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w I. Introduction 

A map F from a metric space X to the power set of a metric space Y is said to be 

upper semi-continuous, if the set {x: F(x)N H4:•} is closed in X, whenever, H is a 

closed set in Y. Our first aim in this paper is to obtain information about the possible 

structure of such maps. One special case of an upper semi-continuous map is provided 

by the inverse image function F = f  -1, w h e n f i s  a closed continuous map from Y to X, 

that is, when f is continuous and maps closed sets in Y to closed sets in X. In 1947 

Va~ngtein [I5] announced and in 1952 [16] gave the proof that, in this special case, each 

set F(x)=f-l(x), with x in X, has a compact boundary. In 1948, Choquet [17] consid- 

ered upper semi-continuous set-valued functions, under the name strongly upper semi- 

continuous functions. Choquet expressed the opinion that the condition of strong upper 

upper semi-continuity is very restrictive; a view that we shall amply justify. He gave, 

without proof, the result that, if F is an upper semi-continuous map of a metric space X 

to a metric space Y, then, for each x0 in X, it is possible to choose a compact set K 

contained in F(xo) with the property that for each neighbourhood G of K in Y, there is a 

neighbourhood U of x0 in X with 

F( U) c G O F(xo). 

Had Choquet given the proof of his result, it seems sure that the connection between 

this result and Vain~tein's result would have been apparent. As it was, the connection 

remained undiscovered for many years. 

Following up Vain~tein's work, Taimanov [14] and La~nev [7], show that, in the 

special case of the inverse image function F of a closed continuous function f ,  the set of 

x, for which F(x) has a non-empty interior, is a sigma-discrete set in X. More recently, 

in 1977, in a manuscript [18], that has remained unpublished, S. Dolecki rediscovered 

Choquet's result, in a slightly different form. He gives some applications, writing with 

S. Rolewicz in [19] and extensions with A. Lechicki in [20]. 

In this paper we take the theory rather further. Recall that a family of sets in a 
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space is said to be discrete,  if each point of  the space has a neighbourhood that meets at 

most  one set of  the family, and that a family of sets is said to be a-discrete if it is a 

countable union of  discrete families. Further,  a family {Qa}aea is said to be discretely 

a-decomposable ,  if, for each a in A, we have 

O~ = LI Q~n), 
n=l 

and each family s,,~n)~ n=  1,2, is discrete. I.~f~a J a E A '  " " ,  

THEOREM 1 (decomposition).  Let F be an upper semi-continuous map o f  a metric 

space X to the power set o f  a metric space Y. Let 

T= 1.2 {x} xF(x) 
x E X  

be the graph o f  F in X• Y. For each x in X, write 

E(x) = [ ( X \  (x}) x ( Y\F(x ) ) ]  N T, 

and 

K(x) = proj y([cl E(x)] N [{X} xF(x)]),  

where 'cl '  denotes closure in X x  Y and pro j r  the projection onto Y. 

(a) For each x in X, the set K(x) is compact. The set 

K =  U {x}xK(x) 
x E X  

is a %-set in X x  Y. The set {x: K(x) N H#f~} is a %-set in X, whenever H is closed in Y. 

(b) The sets o f  constancy o f  the restriction o f F  to 

E = {x: K(x) = •}, 

i.e., the subsets o f  E on which F takes a particular set as its value, form a disjoint 

family, that is discretely tr-decomposable in the completion X* of  X, the sets o f  the 

family being ~o-sets in X with union ~_. 

(c) There is a o-discrete family {P~xS~}#~ 8 of  rectangles that are relatively closed 

subsets o fT ,  with each set PO, flEB, closed in X, and with 

U P#xS# = T \ K .  
#EB 
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Here  the set K(x) is the set that must have been used by Choquet  in his proof;  it is 

the set reintroduced by Dolecki and called by him the active frontier of  F. 

A m a p f f r o m  a metric space X to a metric space Yis said to be a selector for a map 

F from X to the non-empty  sets of  Y, i f f (x)  is in F(x) for all x in X. Such a s e l e c t o r f i s  

said to be of  the first Borel  class i f f - l ( H )  is a ~36-set in X for each closed set H in Y, 

and is said to be of  the second Borel  class i f f - l ( H )  is an ~o6-set (that is, the countable 

intersection of  countable unions of  closed sets) in X for each closed set H in Y. 

Engelking [1], Theorem 1, has proved that if X and Y are metric spaces and F is an 

upper semi-continuous map on X, each of  whose values is a non-empty complete and 

separable subset of  Y, then F has a selector of  the first Borel class. Our s t ructure 

theorem enables us to prove a selection theorem for upper  semi-continuous maps 

between metric spaces of  extraordinary generality and precision. 

THEOREM 2 (selection). Let F be an upper semi-continuous map from a metric 

space X to the non-empty subsets o f  a metric space Y. Then F has a selector f o f  the 

second Borel class. Further it is possible to choose f, an ~ - s e t  X1 in X and its 

complementary ~6-set X 2 = X ~ X I ,  so that the restrictions o f f  to Xj and to Xz are o f  

the first Borel class. I f  F takes only compact values, then F has a setector f o f  the first 

Borel class. 

Provided we assume more about  the space Yand the map F, we can obtain a nicely 

parameter ized family of  selectors filling out the whole space by means of the following 

representat ion theorem.  

Recall that a f u n c t i o n f i s  said to be closed if it maps closed sets to closed sets; and 

recall that if m is an infinite cardinal number,  then B(m) denotes the Baire space of 

weight m, that is, the product  o f  a countable sequence of  discrete spaces of  cardinality 

m .  

THEOREM 3 (representation).  Let m be an infinite cardinal and let Y be a 

complete metric space o f  weight m. Let F be an upper semi-continuous map of  a metric 

space X to the non-empty closed subsets o f  Y. Then there is a map g from the cartesian 

product o f  X with the Baire space B(m) to Y with the following properties. 

(a) For all (x, o) in X•  we have g(x, cr)EF(x). For each x in X and each y in 

F(x), there is acr in B(m) with g(x, t~)=y. 

(b) The family (g(x, ' )}xex is an equicontinuous family of  closed uniformly 

continuous functions. 

(c) For eact. cr in B(m), the function g( ' ,  ~r) is a selector for F and is o f  the first 

Boret class. 
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Let  T be a set in the car tes ian product  X •  Y of  two metric spaces X and Y. I f  we 

know that each  section 

({x} x Y) N T, 

with x in X, is of  some fixed Borel  class, the information we have is too disorganized to 

enable us to say anything about  the global nature of  T. Recent  results of  Saint- 

Raym ond  [12] and of  L o u v e a u  [8] show that the additional information that T is a Borel 

set has the remarkab le  effect  o f  enabling a reorganization of  the previously disorgan- 

ized information,  and leads to global information about  T. Our next theorem shows that  

the additional information that  T is the graph of  an upper  semi-continuous function has 

a similar effect. 

The Borel  sets o f  addit ive class a and of  multiplicative class a in a metric space X 

are defined inductively for 0~<a<w~. The sets of  additive class zero are jus t  the open 

sets of  the space,  and the sets of  multiplicative class zero are just  the closed sets of  the 

space.  When 1 ~<a<wl,  the sets of  additive class a are jus t  the countable  unions of  sets 

chosen f rom the sets of  multiplicative class/3 with 0<~fl<a; and the sets o f  multiplica- 

rive class a are jus t  the countable  intersections of  sets chosen from the sets of  addit ive 

class/3 with O<~/3<a. A set S in X is said to be a Sous l in -~  set, if it has a representat ion 

of  the form 

S = kJ f'l F(0"ln), 
O t / = l  

where each set F(0"1n) is closed,  the union is taken over  all 0" in the space N N, where 

N =  { 1,2 . . . .  }, of  all infinite sequences  

O----Oi ,O2,  O3, . . .  

of  posit ive integers,  and 

0"in = 0"1,0"2, -.., 0",. 

A set S in X is said to be a co -Sous l in -~  set, if its complement  X \ S  is a Sous l in -~  set. 

THEOREM 4 (graph structure).  Let  F be an upper semi-continuous map o f  a metric 

space X to the power  set o f  a metric space Y, and let 

T= 13 {x}• 
x E X  

be the graph o f F .  
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(a) F(x) is a Borel set in Y o f  additive class a, with a~>2, for  all x in X,  if, and only 

if, T is a Borel set o f  additive class a in X x  Y. 

(b) F(x) is a Borel set in Y o f  multiplicative class a, with a>~2, for  all x in X,  if, and 

only if, T is a Borel set o f  multiplicative class a in X x  Y. 

(c) F(x) is a Sous l i n -~se t  in Y for  all x in X,  if, and only if, T is a Sous l in -~se t  in 

X x Y .  

(d) F(x) is a co-Souslin-o% set in Y for  all x E X ,  if, and only if, T is a co-Sousl in-~  

set in X x  Y. 

We draw attention to one consequence  of  the decomposit ion theorem that we have 

found useful as a tool in proving the selection theorem. A family {Xa}~ea of sets in a 

metric space X is said to be an absolutely additive family of  closed sets, if 

uxo 
a E B  

is closed in X, for each subset B of  A. 

THEOREM 5. Let  {X~}aeA be an absolutely additive family  o f  closed sets in a 

metric space X.  Define a set-valued map F f rom X to the power set o f  A by 

F(x) = { a E A : x E X ~ }  

for  each x in X .  Then the sets o f  constancy o fF ,  i.e., the subsets o f  X on which F takes 

a particular set as its value, form a dis joint  family  that is discretely o-decomposable in 

the completion X* o f  X,  each set o f  constancy being an ~o-set in X,  and each set 

Xa, a EA,  being the union o f  the sets o f  constancy that it constains. 

We have announced most of  the results in this paper in [5]. 

w 2. The structure of upper semi-continuous maps 

In this section we use the assumptions and notation of Theorem 1 and we prove a 

sequence of lemmas establishing the results stated in Theorem 1. The first of  these is 

the result of  Choquet  [17] rediscovered by Dolecki [18]. 

LEMMA 1. The set K(x) is compact ,  for  each x in X.  

Proof. Let  x* be a fixed point of  X and let {ki} be any sequence of  distinct points of  

K(x*). Then 

(x*, ki) E cl E(x*) 
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for i~>l, and, for each i~>I, we can choose (xi, Yi) in E(x*) with 

As 

O((xi, Yi), (x*, ki)) < 1/i. 

E(x*) = [ ( X \  {x*}) x ( Y\F(x* ) ) ]  N T, 

we have Xidt=X * and yi~F(x*) but (Xi, Yi) ~ T, for i>~l. 

First suppose that the sequence {k~} has no convergent subsequence. Then the 

sequence {Yi} has no convergent subsequence and the set 

is closed in Y. Hence the set 

H = ( y , , y 2  . . . .  } 

{x: F(x) N H +  Q} 

is a closed set in X containing the sequence {xi} converging to x*. Thus 

F(x* ) N H ~ f~ , 

contrary to the condition Yi (~ F(x*) for i>~ 1. 

Now (k;} must have a convergent subsequence. We suppose that {ki} itself 

converges to a point y* in Y. Now the set 

H* = (Y*,Yl,Y2 . . . .  } 

is closed in Y. It again follows that 

F(x*) N H* �9 g .  

Now, as yil~F(x *) for i~>l, we conclude that y* EF(x*). As (x*,y*) is the limit of the 

sequence of points (xi, Yi) in E(x*), we see that y* E K(x*). Thus each sequence of points 

of K(x*) has a subsequence that converges to a point of K(x*), and K(x*) is compact. 

LEMMA 2. The set K has the representation 

o o  

K = t'l I(r), 
r=l 

with 

K(r)={(x,y)EXXY:(3~)(3t])(O<QI(X,~)<~2 -r t~ Q 2 ( y , r ] ) < 2  - r  • (~,r/)ET & (x,q)~T} 

an open set in X x  Y for  each r>~ 1, where 01 is the metric on X and Oz is the metric on Y. 
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Proof. To see that the set / ~ )  is open, consider any point (x ' ,y ')  in K ~r) and 

choose a point (~', r/') satisfying the conditions 

0 < O l ( x ' , ~ ' ) < 2  -r, qz(y' ,r] ')<2 -r, (~ ' , r / ' )ET and ( x ' , r f )~T .  

By the upper  semi-continuity of  F,  the set of  x with 

(x, r f )~  T 

is open in X. Hence  the same point (~', r/') satisfies the defining conditions for K (r) for 

all points (x, y) sufficiently close to (x', y'). Thus K (~) is open for each r~> 1. 

Consider any point (x*, y*) in K. The (x*,y*) E T. Also, (x*, y*) is the limit of  a 

sequence of  points, say (~(s), ~/(s)), s~>l ' of  E(x*). Then 

~s) 4: x* and (~(~), r//~)) E T but (x*, q(~)) ~ T, 

for s ~  > 1. If  r is fixed, and s is suffciently large, 

Oz(Y*, rl (~)) < 2-r, (~(~), rl (~)) E T and (x*, q(~)) E T. 0 <  Ol(X*, ~(s)) < 2-r, 

Hence,  for each r~> 1, 

and 

Thus 

(x*, y*) E~ K (~), 

(x*, y*) E N K (r). 
r =  I 

K ~ N K ~.  

On the other  hand, suppose that (x*, y*) E (')r=l g(r)" Then there will be a sequence 

(~(r), e(r)) of  points with 

0 < el(x*, ~(r)) < 2-r, Q2(Y*, r/(r)) < 2-r, (~(r), ~](r)) E T and (x*, ~](r)) ~ T. 

for each r ~  > 1. The set 
H* = {y*, r/(1), ~](2) . . . .  } 

is closed in Y. Just  as in the proof  of  Lemma 1, it follows that y* EF(x*). So (x*,y*), 

being a point of  T that is the limit of  the sequence (~r), ~ff)) of  points in E(x*) is in 

{x*} xK(x*) and so is in K. Thus 
oo 

K =  A K  (r), 
r =  I 

a s  required. 

7-822906 Acta Mathematica 149 
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LEMMA 3. I f  H is any closed subset o f  Y, write 

E(H) = {x: K(x) N H = Q}. 

Then the sets o f  constancy o f  the restriction o fF(x)NH to E(H) form a disjoint family 

that is discretely or-decomposable in the completion X* of  X, each set o f  constancy 

being an ~o-set in X. 

Proof. Write 

E(H) = {x: K(x) N n = Q}. 

Consider a point ~ of E(H). Then 

[cl E(~)] N [{~} x (F(~) N H)] = ~.  

Let C(~; I/i) denote the cylinder of all points (x, y) with 

~(x,  ~) < 1/i, y E Y, 

where 01 is the metric on X. Suppose that, for each i~>l, the open cylinder C(~; 1/i) 
meets 

cl [E(~) n {XxH}]. 

Then for each i~ > ], we can choose a point (xi, Yi) in 

C(~; 1/i) N [E(~) N {XxH}]. 

As 

we have 

and 

E(~) = [ (X\  {~}) x (Y\F(~))] N T, 

Qi(xi,~)<l/i, xi+~, yiEH, yiCF(~), 

Yi E F(xi). 

If the sequence {Yi} had a subsequence converging to a point ~/* of Y, then the 

corresponding points (xi, Yi) of E(~) would converge to the point (~, ~*) in X• As 

K(~) N H = ~ ,  we would have to have ~* C F(~)I Now the points of the subsequence of 

{Yi} together with ~* would form a closed set L in Y and 

{x: F(x) fl L :~ •} 
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would be a closed set in X containing a subsequence of the points {x;} converging to 

but not containing ~. Thus {Yi} has no convergent subsequence. We again get a 

contradiction, by the same argument, on taking L to be the closed set 

L = { Y l , Y 2  . . . .  } .  

We conclude that, for each ~ in E(H), there is an i~>l such that C(~; 1/i) does not meet 

cl [E(~) n (XxH}]. 

In particular, for all x with Ql(X, ~)< 1/i, we have 

[{x} x (Y\F(~))] N TO (XxH} = •, 

so that 

( Y \ F ( ~ ) )  N F(x) N H = f~, 

and 

F(x) n H c F(~). 

For each ~ in E(H), let i(~) be the least integer i such that 

F(x) n H c F(~) 

for all x with Ql(x, ~)<1/i. Then 

C(~; 1/i(~)) n TN (XxH) c B(~; l/i(~))• 

with B(~; 1/i(~)) the set of all x with 91(x, ~)<1/i(~). 

For each ~ in E(H), let Q ~ )  denote the set of all x in X satisfying the conditions: 

(a) F(~) n H c F ( x ) ;  

and 

(b) C(x; 1/i(~)) N TN (XxH) c B(x; 1/i(~))xF(~). 

Note that ~ E Q/-A~). Further the set 

t') 
yEF(~)nH 

(x: F(x) N (y} + Q}. 

of those x in X satisfying the condition (a) is closed in X, by the upper semi-continuity 

of F. We prove that the set of those x in X satisfying the condition (b) is also closed. 

Suppose that {xj} is a sequence of points of X all satisfying the condition (b), and 
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converging to some point, x* say, of X. If x* did not satisfy the condition (b), there 

would be a point (x, y) of T with 

9l(X*,X)< 1/i(~), yEH,  and yr 

Then, provided j is sufficiently large, we would have 

01(xj, x) < 1/i(~) 

as well as 

(x ,y)ET,  yEH,  yCF(~), 

and the point xj would not satisfy condition (b), contrary to its choice. Hence the set of 

x in X satisfying the condition (b) is closed in X. It now follows that Qn(~) is closed. 

Note that condition (b) implies, in particular, that 

F(x) N H ,-- F(~). 

It follows that QM~) is just the set of all x such that 

F(x) N H = F(~) N H 

and such that 
F(a) fl H c F(~) 

for all o in B(x; 1/i(~)). Note further that Q ~ )  is determined once F(~) N H and i(~) are 

known; it only depends on ~ through the dependence of F(~) N H and of/(~) on ~. 

For eachj~>l, let Ei(H) denote the set of all ~ in E(H) with i(~)=j. We show that, 

for each j~> 1, the family 

{QH(~): ~ 6 Ej-(H)}, 

is a family that is discrete in the closure X* of X, each set being closed in X. Here we 

use the convention that two identical sets are not to be distinguished because they have 

different indices. Suppose that, for some point x of X*, each neighbourhood of x in X* 

meets at least two of the sets Q,(~) with ~ E Ej.(H). Then we can find points ~, ~' of 

Ej(H) such that 

pl(x, ~) < 1/(4j), 

Q~(x, ~') < l/(4j). 

Now 

~(~,  ~') < l/(2j). 
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So ~5' EB(~; I/i(~:)) as i(~)=j. Hence 

F(~') N H c F(s~). 

Similarly 

Hence 

and 

F(~j) N H c F(~'). 

F(~) N H = F(~') n H 

i(~) = i(~'). 

Now QH(~') coincides with QH(~) and these sets are not distinct. Thus the family 

{QH(~): ~6 Ej<H) } 

is a family that is discrete in X*, each set being closed in X. Hence the family 

{QH(~): ~6 V-(H)} 

is o-discrete in X*, each set being closed in X. Further F(x) n H is constant on each set 

of this family. 

Now the sets of constancy of F(x)N H on E(H) are obtained by choosing some ~* in 

V-(H) and, for each possible value of j, choosing ~* in V-j(H) with 

F(~j*) = F(~*), 

and then taking the union of the corresponding sets Q ~ * ) .  Thus the sets of constancy 

ofF(x) N H on E(H) form a disjoint family that is discretely a-decomposable in X*, these 

sets of constancy being ~o-sets in X with union E(H). 

Each set of constancy of F(x)N H on v(H) is a countable union of closed sets 

Q~8), with at most one ~ in each set ~i. By the standard reduction theorem [6], p. 350, 

this sequence of closed sets has a disjoint refinement by ~o-sets. The family of all the 

~-o-sets in all such refinements is a disjoint family of ~o-sets with union E(H) and with 

F(x) NH constant on each set of the family, and this family is a-discrete in X*. 

L E M M A  4. The set  

{x: K(x) N H 4: Q} 

is a ~ga-set in X,  whenever  H is a closed set  in Y. 
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Proof. By the last paragraph of the proof of Lemma 3, the set E(H), being the 

union of a a-discrete family of ~o-sets in X, is itself an ~o-set. Thus 

{x: K(x) N H * Q) = X \  E(H) 

is a ~6-set in X. 

LEMMA 5. The sets o f  constancy o f  the restriction o f F  to 

E = {x: K(x) = ~} 

form a disjoint family o f  ~ - s e t s  with union E, and this family is discretely 

o-decomposable in X*. 

Proof. Take H =  Y in Lemma 3. 

LEMMA 6. There is a o-discrete family {P~• o f  rectangles that are 

relatively closed in T, with each set P~, fl E B, closed in X, and with 

u = r \ K .  
13EB 

Proof. As Y is a metric space, we can choose a a-discrete family {He}ee r of 

closed sets in Yforming a base for the open sets of Y. By the antepenultimate paragraph 

of the proof of the Lemma 3, for each V in F we can choose a a-discrete family 

{Oea}aEa(e) of closed sets with union E(H e) with F(x)NH~, constant on each set of the 

family. Take 
B =  U {y}• e(y.~)= Qy~, 

yEF 

for (7, a) E B, and 

S(r ' ~) = F(O N Hr, with ~ E Q~, for (7, a) E B. 

Then the rectangle 

P(y, a) x S(• a) 

is the intersection of the closed rectangle 

P(y,a)xHy 

with T, for each (y, a) in B. It is easy to verify that the family {P~xS~}~e ~ is a-discrete. 

It is clear that 

P~x S~ c T \ K  
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for each/3  in B. It remains only to prove that each point of T \ K  belongs to some 

P~xS~ with flEB. Consider  any point (x*,y*) in T \ K .  Then 

y* EF(x*) but y* ~ K(x*). 

As K(x*) is compact ,  we can choose 7* in F so that 

Then 

y* eBy., K(x*) nH,.= Q. 

and we can choose  a* in A(7*) with 

Now 

with fl*=O'*, a*). Thus 

x* E E(Hr*) 

x* E P(~,. ~,) = Q~,~,. 

(x*,y*) EP~.xS~., 

as required. 

U P~xS~ = T \ K ,  
~EB 

Proof of Theorem 1. The result follows from Lemmas  1, 2, 4, 5 and 6. 

w 3. Absolutely additive families of closed sets 

In this section we give the very  short proof  of  Theorem 5 stated in the introduction. 

Proof of Theorem 5. Take Y to be the set A with the discrete topology. The map F 

has graph 

u x x(a}. 
aEA 

For  any subset B of  A = Y, the set 

{x:Y(x)nB.O}= u xo 
aEB 

is closed in X. Thus F is upper  semi-continuous. As Y is discrete 
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so that 

cl E(x) = cl ( [ (X\  {x}) x ( Y \F(x))]  n T) ~ X• ( Y \ F ( x ) ) ,  

K(x) = ~,  

for all x in X. The required result now follows immediately from part (b) of Theorem 1. 

w 4. Selectors for upper semi-continuous maps 

Before we prove Theorem 2, stated in the introduction, it will be convenient to prove 

two lemmas. 

LEMMA 7. Let F be an upper semi-continuous map of  a metric space X to the 

power set o f  a metric space Y. Let L be a closed subset o f  Y and let E be a subset o f  X 

with 

K ( x ) N L = Q  but F ( x ) N L ~ O ,  

for all x in E. Then the restriction o f  F(x)N L to E has a selector f, whose sets o f  

constancy form a disjoint family that is discretely a-decomposable in X*, each set o f  

constancy being a relative ~o-set in E. 

Proof. In the notation of Lemma 3, the sets of constancy of F(x)n L restricted to 

E(L) = {x: K(x) nL = Q}, 

form a disjoint family, say {Qa}aEa, that is discretely a-decomposable in X*, each set 

of constancy Qa, a E A ,  being an ~o-set in X. The family {ENQa}aeA remains 

discretely a-decomposable in X*, each set E n Q,~ being a relative ~-o-set in E. We 

suppress any empty sets in this family {E n Qa}REA and choose a representative point 

~a, aEA,  from each non-empty member. Then F(~,)NL~=Q and we define f on 

ENQa, REA,  by taking f to be any point of F(~a)NL. The sets of constancy for this 

selector f defined on E will be certain unions 

U ENQ~, 
aEB 

with B a subset of A. As {Qa}aEA is a discretely a-decomposable family of O~o-sets, 

each such set of constancy for f is a relative ~-o-set in E. As any disjoint family of 

unions of subfamilies of a discrete family is discrete, it follows that the sets of 

constancy of f form a discretely a-decomposable family in X*. This proves the lemma. 
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LEMMA 8. Let  F be an upper semi-continuous map of  a metric space X to the 

power set o f  a metric space Y. Let  {L~}~ev be a o-discrete family o f  closed sets in Y 

with union L. Let  �9 be a subset o f  X with 

F(x) N L :k G, 

for each x in O. Then there is a disjoint family {X~}Tev that is discretely o-decompo- 

sable in X*, with each set Xy, y E F, a relative ,~o-set in Oo, with 

and with 

for each ;~ in F. 

Proof. As 

disjoint union 

U Xy = q~, 
yEF 

X~ c {x: F(x) N Ly =t = Q}, 

{Le}yer is a o-discrete family of closed sets, we can write F as a 

F = U F(n) 
n=l 

with each family {L~}~,e r(n), n= 1,2 . . . . .  a discrete family of closed sets. Such a family is 

an absolutely additive family of closed sets. 

Write 

Zy = {x: F(x) N L~, * ~} ,  

for each y in F. As F is upper semi-continuous, each set Zr is closed in X, and, further, 

each family {Z~}Ter(n), n= 1,2 . . . . .  is an absolutely additive family of closed sets in X. 

By Theorem 5, stated in the introduction and proved in w 3, for each n~>l, the sets of 

constancy of the map 7n from X to the subsets F(n), defined by 

7n(x)= {y:yEF(n) and xEZ~},  

for x in X, form a disjoint family {Q~}~eA(,), that is discretely o-decomposable in the 

completion X* of X, each set of constancy being an fro-set in X. Let A*(n) be the subset 

of A(n) for which y~(x) is non-empty for x in Q~. Then 

Q(~) = U Q~ 
aEA*(n) 
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is an ~o-Set for each n>~ 1 and 

Let {p(n)} be a disjoint sequence of fro-sets with 

Then 

P(") c Q("), n /> l ,  and U P ( " ) =  U Q("). 
n~l n=l 

(P('~ and n~>l)  

is a disjoint family that is discretely o-decomposable in X*, each set being an fro-set in 

X, and with union containing O. For each pair a, n, with a EA*(n), for which the set of 

constancy Qa corresponds to a non-empty set y,,(x) in F(n), we choose such an index 

6(a, n) in F(n) with xEZ6r ). 

For each 7 in F, y E F(n) for some n, and we take 

Xy= U{~NP("~NQa: 6(a,n)= 7). 

It is easy to verify that this family {Xy)ysr satisfies our requirements. 

Proof of Theorem 2. The metric space Y has a closed o-discrete base for its open 

sets. Using this base we can choose a system of index sets 

F(W), 

F(yO, ~,~ EF(~),  

F(Tq, 72), 7'1 E F(cp), 

F(Yl,Y2 . . . . .  Y.), Yl EF(@, )'2EF(Yl), 

..~ 

and a corresponding system of  closed sets 

L(~) = Y, 

L(yO, )'1 E F(q~), 

L(Yl, Y2 . . . . .  Yn), 

72 E F(~' 1), 

.... 7~EF(?~ . . . . .  ? , ' 0 ,  

L ( ~ I ,  ~2),  ~v I E F(~9),  ~v 2 E F ( ) / i )  , 

y~ E F(@, Y2 E F(y 0 . . . . .  7'. E F(y~ . . . . .  y._~), 
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with the following propert ies.  For  each n~>l, and each choice of 71 in F(cp), 72 in 

F(70 . . . . .  7n-1 in F( 71, 72 . . . . .  7.-2) the family 

{L(71,72 . . . . .  7n ); 7n E F(71,72 . . . . .  7n-J)} 

is a o-discrete family of  closed sets, each of  diameter  at most 2 -n, and with union the 

set L(T1,72 . . . . .  7~-~). Here  we are using the letter q~ to represent  a sequence of  indices of  

zero length, so that Yl, V2 . . . . .  7 , - i  must be identified with q~ when n= 1. 

To simplify the notation it will be convenient  to use 7 to denote a sequence 

7 = 7 1 , 7 2 , . . .  

in the set H of  such sequences satisfying 

71 E F(cD, 72 E F(7 0, 

and to use 

73 E F(yj, 72) . . . . .  

71n = 71,72 . . . . .  7n 

to denote the first n terms of  the sequence 7. We will use this notation 7[n even in the 

cases when the subsequent  elements 7n+l, Yn+2 . . . .  are unknown or irrelevent. 

We start an inductive construct ion by writing 

L ( ~ ) =  ~ X ( ~ ) = X ,  

E(~o) = {x: K(x) n L(~) = Q}. 

As F maps to the non-empty  sets of  Y, by Lem m a  7, the restriction of  F to E(q0 has a 

selector f(q~;x), whose  sets of  constancy form a disjoint family that is discretely a- 

decomposable  in X*, each set of  constancy being a relative ~o-set in E(q0. By L e m m a  

3, E(q0 is itself an ~o-set in X, and so each set of  constancy off(q~;x). 

We use induction on n to choose,  for each 7 in H, and for each n ~ l ,  sets 

X(y[n), E(yln), 

and a function f(y[n; x) f rom E(y[n) to Y with the following properties.  

(a) The family 

{x(Tln): 7 e r}, 

regarded as indexed by the finite sequences 7~, 72 . . . . .  7n, rather than by the infinite 
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sequences 7~, ~2 . . . . .  is a disjoint family that is discretely o-decomposable in X*, each 

set of the family being an ~,-set,  and the union of the family being X(7[n- 1). 

(b) For each x in X(yln), we have 

F(x) n L(~,In) * •. 

(c) ~-(7I n) = {x E X(Tin): K(x) N L(yln) = ~)}. 

(d) The function f(ytn;x) is a selector for the restriction of F(x)nL(yin) to ~(7]n), 

and the sets of constancy of this selector form a disjoint family that is discretely o- 

decomposable in X*, each set of constancy being an ~o-Set. 

The conditions (a) to (d) are all satisfied for n=0 and for each 7 in 11. 

Now suppose that n~  >1, and that conditions (a) to (d) have been satisfied for all 

smaller values of n and for all 7 in H. We can confine our attention to those 7 in F with 

7]n fixed, say equal to 61n-1. Then 

{L(71n):yEF and 71n- l=61n-1}  

is a o-discrete family of closed sets in Y with union L(61n- I). By condition (b), for each 

x in X(6in- 1), we have 

F(x) N L(Oln- 1) 4: Q. 

By Lemma 8, with ~=X(61 n-  1), there is a disjoint family that is discretely o-decompo- 

sable in X*, with each set X(yln) a relative ~o-set in X(61n- 1), with X(6in- 1) as union 

for the family, and with 

F(x) N L(YIn) :~ ~, 

for each x in X(Yin). As X(6in- 1) is an ,~o-set, so is each set X(Tin). Having obtained 

the sets X(yln), satisfying (a) and (b) we define ~(71n) by condition (c). The functions 

f(yln;x) satisfying the condition (d) are now obtained, by use of Lemma 7, as in the case 

off(q%x). 

For each n~  1, and each 6 in 11, the family 

{X(TIn):TEH and 71n-l=61n-1} 

is discretely o-decomposable in X*, and is contained in X(61n-1). It follows, by 

induction on n, that the family 

{X(71n): 7 E I-I} 
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is discretely o-decomposable, for each n~>l. As E(Tln)cX(yln), for all n and all 7 in H, 

the family 

{EO'ln): )' E rI} 

is discretely o-decomposable for each n~> 1. As each set of the family is an ~o-Set so is 

the union. 

for n~>l. The set 

z ~"~ = {Z(yln): y E W ,  

E (~ = E(~v) 

is also an o%o-set. By the reduction theorem, we 

Z (~ Z ~), Z ~2) . . . .  of ~o-sets with 

Z ~")CE ("), n/>O, 

U Z  <")= U E ("). 
n = 0  n = 0  

can choose a disjoint sequence 

We now define sets Z(v[n) and W(y[n) by the formulae 

Z@ln) -- E(~,ln) n z  ~"), 

tP(7[n) = x(~'ln) \ (,~oZ(,lr) ) , 

for n~>O and ~, E FI. The family 

{Z(yIn):TEFI and n~>O} 

is a disjoint discretely o-decomposable family in X*, each set being an ~-o-set in X. 

We take 

S0= T= U ({x}• 
x E X  

S.-- [U{ {x} • {f(ylr;x)}" xEZ@lr), yEFI  and O<~r<~n}lU[U{tP(yln)• yEH}] 

for n~>l, and 
0r 

S =  N S , .  
n = O  
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We prove that S is the graph of a selector f for F, satisfying our requirements. 

Consider any point x* in X. By condition (a), there is a unique 7" in II such that 

x* e X(7*ln) 

for n=0, 1,2 . . . . .  First suppose that x* belongs to the set 

X t=  U E (~)= UZ ~). 
n=0 n=0 

Then for a unique n*~>0 we have 

x* e z ~n*~ = u {Z(yln*): y e I-I}. 

As the family 

(X(Tln*): y e n}  

is disjoint, and x* EX(y*[n*), we must have 

x* e Z(y*ln) ~ E(y*ln*). 

Now 

f (y*ln*; x *) e. F(x*) fl L(y*ln*). 

As x*EZ (n), just for n=n*, we have 

r 

x* e x ( r * l r ) \  u Z(~,*ls), 
s=O 

for O<~r<n *. Thus 

for O~<r<n *, and 

for O~<r<n *. Hence 

(x*, f(7'* In* ;x*)) e w(7*l r) • L(y*lr), 

(x*, f(~,*ln* ;x*)) e Sr 

(x*, f(y*ln*; x*)) e s.  

Further, for n>~n *, the only point of the form (x*,y) in S, is this 

y=F(7*ln*;x*). In this case (x*, f(7*ln;x*)) is the unique point of the set 

({x*} • r )  n s.  

point with 
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We write 

f(x*) =f(Y*ln*;x*) �9 

Now consider the case when x* belongs to the set 

X 2 ~. X ~ X  1 . 

Then 

and, for each n~>0, 

so that 

oo 

x* q. t'l E ("), 
n = O  

x* E X(y*ln) ~ ~(y*[n), 

K(x*) n L(7*{n) * O. 

As K(x*) is compact, while L(y*[n) is a closed set of diameter at most 2-", for n>~l, 

there is a unique point y* in the set 

o0 

t'l K(x*) NL(y*ln). 
n = 0  

As 

for n~>O, we have 

for all n~>0, and 

for all n~>0. Hence 

x* E xo,*ln) \'~(y*ln) 

x* E X(y*ln) ~ Z(~*ln) 

x* E W(y*[n) 

(x*, y*) E u~(y*ln) xL(7*ln) c S,,, 

for all n~>0, and (x*, y*) E S. So y* is the unique point y in Y for which (x*, y) E S. We 

write 

f(x*) = y*. 

Now we have shown tha t f i s  a well-defined function from X to Y with graph S. As 
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X1 is an ~:o-set and X2 is a cg6-set it will suffice that the restrictions of f to X~ and to X2 

are of the first Borel class. 

Consider any closed set H in Y. Write 

P = {x: F(x) N H 4: ~}, 

Q = {x: f(x) E H}, 

P1 =X1NP, Pz=X2AP, 

Q1=X1NQ, Q2=XzNQ. 

By the upper semi-continuity of F, the set P is closed in X. We need to prove that Q~ is 

a relative %-se t  in Xt and that Q2 is a relative ~6-set in )(2. It will clearly suffice to 

prove that PI\QJ is an o%o-set in X1 and that P2\Q2 is a relative ~o-set in X2. 

We recall that the function f(71n;x) is chosen, by Lemma 7, as a selector for 

F(x) NL(7tn) on E(~v[n), its sets of constancy forming a disjoint family that is discretely 

o-decomposable in X*, each set of constancy being an ~o-Set in X. Later  in the 

construction, we only make use of the restriction off(71n;x) to the o~o-set Z(7tn). For  

each n~>0 and each ~, in H, let 

{ (~(~[n;  5)}ct Ea(vln) 

be the family of sets of constancy of the restriction off(TI n; x) to Z(Tln), and let 0(Tin; a) 

denote the value that f(yIn;x) takes on O(Tln; 5). We identify P1\Q1 with the set 

D, = P~ n U{O(~,ln; a): OO/Jn ; a) q. H, V E H, n >10 and a EA(~,In)}. 

If x E D1, then x E P1 and, for some 7 E H, n~>0 and a E A(71n), we have x E O(71n; a) and 

O(yln; 5) ~H. Thus 

f(x) =f(7ln;  x) = 0(Tin; 5) ~ H, 

and x$Qj, so that xEPl\Q~. On the other hand, i fxEPl\Q1,  then xEP1 and so, for 

some n~>0, 7EI-I and 5EA(~,,In), we have 

x E O(ytn; a). 

As x r Ql, we have f(x) q.H. So 

0(Tin; 5) =f(Tln;x) =f(x)  ~ H. 

Hence xED~. Now 

P1\Qt =D~. 
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for all x in X. The families 
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K(x) = F(x) 

{L(Yl, 72 . . . . .  ~n): ~n ~ F ( ~ I '  Y2 . . . . .  ~n-  1)) 

U{O(~'ln;a): O(Yln;a)$H, ~,E rl, n~>0 and aEA(~,ln)} 

is a discretely a-decomposable  family of  ~ - s e t s ,  the set P~\Q1 is itself an ,~o-set. 

We  now identify P2~Q2 with the set 

D2 = P2 N kJ{X(y[n): L(~,ln) N h = 6 ,  ), E 11 and n t> 0}. 

If x ~ D2, then,  for  some 7 E 11 and n>~0, we have 

xEX(7[n) and L(vIn)NH=Q. 

As x E X2, we have f(x) E L(y[n). Hence  f(x) ~ H and x ~ Q2, so that x E P 2 \  Q2. On the 

other  hand, i f xE P z \ Q2 ,  then there is a unique 7" in 11 with 

x EX(~,*In) 

for n>~0. As xEX2, we havef(x)EL(~*[n) for all n~>0. As xqQ2 ,  we havef(x)$.H. As 

H is closed, and L(y*[n) has diameter  at most 2 -n, we have 

L(7*ln*) N H = 

for n* sufficiently large. Hence  x ED2. Thus 

P2\Q2 = D2. 

As D2 is the intersection of  P2 with the union of  a discretely a-decomposable  family of  

ff~,-sets, D2 is an ~o-set relative to X2. This completes the proof  for a general upper 

semi-continuous F. 

We now consider  the case when F takes only compact  values. The discussion of  

this special case is much simpler than the general case. There  is no need to define the 

compact  sets K(x) by the formula 

K(x) = proj r ([cl E(x)] N [{x} • 

it suffices simply to take 
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with their index sets can be chosen just as in the opening paragraphs of this proof. An 

inductive construction is stated by taking 

L(q0) = Y, X(rg)=X. 

We need no set E(q0), but it may be convenient to think of E(q~) and the similar sets 

~0'ln) as all replaced by the empty set. Sets X(~,ln) for 7 in rI and n~> 1, are defined, 

satisfying the conditions (a) and (b), inductively, as before, by use of Lemma 8. We 

need none of the sets E(TIn), 7 E FI, n~> 1, nor E <m, n~ > 1, nor Z ~m with n~ > 1, and can 

simply take 

for n~>0, 7 E H, and 

W(eln)=X(eln) 

S,, = {W(yln)xL(~'ln): ~,E II}, 
ao 

S = t " l S . .  
n=O 

Now, for each x* in X, there is a unique V* in H with 

oo 

x* E Cl X(y*ln) 
n=O 

and then a unique y* in 

oo 

N K(x*) N L(7*ln). 
n = O  

We takef(x*) to be this unique point Y*. It follows, without difficulty, by simplification 

of the main proof, that f i s  a selector for F of the first Borel class. 

COROLLARY. The sets o f  constancy of  the restriction o f f  to X1 are o%o-sets and 

the family o f  these sets is discretely o-decomposable in X*. The restriction o f f  to X2 is 

a selector for  K on Xz. 

w 5. Selector representations for upper semi-continuous set-valued maps 

In this section we prove the representation theorem, Theorem 3, stated in the introduc- 

tion. Recall that a continuous function is said to be proper if it maps closed sets to 

closed sets and the inverse of each point in the range is compact. Morita [11], p. 36, has 
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shown that if Y is a metric space, then there exists a cardinal number m, a subset A of  

B(m),  and a proper  map f ,  o f  A onto Y. We will need the following refinement of 

Morita 's  result. 

LEMMA 9. Let  m be an infinite cardinal and let Y be a complete  metric space o f  

weight m. Then there is a closed subset  A o f  the Baire space B(m) and a uniformly 

continuous proper  map o f  A onto Y. 

Proof. For  each n~>l, the space Y is covered by its open balls of  radius 2 -n. Since 

Y is paracompact  (cf. [2], p. 349) this open cover  of Y has a locally finite refinement by 

non-empty open sets, say by the family {G(n)(~): ~ E(n)}. As Y has weight m, the 

index set E(n) has cardinal not exceeding m. For  each ~ in E(n), write F~")(~)=cl G~")(~). 

Then the family {F~")(~): ~EE(n)} is a locally finite family of  at most m non-empty 

closed sets, each set having diameter  at most 2 -"+~, the union of  the family being Y. 

Here  'cl '  denotes closure in Y. 

Le t  ~ be the least ordinal with cardinal m. We will use 7~, Y2 . . . .  to denote ordinals 

with 0~<yi<;r for i~  I. Rather  as in the proof  of  Theorem 2, we choose a system of  

index sets 

F(q0, 

F(y0,  y~ E F(ga), 

['(Y1,72), YlEF(q~), Y2EF'(Yl), 

F(Yl, 72 . . . . .  Yn), Yl EF(q0, Y2 E F(yj) . . . . .  y. E F(y I . . . . .  Yn-l), 

and a corresponding system of  closed sets 

L(qO = Y 

L(yl),  y~ EF(~),  

L(~I, Y2), ~1 E F((/9), Y2 E F(VI) , 

L(71,Y2 . . . . .  Y,,), YIEF(q0, Y2EF(y0 . . . . .  y,,EF(yl . . . . .  Yn-0, 

, , ~  

with the following propert ies.  
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(a) Each index set F(71,72 . . . . .  7n) is a non-empty initial segment of an ordinal not 

exceeding n. 

(b) For  each ,sequence  71,72 . . . . .  7n-i ,  with 

the family 

71~F(cP),  72EF(71)  . . . . . .  7 n - l E F ( y l , : " , T n - 2 ) ,  

{L(71,72 . . . . .  7n-1, 6): 6 E F(71 . . . . .  7n-1)} 

is a locally finite family of  non-empty closed sets of  diameter at most 2 -n+l, with union 

L(71,72 . . . . .  7n-  1)" 

To simplify the notation,  it will be convenient  to use 7 to denote a sequence 

7 = 71,72 . . . .  

in the set A of  all such sequences satisfying 

71E F(q~), 72 E F(70, 73 E F(71, 72) . . . . .  

and to use 

71 n = 71,72 . . . . .  7n 

to denote the first n terms of  the sequence 7. We will use this notation 7in even in cases 

when the subsequent elements 7,+1,7n+2 . . . .  are unknown or irrelevent. For  each 7 E A, 

and each n~>l, we use A(Tln) to denote  the set of finite sequences 61, 62 . . . . .  fin, 6n+1, 

with 

6 1 = 7 1  , 6 2 = 7 2  . . . . .  6n•Tn, 6n+lEF(7]n). 

To start the inductive construct ion we take F(cp) to be the set of  ordinals less than 

the least ordinal ~p(cp) with cardinal equal to the cardinal of the family {F~l~(~): ~ E E(I))  

of  closed sets. In this case A(q~)=F(q~), and we take 

(L(60:  6~ E F(q~)} = {L(611): 611 E A(q~)) 

to be a wellordering of  these non-empty closed sets. When 7 E A, and n~>0, and when 

the set L(71n) has been chosen,  we take F(Tt n) to be the set of ordinals less than the least 

ordinal ~P(TJn) with cardinal equal to the cardinal of  the family of  non-empty closed sets 

amongst the family 

{L(y]n) N F~"+l)(~): ~ E E(n+ 1)}. 
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We take the family 

{L()q, ..., )%, 6): 0 ~< di < ~p(yln)} = {L(Oln+ 1): 6In+ 1 E A(),ln)} 

to be a wellordering of  these non-empty closed sets. 

It is easy to verify that this inductive procedure leads to the construction of the 

index sets and the families of sets satisfying the conditions (a) and (b). Further,  

expressing these conditions in terms of the simplified notation we have the following 

results. 

(c) For  each ), in A, and for each n~>0, the index set A(vIn) is non-empty and 

consistes of finite sequences 6[n+ 1, with 6 E A and 6[n=),[n. 
(d) For  each y in A, and for each n~>0, the family 

{L(6ln+ 1): 6In+ 1 C A(vln)) 

is a locally finite family of non-empty closed sets of diameter at most 2 -n+~, with 

union L(),ln). 

Now A is the set of  sequences 6 in B(m) with 

6In+ 1 E A(6[n), for n I> 0. 

Hence B(m) ' \A  is the union of  the sets 

{6:611 CA(q0}, {6: 6[nE A(6 ln - l )  and 61n+l $A(6ln)}, n ~  > 1. 

Thus B ( m ) \ A  is open and A is closed in B(m). 
We note that, if 6 E A, then the sequence 

L(Oln), n= 1,2,..., 

is a decreasing sequence of non-empty closed sets with diameters decreasing to zero. 

As Y is complete we can define h(6), for 6 in A, to be the unique point in 

1'3 L(Oln). 
n = l  

The diameter condition ensures that h is a uniformly continuous map. The covering 

condition ensures that h maps A onto Y. 

Consider any point y in Y. As the families 

{L(6ln+ 1): 6In+ 1 E A(~,ln) }, 
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O<.n<.k, are locally finite, they are point finite and the closed set h - l (y)  in B(m) meets 

only a finite number  of  the Baire intervals of  B(m) of  order  k+ 1. As this holds for each 

k~>0, the set h - l (y )  is compact  in B(m). 
Consider  any sequence 6 ~ 6 (z) . . . .  of  points of  A, and suppose that the sequence 

y(]) = h(6(1)), y(2) = h(6(2)) . . . .  

converges to a point y* of  Y. We show that the sequence 6 ~ 6 (2) . . . .  has a subse- 

quence converging to a point 6* in A. We choose a nested sequence 

N(1) ~ N(2) ~ . . .  

of  infinite sequences of  positive integers with the proper ty  that 6 (i) belongs to a single 

Baire interval of  order  k for  all i in N(k), k>~l. As the family {L(611):611EA(q0)} is 

locally finite y* has a neighbourhood U(1) that meets only finitely many of  the sets 

L(611), 611 E A(tp). Provided n(1) is sufficiently large, we have 

h(6 (~ ~ U(1) 

for i~>n(1), x0") 1 Hence  o I takes only finitely many values for  i~>n(l). Now we can choose 

an infinite sequence N(1) of  positive integers so that 6(~ 1 takes the same value for all i 

in N(1). Proceeding in this way we can choose N(1), N(2) . . . .  inductively to satisfy our  

requirements.  We then take N to be a diagonal sequence.  This ensures that 6 (0 

converges to some 6" in A as i tends to infinity through N. By the continuity of  h, this 

ensures that y*=h(6*) with 6* a limit of  the sequence 6 (1), 6 (2) . . . . .  

Thus h maps any closed set in A into a closed set in Y. 

As h is a cont inuous closed map with compact  inverse images for points of  Y, it is a 

proper  map. This proves  the lemma. 

Proof of Theorem 3. By L e m m a  9, there is a closed uniformly continuous function 

r /mapping a closed subset A of  B(m) onto Y. Then ~/-1 o F is an upper  semi-continuous 

map of  the metric space X to the non-empty closed subsets of  B(m). Provided we have 

the special case of  the theorem,  when Y coincides with B(m), we can choose a map g 

from XxB(m) to B(m) satisfying (a), (b) and (c) for  r/-l  o F  in place of  F. It is easy to 

verify that ~/og then satisfies (a), (b) and (c) for F. Thus it suffices to prove the special 

case of  the theorem when Y=B(m); the rest of  this proof  will consider only this special 

case. 
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Let  x be the least ordinal with cardinal m. We take B(m) to be the space of  

sequences  

( 7 = (7 1 ,O 2 , . . . ,  

with 0~<(Ti<x. Fo r  each  n ~  > 1, we write 

(71 n = (71, (72, . . . ,  ( In ,  

and we use q~ to denote  the empty  sequence of  zero length. We take the distance 

between two distinct e lements  o, r of  B(m) to be 2 -r ,  where r is the first integer with 

or~-rr. It  will be convenient  to write 

I = I (q0)  = B(m), 

and 

I(aln)= {rEI :z ' i=(7 i  for 1 <~i<~n}, 

for o E I  and n~>l. For  each n~>l, the family 

(I((71n): o e  I} 

is a discrete part i t ion of  I into clopen sets. Similarly, if n ~  > 1 and r E I, the family 

(I((71n):(71n-l=rln-1 and (TEI} 

is a discrete parti t ion of  I ( r l n - 1 )  into clopen sets. 

Fo r  each n ~  > 1 and each (7 in I we write 

X((TIn) = {x: F(x) N I((Tln) * ~ ) .  

As F is an upper  semi-cont inuous map  f rom X to I, for n~>l, the family 

{X((71n): (Te I )  

is an absolutely  addit ive family of  closed sets in X. Define a map F(n;x), f rom X to the 

power  set of  the sequences  otn of length n, by  the formula  

F(n;x)={(TIn:oEI and F(x)NI((7[n)=l=O). 

By Theorem 5, the sets o f  cons tancy  of  the map  F(n;x) are ~-o-sets in X and the family 

of  these sets is discretely (7-decomposable in X*. When 0 < n < m ,  the sets of  cons tancy 

of  F(m;x) form a ref inement  of  those of  F(n;x). Hence  we may choose a sys tem of  

index sets 
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A(al. a2 ... . .  %), 

and we use 

Q(al, a2 ... . .  %), 

A(q~), 

A(aO, al EA(qo), 

A(a l ,a2) ,  alEA(tP), a2CA(al), 

o o o ~  

al  EA(qg), a2 EA(al)  . . . . .  anEA(al,a2 ..... an_l), 

. . . ,  

a, EA(cfl), a2EA(a,) . . . . .  anEA(al,a 2 . . . . .  an_l), 

to denote  the sets of  cons tancy  of  F(n;x), with 

Q(a,, a 2 . . . . .  a ._l)  = U(Q(a  I . . . . .  a.):  a .  E A(a, ,  az . . . . .  %_,)) .  

Le t  Y(al,  a2 . . . . .  an) denote  the set of  sequences  aln of length n that is the constant  

value of  F(n; x) t aken  for  x in Q(al, a2 ... . .  an). As F(x) is non-empty  for  each x in X, so 

F(n;x) is non-empty  for  each  x in X and each n~>l. 

To  simplify the notation,  let A denote  the set of  all sequences 

subject to 

Write 

a l ,  a 2 ,  a3, ..., 

alEA(q~), azEA(a O, a3EA(al,az), .... 

aln = a l ,  a 2 ,  . . . ,  a n ,  

when a EA and n~>l. In this notation,  the sets of  cons tancy  of F(n;x) are the sets Q(aln) 

with a E A ,  and the value of F(n;x) on Q(aln) is Z(aln). 

For  each x in X, let a(x) denote  the unique a in A with 

x E Q(a(x)ln), for n/> 1. 

In making selections in I it is usual to give preference  to points that are lower in the 

lexicographical  order  on I. In this construct ion we need to introduce a family of  

lexicographical  orders  on I paramet r ized  by  a variable X chosen f rom I. For  each Z in I,  

we introduce a modified ordering <(Z) of  I by taking: 

a<(Z)r, if a < r  and r l+X1;  

r<(Z)a, if r l = Z 1  but ol~=gl;  
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(7<(X)v if ( 7 < r , ( 7 1 = r l = X 1  and "/'2d/=~2; 

v<(Z)(7, if (71='/'1~-'~1 and 1"2=~2 but (72:4:X~; 

(7<(Z)v, if (7<r ,  (71 = r  1=Z1 . . . . .  (Tr=V,'=Zr and rr+~eeZ,+t; 

v<(Z)(7, ff (71=v1=Z! . . . . .  (Tr=rr=Zr and rr+i=Xr+l but (7,+l~:Z,+l; 

Note  that the quest ion of  whether  or not (7<(Z)r is determined by a knowledge of  (7Jr 
and of  fir, where r is the first integer with (Tr+rr. This ordering is designed to provide 

preference for the point Z of  I with a minimal rearrangement  of  the order  relationships 

for (7 and v that do not start with an initial partial sequence Z~,Z2 . . . . .  The order  <(Z) 

will also be used to relate finite sequences.  If  (7, r are given with (7[n+r[n, then ei ther 

o r  

<(Z) ~/ for all ~, r / in  I with ~[n = (7In and ~/[n = tin, 

r/<(Z) ~ for all ~, r / in  I with ~ln = o[n and ~/[n = tin. 

In the first case we write (7In <CZ) tin, and in the second case we write tin <(Z) o[n. For  

a fixed n, the relation <(Z) on the sequences of  length n is a well-ordering. For  each a 

in A and each n>~l, we use ~,(aln, Z) to denote  the first element of Z(a[n) under the order  

<(x). 

We can now define the required map g from X x I  to I. For  each x in X and each Z in 

I, there is a unique g(x, Z) in I satisfying 

g(x, Din -- 7(a(x)ln, z) 

for each n~>l. 

Using the nesting propert ies  of  the sets of  constancy and the properties of the 

ordering <(Z) it is easy to verify that g(x, Z) is uniquely and consistently defined in this 

way. 

For  each x in X and each Z in I, we have 

so that 

and 

g(x, g)ln E X(a(x)ln), 

g(x, z)ln E F(n; x), 

F(x) E I(g(x, z)[n) ~ 6 .  
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Now the sets 

F(x) n I(g(x, z)ln), 

n= 1,2 . . . . .  form a decreasing sequence of  non-empty closed sets in I, and the diameter  

of the nth set is at most  2 -n. As F(x) is closed in the complete space I, it follows that 

g(x, Z) E F(x). 

Further ,  if Z E F(x), then, for each n ~  > 1, the first element in Y(a(x)[n) under the ordering 

<(Z) will be ZI n. Thus,  in this case, when Z CF(x), we have 

g(x, z)  = z.  

Thus g satisfies the condition (a) in the statement of  the theorem. 

For  each Z in I the function g(x, Z) is a selector for F(x) on X. Let  H be any closed 

subset of  I and take 

P= {x: F(x)nH #:O}, 

Q = {x: g(x,20 e H}. 

By the upper  semi-cintinuity o f F ,  the set P is closed in X. To prove that Q is a ~ - s e t  in 

x it suffices to prove  that P \ Q  is an o~o-set in X. By the method used to discuss the 

restriction of  F to X2, in the proof  of  Theorem 2, we verify that 

e \ o  = P N U{O(aln): 7(aln, Z) n {r/In: r/E H} = Q, a E A and n t> 1}. 

Thus P \ Q  is an Yo-set. Hence  g(x,z) is of  the first Borel class, for each fixed Z- This 

shows that g satisfies the required condition (c). 

For  each x in X, we already know that g(x,z) is a surjective map of  I to F(x). I f z '  

differs f rom Z first in the nth place,  the orderings <(Z') and <(Z) coincide, when they 

are applied to finite sequences olr with l<~r<n. Thus 

Hence  

g(x,z')lr=g(x,z)lr when 1 <~r<n. 

e(g(x, z'), g(x, z)) ~< e(z', x) 

for  all x in X and Z,Z' in I. We need to prove that the map g(x,z) is a closed map from I 

to I when x is fixed in X. Le t  H be any closed set in I. Suppose that r/(1), r/~2) . . . .  is any 

sequence of points of  H and that the sequence 

g(x, r/(1)),  g(x, r/(2)) . . . .  
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converges to a point, )' say, in I. We need to find an r/in H with g(x, ~/)=)', in order to 

prove that g maps the closed set I-I in I into a closed set in I. As 

g(X, ~(i)) E F, 

for all i>~ 1, and as F(x) is closed, we have )' E F(x). 

Note that 

g(x, r](i))ll = )'1 

for all sufficiently large i. Suppose that for some infinite sequence of such sufficiently 

large i, we have 

Then, for these values of i, we have 

rl] ~ :~ )'1. 

l "  (0~ F(x)n (rll , =f~, 

as otherwise we would necessarily have 

(i) 1 g(x, ~1 )l = r/]/) =1= )'1. 

So in finding the first point of Z(a(x)ln) under the ordering <(r/c~ we are concerned 

only with points in I \ I ( r / ]  ~ and so the ordering <(r/c~ effectively coincides with the 

ordering <(o) with o=0,  0, 0 . . . . .  Thus, for all i in this infinite sequence 

g(x, ~](i)) 

is independent of i and must coincide with )'. Thus g(x, qo))__y, for s o m e  ~](i) in H. Now 

suppose, on the other hand, that for all sufficiently large i, we have r/~~ that 

g(x, r/~~ = )'12, 

for all sufficiently large i. Supposet that, for some infinite sequence of such sufficiently 

large i, we have 

r/~ ;) #: )'2- 

For  these values of  i, we have 

F(x) n I0/(~ = Q. 
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In finding the first point of X(a(x)ln), for n>~2, the ordering <(~](i)) effectively coincides 

with the ordering <(71, o) with 7t, o=Tt, 0, 0, 0 . . . . .  Again, for all i in the sequence, 

g(x, rl% 

is independent of i and so must coincide with 7, yielding g(x, rl (i)) =7 for some r/(;) in H, 

So we may suppose that 

~(~ 

for all sufficiently large i. 

Proceeding in this way, we either find an r/in H with g(x, ~)=Y, or we find that, for 

each n~ > 1, 

for all sufficiently large i. In this second c a s e ,  ~(i) converges to 7. As H is closed we 

have 7 E F(x)N H and g(x, 7)=7 with 7 E H. Thus the image of H is closed. Hence g 

satisfies the required condition (b) and the proof is complete. 

w 6. Upper semi-continuous maps whose values are Borel sets, 

Sous l in-~  sets or co-Sousl in-~ sets 

We need the following lemmas for the proof of Theorem 4. The first (Lemma 10)is a 

special case of results of Montgomery (cf. [10], Theorems 1 and 2 and the following 

remark), who proved that a subset E of a metric space X, which is locally of one of the 

four types below (that is, each point x of E has an open neighbourhood U such that 

E N U is of the given type in X), is itself of that type in X. Kuratowski [6], pp. 358-362, 

gives Montgomery's proof, Michael [9], Proposition 4.2 and the preceeding remark, 

and Stone [13], Lemma 4, give other proofs for the Borel classes via transfinite 

induction and locally finite open refinements of open covers, and Hansell [3], Lemma 

2, gives an easy transfinite induction proof of the special case, that is, of parts (a) and 

(b) of Lemma 10 below: parts (c) and (d) are straight forward. 

LEMMA 10. Let {Er}7e r be a discrete family o f  sets in a metric space X, and 

write 

E =  t i E r .  
7EF 
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(a) / f0~<a<tol  and each set E r, yE F, is o f  additive Borel class a in X,  then E is o f  

additive Borel class a in X .  

(b) IfO<~a<tol and each set Er, 7CF,  is o f  multiplicative Borel class a in X,  then 

E is o f  multiplicative Borel class a in X.  

(c) I f  each set E 7, vE F, is a Sous l in -~  set in X,  then E is a Sous l in -~  set in X.  

(d) I f  each set E• v E F ,  is a co-Sous l in -~se t  in X,  then E is a co-Sous l in -~se t  in 

X.  

Since the families of  additive Borel class a sets in X, Souslin-o~ sets in X, and co- 

Souslin-o% sets in X are countably  additive, it follows immediately  that (a), (c) and (d) of  

L e m m a  l0 hold for  a-discrete  families {Ey}Ter. In general (b) of  L e m m a  10, of  course,  

does not hold for  a-discrete  families, but the following l emma ensures  that it does hold 

for the a-discrete  families that we consider.  L e m m a  11 is a slight variant  of  our L e m m a  

4 in [4]. Recall that  an ambiguous  Borel class a set in X is one that is both additive 

Borel class a in X and multiplicative Borel class a in X. 

LEMMA l l .  Let  Y be a subset  o f  a metric space X and suppose that 

co 

Y = O Y  n 
n = !  

with each set Yn o f  multiplicative Borel class a, with 2~<a<tol, in X.  I f  each set Yn, 

considered as a subset  o f  Y, is o f  ambiguous Borel class fl less than a in Y, then Y is o f  

multiplicative Borel class a in X .  

Proof. I f  a is a limit ordinal, we can choose  a sequence 

of  ordinals less than a with the p roper ty  that  a is the least ordinal exceeding fl;, for all 

i~>l. I f  a is of  the fo rm 7+1 with l~<y, we can take 

f l i=7,  i F  1, 

and again a is the least ordinal exceeding fli, for  all i~> 1. Now,  in each case,  for each 

n ~  >1 ,  we can choose  a sequence  

Y.k, k =  1,2 . . . . .  

of  sets with Y,,k of  addit ive class flk in X and with 

Yn = ("1 Ynk' n >~ l .  
k =  1 
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Since each  Yn, considered as a subset  of  Y, is of  ambiguous class fl less than a in 

Y, as straight forward  transfinite induction argument  gives a set I'* of  ambiguous class 

fl in X with 

Write Yo=f~ and 

for n ~  > 1. Then we have  

Consider  the set 

and 

r.=rn~.. 

n - I  

w.= ~ \ u  ~, 
i=0 

n - I  

YNW~= Y . \ U  Yi, n>~l, 
i=0  

n - 1  

Y.nw.= & \ u  r,, 
i=0 

n~>l .  

z =  n n (w.n r.k) 
k = l  n = l  

in X. N o w  for each n, k, the set Wn N Y,,k is of  additive class max (/3, ilk). As a>~2, this 

set Z is of  multiplicative Borel  class a in X. 

It  remains  to identify Z with Y. I f  y E Y, then for  jus t  one n ~  > 1, we have 

n - 1  

yE Y . \  I..I Y,-- W.N Y.. 
i=0  

Then,  for each n and each k ~  > 1, 

yE W,,n Y,,k, 

and so y E Z. On the other  hand,  if z E Z, then for each k ~  > 1, 

zE u (w.n r,, D. 
n = l  

As the sets W~, Wz .... are disjoint, there is an n, independent  o f  k, such that 

ZE WnN Y.k 

for  k~>l. Hence  

zE n Y~k= Y~c Y. 
k=l 
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Thus Z-- Y as required. 

Summarizing we have 

LEMMA 12. Let {Ey}yer be a o-discrete family of  sets in a metric space X, and 

write 

E = U E ~ .  
7EF 

(a) /fO~<a<~ol and each set Ee, y E F, is of  additive Borel class a in X, then E is of  

additive Borel class a in X. 

(b) If2<.a<col and each set Er, 7EF,  is of  multiplicative Borel class a in X, and if 

each Ey, Y E F, considered as a subset of  E, is of  ambiguous Borel class fl less than a in 

E, then E is of  multiplicative Borel class a in X. 

(c) I f  each set Ey, vEF,  is a Souslin-~set in X, then E is a Souslin-~set in X. 

(d) I f  each set Ee, yEF, is a co-Souslin-~set in X, then E is a co-Souslin-~set in 

X. 

Proof of  Theorem 4. We confine our attention to the case (b); the other cases are 

similar but slightly simpler. 

We use the notation and results of Theorem 1 and its proof. By the result (a) of 

Theorem 1, the set K is a g0-set and so is a set of multiplicative class a as a > l .  By the 

result (c) of  Theorem 1, we have 

T \ K =  U P#xS~, 
~EB 

where the family {P~xS~}~e B is o-discrete, and each rectangle P~xS~ is relatively 

closed in T, and so also in T \ K ,  and each set P~ is closed in X. We may clearly 

suppose that 

, , , , .  o,  

for each fl in B, and we can then choose p~ in P/~ for each fl in B. As 

{p,8} xS~= ({p~} x Y) n(P~xS~). 

is a relatively closed subset of  

((p,} • r) n T-- ((p,} • 
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the set S ,  is of  muttiplicative Borel  class a ,  for each 13 in B. Hence  P ,  x S ,  is also of  

multiplicative Borel  class a ,  for  each fl in B, as well as being relatively closed in 

By L e m m a  12, the set 

and so also 

T \ K =  U PaxS~. 
~EB 

T \ K  

T = ( T \ K )  U K, 

is of  multiplicative Borel  class a in X •  Y. 

COROLLARY. I f  we know that each set  F(x), with x C X ,  is an ~ - s e t  in Y, we can 

conclude that T is the union o f  a ~a-set with an ~o-set. 
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