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Introduction

The local solvability of a first-order linear partial differential equation depends on
whether it satisfies the so-called Condition (P) (see [4]). Suppose that the differential
operator under study is a complex vector field L, nowhere zero, in some open subset of
R\ If L is locally integrable, that is to say, if in the vicinity of every point the
homogeneous equation Lh=0 has n independent, and smooth, solutions, one can use
them to formulate (P) (see [5]). In the case n=1, i.e., when L is defined in an open
subset Q of the plane, there is essentially only one such solution (if one exists at all), in
the sense that the differential of any other one is collinear to its differential. Call Z such
a solution, and view it as a map Q—C. Condition (P) is equivalent to the property that,
locally speaking, the pre-images of points under the mapping Z are connected.

But it must be emphasized that the local integrability of L is by no means
automatic. In his “‘Lectures on linear partial differential equations’’ (Reg. Conf. Series
in Math., No 17 Amer. Math. Soc. 1973). L. Nirenberg has given the example of a
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vector field in the plane that only annihilates the constant functions. It is a modification
of the Mizohata operator

L,= o iy i
dy ox

Note that Ly Z=0 if Z=x+iy?*/2, and the pre-images of points under the mapping Z are
the points (xo, £yo). The Mizohata operator is the simplest differential operator that
does not possess Property (P), and in a sense is the prototype of all nonlocally solvable
operators. Nirenberg’s construction was inspired by an argument of Grushin [2]
describing right-hand sides f such that the inhomogeneous equation Lyu=f cannot be
solved. In [7] it was shown how Grushin’s and Nirenberg’s constructions were direct
consequences of the fact that the ‘‘fibers’’ of the mapping Z (in the case of the
Mizohata operator) are not connected.

The present work is a generalization, and an amplification of the previous ones. It
studies ‘overdetermined systems’’ of vector fields in an open subset Q of R"*!, of the
kind

Q=§ﬁ%mﬂ§?j=hmm
having analytic coefficients (the theory of analytic, semi-analytic and subanalytic sets
is heavily relied upon; see [2] and the Appendix by B. Teissier). We assume throughout
that the vector fields L; satisfy the Frobenius (or bracket) condition, which, because of
the special form of these vector fields, reads here

[Lj'Lk]=0) j,k=l,...,m, (1)

For this kind of vector fields the approximation and representation of solutions of the
homogeneous equations

Lh=0, j=1,...m, )

established in [1], are now available, and greatly facilitate the analysis. The present
work uses them at every turn.
Using then the unique analytic solution of the Cauchy problem

LZ=0,j=1,...m; Z,_o=x 3)

(keep in mind that t=(¢', ..., ™) is a set of m variables), we define Property (P) at a
given point p by saying that p has a basis of neighborhoods in each one of which the
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fibers of Z are connected. Such a formulation of (P) agrees with the generalizations of
(P) (and of (¥)) to the models of complexes of pseudodifferential equations introduced
in [6].

The main results (Theorems 2.1 and 2.2) of this work are easy to describe: if (P)
does not hold at some point py there are right-hand sides fi, ..., f,,, defined and C*
near that point, which satisfy the so-called compatibility conditions,

Lifi=Lcf, jk=1,...m, C)]
such that the inhomogeneous equations
Liu=f, j=1,...,m, 5)

do not have any distribution solution. Furthermore, there are simple modifications of
the vector fields L; that also commute pairwise and such that the homogeneous
equations analogous to (2) do not have any C! solution # such that dh(po)=+0.

Conversely, suppose that Condition (P) holds at every point of some neighborhood
of po. Then, for any choice of C” right-hand sides f, satisfying (4), in some open
neighborhood V of py, there is a C” solution u satisfying (5) in a possibly smaller open
neighborhood W of py. This can be regarded as a generalization of the Poincaré lemma
(for one-forms).

All proofs are by construction, and we obtain explicit integral representations of
the solution u of (5).

I am grateful to Bernard Teissier for having provided the proofs of some of the
properties of analytic sets that were needed. The statements of those properties and
their proofs can be found in the Appendix (in French) written by Teissier.

1. Basic concepts and notation

We suppose that we are given an analytic vector subbundle T’ of the complex
cotangent bundle CT*Q of an analytic manifold Q. Throughout the work ‘‘analytic’’
will mean ‘‘real-analytic’’. When meaning ‘‘complex-analytic’’ we shall say ‘‘holomor-
phic’’. We assume that the fibre dimension of 7" is equal to one; so T’ is a complex line
bundle over Q. We shall call m+1 the dimension of Q.

We assume that T" is locally integrable. This means that locally T’ is generated by
the differential of an analytic function. Let U be an open subset of Q in which T’ is
generated by the differential dZ of an analytic function Z. We select a point pg in U (it
will be the ‘“‘central point’* in the forthcoming study) and suppose that Z(py)=0. After
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multiplication of Z by an appropriate complex number we may assume that d(Re Z)#0,
d(Im Z)=0 at py. We can find local coordinates in U (after as many contractions of the
latter as deemed useful), denoted by ¢, ..., 7", x, vanishing at p,, and such that

Z=x+id(, x), 1.1
® real-valued, @(0,0)=0, d,%$(0,0)=0, (1.2)
and, of course, ® analytic in U. Actually we may even assume
@(0,x)=0. (1.3)
It is convenient to assume that
U=B,xJ, (1.4)

where B, is the open ball {tER™;|f|<r}, and J an open interval in the real line
containing the origin (the equality in (1.4) actually stands for the isomorphism defined
by the coordinates #/, x). We shall also assume that the closure of U in Q, ClU, is
compact.

We shall denote by Z the mapping (¢, x)—~Z(t, x) from U to C. Its image, Z(U), is
easy to describe: it is the union of a collection of intervals

{XQ}XI(X()), X()e.,, (15)

where I(xy) is the image of B, via the map r—>®(z, xo). Of course I(xy) is always an
interval containing zero, but otherwise fairly arbitrary. In particular it is reduced to
zero whenever ®(¢, x,)=0 (and only then!).

We must now introduce the orthogonal T'+ of T': it is a vector subbundle of the
complex tangent bundle CTQ, analytic, whose fibres have dimension m (incidentally
we always suppose m=1). In U it is generated by m analytic vector fields L,
j=1,...,m, such that

LiZ=0, j=1,...,.m. (1.6)

If we further require
L;#* =6 (Kronecker’s index), j,k=1,...,m, (1.7)
the L; are uniquely determined, since dt',...,dt™, dZ obviously span the whole cotan-

gent space CT}Q at every point p of U. We have
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9 9 .
Lj=a_tj+1j(t,x)5—;, j=1,...,m. (1.8)

Of course,

A==2,1Z = -i® [(1+i®), (1.9)

where subscripts mean differentiation. Note that, by (1.6), we have
L, Z=LAZ+Z)=L(20)=24; i.e.,

=32 (1.10)

J J

It is also convenient to introduce the vector field

3
L =Z"'—. .
0= 4 o (1.11)
Of course we have
Lot“=0, k=1,...m, LyZ=1. (1.12)

Thus Lo, L,,...,L,, is the basis in CT,Q (p€ U) dual of the basis dZ,dt',...,dt" of
CT}. We have, in U,

Ly Ld=0, j,k=0,1,....m. (1.13)

Indeed, L;L;—L, L; annihilates Z and all ¢.
If Fis a C! function in U, we have

dF = L ,Fdt'+L,FdZ. (1.14)
=1
We shall need the results of [1] relating to the solutions of the homogeneous
equations

Lirn=0, j=1,...,m. (1.15)

To help the reader we restate here the main theorems of [1]. Set U"=B, xJ', with
0<r'<r, and J’ an open interval whose compact closure is containted in J. By Cl U’ we
denote the closure of U'.

THEOREM 1. Let h be a continuous solution of (1.15) in some open neighborhood
of CAU'. Then h is the uniform limit, in C1U’, of a sequence of polynomials, with
complex coefficients, in Z(t, x).
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THEOREM II. Let h be a distribution solution of (1.15) in some open neighborhood
of CLU'. There are, then, an integer g=0 and a C* solution of (1.15) in a neighborhood
of CLU', f, such that h=L§ f in U'.

By combining Theorems I and II we see that any distribution such as h, in
Theorem 11, is the limit, in the distribution sense, in U’, of a sequence of polynomials in
Z. Indeed, if P(Z) is such a polynomial so is Lo[P(Z)].

A remark we shall use is the following one: Let V be an open subset of U’ in which
d, ® does not vanish. Then in V the system L=(L,, ..., L,,) is elliptic (its characteristic
set is void), and every distribution solution of (1.15) in V is an analytic function. If then
{P.(2)} is a sequence of polynomials in Z, which converges to the distribution h of
Theorem Il in &' (U"), in V it necessarily converges to h in the C” sense. Indeed, on the
space of solutions of (1.15) in V, the topologies induced by 9’ or by C” are the same
(and so are, of course, all the intermediary ones, such as that of uniform convergence
on compact sets).

Let us stress an important consequence of Th. I:

COROLLARY. Let h be a continuous solution of (1.15) in the neighborhood of
CIU'. There is a continuous function h on Z(Cl U’), holomorphic in the interior of that
set, such that h=hoZ in C1U'.

In particular note that 4 is constant on the fibers of the mapZ in U’. If V is any
subset of U by a fiber of Z in V we mean a set

(L,X)EV, Z(t,x)=2z0 (2€C). (1.16)
Because of the peculiar form of the function Z (see (1.1)), the fiber (1.16) is given by
(t,x)EV; x=x0, P(t, x0)=Yyq (20=Xo+iyo0), 1.17)

and can thus be identified to a subset of the ball B,.

2. Condition (P) and statement of the theorems

We use the notation and concepts introduced in Section 1. In particular, U will have the
meaning given to it there. We shall reason as if Q were an open subset of R”*!; then
U is the product set (1.4).

Definition 2.1. We shall say that the system L=(L,, ..., L,,) satisfies Condition (P)
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at a point p of U if there is a basis of neighborhoods of p in U, in each one of which the
fibers of Z are connected.

We shall say that L satisfies Condition (P) in U if it satisfies Condition (P) at every
point of U.

In Definition 2.1 one may replace Z by any other smooth function whose differen-
tial spans T’ at each point of U (possibly after the latter set has been contracted about
p)- This is made evident by the Corollary in Section 1. Thus the validity of (P) at p € U
is truly a property of the system L or, more accurately, of the line bundle 7’ (or of T'*).

We shall be concerned with the inhomogeneous equations

Lu=f, j=1,..,m, @.1)

where f1, ..., f,, are C” functions near p, satisfying the compatibility conditions:

Lifi=Lcf, jk=1,...,m. (2.2)

We shall also construct a modification Lf of L; for each j, and consider the homogene-

ous equations

L¥h=0, j=1,..,m. 2.3)

THEOREM 2.1. Suppose that the system L=(L,, ..., L,,) does not satisfy Condition
(P) at the point p,.

Then there are two C* functions f, g in an open neighborhood VU of py,
vanishing of infinite order at py such that the following facts are true:

the functions fi=4; f, j=1,...,m (see (1.8)) satisfy the compatibility
conditions 2.2) in V;

2.4

the vector fields in V, L} = L~1,g0/dx, j=1,...,m, 2.5)

commute pairwise.
Furthermore, given any open neighborhood W<V of pq, the following is true:
no distribution u in W satisfies (2.1); (2.6)

the differential of every function h € C'(W) that satisfies (2.3)

vanishes at pg.

2.7
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THEOREM 2.2. Suppose that L satisfies Condition (P) in U. Then every open
neighborhood VU of py contains another open neighborhood of po, W, having the
Sfollowing property:

Given any set of m C* functions fi, ..., f,, in V, satisfying the
compatibility conditions (2.2) there is a C* function u in W satisfying 2.8)
2.1)in W,

The proofs of Theorems 2.1, 2.2, given in Sections 4, 5, 6, 7 are constructive: we
shall give explicit representations of the functions f and g in Theorem 2.1, and of the
solution u of (2.1), in Theorem 2.2.

3. About condition (P)

We restate Condition (P) (Definition 2.1) in the following manner:

Every open neighborhood V,cU of p contains another open neigh-
borhood W, of p which intersects at most one connected component 3.1

of every fiberof Z in V,,.

Indeed, suppose first that V, contains a neighborhood W, of p in which every fiber of
Z is connected. Then we can take W, in (3.1) to be the interior of W,. Conversely,
suppose that (3.1) holds; call W, the union of all the connected components of fibres of
Z in V, which intersect W,,.

For a while we shall forget momentarily that the variable x is there: we shall reason
in t-space R™. We denote by B, B', B" three open balls centered at the origin in R™,
such that

B'chB iB. (3.2)

We shall look at a real-valued analytic function @ in B. If A is any subset of B and ¢ any
real number we write

AT )= {t€EA;p()>c}, A (c)={tEA;p(t)<c}, (3.3)
A%c)={t€EA; () =c}. (3.4)

In other words A%, A*, A~ are the level, superlevel and sublevel sets, respectively, of
the function ¢ in A.
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LEMMA 3.1. Suppose that

for every real number ¢, B"(c) is contained in a single connected

o (3.5)
component of B'"(c).
Then the following property holds:
for every real c, B"* (c) is contained in a single connected component
of B'*(c) and B"~(c) is contained in a single connected (3.6)

component of B’ (c).

Proof. Suppose B” intersected two distinct connected components, A, and A,, of
B’'*(c) (cER). Then for c*>c sufficiently close to c, B"nA; (j=1,2) would contain a
point where @=c*. But this means that A; contains a connected component of B'%(c*)
which intersects B”, for each j=1, 2, and thus (3.5) could not be true. Q.E.D.

The converse of Lemma 3.1 is not true, in general, but the following partial
converse will suffice for our needs:

LEMMA 3.2. Suppose that Property (3.6) is valid. Then

for every real c, B®(c) is contained in a single connected component

of (CLB")°(c). G-
CIB’ stands for the closure of B'.
Proof. Consider the singular set of ¢ in the ball B:
{t€B; do(1) = 0}. (3.8)

Only a finite number of its connected components intersect CIB’. On each of these
components @ is constant, therefore the number of critical values of ¢ in a neighbor-
hood of CIB’ is finite.

Suppose first that c is not a critical value of ¢ in such a neighborhood, and let ¢
(j=0, 1) be two points on the fibre B”(c). The latter is equal to the intersection of B”
with an analytic hypersurface in a neighborhood of Cl1B’; necessarily ¢ changes sign
across that hypersurface. For each j=0, 1, we can find two point tj*, t; in B”, arbitrarily
close to ¢, such that g(t7)<c<e(t}). By virtue of (3.6) we can find a smooth curve 7*,
entirely contained in B'*(c), joining #; to f; and, likewise, one $~ B’ (c), joining

t, to f;. And by selecting tf close enough to #; we can connect tf to £ by a smooth



10 F. TREVES

arc crossing B'%(c) only at t; (j=0, 1), and there transversally. In such a way we obtain
a continuous curve ycB’, passing through f, and ¢, closed, such that the two
components of yN\({fo} U{#;}), which we shall call y* and y~, lie entirely in B'*(c)
and B’ 7(c) respectively After smoothing we may suppose that y is C” and diffeo-
morphic to the unit circle. We may arrange that the diffeomorphism maps y* onto the
upper half-circle, ¥y~ onto the lower one, and maps the point ¢4 onto (—1,0), and the
point ¢, onto (1,0). Using coordinates (&, #) in the plane and the parameter & on both y*
and y~ (pulled back from the upper and lower semicircles), call /; the straight-line
segment (in ¢-space) joining f; to t;, the points on y~ and y* respectively, corre-
sponding to the value & (0<&<1) of the parameter. After this we map linearly (and so as
to preserve the orientation) onto each /; the vertical segment joining the point
¢, —\/ITET) to the point (&, V 1+§2 ) in the plane. This defines a continuous map-
ping 7 of the open unit disk onto the subset

©= U |
0<E<]

of r-space; the mapping z extends continuously as a mapping of the unit circumference
onto the curve y (which is the boundary of &). We may therefore pull-back the function
@ from SUy to the closed unit disk D. It will suffice to show that (1,0) and (—1,0)
belong to one and the same connected component of the level curve of gox that
contains those two points. We note that the level curve in question (g o t=c) intersects
the boundary of D only at (1,0) and (—1,0) and, by virtue of our construction, is the
graph of a continuous function of £ in the vicinity of both those points. If (1,0) and
(—1,0) belonged to two different components, A; and A_,, of the level curve poa=c
in D, it would be possible to draw a smooth closed curve (without self-intersections) in
the plane, winding around A; and not intersecting at all the set

{(£, ) ED; @&, M) =c).

Such a curve per force would intersect the upper semicircumference, and also the
lower one, and therefore one of its halves (the one lying in D) would join a point on
which gon<c to one on which goa>c without pox ever equalling ¢ on it, which is
absurd.

Assume now c¢ to be a critical value of ¢ in C1B’, and that 1, and ¢, lie on two
disjoint connected components of the level set ¢=c in Cl1B’, Cy and C,. Since Cy and
(C1B")°(c)\.C, are compact we can find two disjoint open subsets of B, W, and W,
containing each one of those sets respectively. Note that (C1B’')\(W,U W) is a com-
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pact set K, and @(f)#c for every ¢ in K. We can find two points ¢/ (j=0,1) on the
straight-line segment joining ¢, to ¢, such that ;€ Wy and 11 €W, @(t0)=¢(t1)=c' not a
critical value of ¢ in C1B’, and ¢’ ¢ ¢(K). By the first part of the proof we know that
there is a connected analytic hypersurface M’ cB'%(c’) containing both ¢ and ¢}. Since
W, and W are disjoint M’ must intersect K, contrary to the fact that ¢’ € ¢(K), whence a
contradiction. Q.E.D.

We relate now the properties (3.5), (3.6), (3.7) to the behavior of the function ¢
along certain curves in B. By a piecewise analytic curve in B we mean a continuous
map

[0,1]12s—>Hs)EB

which is analytic, except possibly at a finite number of points 0<<s¢<s;<...<s,<1. We
shall say that the curve joins #(0) to #(1). We shall make use of the following important
result (for a proof, see [3]):

any two points in a connected analytic subset A of R” can be joined

. . . . o (3.9
by a piecewise analytic curve entirely contained in A.
LEMMA 3.3. Property (3.6) is equivalent to the following one:
any two points in B", ty, t,, can be joined by a piecewise analytic (3.10)

curve in CIB’ on which @ is monotone.

Proof. Let us first show that (3.6) implies (3.10). If ¢(¢)=c, j=0,1, (3.7) (Lemma
3.2) tells us that f, and ¢, belong to one and the same connected component of
(CIB)°(¢). Call S’ the sphere in R™*' (where the variable is denoted by
(°,1',...,t™) centered at the origin and having the same radius as the ball B'cR"™.
Regard ¢ as a function defined (and analytic) on S'—which happens not to depend on
°. Call t;- the (unique) point in the upper hemisphere which projects onto ¢; (via the
coordinate projection (¢%,¢', ..., " (t', ..., t™); j=0, 1). Obviously f, and {, belong to
the same connected component of §'%c), which is an analytic set. We apply (3.9) and
thus get a piecewise analytic curve 7, joining f, to f; and entirely contained in $'%(c).
Projecting 7 into ClB’ provides a piecewise analytic curve joining #, to #; on which
@=c.

Suppose @(t)<@(t)) and let [ denote the straight-line segment joining ¢, to ¢,. Call
1y the point on [ closest to f; such that ¢(¢5)=¢(t), and ¢} the point between t; and ¢,
closest to ¢y such that @(t))=¢(z,). By the first part of the proof we can join ¢; to ¢/ by a
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piecewise analytic curve on which ¢ is constant. We may therefore assume #,=¢; for
J=0, 1. If the derivative of ¢ along ! does not change sign our contention is trivial.
Suppose it does and let s, be the point closest to t, where ¢|, reaches a local maximum.
Note that so=+1, for the derivative of ¢ along !/ must be positive in some open interval
Jto, to+6[, and that @(t))<@(so)<@(t)), otherwise we could not have tj=¢ for both
J=0, 1. Of course it suffices to join sq to ¢; by a piecewise analytic curve on which g is
monotone. But we may repeat the reasoning just described after substitution of s, for
to. Since @|; has only a finite number of extrema we reach the desired goal after a finite
number of such repetitions.

Let us now prove that (3.10) implies (3.6). Let #,,#;, be two points in B” such that
@(t)=@(t1)>c. By (3.10) they are joined by a piecewise analytic curve y in Cl1B’ such
that, for all ¢ in y, @(ty)=@(f)=¢(t;). Of course y might have one or more arcs lying on
the sphere 8B’. But by performing (for instance) a contraction t—(1—¢)¢ one can bring
such arcs inside B’ and connect the end-points of the new arcs to portions of y inside B’
in such a way as to obtain a piecewise analytic curve y'=B’*(c) joining ty to t;. Q.E.D.

At this stage we re-introduce the variable x. If A is any subset of U=B,xJ and x, y
any pair of real numbers, we write

AT (x,y)={p€A; x(p) =x, D(p) >y},

3.11)
A (x,y)={p€EA; x(p) = x, P(p) <y}.

Of course, A*(x,y) or A (x,y) might be empty, as when x ¢ J.

PROPOSITION 3.1. Property (3.1) is equivalent to each one of the following
properties:

Every open neighborhood V,cU of p contains another open

neighborhood of p, W, such that, given any pair of real

(3.12)
numbers x,y, W), intersects at most one connected component
of V;(x,y), and at most one of V,(x,y).
Every open neighborhood V,cU of p contains another open
neighborhood of p, W, such that any two points in W, of the 3.13)

kind (to, x), (1|, %) can be joined by a piecewise analytic

curve in V, on which x is constant and ® monotone.

Proof. Notice that each one of the properties under consideration, (3.1), (3.12) and
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(3.13), remains valid if we increase V, or decrease W,. We may therefore assume that
V,=B'xJ', W,=B"xJ", with B’, B" open balls in R™ centered at #(p), and J', J' open
intervals in R! centered at x(p). We introduce an additional open ball B, centered at
#p), with B'EB. If then V,, and W, are as in (3.1) we derive from Lemma 3.1 that they
satisfy the condition in (3.12). Conversely, if the latter is true, then, by Lemma 3.2,
every fiber of Z in W, is contained in a single connected component of a fiber of Z in
(C1B")xJ’ (actually, in (C1B’)xJ"), and therefore in a single component of a fiber of Z
in BxJ'. Since B’ is arbitrarily small so is B, whence (3.1). The same argument, but
based on Lemma 3.3 rather than 3.2, shows the equivalence of (3.12) and (3.13). Q.E.D.

The version (3.12) of Condition (P) is of the same kind as the solvability condition
in [6] (see p. 288).

The version (3.13) of (P) generalizes the standard definition of (P) in the case of a
single vector field (see [4], [5]), as we now show.

Indeed separate the coefficients 4; in (1.9) into their real and imaginary parts:

A=a+V=1b, (3.14)

Note that, with this notation, (1.9) reads —i® ,,=(aj+ibj)(l+i<l>x), whence
d,®=—|Z D b;dr. (3.15)
Jj=1

This shows that the one-form b=ZI]., bjdti has a real-valued, analytic and nowhere
vanishing integrating factor. At any rate if makes sense to say that b does not change
sign along a given piecewise analytic curve in t-space, and therefore also on any curve
in U, of that nature, on which x=Constant: it means of course that the scalar product
between b and the oriented unit tangent vector to the curve does not change sign along
it. It is of course equivalent to the property that the restriction of ® to the curve is
monotone.

4. Proof of Theorem 2.1

We use the notation of Sections 1, 2, 3. Our starting point will be the hypothesis that
Condition (P) is not satisfied at the origin (Definition 2.1). Actually it is convenient to
make use of the version (3.12) of (P), or rather of its negation. Let us for instance
assume that the following property holds:
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There is an open neighborhood V< U of the origin, and a sequence of
points in C, z,=x,+iy,, v=1,2, ..., converging to zero, such that any @1
neighborhood of the origin, WV, intersects two distinct connected '

components of V*(x,, y,) (see (3.11)) for some v.

Note that (4.1) remains valid if we decrease V. Thus we shall assume that VEU=B,XJ,
and that V=B,0><JO. Possibly after a change of subscripts v=1,2,..., we select a

seduence of open neighborhoods

W, =B, xJ,, 4.2)

with ro>r,\+0, J,=1-r,, r,[, such that, for each v, W, intersects at least two distinct
connected components of V*(x,,y,), C;, and C,,.

Fix x, in J. Then the number of critical values of the mapping Z(¢, x) in Cl V that lie
on the vertical Re z=x, is finite. Indeed, they are the values of Z on the set of points
(t,x) in C1V such that

x=xg, d, O, xy)=0. 4.3)

But in the neighborhood of Cl V the equations (4.3) define an analytic set, of which only
finitely many connected components intersect the compact set Cl V, and Z is constant
on each of these components. This implies that, for each v, there is y, >y, such that the
fibore of Zin C1V,

F(z;) = {(t,x) ECIV; Z(t, x) = z;, = x, +iy,} (4.4)

intersects both W, nC,, and W, nC,,, and such that z; is not a critical value of Z in
Cl V. But then of course W, must intersect two distinct components of F(z;). In other
words, we may start from the following hypothesis:

There is a totally ordered basis of open neighborhoods of the origin,

W,cV, and a sequence of complex numbers z,, converging to zero,

L . . 4.5)

none of which is a critical value of Z(¢, x) in ClV, such that, for each

v, W, intersects two distinct connected components of the fiber F(z,).
For each v=1,2, ..., we select a closed disk D,, centered at z,, with radius d,>0.

In the argument below we shall decrease d, a finite number of times. First of all we
select d, small enough that the following conditions are fulfilled:
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for each v, D, is entirely contained in the (open) set of noncritical 4.6)
values of Z(¢, x) in Cl1V, and in the interior of the image Z(W,); '

the projections into the real axis of the D, are pairwise disjoint. 4.7

For each v, let C] and C, denote two distinct components of F(z,) which intersect

W,. Possibly after decreasing d, we may make the following assumption:

there are two analytic submanifolds of dimension two, £} and Z_,

which intersect respectively C; and C,, and whose closures are

v

(4.8)
disjoint compact subsets of W,, each mapped diffeomorphically

onto D, by Z.

And possibly after some more decreasing of d, we select two open neighborhoods of
C! and C, respectively, in U, € and €, endowed with the following properties:

(CIENN(CIE;) = 4.9)

Zfc€), 2, <€, and the image via Z of €}, as well as that of €, is @.10)
exactly equal to IntD,; .

any connected component of a fiber F(z) of Z in C1 V which intersects @1
@ is entirely contained in €7; '

no two distinct connected components of the same fiber F(z) intersect @.12)
either € or €. '

For each v=1,2 .., let r, be a number such that r.<r,<r,_; and set

W,=B_xJ,, J,=]-r,, r,[. We consider a distribution « in W, which is a solution of the

inhomogeneous equations (2.1). We shall assume that the right-hand sides are continu-
ous functions in V, and of course satisfy (2.2) in V. Furthermore we assume that

40
suppf,icZ~'O) U U €. 4.13)
v=1

The reader will easily check that the set at the right has an intersection with Cl V that is
closed. Note also that we have

Liu=0, j=1,...,m, 4.14)



16 F. TREVES

in the set

W.\Cl <+U] (S;‘) 4.15)
We introduce, for each v=1,2,..., a closed disk D,, also centered at z,, with
radius d,>d,, such that the properties analogous to (4.6), (4.7), (4.8) hold. We call A,
the annulus D, \ D,.
Notice that L=(L,, ..., L,,) is an elliptic system in the pre-image of D, via Z, and
therefore u is an analytic function in the set

A, =W,nZ"Y4,).
The key to the proof of Theorem 2.1 lies in the following assertion:
u is constant on the fibers of Z in %U,,. (4.16)
Proof of (4.16): We note that (4.14) holds in the set
{6, 0; |th<r, d,<|x—x,|<d,}. 4.17)

We apply Theorems I, II (Section 1) taking U’'=B, xJ' to have compact closure
contained in (4.17). According to the remarks at the end of Section 1 we conclude that «
is the distribution limit in (4.17) of a sequence of polynomials of Z and that it is the C~
limit of that sequence in the intersection of (4.17) with %,. Thus « must be constant on
the fibres of Z in that intersection.

Let us call © the interior of the subset S of Z(,) such that

u is constant on the fibres of Z in Z~(S)n Y,.. (4.18)
We have just shown that © contains the set
z€IntA,, |Rez-x,|>d,. (4.19)

Suppose now there is a point z* in the boundary of © with respect to A,. We apply
once again Theorem 1, availing ourselves of the fact that « is a solution of (4.14) in an
open neighborhood of S*=F(z*)NCIW,. There is a number 6>0 such that every point
p*ES* is the center of an open ball with radius J in which « is the C* limit of a
sequence of polynomials in Z. Note that the sequence in question may change from
point to point. We may suppose that the union of all those balls is contained in a
compact subset K of W,(2W,). The restriction of Z to K is of course open, and
therefore there is a closed disk D* centered at z* with the following property:
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A,NZYD*) c {pEW,; dist(p, $*) < 4). (4.20)

Let then p;€%, be such that Z(p)=CED* (j=1,2). We can find pf€S* such that
Ip¥—p;<0, and there is a continuous function #; in D* such that u=#;0Z in the ball
centered at p¥ with radius 6. Moreover, since the system L is elliptic in a full
neighborhood of $*, i; is holomorphic in an open disk D'*cD*, also centered at z*, and
which can be selected independently of the point pf on S*. But since #;=d, in D'*n L,
we must have i#;=i, in D'*, and therefore D'*<{, which contradicts the fact that its
center is a boundary point of ©. We must therefore have O=A,. Q.E.D.

We draw right-away a consequence of (4.16). Because of the validity of (4.8) when
D;, is substituted for D,, we see that

Z,) = A,.

Therefore there is a continuous function in A,, &, holomorphic in the interior of A,,
such that u=ioZ in U,. We contend that

i extends holomorphically to the interior of Dj,. 4.21)

Indeed call 2" the analogue of Z; (see (4.8)) when Dj, is substituted for D,. Since u is
a solution of the system of equations (4.14) in some open neighborhood of Z!”, in
which that system is elliptic, « is an analytic function there, and its restriction to =" is
analytic. Let i be the push-forward of the restriction of u to £/ via Z; it defines a real-
analytic function in IntD;. In some open neighborhood of each point of =/ u is a

uniform limit of polynomials with respect to Z, by Theorem I, as a consequence of
which we see that & must be holomorphic in the interior of D,. Since &= in A, this
proves our assertion.
We can now proceed with the construction of the functions fand g in Theorem 2.1.
For each v we select arbitrarily a closed disk D} centered at z, with radius d¥<d,,.
Let then fbe a C* function in the plane, vanishing identically in the complement of the
union of the disks D¥, and such, moreover, that

for every v=1,2,..., f>0in IntD}. 4.22)

Then we define

f=foZin Vﬂ( U @:), f=0 everywhere else. (4.23)
v=1

2--838285 Acta Mathematica 151. Imprimé le 25 octobre 1983
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Clearly fis a C~ function in V\.Z~!(0), and vanishes of infinite order on VnZ~'(0);
thus f€ C™(V).
We contend that the assertion (2.4) is correct.

Proof. It suffices to check (2.2) in some neighborhood of an arbitrary point of
Vn(U,C}). There f=foZ and therefore

of .
Ljf= (?Z_-OZ) LjZ, J= 1,...,m,

since L;Z=0. Therefore, if we apply (1.10), and set f;=2(3f/32), fi=f;©Z, we have:
Lif=iifi. (4.24)
On the other hand, the commutation relations (1.13) are equivalent to
Lildy=LiA;, jk=1,....m. (4.25)
Combining (4.24) and (4.25) yields at once
L N)=LiAi f), Jk=1,....m. (4.26)
Q.E.D.

Next we define the second function in Theorem 2.1, g. For this we need f to be
small enough that the following condition be satisfied:

Z,—f+0 everywherein V. 4.27)

Since Z,=1+i®, this is easy to achieve. We take then

g= f_f z (4.28)

and let Lf‘ be the vector fields so denoted in Theorem 2.1.

We now prove that the assertion (2.5) is correct, that is,
[LF L{]=0 jk=1,..,m. (4.29)
Proof. By virtue of (4.24) we have:
Lig=49+fL,ZJ(f-Z.),
with ¢=-2Z, fil(f-Z,)*. Differentiating the equation L;Z=0 with respect to x yields:

LiZo=—AxZs, (4.30)
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and thus
Lig+d,glg—D=Ae, j=1,..,m. 4.31)
On the other hand, [L}', L;']=¢d/8x, where
9= LfA8)~ LA 2)+4;84, 8),~ A 8(%;8), + 4, 8A; =2, 84,

= lek_A'k A_]’

where
Ai=L;g+g;—ghx=Xp, j=1,...,m, by (431).
This means that g=0. Q.E.D.

Next we prove Assertion (2.6).

We shall prove that, given an arbitrary integer v=1, there is no distribution u
satisfying (2.1) in W,

Observing that the function f used to define f has compact support, set

U =f%(12n2),
where % is the convolution of distributions in the plane. We have, in R?,
20 _fn. 4.32)
oz
Set v=ioZ in V. We have, in a neighborhood U of (CI€;)nV,
Ly= (‘;—‘;oz) LZ=Jf=f, j=1,..m,

by (1.10), and therefore, by (2.1), we have, in UnW,,
L{u—v)=0, j=1,...,m, 4.33)

We have the right to take U such that it contains the surface =.* analogous to X, in
(4.8), when D, is substituted for D,. Once again by ellipticity we know that u—v is
analytic in some neighborhood of =%, and its restriction to X/* can be pushed forward
via Z as a real analytic function v in Int D;. And again, by Theorem I, we know that the
latter is a uniform limit of polynomials of z in the neighborhood of each point of Int D,,
therefore @ is holomorphic in that set. Since & can be extended holomorphically to
Int D, the same is necessarily true of 6. This demands
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f odz=0, (4.34)
aD,

v

and therefore, by Stokes’ theorem,

f fdzAdz=0, (4.35)
D

v

which contradicts (4.22).

Finally we prove the assertion (2.7).

We choose f so small that |g|<1. Then, if v is large enough, the system
L*=(L}, ..., L¥) is elliptic in some neighborhood (in V) of VNCI€;. Fixing v thus we
call Il that neighborhood, and assume that it contains Z.*, as we did above. Therefore,

if K€ C'(W?) satisfies the homogeneous equations (2.3) in W., & will be a C* function
in UnW,. We rewrite (2.3) as follows:

Ljh=j.jghx, J=1,,m (436)

Thus we see that the right-hand sides are C* functions off Z~'(0). We are going to use
the following property:

gh, is locally constant on each fiber of Z in W,n€;. (4.37)

Proof. The fibers of Z in € are connected analytic submanifolds of dimension

m—1 on which d, ®=0. It suffices therefore to show that the differential of gh, along
those submanifolds vanishes identically or, which is the same, that at each point in
€y, d(gh,) is collinear to d,® or, again equivalently,

d(gh)Nd,®=0. (4.38)
We derive from (4.36):
0=[L;, L,Jh= LA, gh)—L,Agh)
= (lelk—Lk lj) gh.+A, Lj(ghx)—-,lj L,(gh)
o

3
=A,—(gh)—A,—(gh
kat’(g x) Jatk(g x)

by (1.8) and (4.25). Applying then (1.9) yields at once (4.38). Q.E.D.
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In particular, according to (4.37), gh, is constant on the fibers of Z in a suitably
small open neighborhood of *,%8. We shall call § the push-forward via Z of the
restriction of gh, to 8. Since g is a multiple of f, ¢ vanishes identically in Z(B)\D}.

On the other hand, since L;7=0, j=1, ..., m, in the set (4.15), the conclusions (4.16)
and (4.21) are valid when u=h.

Thus we find ourselves in the same circumstances as in the proof of (2.6), but now
with h playing the role of « and § that of f. We may then introduce 4, =gx(1/27z) and
hy=h,0Z. The reasoning applied to u—v in the remarks that follow (4.33) applies
equally well to h—h; (noting that we reason only in a neighborhood of Z'*). We reach

the conclusion analogous to (4.35):

f GdzANdz=0. 4.39)
D

v

Suppose we had 4,30 at the origin. Since
ghx =fhx/(f_zx)’

we see that g is the product of fby a continuous function which is different from zero at
the origin. As v—+ the argument of this function in D, is arbitrarily close to its
argument at the origin, while f=0 everywhere and >0 in Int D}. This precludes that
(4.39) be true, and therefore we must have h,=0 at the origin. But then the equations
(2.3) (or (4.36)), and the expressions (1.8) of the vector fields L;, demand that d, 4 also
be equal to zero at the origin, whence (2.7).

The proof of Theorem 2.1 is complete.

5. Geometric preliminaries to the proof of Theorem 2.2

We shall take the neighborhood V, in the statement of Theorem 2.2, in the form B’ XJ’,
where B’ is an open ball in R™, centered at the origin, and J’ an open interval in R!
(and VEU=BXJ).

We shall begin by applying the following result of [3]:

The image Z(C1V) is a finite disjoint union of connected analytic submanifolds of
R?, M; (1<i<v), having the following property: for each i, Z~'(M,) is a finite disjoint
union of connected analytic submanifolds of CIV,N,; (j=1,...,u;), such that the
restriction of Z to N;; is an analytic map of constant rank onto M, and such
furthermore that every N, ; is a subanalytic ([3], Definition 3.1) subset of Cl1V.
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Recalling that Z=x+V —1 ®(¢, x), and writing z=x+V —1 y we apply the above
to the boundary of Z(Cl1 V). It consists of two vertical segments, to which we do not pay
attention, and of two pieces defined by piecewise analytic equations

y=F*(x), x€J'. 5.1

Of course we have

F*(x)=sup ®(t,x), F (x)= inf ®(, x). (5.2)
1€B’ 1€’

In passing note that these are continuous functions of x (in addition to being piecewise
analytic).

We may and shall contract J' about zero in such a way that F* and F~ are both
analytic in C1J’ for x*0. Then, still disregarding the vertical portions of the boundary
of Z(Cl V), and also the points in that boundary corresponding to x=0 (there are one or
two such points), we are left with four analytic curves. If we call x, and x, the
boundary points of J', the curves on the left (i.e., for x<0) are

Ci:ix,<x<0, y=F*x),
and the ones on the right,
C*0<x<x, y=F*x).

Again by the results of [3], quoted at the beginning, we can select four connected
analytic submanifolds of ClV, which are also subanalytic in C1V, C}, C%, such that Z

maps each one of them onto the corresponding C. We select four points 5,5 inClB,
such that (£f,0) belongs to the closure of Cf,(r*,0) to that of C*. Then we apply
Proposition 3.9 of [3]:

There is an analytic map

1-1, 1[ € s> (t(s), x(s)) ER™*!
such that

10)=1¢',x(0)=0, and (1(s),x(s))EC’ for s+0.

Necessarily x(s)=s*[co+O(s)] for some integer k=1 and some c,>0. Therefore, for
some >0, we have an inverse of the map s—x(s),
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[0,7] €Ex> 5 = x(x?%) €[0, 1[,

with y analytic in an open neighborhood of the closed interval [0, 7'?%]. We may then
define

1 (x) = 1(r(x'")), x€10, ).

Similar reasonings lead to the definitions of t*(x) in [—#, 0], and of ™ (x) in [0, #] and in
[~7,0], if necessary after a decrease of 7. Note that, as the points ¢’ and 7] may be

different, the limits of £*(x) as x converges to zero from the right and from the left are
not necessarily equal; same remark about 1 (x). At any rate we may state:

There are two analytic maps from J'\\0 to CI1B’, x— t*(x), such that,

. (5.3)
for all (£,x) in V,

O™ (x), x) < (1, x) S O(t* (), x). 5.9

Furthermore, there are points £7, t;' in C1B’ such that
= lim r*(x), £ = lim *(x), (5.5)

x—+0 x—» =0

and there is an integer g=1 such that

’%t*(x) <const. |x|"'*", 0%x€J'. (5.6)

Another property of analytic sets we shall need is embodied in the following
assertion (Corollary 1, Appendix, § 1):

There is an integer Ny =0 such that, given any straight line in
R™*! I, on which x is constant, the derivative of ® in the direction 5.7

of [ changes sign at most N, times in /nCl V.

This follows from the compactness of Cl V and the analyticity of ®.
Let then V=B'xJ'€V, endowed with the following property:

V intersects at most one connected component of each fiber of Zin V. (5.8)

We are now going to take up anew the proof of Lemma 3.3 and make it ‘‘metrical-
ly”’ more precise. Let xo€J', ;€ B’ (j=0, 1). For simplicity let us write g(/)=®(xo, 7).
We assume that
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@(to) < @(t1). 5.9

We denote by y, the straight-line segment joining #, to ¢, oriented from the former to
the latter. Let Jy=[to, so] be the largest interval of this kind in y, on which ¢’=0
(primes will denote derivation in the direction of y,). It might happen that so=¢4 if @
starts decreasing right-away on starting from #y. At any rate let sg be the closest point
to ¢; on yp such that @(sg)=@(so). Clearly s; must belong to an interval [s), s;] with
s1>s¢ (for the natural order on y,), on which ¢'=0. We take s, to be as close to ¢, as
possible, and then repeat the argument just presented for s, in the place of s4. We
determine thus a sequence of intervals

[20s So)s [S0s 51]5 -+ [sjf_,, sj], s [Sa0 11] (5.10)

possibly with f4=s, and sy=t,;) on each one of which ¢'=0, and such that ¢(s;)=¢(s))
for every j=0,1,..., N. A moment of thought will convince the reader that N—1<N,,
the number in (5.7).

Now we avail ourselves of (5.8). We shall use the following property (Proposition
3, Appendix, § 2):

There is a constant M >0 such that, if py, p, are any two points
in V lying on the same fibre of Z in V, F, there is a piecewise 5.11)
analytic curve joining p, to p;, lying entirely in F, and whose '

length does not exceed M.

For each j=0, 1, ..., N let ¥/ be a curve of the kind above, joining s; to s/, lying entirely
on a fiber of Z in V and having length <M. We shall then call y the continuous
(piecewise analytic) curve in B’,

[t So}*vot 50, 811+ s 5] Y+ +[sh 1] (5.12)
It is clear that
length y < |to—1;|+ No M, (5.13)

and also that @ is monotone increasing along vy.

Next we parametrize the points on y; by the arc-length normalized (that is, the
total arc length of y; is equal to one) and starting at s5;, We parametrize in the same
manner the straight-line segment [s;, s/icyo, and join by a straight-line segment the
point in [s;, 5/] to the one in y; corresponding to the same values of the normalized arc-
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lengths. As the latters vary from 0 to 1 these segments make up a two-chain ¢;. We call
¢ the two-chain

[for So] + Cot[55> $1]F o+ [S1_1s 1+ G+ .+ [sh 1,]- (5.14)

In (5.14) the segments are regarded as two-chains: they are identified to rectangles that
are infinitely flat (and in what concerns the first and the last one, possibly reduced to a
point). We give to the chain ¢ the orientation that makes its boundary be equal to y—y,
(both oriented from ¢, to t;). By Corollary 2, § 2, Appendix, we have

the area of ¢ is bounded independently of #, ¢, xo. (5.15)

6. Proof of Theorem 2.2: construction of L! solutions

We deal with m C® functions fi, ..., fm, satisfying the compatibility conditions (2.2) in
some open neighborhood V*=B*xJ*cU of ClV. It is convenient to introduce the
following one-form in the open ball B*<R™, depending smoothly on x € J*:

f6, 0= £, x)dr’. 6.1)

Jj=1

Let A; denote, as usual, the coefficients in L; (see (1.8)), and set

-f2 = 2 (lk f}_i}f}() d{j A dfk. (62)

i<k
We have, whatever the complex number &,

d(e"Z_f)= 53; (€ ¥Z, f). 6.3)

Proof of (6.3): Differentiation with respect to x of L;Z=0 yields

—a—. (e_’uZx)+ g

of ox &2 =0. (6.4)

If we combine this with (2.2) we get:
3

- 9 ( itz =9 (i 9 (e~
a7 CZfok)“L_a;(e ZAf=Zgte ZZxﬁH—é;(e “Z M),

which is precisely (6.3).
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We are going to study quite extensively integrals of the following kind
I, x)= —21; f f j eH2D-ZeINE o(y) Z (s, 3) f(5, ) dy dE.

Let us explain what the ingredients are: first of all ¢ is a number >0 which will
eventually tend to zero; g€ C;(J') is a suitable cut-off function. The integration with
respect to y is performed over R!. That with respect to £ is performed either over the
half-line R,.: £>0, or else over R_. Mostly we shall reason over R,, and to stress this
fact we write o instead of &. All the arguments in this case will have an obvious
analogue when £<0. The integrand in I* is a one-form in s-space, which we integrate
over a piecewise linear curve ! contained in C1B’ and joining a certain point ¢, to the
variable point ¢. The point ¢y and the curve [ are chosen below.

We specify now how to select V* and V (W will be specified later). First of all,
taking advantage of the fact that ®.(0, 0)=0, we may assume that

|, x)—D(t, y)| <ilx—y|, tEB* x, yEJ*. 6.5)

We shall require that the closure of J' be contained in J*, but otherwise we shall keep J’
unchanged. Recalling that J'=]—7, n[ we shall require that B* be small enough that

|®(t, x)~D(s, )| <n/8, s, tEB*, xEJ*. (6.6)

Next we avail ourselves of Property (P), specifically of the fact that (P) holds at
every point p € U of the kind (0, x), x €J. Because J' is relatively compact in J* we can
find an open ball B, such that

B'c B, €B*,
and such that, if V,=B;xJ* (recalling that V=B’'xJ’), the following holds:

Given any pair x, y ER, ClV intersects at most one connected 6.7
component of V{(x,y) (see (3.11)), and at most one of V] (x, y). '

We come now to the choice of 7,. When the integration with respect to £ is
performed over R, we take f,=t"(x), the point in (5.3). When that integration is
performed over R_. we take fo=t*(x). In both cases, we have, by virtue of (5.4):

ED(ty, x) s EDP(1,x), (L, X)EV. 6.8)
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We apply then the properties listed at the end of Section 5. For each (1, x)EV we
select a piecewise analytic curve y=y(t, x), joining o to ¢, having the following proper-
ties:

y is entirely contained in Cl1B,, 6.9
EO(t', x) < ED(t,x), Vi €y, 6.10)
the length of y is bounded independently of (¢, x)E V. 6.11)

Let us call yo=yo(t, x) the straight-line segment joining f, to t. There is a two-chain
¢=c(t, x) whose boundary is equal to y—y, and whose area is bounded independently of
(t, x), entirely contained in CiB,.

We then describe our choice of the path [: it consists of the straight-line segment
joining 7o to the origin of ¢-space, followed by the straight-line segment joining 0 to ¢.

Let us call I (resp., I;o) the same integral as I except that the integration with
respect ot s is performed over the curve y (resp., over the straight-line segment y,)
instead of the curve /. Until otherwise specified we limit our attention to the case
E=p>0. The case £=—p<0 is dealt with in a similar fashion. We apply Stokes’
theorem:

27;(1;.-[;(’) = fff eioZ(I,x)—cozg(y) dx[e—iOZ(s.y)Zy(s’ y) f(s, y)] dy dg.

We apply (6.3) and perform an integration by parts with respect to y:

l i x)—2Z(s —¢ '
L,=T+—— j f f gZN-Zs =@ 01 (3) 7 (5, y) f(s, y) dy do. (6.14)

Let us introduce the vector field Ly of (1.11). Note that
P(Lo) (€"%) = P(it) €7, (6.15)

whatever the polynomial with complex coefficients, in one variable, P, and the com-
plex number {. Denote by L the transpose of Ly:

3
L' _— e Z .
oV ox (Z,'v) (6.16)

Note that

Lo(Z,v)=—Z,Lyv, 6.17)
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and therefore
P(Ly)(Z,v)y=Z,P(—Lg)v. (6.18)

Thus we get, after an integration by parts,

1; = ifff (1+ig)—Nei@[Z(t,x)—Z(s.y)]—eozzy(s, y) (l+iZy_' i)N[g(y)f(s, y)1dydo.
4

oy
(6.19)
In this integral we write
Z(t, x)—=2Z(s, y) = i[P(t, x)—D(s, X))+ Z(s, x)—Z(s,y)
=i[®(t, x)—DP(s, V)] +(x—y) [1+iD(s, x, ¥)],
and we derive, from (6.5):
[®(s, x,y)| <}, SEB* x, yEJ*. 6.21)

We shall then deform the domain of &-integration from £>0 to the one-chain in C,

§=@<1+ x_y), 0€R,. (6.22)

L
2 |x-yl
We have
Re {iL[Z(t, x)— Z(s, )] - L%} = —o{[®(t, x)— D(s, )] —}|x—y|— (x—y) D (s, x, ¥)} -} €0".
We derive from (6.10) and (6.21):
Re {i¢[Z(z, x)—Z(s, y)]-e€} = ==yl Q—}egz. (6.23)
By applying (6.11) and taking N=2 in (6.19) we obtain at once that

if e +0, Lz, x) converges uniformly in B'xJ’ (and a fortiori in B’ xJ}). (6.24)

By taking N in (6.19) as large as needed we reach a similar conclusion for any
derivative of If provided we restrict it to compact subsets of B'x(J1\\{0}).

Next we look at the second term, in the right-hand side of (6.14). But now we
choose more carefully the cut-off function g. We require

gx)=1 for |x|<}n. (6.25)
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We shall now restrict the variation of x to the interval
Ji=1-{nnl.
Thus, in the integral under consideration, we have
e=yl=4{n. (6.26)

We deform the &-integration from R, to the chain (6.22), but now we take advantage of
(6.6), as well as of (6.21). We obtain here, in lieu of (6.23): '

Re {iC[Z(t, x)— Z(s, y)]—€L?} < — jno— 3eo’. 6.27)

Using then the fact that ccClB; and that the area of ¢ is bounded independently of
(¢, x), we conclude that

I;—I;o converges uniformly, in B’ xJ]. (6.28)

Next we make use of the analogue of (6.14) when [ is substituted for y. In that case
the two-chain ¢ must be replaced by a two-chain ¢, whose boundary is equal to /-y,
and which can be taken piecewise ‘‘planar’’, and with an area that is bounded
independently of ¢ and of #,. The proof that has led us to (6.28) applies also here and we
conclude that

1‘—1;0 converges uniformly, in B'xJ]. (6.29)

By combining (6.24), (6.28) and (6.29) we obtain:

When ¢— +0, I*(t, x) converges uniformly, in B’ XJ}, (6.30)
to a function I(¢, x). )

In both (6.28) and (6.29), if we restrict to B’ X(J1\\{0}) the convergence is valid in the
C”~ sense (we are tacitly making use of (5.3)). Therefore, by the remark following
(5.24), and by (5.5), the preceding argument shows:

In B’ X (J1\\.{0}) the convergence of I to [ is valid in the C* sense;
moreover, I(t, x) has finite limits I(¢, +0) and I(t, —0), as x— +0 and  (6.31)

x— —0 respectively.

Next we compute L; I°. To do this it is convenient to introduce the integrals #(z,),
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t,EB’: It is the same integral as I’ except that the path of s-integration is the straight-
line segment joining O to ¢,. In this notation,

IF = $5(0)— F(tp). 6.32)
At first we focus on #(1). Let us write
s=0t, 0<0<l; f(s,y)=F(6,1t,y)db;
F,t,y)= kil (61, y).

Thus

3 _ N
— 6,1, =1, y)w; ¢ = 61.5),

and therefore, on the straight-line segment joining 0 to ¢,

a —i&Z(s,
ile SeNZ (5, ) F(O,1,)]
= ¢ BV Z (s,y) fls,y)+0 Em, r2 [e7¥eZ (s, 9) £,(5,9)]
Y\ A “~ as’ y\2s k\9> .

We take (6.3) into account: the factor of 6, in the right-hand side of the preceding
expression, is seen to be equal to

2 tk_aT [e“'az"")zy(s, Y (s, 9] +_8_ {e_iEZ("y)Zy(s, ) Z rk(lkf_;'_lj.fk) (s, y)}'
k=1 OS oy k=1

Recalling that 8/66=L7_, t%(3/3s%) on the straight-line passing through 0 and ¢, we obtain

_8_ —iZ(s.y)
Pl Z(s,y)F,1,y)]

= % [0V Z (s, 3) fis, y)]+ai [e"‘z‘”’ly(s, N Pt SA LG, y)]-
y k=1
(6.33)

It is convenient to introduce the following one-forms:

Ft,0)= D U f~A [, 0de, j=1,...,m.
k=1
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Once again we limit ourselves to the case §=0>0. We have:

LI# (0] = f f f o2 g(y) 2 [0 Z,(5, ) FO,1,7)] dy do dB,

where the integration with respect to 6 is performed over [0, 1]. If we take (6.33) into
account we get:

+00
L,-U“‘(t>l=2L f f RZEN-2uNN=" () 7 (1, y) f(t, y) dy do
T Jo  Jyer!

__zln_ f f f @2t D=2 Ie0" g (y) Z(s,y)F(s,y)dydo. (6.34)

At this stage we start distinguishing more carefully between those integrals in
which the &-integration is carried out over R, and those in which it is carried out over
R_. We shall label them with superscripts + and — respectively. According to (6.34)
we may thus write:

L[ )+ (0]= Ely—t_f f eiﬁll(t,x)—Z(l,y)]—eEzg(y) Z,(1,y) f(t,y) dy dE

1 ettt
_EfffeE[Z(" )-Z(s, )] gzg (y)Zy(S»J’)F,-(s,y)dydg,

where the integrations with respect to y and to £ are both performed over R'. We have

L f f el200-2eN = o(y) Z (1, y) £(2, y) dy dE

2

= (4e)™1? f 22NN o(y) 7 (1, ) £2, y) dy,

and it is well-known that the latter integral converges to g(x) f{(t, x) in the C* sense, as
£—+0. We also have:

"2'1—[' ff el'E[Z(l,x)—Z(s.y)]-eEIg:(y) Zy(s, y) Fj(s, » dy d§

= (4ne) ™" j j e~ 1200-2sWle gr(y) 7 (2, y) Ft,y) dy.

Note that
Re [Z(t, x)—-Z(s, )V = |x—y[~[D(t, x)—D(s, )
= [x—y*=2([D(t, x)— (s, x)I+[D(s, x) = D(s, Y)).
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If we restrict the variation of x to Ji, as we shall, (6.26) holds. So do (6.5) and (6.6).
Consequently, in the above integral,

Re [Z(t, x)—Z(s, y)]* = 4*8.

This shows that the preceding integral converges to zero in C*(B'xJ}). Thus we
conclude

L[5+ ()+ 5 ()] converges to f; in C™(B’ xJ}). (6.35)

We wish now to find the limit of L; #(ty) as e—+0 (see (6.32)). Unlike $(r) it may
have a discontinuity at x=0 originating from the discontinuity, if there is one, of
to=t*(x). We must therefore apply the well-known formula for the distribution deriva-
tive of a function such as F5(¢y):

L{# (1)) = {L{F(t0)]} +4;9°0(x), (6.36)

where the first term in the right-hand side stands for the function (integrable, as we
shall see) which is equal to L[I°(zo)] when x+0, and where ¢° is the jump of I*(¢,) at
x=0, and &(x) is the Dirac distribution.

When x#+0 we have

Sk

-

I(¢,). 6.37)
ark °

L]
L[#FW)) =4 D, —
J J; ax
We note that (6.33) holds if we replace everywhere ¢ by ¢, (and thus read s=601,). We
obtain

9

1 [T i9[Z(1. x)~Zty, 7))~ €0
F(t) = —— e ° )Z,(ty, ¥) filty, y) dy d
o o) 2nJ; LRI g Z,(ty, y) filty, y) dy do

—ﬁ f f f g2t~ 2eI" g1 (y) Z (5, y) Fy(s, y)dyde,  (6.38)

where the s-integration is now performed over the straight-line segment joining 0 to .

In (6.38) we take to=t"(x) (see (5.3)). It is then possible to prove that the right-
hand side converges uniformly, in B'XJ}, exactly in the same manner as (6.24) and
(6.28) were established. Call Q; (¢, x) its limit as ¢—+0. Likewise call Q; (¢, x) the limit
of the similar integral when g is replaced by —g and ¢t~ by ¢*. It is clear that Qi have
the property analogous to (6.31). On the other hand notice that the right-hand side in
(6.38) is a function of Z(¢, x) and f,=t*(x) only, and therefore is constant on the fibres
of the map Z. The same is true of its limit. If we take advantage of (5.6) we may state:
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When £¢— +0 the restriction of L{#*(t~(x))+ 5~ (t*(x))] to
B’ x(J1\\{0}) converges, both in L' and in C*, to 4;Q°, where

La —\k +\k
Yo
k=1

(6.39)

is constant on the fibres of the mapping Z: B’ x(J1\ {0})— C.

Returning to (6.36) we want now to find the limits of the jumps ¥°. Once again let
us look at the case where the &-integration is performed over R,.. We have

19‘*=i f f f o2 0-2eI 0" (1) Z (5, ) f(s, ¥) dy do,

where the integration is performed over the curve /; defined as follows: /j consists of
the straight-line segment joining ¢, =¢~(—0) to the origin followed by the straight-line
segment joining the origin to t,=¢"(+0). In other words it is similar to the integral I*
where we have put x=0 and 7,=¢;, t=t;, except that we still have Z(z,0) where we
ought to have Z(t,0). However the argument that led to (6.24) works equally well
here. This is due to the fact that ®(s, 0)<®(¢, 0) for all s on any curve joining #; to ¢,
which is entirely contained in the level set of ®(-,0) in Cl B, (in which those two points
lie). For this reason the inequalities (6.23) and (6.27) have analogues here. Note also
that 9** is independent of x (and thus we do not have to deal with discontinuities) and
that 1" depends on ¢ solely through Z(1,0). As a matter of fact (and this is quite
important in what follows), by the analogue of (6.19) we can see that

3 (1) = §1(2(, 0)),

where #* is a C* function on the (imaginary) interval B’ which is the image of B’
under the map #—Z(¢,0). Note that B’ might be open, closed or only contain one of its
boundary points. In any case #** is C* up to any point of the boundary of B’ when
that point belongs to B'. This is seen by differentiation under the integral signs in the
integrals analogous to (6.19) and to the second term in (6.14). Moreover, as e—+0, §¢*
converges to a C” function ¥+ in the C* sense specified above.
By combining what we just said with (6.32), (6.35), (6.39), and by calling I* (resp.,
I™) the limit of I** (resp., I*"; see (6.30) and (6.31)), we reach the conclusion that, in
B'xJj,
LAI"+17) = f;i+2;Q°+2,;06(x), (6.40)

3-838285 Acta Mathematica 151. Imprimé le 25 octobre 1983
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where
& =9() = HZ(¢,0)),

with & a C* function on the interval B’ (in the sense specified above). Let then B be an
open ball centered at the origin in ¢-space, whose closure is contained in B’, B the
image of B} under the mapping t—Z(#,0). The function J is C* in the closed interval
Cl B and can be extended as a C™ function (also denoted by ¥ in the whole complex
plane. Set then

2(1,0) = }Z(t, x)) o(x),
where o(x)=4x/|x| when x=+0. We have
Lix = L{§ 0 Z) o(x)+ A4, 0(Z(t, 0)) 6(x),
and
L($02)=(J,02)L,Z=24(,02).
Thus, by (6.40), we see that, now in W,=B]xJ,
LU+ ~y) =f+4,0, (6.41)
where
0= 0"-2(9,02) o(x). (6.42)

We know that Q° is constant on the fibres of Z in W, and therefore the same is true
of 0. By push forward via Z we obtain a function Q in Z(W,) such that =QoZ in W,.
Furthermore we have, by (5.6),

0| < Clx|'~"  (z=x+iy). (6.43)

We shall assume, below, that O has been extended by zero in C'\Z(W),), and thus
Q€L'. We define

w=Q'*(~—l—e‘z), w=wolZ.
2z

We have (cf. equation following (4.32)):

Lw=4Q, j=1,..,m, (6.44)
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in the distribution sense, in W,. Let us show that w € LA(W,).
Availing ourselves of (6.43) we obtain

J'f e[Z(t.x)—Z']2 Q(Z’) ’dx/dyr
zZw) Z(t, x)—z
ver Jyer! x| x—x" +iy’|

<C"f (f dyr >1/2 dx’
= 2 _ 12 nl-1/q
ver \Jrt ¥ +x—x| |

’

" dx 2
<C flx—X'I'/2|X'|'"”q EL(WI)'

1
t’ —_—
|w( )| 2

(We have applied the Cauchy-Schwarz inequality to the integration with respect to y' to
go from the second to the third line.)
Define now

v=I"+I"—y—w.
By (6.41) and (6.44) we have, in W,
Liv=f, j=1,...m. (6.45)

By (6.31) and the obvious properties of x, I*+I”—y is an L? function. We have just
seen that the same is true of w, and thus v € L(W,). In the next section we construct a
C” solution u in a perhaps smaller neighborhood of the origin.

7. End of proof of Theorem 2.2: construction of C” solutions

Let N be an arbitrary integer =1. We solve, in W,=BxJ{,
Lvy=L{f, j=1,...m, v €ELYW), (7.1)

where L is the vector field (1.11). Note that Ly fi, ..., Ly f,, satisfy the compatibility
conditions (2.2), since LoL;=L;L, for all j. Let J; an open interval centered at zero,
whose closure is contained in Ji. And let y € C7(J}) be equal to one in J;. We have, in

B,

Lyp(x)uple, x)] = yY(x) L(')ij(t, x)+lj(t, NP Xl x), j=1,...,m. (7.2)
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Let us denote by E, the space of locally-L' functions of x in the real line whose
support is contained in the half-line x=a. We shall make use of the following linear
operator on E,, depending smoothly on 7€ B:

L' NEx=| Zt,y)fO)dy. (7.3)

-0

Evidently we have
LyL;'=L;' Ly=1dentity of E,, (7.4
and, as a consequence, when acting on E,,
[L,Ly'1=0, j=1,...,m, (7.5)

since [L;, Lo]=0.
Let us now rewrite (7.2) in the form

L{yvy) = L (yf)+S,, (7.6)
where §;=0 if x€J;. Applying L, N to both sides, and availing ourselves of (7.4), (7.5),
yields:
LngN(zva) = zpj}+LgNSj. 7.7
Observe then that
LY(LgNS)=0 in B{xJ;. (7.8)
This implies that, in B]xJ;,
N-1
LiVS(Lx) = D, 0, (0 Z(t, x)*. (7.9)
k=0
But in the same set we have
LoNS;= L, Lg™(yvy)—f, (7.10)
hence
Lj,(LgNSj)=Lj(L0'NSJ.,), Li=1..,m. (7.11)

This implies at once that there is a distribution o, in B such that

_ 9 =1
Uj,k_yak’ j=1,...,m. (7.12)
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Actually one derives from (7.9) and (7.10) that o; , are sums of derivatives of locally-L'
functions; the same is therefore true of ¢;. This property will be used below. Let us

then set
N-1
Ty= D 0, Z(t, 0. (7.13)
K=0
We have
LiTy=Ly"s, j=1,...,m, (7.14)
and therefore, by (7.7), in B;xJ},
Liun=f, j=1,....m, (7.15)
where
uy= Ly N(pup)—Ty. (7.16)

Of course the action of L;' increases the regularity with respect to x (and does not
modify that with respect to ). Thus we see that L; N(yv,) is an L' function of ¢ in B},

valued in the space of CV~! functions of x (in R). On the other hand, T is a sum of
derivatives of L' functions of ¢ in B}, valued in the space of C* functions of x in J. This
means that uy is a sum of derivatives of L! functions of ¢ in B valued in the space of
CN~! functions of x in Jj. At this point we use the equations (7.15) to trade
differentiability with respect to x for differentiability with respect to . Indeed, in the
notation of one-forms (see (6.1)), (7.15) reads (in B;xJ}):

dyun=f~iLoun)d, d. (7.17)

(By (1.9) and (1.11) we have Lj=8/8tj—i<b,jLo.) We reach easily the conclusion that,

given any integer v=0, we can find N large enough that u, € C*(B;xJ}).

In what follows we suppose that the subscripts N have been selected in such a way
that the solution u, of (7.15) belongs to CN(B}XJ3).

At last we select W=B"xJ". We simply require that B” be an open ball centered at
the origin with closure contained in B}, and J” an open interval centered at zero with
closure contained in J5. We apply the CV version of Theorem I (Section 1):

Every solution h€ CN(B; xJ;) of the homogeneous equations L;h=0 (j=1,...,m) is
the limit, in C¥(C1W), of a sequence of polynomials with respect to Z(t, x).
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(We leave the proof of this assertion to the reader: apply Theorem I to L& instead
of h, for k=0,1, ..., N, use cut-off functions and the operator Ly )

Let us denote by |f|y the natural norm in CY(C1W). For each N=0,1,..., we
select a polynomial Py € C[z] such that

luns1—un—Pan2)ns27N. (7.18)
We set then
oy = Up, Uy =uUn—Po(Z)—...—Pn_(Z) for N=1.
We derive from (7.18):
I“(N+1)‘“(M|NS 27N, (7.19)

This shows that the sequence (¥))n=, converges to an element of C*(CIW), of
course independent of v, and therefore belonging to C*(C1W). Since all u, satisfy
(2.1) in W so does their limit.

The proof of Theorem 2.2 is complete.
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Introduction

Soient ¢: Y— X un morphisme (sous-)analytique réel entre espaces analytiques réels (cf.
[H1] et [Hal]) et X un sous-ensemble sous-analytique (cf. loc. cit.) compact de Y.
D’apres le premier théoréme d’isotopie de Thom (cf. [Ma)) et I’existence de stratifica-
tions de morphismes propres (cf. loc. cit.), il existe un sous-ensemble sous-analytique
Z de ¢(K), de dimension strictement inférieure a celle de @(K), tel que tout point
X0 € p(K)\Z posséde un voisinage ouvert U tel que ¢~ '(U)NK—U soit une fibration
topologique localement triviale. R. M. Hardt a méme prouvé (cf. [Ha2]) le remarquable
résultat selon lequel on peut choisir Z de telle maniére que I’on puisse prendre pour U
la composante connexe de @(K)\Z qui contient xy, et ’on a un homéomorphisme a
graphe sous-analytique (¢ '(xo)N K)x U3¢~ (U)nK. Méme si au-dessus des points
de Z la géométrie des fibres ¢~ '(x)NK, et en particulier leur dimension, saute, on
s’attend du fait de I’analyticité & ce que ces changements de géométrie se fassent d’une
maniére non-sauvage. Voici des fagons de préciser cette idée inspirées par les ques-
tions de Treéves qui ont motivé cette rédaction. Dans ce qui suit on suppose fixé un
plongement YcR™,

(1) Tout point x, € (K) posséde un voisinage ouvert U dans Y tel qu’il existe un
entier N tel que pour tout x € U, I’ensemble sous-analytique ¢~ '(x)NK puisse étre
triangulé avec moins de N simplexes (cf. [H2] et [Ha3] pour la triangulation des sous-
analytiques).

(2) La condition 1) est réalisée et de plus les triangulations sont telles qu’il existe
une constante V telle que la somme des volumes i-dimensionnels dans R™ des i-
simplexes de la triangulation de ¢~ '(x) N K soit inférieure 2 V pour chaque i et chaque
x€U.

(3) Tout point x, € p(K) posséde un voisinage ouvert U dans Y tel qu’il existe une
constante y>0 telle que, pour tout x € U et tout couple (a, b) de points appartenant a la
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méme composante connexe de ¢~ !(x)NK, il existe un chemin sous-analytique (i.e.
analytique par morceaux) contenu dans @~ '(x)NK, joignant a et b et de longueur
inférieure a y.

Pour prouver que (1) est toujours réalisée, il suffit de se souvenir que d’aprés
({H1], 8.2) I’ensemble ¢(K)\Z n’a qu'un nombre fini de composantes connexes,
d’invoquer le théoréme de Goresky sur la triangulation des ensembles stratifiés ([G]) et
le théoreme de Hardt, pour trouver des triangulations simultanées de toutes les fibres
@ '(x)NK, pour x € U, ot U est une composante connexe de @(K)\\Z. On conclut par
restriction de @ & @~ !(Z) et récurrence sur la dimension de ¢(K). Je ne sais prouver ni
(2) ni (3) en général (mais voir [B1] et [B2] pour (2)). Je vais m’intéresser ici a des
résultats qui sont conséquences de (1) et (3) respectivement.

§ 1. Finitude de changements de signe

PROPOSITION 1. Soit p: E—X un morphisme analytique réel entre espaces analy-
tiques réels, dont toutes les fibres sont de dimension algébrique égale a un. Soit
J: E—>R une fonction analytique réelle.

Dans ces conditions, pour tout compact K,cX et tout compact K,cFE il existe un
entier N=N(K,, K>) tel que, pour tout xEK,, la restriction de f @ p~'(x) change de
signe au plus N fois dans p~'(x) N K.

Démonstration. Posons Y=f"'(0), ¢=p|Y: Y—>X et K=K,cE. Puisque K, est
compact et que les changements de signe correspondent a des zéros isolés de flp~'(x),
il suffit de prouver que tout point x € K, posséde un voisinage ouvert U tel qu’il existe
une constante N ayant la propriété que pour tout x€ U le nombre des points de
@ '(x)NK qui sont isolés dans ¢@~'(x) est inférieur & N. Ceci est une conséquence
immédiate de (1) ci-dessus appliqué a ¢. On recouvre ensuite K; par un nombre fini de
tels ouverts, disons K,=U; U; et 'on prend N=Sup,-NUi. Q.E.D.

On peut donner de la Proposition 1 une autre démonstration, qui a I’avantage de
contenir un lemme de finitude qui semble pouvoir s’étendre a la géométrie analytique p-
adique ol des résultats de cette sorte sont aussi utiles. Cette démonstration est presque
identique a celle de D. Barlet (cf. [B1], [B2]) pour des résultats du type du (2) de
I'introduction, dans le cas analytique complexe propre. Nous devons utiliser ici le
théoreme d’aplatissement local parce que le complexifié d’un morphisme analytique
réel propre n’est pas propre en général.
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Avant de donner cette autre démonstration de la Proposition 1 nous rappellons
quelques définitions et résultats.

Soit : Z— W un morphisme d’espaces analytiques complexes, et soit #: W'—W un
éclatement local, c’est-a-dire le morphisme composé de I’éclatement d’un sous-espace
analytique fermé B d’un ouvert U de W et de I'inclusion (U, Oyw|)~>(W, Oy) d’e-
spaces analytiques. Il existe un sous-espace analytique fermé Z'c W’ x Z tel que,
dans le diagramme naturel

’

n
W XwZoZ — Z
o'l lo
n
W - W

le morphisme 7' soit ’éclatement de o '(B) dans ¢~ '(I) composé avec I'inclusion
o~ '(U)>Z, et o' soit I’'unique morphisme di 2 la propriété universelle de I'éclatement.

On peut aussi définir Z' comme étant le sous-espace fermé de W’ X, Z défini par
I'idéal cohérent engendré par les éléments annulés par le composé avec la premiére
projection d’une puissance de I'idéal définissant le diviseur exceptionnel 7~ '(B)cW'.
Le morphisme @': Z'—>W' est appelé transformé strict de ¢ par n. On peut ensuite
définir le transformé strict d’'un morphisme o par une suite finie d’éclatement locaux.
On a alors :

THEOREME (Hironaka, Lejeune et Teissier, cf. [H1], [H2]). Soient 0: Z—W un
morphisme d’espaces analytiques complexes, w un point de W et L un sous-ensemble
compact de o~ '(w). Il existe un nombre fini de suites finies (So)qea d'éclatements
locaux de W telles que les énoncés suivants soient vrais :

(1) Pour chaque a, le centre de chacun des éclatements locaux apparaissant dans
S, est rare dans son espace ambiant.

(2) Notant n,: Wo—W le morphisme composé des éclatements locaux de S, il
existe un voisinage ouvert U de w dans W tel que, pour tout compact Kc U, il existe
pour chaque a un compact K,cW, de telle maniére que

Kc U m(K,).
a€A

(3) Pour chaque a €A, le morphisme transformé strict 9,. Z,—>W, de o par 7,
(i.e., par S,) est plat en tout point de Z, dont I'image par le morphisme naturel Z,—Z
appartient a L.
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Démonstration de la Proposition 1. Posons encore Y=f"'(0), p=p|Y: Y—>X. No-
tons m: F— W le morphisme complexifié de p. D’aprés I’hypotheése les fibres de s sont
encore de dimension 1, et un zéro de f Ip"'(x) isolé dans p~'(x) donne un zéro de la
restriction 2 77 (x) de la fonction n: F—»C complexifiée de f, qui est encore isolé dans
a ().

D’apres la remarque déja faite, pour prouver la Proposition 1, il suffit de vérifier
que :

(%) Tout point xo € X posséde un voisinage ouvert U tel qu’il existe un entier ny,
tel que pour tout x € U, notant Is (x) I'’ensemble des points de ¢ ~'(x) N K qui sont isolés
dans p~!(x), on a I’inégalité

>, dimg(st ., (f)<ny,

yElIs(x)

ol

1y désigne I’algébre des germes en y de fonctions analytiques réelles sur
p~'(x) et f, le germe en y de f|p~!(x). Nous allons donc nous placer au voisinage d’un
point xo € X fixé. Remarquons que pour prouver I’énoncé (), il suffit de le prouver
pour le morphisme complexifié, en remplagant & par I’algébre des fonctions analyti-

ques complexes et f par son compléxifié #, c’est-a-dire de prouver I’énoncé suivant :

LEMME. (%) Soient 9: Z—W un morphisme analytique complexe a fibres de
dimension <1, et KcZ un sous-ensemble compact. Tout point wo€W posséde un
voisinage ouvert U tel qu’il existe un entier ny(K) tel que pour tout w€ U, notant Is (w)
I'ensemble des points € "(wW)NK tels que dim, 0™ "(w)=0, on ait I'inégalité

>, im0, <nyK).

Z€Is(w)

ou O désigne I'algébre des fonctions holomorphes. En effet, dans notre cas, nous

aurons 09-'(.4;) Z=0’n_,(w) z/(nz) ou 0: Z—W est le complexifié du morphisme @, et donc
Z=5"'0)cF.

Démonstration du lemme. On se place au voisinage de w,€ W. En examinant la
décomposition en composantes irréductibles de Z au voisinage de K, on se raméne
aussitot au cas ol il existe un ouvert analytique dense de W, tel que IQ"(w)nKI soit
fini pour tout w appartenant a cet ouvert.

On applique alors le Théoréme ci-dessus en un point w, avec L=p~ "(wo)N K. On
obtient des diagrammes commutatifs :
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Wa wa(—’Za 1/)-3 V4
priy  |Ca lo
W, 2 U W
T

ol g, est plat en tout point de ¢ '(L). Par conséquent le morphisme g, est fini et plat;

soit n, son degré. Nous allons démontrer le Lemme par récurrence sur la dimension de
W. Le résultat est évident si dim W=0. Soit D,c W, le sous-espace analytique fermé
de codimension 1 réunion des images inverses dans W, des centres éclatements locaux
constituant la suite S,. Nous avons

Q;l(Wa\Da) = (Wa\Da) X WZ’
et par consequent les seuls points w,, tels que
0z (Wo) *# {w,} xe ™ (m,(w,))

sont les points w, €D,. D’apres I’hypothése de récurrence, pour tout compact K et
tout systtme {K,} comme dans la partie (2) du Théoréme, le morphisme induit
D, XwZ—-D, satisfait le LLemme relativement au compact K, XwK, et donc, en
utilisant un recouvrement fini de K,, pour tout point w,€ED,NK,, puisque
W, x,Z=Z_Upr;'(D,), on a I'inégalité

dim OV,,.z,,\na Na,
2,EIs(W) c

ou N, est le supremum sur les ouverts U, d’un recouvrement de K, des
”uw,(Ka X wK,) associés au morphisme D, X wZ—D,.

Puisque V,=0 '(n4(w,)) on en déduit que pour tout w E,(K,) on a

i =
2 dlcm 0’0_,(w)‘z n,+N,.
z€Is(w)

Puisque KcU,7,(K,) on a le résultat cherché avec Ng=sup,(n,+N,). Q.E.D.
La Proposition 1 nous permet de démontrer 1’énoncé (5.7) de [T]:

COROLLAIRE 1. Soit ®: Q—R une fonction analytique réelle définie sur un ouvert
Q de R", et soit B un sous-ensemble convexe compact de R" contenu dans Q. Il existe
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un entier N tel que, pour tout segment de droite | contenu dans B, la dérivée de la
restriction de ® & | change de signe au plus N fois.

Démonstration. Considérons le fibré en droites affines ESQxS"! dont les
fibres sont p~'(x, v)={x+tv;t ER}. La dérivée de @ dans la direction v au point x+tv
définit clairement une fonction analytique réelle f: E~sR, et il suffit d’appliquer la
Proposition 1 avec K;=BxS""! et K,={x+tw€E;xEB, x+tvEB}. Q.E.D.

§ 2. Distance entre deux points sur une hypersurface de niveau

La proposition suivante, qui est un cas particulier du (3) de I'Introduction, entraine
I’énoncé (5.11) dans [T]:

PROPOSITION 3. Soit ®: Q—R une fonction analytique réelle définie sur un ouvert
Q de R", et soit K un sous-ensemble compact de Q. On suppose que les fibres
& (O)NK sont connexes. Il existe un nombre réel C>0 tel que, pour tout t € ®(K),
chaque couple de points x,y €E® " ()NK puisse étre relié par un arc, analytique par
morceaux, contenu dans ® '(1)NK et de longueur <C.

Démonstration. Remarquons d’abord que la question est locale sur R, en ce sens
qu’il suffit de vérifier qu’un point arbitraire de ®(X) posséde un voisinage V tel que tout
couple de points x,y€EP !(H)NK, t€V, peut étre relié par un arc contenu dans
@~ '()nK et de longueur <Cy.

Remarquons ensuite que la questions est aussi locale « en haut » : il suffit de
montrer que tout point x € K posséde un voisinage ouvert UcK tel que deux points
quelconques de U appartenant a la méme fibre de & puissent étre joints par un arc
contenu dans ®~'()nU et de longueur <Cy. Soit alors V un voisinage fermé d’un
point arbitraire de ®(K). On recouvre ® '(V)NK par un nombre fini d’ouverts du
genre de U, Uy, ..., U,. Par I’hypothése de connexité des fibres ®~'(#)nK on aura la
propriété suivante : si x,y € ®~!'(V)nK appartiennent 4 la méme fibre de ®, il existe
une suite finie x=u, u,, ..., u;=y de points de cette méme fibre, tels que deux points
successifs u;, u;,, appartiennent a I’'un des ouverts U;. D’autre part, si u; et u;,, avec
v=2, appartiennent au méme ouvert on peut supprimer tous les points intermédiaires
dans la suite et de cette fagon se ramener au cas ol la longueur de la suite ne dépasse
pas r. On peut alors prendre Cy=2I,<;<,C;.

Enfin, rappelons le théoréme de désingularisation suivant :

THEOREME (Hironaka, cf. [H1]). Soit X un espace analytique réel non singulier et
soit T un faisceau cohérent d’idéaux du faisceau structural sdy. Pour tout point x€ X,
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il existe un voisinage ouvert U de x dans X et un morphisme n: X' - U entre espaces
analytiques réels, ayant les propriétés suivantes :

(1) Le morphisme mt est propre, surjectif et algébrique, en ce sens qu’il existe un
diagramme commutatif :

X 5 UxRY
N pr
U

ou i est une immersion fermée et (X') est défini par un idéal engendré par des
polynémes en les coordonnées de RY, a coefficients analytiques sur U.

(2) L’espace analytique X' est non singulier.

(3) Si Y est le sous-espace de X défini par T, I’ouvert X'\~ (Y) est dense dans
X', et 7 induit un isomorphisme

X\n'(D-X\Y.

(4) Pour tout point x' EX', il existe un systeme de coordonnées locales (z), ...,7})
dans X', centré en x', tel que lideal . sy . soit engendré, dans
Ay ~=R{zi,...,2,}, par des mondémes

a a, —
zy'..z,", a=(a,..,a)EL,.

Revenons-en a la démonstration de la Proposition 3. Soit xo € K; posons 1o=®(x,)
et soit 7 I'idéal de o/, engendré par ®—1,. D’aprés le théoréme précédent il existe un
voisinage ouvert U de x, dans K, un morphisme propre m: X’— U tel que X’ soit non
singulier et que, pour tout point x' de X, il existe un systéme de coordonnées locales
X1, ..., X, tel que, dans un voisinage ouvert U’ de x’, on ait

18y 14,

(D—t)o(n|,) = ulxy,...,x)x " ... x'",

avec a€Z’, et u+0dans U'.

Puisque le morphisme 7 est propre, on voit, par le méme raisonnement de
localisation que plus haut, qu’il suffit de montrer que tout point x' € X’ posséde un
voisinage ouvert W’ tel que deux points de W’ appartenant 4 la méme fibre de ®ox
puissent étre joints par un arc contenu dans 7 '(® '(HNK)NW' et de longueur
<Cy. En effet, on recouvrira 7~ (&~ !(#5) N K) par un nombre fini r de tels ouverts,
dont la réunion contient 7~ '(® " Y(V)nK) (V : voisinage de 7, dans R). On saura
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joindre deux points x’ et y' de 2~ !(®~(#o) N K) par la réunion d’un nombre d’arcs ne
dépassant pas r, dont la longueur totale est <X, ., ij,. La réunion des images par 7 de

ces arcs fournira un chemin joignant z(x’) a n(y’), de longueur <A X, ., Cy. Ici A est
J

une constante, puisqu’il s’agit de borner la longueur d’arcs images par 7w d’arcs de
longueur bornée dans X’. On peut prendre pour A n fois le supremum sur
7~ (@~ Y(V)n K) des valeurs absolues des dérivées partielles des fonctions décrivant x
dans des cartes locales.

Finalement on est ramené a prouver :

LEMME. Soit ®=u(z,,...,2,)2]' ... 2." avec a€Z" et u*0 dans un voisinage ouvert
U’ de 0 dans R". Il existe un voisinage ouvert W' cU' de 0 et une constante Cy.>0 tels
que deux points quelconques de W' appartenant a la méme composante connexe d’une
fibre de ® puissent étre joints par un arc contenu dans U’ sur lequel ® est constante,
de longueur <Cy.

Démonstration. Aprés contraction de U’ et changement de variables on peut
supposer que ®=z;' z: On supposera désormais que U’ est une boule ouverte
contrée a I’origine, de rayon p. Il est clair aussi qu'on peut se ramener au cas ol tous
les a; sont <1. En effet, admettons que certains de ces exposants soient nuls; aprés un
changement d’indices des variables on peut supposer que ®=z;'...z," avec a;=1 pour
Jj=1,...,v. Les arcs recherchés pourront étre alors réunion d’un arc sur lequel ¢ et
2"=(2y+1, -.-» 2n) SONt constants, et d’'un segment de droite dans P'espace z”, sur lequel
z'=(zy,...,2y) et donc ® sont constants.

Soient alors x=(xy, ..., x,), y=(, ..., y,) deux points de U’ appartenant i la méme
composante connexe d’une fibre de ®. On supposera ®(x)=P(y)+0, et méme que pour
chaque i=1,...,n, x; et y; aient le méme signe (puisque les a; sont tout non nuls il en est
de méme des x; et des y;). Posons alors, pour 0<t=<I1,

Zi=xfx| "l J=1,.n.
Il est clair que ®(Z2)=®(x)=d(y). De plus,

n
2]l = @2 +..+ZH" < x|y, < no.
i=1
I suffira désormais de faire varier x et y dans une boule W’ centrée a I’origine, de rayon
o' <o/n, pour étre sir que Z reste dans U’. Lorsque ¢ varie de 0 a 1 le point Z(¢) parcourt
un chemin de x a y. La longueur de de chemin est majorée par
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n 1

n
z |Zj(t)| dt< z lx;}—y| <2ngo'.
j=1Jo j=1
Puisque cette majoration est uniforme, et que par ailleurs deux points de ®~'(0)n U’
peuvent étre joints par un arc de longueur <2p, le lemme est démontré.

Remarque : L’hypothése de connexité les fibres de &~ '(1)n K est superflue : au vu
de la propriété (1) de l'introduction, le nombre des composantes connexes des
@~ !()NnK est uniformément borné, et nous démontrons en fait ci-dessus qu’il existe
C>0 tel que pour t€® !(K), deux points x,y appartenant 2 la méme composante
connexe de ® " !(1)NK puissent étre joints par un chemin contenu dans ®~'(f)nK et
de longueur <C.

Nous pouvons déduire de la Proposition 3 I’énoncé (5.15) de {T]. Notons y(x, y) la
courbe qui joint x & y dans ® (/)N K et qui a été construite dans la démonstration de la
Proposition 3. Supposons K convexe et notons l(x, y) le segment de droite qui joint x a
y. Paramétrons ces deux courbes de fagon qu’elles aient la méme longueur (et qu’elles
soient toutes deux orientées de x a y). Soit alors S(x, y) la surface réglée engendrée par
les segments de droite joignant les points sur y(x, y) et l(x,y) qui correspondent a la
méme valeur du parametre.

COROLLAIRE?2. [l existe une constante C'>0 qui majore I'aire de S(x, y) quels que
soient x,yEK.

Le Corollaire 2 résulte de la Proposition 3 et de I’énoncé suivant :

LEMME DU LIMON(Y). L’aire de S(x,y) est majorée par le produit de la longueur
de chemin y(x,y) et de la longueur maximum des segments de droite qui engendrent

S(x, y).

La preuve de ce lemme est un exercice de calcul différentiel. On pourra prendre la
constante C’ dans le Corollaire 2 égale a C diam K, ol C est la constante obtenue dans
la Proposition 3.

Ajouté sur épreuves. Récemment, R. Hardt a répondu affirmativement 4 la question (2)
de I'introduction; voir « Some analytic bounds for subanalytic sets » in « Differential-
geometric control theory », Progress in Math., n°® 27, Birkhéuser.

(') On appelle « limon » la courbe engendrée par le bord extréme des marches dans un escalier a vis.
Le lemme du limon énonce donc que la surface d’un escalier A vis est majorée par la longueur du limon que
multiplie la longueur de la plus longue marche. La terminologie et I’énoncé sont dus 2 Douady.
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