,, a,): T,—T, by setting

AT, =¢glT,,,
f|T12 =f((a:vd:’ a;)’(af, d%) a%))9 (5.2)

f|T13 =f((a;! d;» d:)y (agv d%’ d%))'

By (1) and (2) and the fact that g preserves hyperbolic metric, this is indeed a well-
defined homeomorphism T,—T,.

It is important that these homeomorphisms are compatible with Mobius transfor-
mations, that is, if g and h are Mébius transformations of U, then

f(g(a), h(b)) = hef(a, b)o(g™"|T(g(a))). (5.3)

Another important property of these maps is that they are quasiconformal. More-
over, the dilatation are uniformly bounded if the triangles vary in a compact set. We
give this in

LEMMA 5.1. Let c€(0,1). Then there is K=K(c)=1 such that the map f(a,, ay):
T(a,)—T(a,) is K-quasiconformal if the triangles T(a;) satisfy

(i) either both ay,a,€ U? or both a,,a, EUXUXR,
(ii) the angles of T(a;) do not exceed n—c, and
(iii) the lengths of the finite sides of T(a;) lie in [c, 1/c].
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Proof. We can normalize the situation by (5.3) in such a way that the first vertex of
T(a;) is e,. Suppose first that both T(a,) and T(a,) are finite triangles. Now, the set of
such finite triangles which satisfy (ii) and (iii) is compact in an obvious sense. (Note
that (ii) guarantees that it does not contain degenerate triangles.) Since every single
flay, ay) is quasiconformal and since the triangles (and vertices) vary in a compact set,
the uniform K-quasiconformality follows; cf. Lemma 4.1 of [35].

Suppose then that both T(a;) and T(a,) are infinite triangles. Again by (ii) and (ii),
the triangles, as well as the subtriangles T;; in (5.2) into which we have divided 7(a;),
vary in a compact set; note that f(a,, a;) is conformal in T\;.

SB. Quasiconformal extension in a special case. Now we construct a quasiconfor-
mal extension to a G-compatible k-quasisymmetric map f, provided that G satisfies a
condition depending on %.

THEOREM 5.2. Let k=1. Then there are M=M(k)>0 and K=K(k)=1 with the
Jollowing property. Let G be a Fuchsian group such that G and M satisfy condition
(4.9). Under these conditions any k-quasisymmetric and G-compatible map f admits a
K-quasiconformal and G-compatible extension F to a homeomorphism of the closed
upper half-plane U.

Proof. Let K'=K'(k)=1 be a number such that every k-quasisymmetric map is
K’-quasiconformal in the sense of Section 1 F. Choose then M=M(K")=M(k) such that

2/sinh (M/6) <B). and M=M}. (5.9)

where B} <1 is as in Theorem 3.8 and M. as in Theorem 3.6.

We show that the theorem is true with this M. We first choose a G-invariant
triangulation  of U as in Theorem 4.5. Let A be the set of vertices of . We represent
every triangle T€ J in the form T=T(ay) as in the preceding section (i.e., we fix an
order for the vertices of T). By (vi) of Theorem 4.5, at most one point of the triple ar is
in R, and in accordance with the preceding section, we assume that then the last point
of ar is in R. If T'€ J is another triangle and T'=g(T), g €G, then we assume that
ar=g(ar).

We next pick for every vertex a€A a point z,€ T'UR (cf. Section 3 A) such that
p(z,)=a and do this in a G-invariant manner: Z,,,=g(z,).

We can now define F|T using the map f(a, b) of the preceding section. If T=T(ay)
and a;=(ay, ap, ap), we set ap,=pf(z, ) and ar=(ay,, ap,ap) and define

F|T=f(aTr alT)

13858286 Acta Mathematica 154. Imprimé le 15 mai 1985
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By (5.4) and Theorem 4.5 (iv), the angles of T do not exceed ﬂ}(,sl and hence ay; are
the vertices of a non-degenerate triangle by Theorem 3.8. Thus f(ar, af) is indeed
defined.

In R we define F by FIR=f.

We claim that this gives the required extension. First, we must show that F is well-
defined. This is clear if x ER or if xEint T for some T€ J. It is also clear if x is a vertex
of J or if x€S where S is a finite side of some T€ 7, cf. the definition of f(a, b) in
Section 5 A. Suppose then that x €S where S is an infinite side. Let v ER be the vertex
at infinity of S (as we have seen, there is only one such vertex). Let T, T, € 7 be the
triangles of J such that ScT;. Then Theorem 4.5 (vi) implies that there is a generator g
of G, such that g~!(S) and S are sides of T, and S and g(S) are sides of T,. Hence the
points d;ES defined by (5.1) are the same regardless of whether we regard S as a side
of T, or T,. It follows that F is well-defined also on infinite sides, and hence
everywhere.

If f induces ¢:G—G’, then F also induces @ by (5.3) since z,,)=g(z,) and
axn=g(ay) for g€ G. Hence F is G-compatible.

Obviously, F|U is compatible with fand J (Section 3 B), and in addition F|T is an
embedding for every T€ J. Then Corollary 3.9 implies that F is a homeomorphism of
U.

Finally, by (5.4) and Theorem 4.5 (iii) and (iv), the angles of the triangles TEJ
do not exceed 1, and the lengths of their finite sides lie in [M/3,4M/3]. Then, in view of
Theorem 3.6 and 3.8 the angles of the triangles F(T), T€ 7, do not exceed 1, and the
lengths of their finite sides lie in [M/3L}., 4L} M/3]. Hence the conditions of Lemma
5.1 are satisfied for some c=c(k) €(0, 1). Thus there is K=K(c)=K(k)=1 such that F|T is
K-quasiconformal for every T€ J. It follows that F is K-quasiconformal. and the
theorem is proved.

Remarks. (1) The complex dilatation of the map f(a, b) in Section 5 A depends real
analytically on b when a is fixed, cf. Lemma 4.1 of [35], and this is true also if the
triangles have one vertex in R. If f€ T(G) (cf. Section 2 B), and x ER, then f(x) depends
real analytically on f([34, p. 139]). It follows that the complex dilatation of the map
constructed in Theorem 5.2 depends real analytically on f€ {g € T(G): g k-quasisym-
metric}. Thus there is ¢>0 such that for k£ near 1 we have the estimate

K=1+c(k-1). (5.6)

(2) Actually, one sees as in Lemma 4.1 of [35] that the maps f(a, b) are bilipschitz
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maps in the hyperbolic metric and then, as above, a compactness argument shows that
the extension of Theorem 5.2 is (in U) bilipschitz with respect to the hyperbolic metric.

However, this property is lost in Theorem 2 since its proof involves passing to
extremal quasiconformal mappings and we do not know whether they are bilipschitz
maps for the hyperbolic metric. On the other hand, the constant K(k) of Theorem 5.2 is
valid for Theorem 2 as well.

5C. Normal subgroups of Fuchsian groups. In this section we show that, if a
finitely generated Fuchsian group G and M>0 are given, then G has a normal subgroup
N of finite index such that N and M satisfy condition (4.9). Basically, this is due to the
fact that Fuchsian groups are residually finite, i.e., the following lemma is true.

LEMMA 5.3. Let G be a finitely generated Fuchsian group and let
hy, ..., hs€ G\ {id}. Then G has a normal subgroup N of finite index not containing the
elements h;.

Proof. This follows since the lemma is true if G is a finitely generated group of nxn
matrices with entries in a field of characteristic zero, cf. Malcev [20, Theorem VII].
(This can be proved like Lemma 8 of Selberg [29].) And a Fuchsian group is isomorphic
to a subgroup of the 3-dimensional ortochroneous Lorentz group, cf. [3, 3.7.7] or [24,
Theorem 1.1].

In view of the importance of this lemma in our construction, we give references
also to a more direct proof of it. Zieschang-Vogt-Coldewey [44, 4.10.8] proved that G
has a normal subgroup N’ of finite index not containing torsion elements. Then Hempel
[12] showed that N’ is residually finite. Since a subgroup of finite index of a finitely
generated group contains a normal subgroup of finite index, the lemma follows.

Using Lemma 5.3, we can prove

LEMMA 5.4. Let G be a finitely generated Fuchsian group and let M>0. Then
there is a normal subgroup N of G of finite index such that N and M satisfy condition
4.9), i.e. if x€U and if

A(N, M, x) = {gEN: d(x, g(x)) <M},

then either A(N, M, x)={id} or is contained in a subgroup N, of N generated by a
parabolic element.

Proof. Let G, be the subgroup of G consisting of orientation preserving elements.
If there is g € G\ G, and if Ny is a normal subgroup of Gy such that the lemma is true
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for Gy and Ny, then the lemma is true also for G and N=NyNgN,g~!. Hence we can
assume that G does not contain orientation reversing elements.

Let then PR be the set of points fixed by a parabolic g € G. Fix for every vE€ P an
open horoball B, at v (i.e B,c U is an open 2-ball such that 3B, is tangent to R at v). As
is well-known, we can do this in such a way that B,’s are disjoint and that B,,=g(B,)
for g€G. Let G,={g€G:g(v)=v} if vEP. Then

gB)=B, ifg€G, and
5.7)
gB)INB,=B,,,NB,=2 if gEG\G,.
Define then another horoball B,cB, at v by d(@yB),dyB,)=M. Then also
B,,,=g(B,) for g€ G and vEP and if x€ B,, then D(x, M)cB,. Hence, by (5.7),

A(G, M, x) G, (5.8

if x€B;, and v € P and here G, is a cyclic group generated by a parabolic element of G.

Let L(G)cR be the limit set of G. Let yER\L(G). Since G does not contain
orientation reversing elements, y has a neighbourhood V in UN\L(G) such that
A(G, M, x)={id} for x€EVNU. In the finitely generated case (R\L(G))/G is compact
and hence we can find a G-invariant neighbourhood W of R\ L(G) in U\ L(G) such
that

A(G, M, x) = {id} 5.9

for xe WnU.

Since G is finitely generated (UN\[L(G)UWU(U,epB))/G is compact. Hence
there is a compact set Cc U such that

UcGCuWu(uU B).

vEP

Let

A= {g€G: d(x, g(x)) <M for some xEC}
which is a finite set by compactness of C. Hence, by Lemma 5.3, there is a normal
subgroup N of G such that NnA={id}.

We claim that this is the sought-for subgroup. Let x € U. If x€ W or x € B, for some
VEP, then A(N, M, x) is of the required form by (5.8) and (5.9). If this is not the case,
then x=g(y) for some y€C and g€G. Suppose that there is h€EN such that
d(x, h(x))<M. Then

d(x, h(x)) = d(g(y), hg()) = d(y, g~ hg(»)) < M.
Since g"'hg € NnA={id}, it follows that ~=id, and the lemma is proved.



QUASICONFORMAL EXTENSION OF QUASISYMMETRIC MAPPINGS 189

5D. Quasiconformal extension and subgroups of finite index. Macbeath [19]
observed that if G is a Fuchsian group with a compact fundamental domain and if NcG
is a normal subgroup of finite index, then an extremal N-compatible quasiconformal
map of U is also G-compatible. We use this idea to show that in the construction of a
G-compatible quasiconformal extension of a quasisymmetric map, we can pass to a
subgroup of finite index.

LEMMA 5.5. Let G be a Fuchsian group and f a quasisymmetric G-compatible
map. Let N be a subgroup of finite index and assume that there is a K-quasiconformal
N-compatible extension F' of f to U. Then there is a K-quasiconformal G-compatible
extension F of fto U.

Proof. We can assume that N contains only orientation preserving elements.

We first assume that G is finitely generated. Now G has only finitely many
subgroups of the same index as N and then their intersection is a normal subgroup of G
of finite index. Hence we can assume that N is a normal subgroup.

Let @: G—G’ be the isomorphism induced by f, i.e., p(g)|R=fgf ~'. Let L(G) be
the limit set of G. It is also the limit set of N. If L(G)*R, choose a set
{x1,%2,...}cRN\L(G) which is dense in R\ L(G) and does not contain G-equivalent
points. Let, if n>0,

_[@ ifLG)=R
" | GUx,, ..., x,}) if LG)*R.

Then X,/N is finite. This and the fact that N is a finitely generated Fuchsian group not
containing orientation reversing elements imply that there is a uniquely determined
map F,: U-U, n=3, such that

(a) F, is N-compatible and F induces ¢|N,
(b) F,(x)=f(x) if x€X,UL(G), and
(c) F,is the unique extremal quasiconformal map satisfying conditions (a) and (b).

This is a consequence of the existence and uniqueness of Teichmiiller’s extremal
mapping. (Cf. Bers [4, § 7] where this has been proved in the form we need it.) We
show that F, is G-compatible. Choose g €G. We must show that if F"=¢(g)”"'F,g,
then F"=F,. We show that also F" satisfies (a) and (b). Then by the uniqueness of the
extremal map, we must have F"=F,, since the maximal dilatations of F” and F, are
equal. Let h€N. Then, if h'=ghg €N,
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@h)"'F"h= @h)'p(g)"'F,gh=@(g) '¢(h')"'F,h'g
=@(g) 'F,g=F"

since F, induces ¢@|N. Thus F"” satisfies (a). If x€EX,UL(G), then
F"(x)=¢(g)"'F, g(x)=9(g) " fg(x)=f(x) since f induces ¢ and g(x) EX,UL(G). Thus
F" satisfies also (b), and consequently F, is G-compatible.

Since we know that there is at least one K-quasiconformal map of U satisfying (a)
and (b) (i.e. F'), F,, must be also K-quasiconformal.

The normal family properties of quas1conforma1 mappings imply that there is a
sequence n(1)<n(2)... and a K-quasiconformal homeomorphism F of U such that
F,»—F uniformly in the spherical metric. It is G-compatible since every F, is, and,
by (b), F(x)=f(x) if x € L(G)U(U,=0X,) which is dense in R. Therefore F|lR=f and the
lemma is true for finitely generated G.

If G is not finitely generated, there is a sequence G,c=G,c... of finitely generated
subgroups of G whose union G is. Let N;=NnG; which is a subgroup of finite index of
G;. Since an N-compatible map is also Ni-compatible, the above proof shows that there
is a K-quasiconformal, G-compatible extension F; of fto U. As above, a normal family
argument now shows that there is a G-compatible K-quasiconformal extension F of f to
U.

Remarks. (1) Actually, it would suffice to assume that Nn H is a subgroup of finite
index of H whenever H is a finitely generated subgroup of G.

(2) After the first version of this paper was completed, we got Sakan’s paper [28]
where he gives a different proof of this theorem.

SE. Conclusion of the proof of Theorem 2. We put now all the pieces together and
conclude the proof of Theorem 2. There are two cases.

G is discrete. If G is finitely generated, then Lemma 5.4 implies that G has a
normal subgroup N of finite index which satisfies condition (4.9) for M=M(k) of
Theorem 5.2. Hence Theorem 5.2 can be applied to construct an N-compatible K(k)-
quasiconformal extension of f. Then Lemma 5.5 implies that there is also a
G-compatible K(k)-quasiconformal extension of f.

If G is not finitely generated, pick a sequence G,c=G,c... of finitely generated
groups whose union G is. Let F; be a K(k)-quasiconformal G-compatible extension of
/- By passing to a subsequence we obtain that there is a K(k)-quasiconformal F such
that F;—F uniformly on compact sets. Then F is a G-compatible homeomorphism of U,
and Theorem 2 is proved for discrete G.
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G is non-discrete. We prove that if fis a G-compatible homeomorphism of R, then
there is an extension of f to a G-compatible homeomorphism of U which is K(k)-
quasisymmetric if f is k-quasisymmetric, K(k) as for discrete G.

We can assume that G is a closed subgroup of the group of Mébius transformations
of U. Let G, be the component subgroup of G containing the identity element. Then
(Greenberg [11]) G, must be one of the following groups: (a) the group of elliptic
transformations fixing a point of U; (b) the group of parabolic, or of parabolic and
hyperbolic, transformations fixing a point of R; (c) the group of hyperbolic elements
fixing a point-pair of R; (d) the group of all orientation preserving Mobius transforma-
tions of U.

It is easy to check that then f must be a Mdbius transformation except possibly in
(c). Suppose now that we have case (c) and let {0,} be the point-pair fixed by
elements of Gy. Then one sees that fis of the form

clx®, x=0
c'lx°, x=<0,

fix)= {

where a>0 and cc’>0. In particular, fis then always k-quasisymmetric for some k=1.

It would not be difficult to find directly an extension of fin this case but it can be
reduced to the discrete case as follows. Since G is normal in G, one sees that elements
of G fix setwise the point-pair fixed pointwise by elements of G,. Using this fact and
the known structure of Gy, one can find discrete subgroups G,=G,<... of G whose
union is dense in G. Hence there is a K(k)-quasiconformal G--compatible extension of f
to U and the proof can be concluded by a normal family argument.
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