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§ 1. Introduction

A map F from a metric space X to the power set of a metric space Y is said to be
upper semi-continuous, if the set {x: F(x)n H+J} is closed in X, whenever, H is a
closed set in Y. Our first aim in this paper is to obtain information about the possible
structure of such maps. One special case of an upper semi-continuous map is provided
by the inverse image function F=f"', when fis a closed continuous map from Y to X,
that is, when f is continuous and maps closed sets in Y to closed sets in X. In 1947
VainStein [15] announced and in 1952 [16] gave the proof that, in this special case, each
set F(x)=f"'(x), with x in X, has a compact boundary. In 1948, Choquet [17] consid-
ered upper semi-continuous set-valued functions, under the name strongly upper semi-
continuous functions. Choquet expressed the opinion that the condition of strong upper
upper semi-continuity is very restrictive; a view that we shall amply justify. He gave,
without proof, the result that, if F is an upper semi-continuous map of a metric space X
to a metric space Y, then, for each x, in X, it is possible to choose a compact set K
contained in F(x,) with the property that for each neighbourhood G of K in Y, thereis a
neighbourhood U of x; in X with

F(U) = GUF(xy).

Had Choquet given the proof of his result, it seems sure that the connection between
this result and Vainstein’s result would have been apparent. As it was, the connection
remained undiscovered for many years.

Following up Vainstein’s work, Taimanov {14] and Lasnev [7], show that, in the
special case of the inverse image function F of a closed continuous function £, the set of
x, for which F(x) has a non-empty interior, is a sigma-discrete set in X. More recently,
in 1977, in a manuscript [18], that has remained unpublished, S. Dolecki rediscovered
Choquet’s result, in a slightly different form. He gives some applications, writing with
S. Rolewicz in [19] and extensions with A. Lechicki in [20].

In this paper we take the theory rather further. Recall that a family of sets in a
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space is said to be discrete, if each point of the space has a neighbourhood that meets at
most one set of the family, and that a family of sets is said to be o-discrete if it is a
countable union of discrete families. Further, a family {Q,}, e is said to be discretely
o-decomposable, if, for each « in A, we have

and each family {Q"™},c., n=1,2,..., is discrete.

THEOREM 1 (decomposition). Let F be an upper semi-continuous map of a metric
space X to the power set of a metric space Y. Let

T= U {x} XF(x)
x€X

be the graph of F in XX Y. For each x in X, write

E(x) = [(XN\{xDX(YNF)INT,
and

K(x) = projy([cl Ex)1 N [{X} X F(x)]),
where ‘cl’ denotes closure in XXY and projy the projection onto Y.
(a) For each x in X, the set K(x) is compact. The set

K= U {x}xK(x)
x€X

is a Ys-set in XX Y. The set {x: K(x) N H¥J)} is a Ys-set in X, whenever H is closedin Y.
(b) The sets of constancy of the restriction of F to

E={x: K(x) =0},

i.e., the subsets of = on which F takes a particular set as its value, form a disjoint
family, that is discretely a-decomposable in the completion X* of X, the sets of the
family being F,-sets in X with union .

(¢c) There is a o-discrete family {PsxS§ ﬁ} pep Of rectangles that are relatively closed
subsets of T, with each set Pg, BEB, closed in X, and with

U P,xS,=T K.
el AN
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Here the set K(x) is the set that must have been used by Choquet in his proof; it is
the set reintroduced by Dolecki and called by him the active frontier of F.

A map ffrom a metric space X to a metric space Y is said to be a selector for a map
F from X to the non-empty sets of Y, if f(x) is in F(x) for all x in X. Such a selector fis
said to be of the first Borel class if f~'(H) is a ;-set in X for each closed set H in Y,
and is said to be of the second Borel class if f~!(H) is an %,s-set (that is, the countable
intersection of countable unions of closed sets) in X for each closed set H in Y.
Engelking [1], Theorem 1, has proved that if X and Y are metric spaces and F is an
upper semi-continuous map on X, each of whose values is a non-empty complete and
separable subset of Y, then F has a selector of the first Borel class. Our structure
theorem enables us to prove a selection theorem for upper semi-continuous maps
between metric spaces of extraordinary generality and precision.

THEOREM 2 (selection). Let F be an upper semi-continuous map from a metric
space X to the non-empty subsets of a metric space Y. Then F has a selector f of the
second Borel class. Further it is possible to choose f, an Fset X; in X and its
complementary Ys-set Xo,=X\ X, so that the restrictions of f to X; and to X, are of
the first Borel class. If F takes only compact values, then F has a selector f of the first
Borel class.

Provided we assume more about the space ¥ and the map F, we can obtain a nicely
parameterized family of selectors filling out the whole space by means of the following
representation theorem.

Recall that a function f'is said to be closed if it maps closed sets to closed sets; and
recall that if m is an infinite cardinal number, then B(m) denotes the Baire space of
weight m, that is, the product of a countable sequence of discrete spaces of cardinality
m.

THEOREM 3 (representation). Let m be an infinite cardinal and let Y be a
complete metric space of weight m. Let F be an upper semi-continuous map of a metric
space X to the non-empty closed subsets of Y. Then there is a map g from the cartesian
product of X with the Baire space B(m) to Y with the following properties.

(@) For all (x,0) in XXB(m) we have g(x,0) EF(x). For each x in X and each y in
F(x), there is a o in B(m) with g(x, o)=y.

(b) The family {g(x, -)}rex is an equicontinuous family of closed uniformly
continuous functions.

(c) For eacr. oin B(m), the function g(-,0) is a selector for F and is of the first
Borel class.
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Let T be a set in the cartesian product XX ¥ of two metric spaces X and Y. If we
know that each section

{x}xV)NT,

with x in X, is of some fixed Borel class, the information we have is too disorganized to
enable us to say anything about the global nature of T. Recent results of Saint-
Raymond [12] and of Louveau [8] show that the additional information that 7 is a Borel
set has the remarkable effect of enabling a reorganization of the previously disorgan-
ized information, and leads to global information about 7. Our next theorem shows that
the additional information that T is the graph of an upper semi-continuous function has
a similar effect.

The Borel sets of additive class a and of multiplicative class a in a metric space X
are defined inductively for O0<a<w,. The sets of additive class zero are just the open
sets of the space, and the sets of multiplicative class zero are just the closed sets of the
space. When 1sa<w,, the sets of additive class a are just the countable unions of sets
chosen from the sets of multiplicative class 8 with 0<f8<a; and the sets of multiplica-
tive class a are just the countable intersections of sets chosen from the sets of additive
class § with 0sf<a. A set S in X is said to be a Souslin- set, if it has a representation
of the form

S=U N F(oln),
o n=1
where each set F(oln) is closed, the union is taken over all ¢ in the space NN, where
N={1,2,...}, of all infinite sequences

0=0],02,03,...
of positive integers, and
oln=ay,0,,...,0,.
A set S in X is said to be a co-Souslin-Z set, if its complement X\ S is a Souslin-% set.

THEOREM 4 (graph structure). Let F be an upper semi-continuous map of a metric
space X to the power set of a metric space Y, and let

T= U {x}XF(x)
x€X

be the graph of F.
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(a) F(x) is a Borel set in Y of additive class a, with a=2, for all x in X, if, and only
if, T is a Borel set of additive class a in XXY.

(b) F(x) is a Borel set in Y of multiplicative class a, with a=2, for all x in X, if, and
only if, T is a Borel set of multiplicative class o in XX Y.

(c) F(x) is a Souslin-F set in Y for all x in X, if, and only if, T is a Souslin-F set in
XXY.

(d) F(x) is a co-Souslin-% set in Y for all x€X, if, and only if, T is a co-Souslin-F
set in XXY.

We draw attention to one consequence of the decomposition theorem that we have
found useful as a tool in proving the selection theorem. A family {X,},e4 of sets in a
metric space X is said to be an absolutely additive family of closed sets, if

U X,
a€EB

is closed in X, for each subset B of A.

THEOREM 5. Let {X,}aea be an absolutely additive family of closed sets in a
metric space X. Define a set-valued map F from X to the power set of A by

Fx)={a€A:xEX,}

for each x in X. Then the sets of constancy of F, i.e., the subsets of X on which F takes
a particular set as its value, form a disjoint family that is discretely o-decomposable in
the completion X* of X, each set of constancy being an F,-set in X, and each set
X,, a €A, being the union of the sets of constancy that it constains.

We have announced most of the results in this paper in [5].

§ 2. The structure of upper semi-continuous maps

In this section we use the assumptions and notation of Theorem 1 and we prove a
sequence of lemmas establishing the results stated in Theorem 1. The first of these is
the result of Choquet [17] rediscovered by Dolecki [18].

LEMMA 1. The set K(x) is compact, for each x in X.

Proof. Let x* be afixed point of X and let {k;} be any sequence of distinct points of
K(x*). Then

(x*, k) Ecl E(x*)
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for i=1, and, for each i=1, we can choose (x;, y;) in E(x*) with

o((x;, y), (x*, k) < 1/i.

E(x*) =[O\ DX (YNFDINT,

we have x;#x* and y; & F(x*) but (x;, y) €T, for i=1.
First suppose that the sequence {k;} has no convergent subsequence. Then the
sequence {y;} has no convergent subsequence and the set

H={y,y3,...}
is closed in Y. Hence the set
{x: Fx)n H *+ O}
is a closed set in X containing the sequence {x;} converging to x*. Thus
F(x*)nH+J,

contrary to the condition y; & F(x*) for i=1.
Now {k;} must have a convergent subsequence. We suppose that {k;} itself
converges to a point y* in Y. Now the set

H* = {)’*,}’b)’z, }
is closed in Y. It again follows that
Fx*)NH*+Q.

Now, as y; & F(x*) for i=1, we conclude that y* € F(x*). As (x*,y*) is the limit of the
sequence of points (x;, y,) in E(x*), we see that y* € K(x*). Thus each sequence of points
of K(x*) has a subsequence that converges to a point of K(x*), and K(x*) is compact.

LEMMA 2. The set K has the representation

K= F\ K",
r=1
with
KO={(x,y) EXxY:FH@ANO0<0,(x, 5 <27 & 0,0, <2 & (£, NET & (x, ) &T}

an open set in XX Y for each r=1, where 9, is the metric on X and 0, is the metricon Y.
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Proof. To see that the set K is open, consider any point (x’,y’) in K and
choose a point (§', n’) satisfying the conditions

0<0,(x',EN<27, 0,00',n)<2”, (§,7)ET and (x',7n")¢T.
By the upper semi-continuity of F, the set of x with

(x,n)&T
is open in X. Hence the same point (£, ') satisfies the defining conditions for K for
all points (x, y) sufficiently close to (x’, y’). Thus K is open for each r=1.
Consider any point (x*,y*) in K. The (x*,y*)E€T. Also, (x*,y*) is the limit of a
sequence of points, say (£, 5%, s=1, of E(x*). Then

EV4x* and (EV,n")ET but (¥, n“)E&T,
for s=1. If r is fixed, and s is suffciently large,
C0<0,(x*, EN <2, 0,0*,pN <27, (EYV,Y)YET and (x*,n*)ET.

Hence, for each r=1,
(x*, y*) EK?,
and w
(x*,y*)E N K.
r=1

Thus .
Kc N K9,
r=1
On the other hand, suppose that (x*,y*)€N,2, K. Then there will be a sequence
(€", 1) of points with

0<o,(x*,EN<2™, 0,0*, 9™ <27, (E” 4MET and (*,n")ET.

for each r=1. The set H* = {y*, gV, 5@, )
is closed in Y. Just as in the proof of Lemma 1, it follows that y* € F(x*). So (x*, y*),
being a point of T that is the limit of the sequence (£§,%) of points in E(x*) is in
{x*} XK(x*) and so is in K. Thus
K=nNK",
r=1

as required.

7-822906 Acta Mathematica 149
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LEMMA 3. If H is any closed subset of Y, write
EH)={x:K(x)NH=J}.

Then the sets of constancy of the restriction of F(x)0 H to Z(H) form a disjoint family
that is discretely o-decomposable in the completion X* of X, each set of constancy
being an F,-set in X.

Prqoﬁ Write
Z(H)={x: KX)nH=}.

Consider a point £ of Z(H). Then
[ClEGIN{E}xFE)NH)] =2.
Let C(&; 1/i) denote the cylinder of all points (x, y) with
oix, &)< l/i, y€Y,

where @, is the metric on X. Suppose that, for each i=1, the open cylinder C(&; 1/i)
meets
c{EE) N {XxH]}].

Then for each i=1, we can choose a point (x;, y;) in

CEVHNEEG N {XXH}].

As
E@) =[XN\{EHX(YN\FE)INT,
we have
ollx, <Ui, x;*+§ y,€H, y&F@®),
and

vi€F(x).

If the sequence {y;} had a subsequence converging to a point #* of Y, then the
corresponding points (x;, y;) of E(£) would converge to the point (&, n*) in XxXH. As
K(E)nH=2, we would have to have »n* ¢F(§); Now the points of the subsequence of
{y;} together with n* would form a closed set L in Y and

{x: Fx)nL +=}
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would be a closed set in X containing a subsequence of the points {x;} converging to &
but not containing £. Thus {y;} has no convergent subsequence. We again get a
contradiction, by the same argument, on taking L to be the closed set

L={yi,ys .-}
We conclude that, for each £ in E(H), there is an i=1 such that C(&; 1/i)) does not meet
cl[E(G)N{XxH}].
In particular, for all x with g,(x, £)<1/i, we have
{x}X(YNFENINTN{XXH} =2,
so that

(YNFEOINFNH =4,

and
F)NHc F&).

For each & in E(H), let i(§) be the least integer i such that
Fx)NH < F(§)

for all x with p,(x, §)<1/i. Then

CE 1/HOINTNXXH) < B(E; 1/i(§) X F(E),

with B(&; 1/i(§)) the set of all x with o(x, §)<1/i(§).
For each & in E(H), let Qx(£) denote the set of all x in X satisfying the conditions:
(a) F()NHc<F(x);

and

(b) Clx; 1/i®H)NTN(XXH) = B(x; 1/i(§)) X F(&).

Note that £€ Qg(£). Further the set

N {xFxn{y}*+}.
YEFENH
of those x in X satisfying the condition (a) is closed in X, by the upper semi-continuity
of F. We prove that the set of those x in X satisfying the condition (b) is also closed.
Suppose that {x;} is a sequence of points of X all satisfying the condition (b), and
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converging to some point, x* say, of X. If x* did not satisfy the condition (b), there
would be a point (x, y) of T with

oix*, x)<1l/i§), y€H, and y&F(&.
Then, provided j is sufficiently large, we would have

01(x;, x) < 1/i(§)
as well as

(x,y)€T, y€H, y&F(),

and the point x; would not satisfy condition (b), contrary to its choice. Hence the set of
x in X satisfying the condition (b) is closed in X. It now follows that Q#(£) is closed.
Note that condition (b) implies, in particular, that

F(x)nH c F(&).
It follows that Qz(&) is just the set of all x such that

FonNnH=FEnH

and such that
F(o)nH c F(§)

for all o in B(x; 1/i(§)). Note further that Qg(£) is determined once F(&)N H and (&) are
known; it only depends on & through the dependence of F(E)NH and of (&) on &.

For each j=1, let Z{H) denote the set of all § in Z(H) with i(§)=j. We show that,
for each j=1, the family

{Qn(8): EEE(H},

is a family that is discrete in the closure X* of X, each set being closed in X. Here we
use the convention that two identical sets are not to be distinguished because they have
different indices. Suppose that, for some point x of X*, each neighbourhood of x in X*
meets at least two of the sets Qy(§) with EEZ(H). Then we can find points &, &' of
E(H) such that

o1(x, §) < 1/(4),
o1(x, &) < 1/(4).
Now

018, &) <1(Z).
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So &' € B(&; 1/i(&)) as i(£)=;. Hence

F(E)NH c F(§).
Similarly
FE)NHc F(&).
Hence
FEONH=FE)NH
and

i&)=i&').
Now Qg(£') coincides with Qg(&) and these sets are not distinct. Thus the family

{Qn(8): EEE(HD}

is a family that is discrete in X*, each set being closed in X. Hence the family

{Qu(8): EEEH)}

is o-discrete in X*, each set being closed in X. Further F(x) N H is constant on each set
of this family.

Now the sets of constancy of F(x) N H on E(H) are obtained by choosing some £* in
Z(H) and, for each possible value of j, choosing &Fin E(H) with

F(E) = F(&),

and then taking the union of the corresponding sets Q4(&7). Thus the sets of constancy
of F(x)n H on E(H) form a disjoint family that is discretely o-decomposable in X*, these
sets of constancy being %, -sets in X with union Z(H).

Each set of constancy of F(x)NH on Z(H) is a countable union of closed sets
Qn(&), with at most one & in each set Z;. By the standard reduction theorem [6], p. 350,
this sequence of closed sets has a disjoint refinement by %,-sets. The family of all the
F,-sets in all such refinements is a disjoint family of %,-sets with union Z(H) and with
F(x)N H constant on each set of the family, and this family is o-discrete in X*.

LEMMA 4. The set

{x: K(x)NH * &}

is a 9s5-set in X, whenever H is a closed set in Y.
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Proof. By the last paragraph of the proof of Lemma 3, the set Z(H), being the
union of a o-discrete family of %,-sets in X, is itself an %,-set. Thus
{x: KON H+ D) = X\E(H)

is a 9Ys-set in X.
LEMMA 5. The sets of constancy of the restriction of F to
2= {x: K(x) =}

form a disjoint family of F,sets with union E, and this family is discretely
o-decomposable in X*.

Proof. Take H=Y in Lemma 3.

LEMMA 6. There is a o-discrete family {PgXSglgep of rectangles that are
relatively closed in T, with each set Pg, BEB, closed in X, and with

U P,xS;=T\K.
pen PTTP

Proof. As Y is a metric space, we can choose a o-discrete family {H,},er of
closed sets in Y forming a base for the open sets of Y. By the antepenultimate paragraph
of the proof of the Lemma 3, for each ¥ in T we can choose a o-discrete family
{Q,a}aeag Of closed sets with union Z(H,) with F(x)n H, constant on each set of the
family. Take

B= U {y}xA®WY), Py =0
y€T
for (v, ®)€EB, and

S = F(&) nH, with £€ Q,, for(y,a)€B.

@)

Then the rectangle

P(y,a)xs(y,a)

is the intersection of the closed rectangle

P(y.a)XHy

with T, for each (y, @) in B. It is easy to verify that the family {PﬁxSﬂ} peB is g-discrete.
It is clear that
PsxSzc TN\K
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for each B in B. It remains only to prove that each point of 7\ K belongs to some
PgX Sz with S€B. Consider any point (x*,y*) in T\ K. Then

y*EF(x*) but y*§ K(x*).
As K(x*) is compact, we can choose y* in I so that
y¥*€H,, K(x*)0H,»=.
Then
x*€E(H,~)
and we can choose a* in A(y*) with |
X*E P gy = Qprgn
Now
(x*, y*) EPps X Spx,

with 8*=(y*, a*). Thus

U P,xS,=T\K,
2 PsxSs N

as required.

Proof of Theorem 1. The resuit follows from Lemmas 1, 2, 4, 5 and 6.

§ 3. Absolutely additive families of closed sets

In this section we give the very short proof of Theorem 5 stated in the introduction.

Proof of Theorem 5. Take Y to be the set A with the discrete topology. The map F
has graph

U X, X{a}.
a€A

For any subset B of A=Y, the set

{x: Fx)nB+ 0} = U X,
a€EB

is closed in X. Thus F is upper semi-continuous. As Y is discrete
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ClE(x) = cl({(XN\A{xHX(YNFNINT) = XX(Y\F(x)),

so that
Kx)=0,

for all x in X. The required result now follows immediately from part (b) of Theorem 1.

§ 4. Selectors for upper semi-continuous maps

Before we prove Theorem 2, stated in the introduction, it will be convenient to prove
two lemmas.

LEMMA 7. Let F be an upper semi-continuous map of a metric space X to the
power set of a metric space Y. Let L be a closed subset of Y and let Z be a subset of X
with

KxnL=2 but FXx)NL*+OD,

for all x in E. Then the restriction of F(x)NL to E has a selector f, whose sets of
constancy form a disjoint family that is discretely o-decomposable in X*, each set of
constancy being a relative F,-set in Z.

Proof. In the notation of Lemma 3, the sets of constancy of F(x)n L restricted to
EL)={x:K(x)nL =},

form a disjoint family, say {Q,}.c4, that is discretely o-decomposable in X*, each set
of constancy Q,, a€A, being an F,-set in X. The family {ENQ,},ea remains
discretely o-decomposable in X*, each set EnQ, being a relative F,-set in Z. We
suppress any empty sets in this family {EnQ,}.e4 and choose a representative point
£,,0€A, from each non-empty member. Then F(£,)NL+Z and we define f on
=ENQ. a€A, by taking f to be any point of F(£,)nL. The sets of constancy for this
selector f defined on Z will be certain unions

U Eng,,

a€EB
with B a subset of A. As {Q,}aca is a discretely o-decomposable family of #,-sets,
each such set of constancy for fis a relative Z,-set in E. As any disjoint family of
unions of subfamilies of a discrete family is discrete, it follows that the sets of
constancy of f form a discretely o-decomposable family in X*. This proves the lemma.
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LEMMA 8. Let F be an upper semi-continuous map of a metric space X to the
power set of a metric space Y. Let {L,},cr be a o-discrete family of closed sets in Y
with union L. Let ® be a subset of X with

F(x)nL*9,

for each x in ®. Then there is a disjoint family {X,},cr that is discretely o-decompo-
sable in X*, with each set X,,y€ET, a relative F,-set in ®, with

Ux,=0o,
y€r

and with

X, c{x:Fx)NL,+ @},
foreachyinT.

Proof. As {L,},er is a o-discrete family of closed sets, we can write " as a
disjoint union

I'=UTFI(n)
n=1
with each family {L,} ¢, n=1,2, ..., a discrete family of closed sets. Such a family is
an absolutely additive family of closed sets.
Write

Z,={x:Fx)NL,+ 2},

for each y in T'. As F is upper semi-continuous, each set Z, is closed in X, and, further,
each family {Z } cr.,, n=1,2,..., is an absolutely additive family of closed sets in X.

By Theorem 5, stated in the introduction and proved in § 3, for each n=1, the sets of
constancy of the map y,, from X to the subsets I'(n), defined by

Yulx)={y:y€T(n) and x€Z,},

for x in X, form a disjoint family {Q,},c 4., that is discretely o-decomposable in the

completion X* of X, each set of constancy being an %,-set in X. Let A*(n) be the subset
of A(n) for which y,(x) is non-empty for x in Q. Then

Q('l) = U
a€A*(n)

Q
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is an % -set for each n=1 and

o

o> o.
=1

n=

Let {P"™} be a disjoint sequence of %,-sets with

PP=0O" n=1, and U P"=y Q"
n=l n=1

Then
{P”NQ,:a€A(n) and n=1}

is a disjoint family that is discretely o-decomposable in X*, each set being an F,-set in
X, and with union containing ®. For each pair a, n, with a € A*(n), for which the set of
constancy Q, corresponds to a non-empty set y,(x) in I'(n), we choose such an index
d(a, n) in T'(n) with x €Z;s 0y

For each y in I, y €T(n) for some n, and we take
X, =U{® NP”nQ,: 6(a,n) =y}
It is easy to verify that this family {X,} ¢r satisfies our requirements.
Proof of Theorem 2. The metric space Y has a closed o-discrete base for its open
sets. Using this base we can choose a system of index sets
T(e),

INCIIR Vler((l?),
Ly, va)s vi€E0@, 7, €T,

Y

I'uveny), MED(@, v,€0(), ..., v, €00y, ....7,_1>

and a corresponding system of closed sets
Lip)=7,
L(Vl), Vl e F(‘p)7
Ly,v), vi€l(@, »,E€L(y),

Y

L('J/p')/z,---,y,,), V]EF(GO), Vzer(%), [REE] yner()/]""’Yn—l)’

vees
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with the following properties. For each n=1, and each choice of y, in T'(¢), y, in
L)ooy Va1 In Ty, v, 00, V,_y) the family
(LG Y2 s V) Y €D Yoy s 7))

is a o-discrete family of closed sets, each of diameter at most 27", and with union the
set L(y,,¥,, ..., ¥,—1). Here we are using the letter ¢ to represent a sequence of indices of
zero length, so that y,,,, ..., y,_, must be identified with ¢ when n=1.

To simplify the notation it will be convenient to use y to denote a sequence

Y=VY172 -0

in the set IT of such sequences satisfying

€@, 7,€L@Y, 7€y, v, ...,
and to use
YIR= V1,725 ooy ¥

to denote the first n terms of the sequence y. We will use this notation y|n even in the
cases when the subsequent elements y,,,,¥,.,, ... are unknown or irrelevent.
We start an inductive construction by writing
Li@=Y, X=X,
E(@)={x: K(x)NL(p) = T}.
As F maps to the non-empty sets of ¥, by Lemma 7, the restriction of F to Z(gp) has a
selector f(p;x), whose sets of constancy form a disjoint family that is discretely o-
decomposable in X*, each set of constancy being a relative %,-set in E(¢). By Lemma

3, E(g) is itself an F,-set in X, and so each set of constancy of f(¢;x).
We use induction on n to choose, for each y in I1, and for each n=1, sets

X(yln), E(y|n),

and a function f(y|n; x) from Z(y|n) to Y with the following properties.

(a) The family
{X(y|n): y €T},

regarded as inde xed by the finite sequences yy, s, ..., ¥,, rather than by the infinite
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sequences yi,ys, ..., is a disjoint family that is discretely o-decomposable in X*, each
set of the family being an %,-set, and the union of the family being X(y|n—1).
(b) For each x in X(y|n), we have

F(x)n L(y|n) # Q.
©) E(y|n) = {x EX(y|n): K(x) N L(y|n) = D}.

(d) The function f(y|n;x) is a selector for the restriction of F(x)N L(y|n) to E(y|n),
and the sets of constancy of this selector form a disjoint family that is discretely o-
decomposable in X*, each set of constancy being an %,-set.

The conditions (2) to (d) are all satisfied for n=0 and for each y in I1.

Now suppose that n=1, and that conditions (a) to (d) have been satisfied for all
smaller values of n and for all y in IT. We can confine our attention to those y in I' with
y|n fixed, say equal to 6jn—1. Then

{L(y|n):y€T and yln—1=40|n—1}
is a o-discrete family of closed sets in ¥ with union L(d|n—1). By condition (b), for each
x in X(8|n—1), we have
Fx)nLOn—-1)+O.
By Lemma 8, with ®=X(d|n—1), there is a disjoint family that is discretely o-decompo-

sable in X*, with each set X(y|n) a relative %,-set in X(6|n—1), with X(6|n—1) as union
for the family, and with

Fx)NL(y|n) + 9,

for each x in X(y|n). As X(6|n—1) is an F,-set, so is each set X(y|n). Having obtained
the sets X(y|n), satisfying (a) and (b) we define Z(y|n) by condition (c). The functions
Sf(¥|n; x) satisfying the condition (d) are now obtained, by use of Lemma 7, as in the case

of f(g;x).
For each n=1, and each ¢ in I, the family

{X(yln):y€ML and y|n—1=0d|n—1}

is discretely o-decomposable in X*, and is contained in X(djn—1). It follows, by
induction on #, that the family

{X(y|n): y €11}
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is discretely o-decomposable, for each n=1. As E(y|n)cX(y|n), for all n and all y in TT,
the family
{E(yn): y €11}

is discretely o-decomposable for each n=1. As each set of the family is an %,-set so is
the union.

2" = {E(y|n): y ETT},
for n=1. The set

= = Z(g)

is also an %,-set. By the reduction theorem, we can choose a disjoint sequence
ZO, 70 79 .. of F,-sets with

We now define sets Z(y|n) and ¥(y|n) by the formulae
Z(y|n) = Z(y|n)n Z™,
Wl = X610 O 260 ).
for n=0 and y €T1. The family

{Z(yln):y€ENM and n=0}

is a disjoint discretely o-decomposable family in X*, each set being an %,-set in X.
We take

So=T= U ({x}xF(x)),
xEX

Sn=[U{x}x{fly|r;0)}: xEZ(y|r), yEIT and O=r=sn}JUlU{P@H|n)xXL(y|n):y ETT}]

for n=1, and
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We prove that S is the graph of a selector f for F, satisfying our requirements.
Consider any point x* in X. By condition (a), there is a unique y* in IT such that

x* € X(y*|n)
for n=0, 1,2, .... First suppose that x* belongs to the set

o =]
X,=UE"=uy2zZ".
n=0 n=0

Then for a unique #*=0 we have

x* €Z") = U{Z(y|n*): y ETT}.
As the family
{X(y|n*): y €TT}

is disjoint, and x* € X(y*|n*), we must have
x* € Z(y*|n) < E(y*|n*).

Now

S@y*|n*; x*) € F(x*) N L(y*|n*).
As x* €Z"™ just for n=n*, we have

x* EX(y*r)\ v Z(y*s),

for O<<r<n*. Thus
(x*, f(y*|n*; x*) € W(y*|r) X L(y*|r),
for 0<r<n*, and
O*, fy*In*; x*) €S,
for O0<<r<n*. Hence
(c*, fy¥|n*; x*)ES.

Further, for n=n*, the only point of the form (x* y) in S, is this point with
y=F(y*|n*;x*). In this case (x*, f(y*|n;x*)) is the unique point of the set

{x*}XY)NS.
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We write
FO*) = f(y*|n*; x*).

Now consider the case when x* belongs to the set

X, =X\ X;.
Then

x*¢ ;] =0

n=0
and, for each n=0,
x* EX(y*|n)\E(*|n),
so that
K(x*)n L(y*|n) £ @.

As K(x*) is compact, while L(y*|n) is a closed set of diameter at most 27", for n=1,
there is a unique point y* in the set

;\0 K(x*)NL(y*|n).
As
x* € X(y*n)\Ey*|n)
for n=0, we have
x* EX(y*n)\Z(y*|n)
for all n=0, and
X* € W(y*|n)

for all n=0. Hence

(x*, y) EW(y* )X L(y*|n) < S,

for all n=0, and (x*, y*)€S. So y* is the unique point y in Y for which (x*, y)E€S. We
write

JOx*)=y*.

Now we have shown that fis a well-defined function from X to Y with graph §. As
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Xi is an % -set and X5 is a Y;-set it will suffice that the restrictions of fto X; and to X,
are of the first Borel class.
Consider any closed set H in Y. Write

P={x:F)nNnH+J},
O={x:fx)EH},
P]=X1ﬂP, P2=X20P,

O1=XiN0, =XpNnQ.

By the upper semi-continuity of F, the set P is closed in X. We need to prove that Q, is
a relative ¥s-set in X; and that Q- is a relative %;-set in X,. It will clearly suffice to
prove that P;\ Q; is an %,-set in X; and that P,\ (- is a relative %,-set in X>.

We recall that the function f(y|n;x) is chosen, by Lemma 7, as a selector for
F(x)N L(y|n) on Z(¢|n), its sets of constancy forming a disjoint family that is discretely
o-decomposable in X*, each set of constancy being an %,-set in X. Later in the
construction, we only make use of the restriction of f(y|n; x) to the %,-set Z(y|n). For
each n=0 and each y in I1, let

{®Wln; D} e apm

be the family of sets of constancy of the restriction of f(y|n; x) to Z(y|n), and let 6(y|n; a)
denote the value that f(y|n; x) takes on ©(y|n; a). We identify P\ Q; with the set

D =P nU{BWH|n;a): O(vin;a) & H, yETL, n=0 and a EA(y|n)}.

If x €D, then x € P, and, for some y €I1, n=0 and a € A(y|n), we have x € ©(y|n; a) and
6(yln;a) ¢ H. Thus

n;a)éH,

fx) =f(y|n; x) = 6y

and x € 0y, so that x € P,\\Q;. On the other hand, if x € P;\\ 0, then x € P, and so, for
some n=0, y €I and a € A(y|n), we have

xEB(y|n; a).
As x¢ 0, we have f(x) ¢ H. So
6(yln; &) = flyln; x) = f(x) € H.

Hence x€D,. Now
P]\Q] =D1.
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As the family
U{OW|n;a): 0(y|n;a) & H, yETI, n=0 and a EA(y|n)}

is a discretely o-decomposable family of %,-sets, the set P\ Q; is itself an %, -set.
We now identify P,\ O, with the set

D, =P,nU{X(y|n): Lyln)nh =, yEII and n=0}.
If x€D,, then, for some y €I1 and n=0, we have
Xx€EX(yln) and L(ylmnH=0.

As x€X,, we have f(x) € L(y|n). Hence f(x) ¢ H and x ¢ 05, so that x EP,\ (0>. On the
other hand, if x€ P,\ Q-, then there is a unique y* in IT with

x € X(y*|n)

for n=0. As x€X,, we have f(x) € L(y*|n) for all n=0. As x¢ Q,, we have f(x)§ H. As
H is closed, and L(y*|n) has diameter at most 27", we have

Liy*In*nH=0
for n* sufficiently large. Hence x € D,. Thus

Py\ Q> =Ds.

As D, is the intersection of P, with the union of a discretely o-decomposable family of
Fo-sets, D, is an %,-set relative to X,. This completes the proof for a general upper
semi-continuous F.

We now consider the case when F takes only compact values. The discussion of
this special case is much simpler than the general case. There is no need to define the
compact sets K(x) by the formula

K(x) = projy ([cl1 E(X)IN[{x} X F(x)]),

it suffices simply to take

K(x)=F(x)
for all x in X. The families

(LY V25 s V) Va €T V2 s V)

8-822906 Acta Mathematica 149
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with their index sets can be chosen just as in the opening paragraphs of this proof. An
inductive construction is stated by taking

Lp=Y, X=X

We need no set Z(¢), but it may be convenient to think of Z(¢) and the similar sets
E(y|n) as all replaced by the empty set. Sets X(y|n) for y in IT and n=1, are defined,
satisfying the conditions (a) and (b), inductively, as before, by use of Lemma 8. We
need none of the sets Z(y|n), y €I, n=1, nor E”, n=1, nor Z™ with n=1, and can

simply take
W(yln) = X(y|n)
for n=0, yE€Il, and
Sp={¥(y|n)x L(y|n): y €11},

S=nNSs,

n=0

Now, for each x* in X, there is a unique y* in IT with

x*€ N X(y*|n)

n=0
and then a unique y* in

;; K(x*) 0 L(y*|n).
n=0

We take f(x*) to be this unique point Y*. It follows, without difficulty, by simplification
of the main proof, that fis a selector for F of the first Borel class.

COROLLARY. The sets of constancy of the restriction of f to X, are F,-sets and
the family of these sets is discretely o-decomposable in X*. The restriction of f to X, is

a selector for K on X,.

§ 5. Selector representations for upper semi-continuous set-valued maps

In this section we prove the representation theorem, Theorem 3, stated in the introduc-
tion. Recall that a continuous function is said to be proper if it maps closed sets to
closed sets and the inverse of each point in the range is compact. Morita [11], p. 36, has
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shown that if Y is a metric space, then there exists a cardinal number m, a subset A of

B(m), and a proper map f, of A onto Y. We will need the following refinement of
Morita’s resulit.

LEMMA 9. Let m be an infinite cardinal and let Y be a complete metric space of
weight m. Then there is a closed subset A of the Baire space B(m) and a uniformly
continuous proper map of A onto Y.

Proof. For each n=1, the space Y is covered by its open balls of radius 27", Since
Y is paracompact (cf. [2], p. 349) this open cover of Y has a locally finite refinement by
non-empty open sets, say by the family {G™(§): E€Z(n)}. As Y has weight m, the
index set Z(n) has cardinal not exceeding m. For each £ in Z(n), write F™(&)=cl G"(&).
Then the family {F"(£): EEZ(n)} is a locally finite family of at most m non-empty
closed sets, each set having diameter at most 27", the union of the family being Y.
Here ‘cl’ denotes closure in Y.

Let x be the least ordinal with cardinal m. We will use y,, >, ... to denote ordinals
with 0<y;<x, for i=1. Rather as in the proof of Theorem 2, we choose a system of

index sets
[(e),
L(y), 7 E€(g),
F(YI’VZL V]er(q))s Vzer()/.),

ceay

F(ylsyza-'-y )’,,), ')/1er(¢), )’zer()’l), Tvey V,,er(}’p-n,}’,,_]),

reay

and a corresponding system of closed sets

Lip=Y
L(y), »i€l(g),
L(yp 72), Y1 El(g), Y2 EF(V,),

ceny

LGy, va o Va)s VIET(@), %ETW), ooy ¥, €T, s Vast)s

veey

with the following properties.
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(a) Each index set I'(y,,y>, ..., y,) is a non-empty initial segment of an ordinal not
exceeding x.
(b) For each.sequence v,,%5, ..., ¥,—1, With

V]EF((P), Vzer()/l),---,, )’n_ler(')/],---,')/n_z),
the family
{L(yY, Vas ooos Ve )10 ET(Yy, ooy v, )}

is a locally finite family of non-empty closed sets of diameter at most 2™**!, with union

Ly, Vas eoos Vo 1)-
To simplify the notation, it will be convenient to use y to denote a sequence

Y=Y1:72 ...

in the set A of all such sequences satisfying
Y1 € F(Q)), Y2 € F(Vl), Y3 € r(Vla Vz)s seey

and to use
YIR=91,72, 002 Vn

to denote the first n terms of the sequence y. We will use this notation y|n even in cases
when the subsequent elements y,,,,,¥,.,,, ... are unknown or irrelevent. For each yEA,
and each n=1, we use A(y|n) to denote the set of finite sequences d,,9,,...,0,,0,,,,
with
0=y, 0,=¥y oy 0,=V, 0,,ET(N).
To start the inductive construction we take I'(¢) to be the set of ordinals less than

the least ordinal y(¢) with cardinal equal to the cardinal of the family {FV(§): E€E(1)}
of closed sets. In this case A((p)=1“(<p), and we take

{L(6,): 6, ET(@)} = {L(S|1): 6|1 € A(@)}

to be a wellordering of these non-empty closed sets. When y € A, and n=0, and when
the set L(y|n) has been chosen, we take I'(y|n) to be the set of ordinals less than the least
ordinal ¢(y|n) with cardinal equal to the cardinal of the family of non-empty closed sets
amongst the family

{Ly|mynFO(&): E€EE(n+1)}.
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We take the family
{Lyry oo vn, 0):0< 0 <y(yln)} = {L(O|n+1): O|n+1E€A(y|n)}

to be a wellordering of these non-empty closed sets.

It is easy to verify that this inductive procedure leads to the construction of the
index sets and the families of sets satisfying the conditions (a) and (b). Further,
expressing these conditions in terms of the simplified notation we have the following
results.

(¢) For each ¥ in A, and for each n=0, the index set A(y|n) is non-empty and
consistes of finite sequences d|n+1, with 6 €A and djn=y]|n.

(d) For each y in A, and for each n=0, the family

{L(0|n+1):8|n+1E A(y|n)}

is a locally finite family of non-empty closed sets of diameter at most 27" with
union L(y|n).
Now A is the set of sequences ¢ in B(m) with

oln+1€AS|n), for n=0.
Hence B(m)\ A is the union of the sets
{6:6]11¢€ A(p)}, {0:6|n€A(S|n—1) and djn+1&¢A|n)}, n=1.

Thus B(m)\ A is open and A is closed in B(m).
We note that, if d € A, then the sequence

Ln), n=1,2,...,

is a decreasing sequence of non-empty closed sets with diameters decreasing to zero.
As Y is complete we can define A(9), for 6 in A, to be the unique point in

A L©|n).
n=1

The diameter condition ensures that 4 is a uniformly continuous map. The covering
condition ensures that # maps A onto Y.
Consider any point y in Y. As the families

{L(|n+1):d|n+1€ A(y|n)},
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0<ns<k, are locally finite, they are point finite and the closed set 2~ '(y) in B(m) meets
only a finite number of the Baire intervals of B(m) of order k+1. As this holds for each
k=0, the set h~'(y) is compact in B(mn).

Consider any sequence 6V, 0@, ... of points of A, and suppose that the sequence

y(l) — h(é(l)), y(2) = k(a(z))’

converges to a point y* of Y. We show that the sequence 6",6?, ... has a subse-
quence converging to a point 6* in A. We choose a nested sequence

N(1)oNQ2)>...

of infinite sequences of positive integers with the property that 6 belongs to a single
Baire interval of order k for all i in N(k), k=1. As the family {L(J|1): 6|1 € A(p)} is
locally finite y* has a neighbourhood U(1) that meets only finitely many of the sets
L(d}1), 6|1 € A(g). Provided n(1) is sufficiently large, we have

h®)EUQ)

for i=n(1). Hence 6|1 takes only finitely many values for i=n(1). Now we can choose
an infinite sequence N(1) of positive integers so that 6('7|1 takes the same value for all {
in N(1). Proceeding in this way we can choose N(1), N(2), ... inductively to satisfy our
requirements. We then take N to be a diagonal sequence. This ensures that 6©?
converges to some 6* in A as i tends to infinity through N. By the continuity of &, this
ensures that y*=h(6*) with 6* a limit of the sequence 6,69, ....

Thus & maps any closed set in A into a closed set in Y.

As his a continuous closed map with compact inverse images for points of Y, itis a
proper map. This proves the lemma.

Proof of Theorem 3. By Lemma 9, there is a closed uniformly continuous function
n mapping a closed subset A of B(m) onto Y. Then #~ ' o F is an upper semi-continuous
map of the metric space X to the non-empty closed subsets of B(m). Provided we have
the special case of the theorem, when Y coincides with B(m), we can choose a map g
from XX B(m) to B(m) satisfying (a), (b) and (c) for 7' o F in place of F. It is easy to
verify that # o g then satisfies (a), (b) and (c) for F. Thus it suffices to prove the special
case of the theorem when Y=B(m); the rest of this proof will consider only this special
case.
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Let » be the least ordinal with cardinal m. We take B(m) to be the space of
sequences

O0=01,072,...,
with 0<<o;<x. For each n=1, we write
oln=0y,0s,...,0,

and we use ¢ to denote the empty sequence of zero length. We take the distance
between two distinct elements o, 7 of B(m) to be 27", where r is the first integer with
o,#t,. It will be convenient to write

I=1(g) = B(m),
and
Ioln)y={t€L:t;,=0; forl<isn},
for 0 €1 and n=1. For each n=1, the family
{I(o|n): cET}
is a discrete partition of I into clopen sets. Similarly, if n=1 and z €I, the family
{I(o|n):oln—1=1ln—1 and o€I}

is a discrete partition of I(r|n—1) into clopen sets.
For each n=1 and each o in I we write

X(oln) = {x: Fx)nX(o|n) = D}.
As F is an upper semi-continuous map from X to I, for n=1, the family
{X(o|m): 0 ET}

is an absolutely additive family of closed sets in X. Define a map F(n;x), from X to the
power set of the sequences ojn of length n, by the formula

F(n;x)={oln:0€I and F()nl(o|n)*}.

By Theorem 5, the sets of constancy of the map F(n; x) are %,-sets in X and the family
of these sets is discretely o-decomposable in X*. When 0<n<m, the sets of constancy
of F(m;x) form a refinement of those of F(n;x). Hence we may choose a system of
index sets
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Alp),
Alay), a;€A(@),
Ala,,ay), a,€A(p), a,€A(ay),

ceey

Ala,, ay,...,a,), o,€EA(Q), a2€A(d1), e, €AlQ, Oy, .., ),
and we use
Ola,, a,,...,a,), a,€EA(p), a,€A(a), .., a,€A(a;,ay,....q, ),

to denote the sets of constancy of F(n;x), with
Oay,ay,...,a, ) =U(Qa,...,a,): a,€A(a,, ay, ..., a,_y)).

Let 2(a;, as, ..., a,) denote the set of sequences o|n of length n that is the constant
value of F(n;x) taken for x in Q(a;, s, ..., a,). As F(x) is non-empty for each x in X, so
F(n;x) is non-empty for each x in X and each n=1.

To simplify the notation, let A denote the set of all sequences

0, A, A3y eees
subject to
o, €EA(p), a,€A(a;), a;€A(a;,a,),....
Write

aln=ay,as,...,ap,,

when a €A and n=1. In this notation, the sets of constancy of F(#; x) are the sets Q(aln)
with a €A, and the value of F(n;x) on Q(a|n) is Z(aln).
For each x in X, let a(x) denote the unique a in A with

x€Q(ax)|n), forn=1.

In making selections in I it is usual to give preference to points that are lower in the
lexicographical order on I. In this construction we need to introduce a family of
lexicographical orders on I parametrized by a variable y chosen from I. For each y in 1,
we introduce a modified ordering <(y) of I by taking:

o<(pr, if o<t and 71,3Fy;

t<(po, if 1y=yx but oy Fy;
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o<t if o<t,o=7t,=x and 1F);
<)o, if oy=1;=)x1 and 1T,=yx; but oFyx;
o<(r, if o<t,0i=1,=)1.., 0,=7,=), and 7T, F Y.y}

1<@)o, if o=1,=x,.., 0,=7,=x, and 71, =y, but o, Fx.;

Note that the question of whether or not o <(x)t is determined by a knowledge of ofr
and of 7|r, where r is the first integer with o,#7,. This ordering is designed to provide
preference for the point y of I with a minimal rearrangement of the order relationships
for o and 7 that do not start with an initial partial sequence y;,¥2, ... . The order <(x)
will also be used to relate finite sequences. If ¢, T are given with oln=t|n, then either

E<(on forall &, pinlwith &n=o0ln and nln=1n,
or

<& forall &, pinlwithé&n=0ln and pnln=r1n.

In the first case we write o|n <(x) z|n, and in the second case we write t|n <(y) o|n. For
a fixed n, the relation <(y) on the sequences of length n is a well-ordering. For each a
in A and each n=1, we use ¥(a|n, x) to denote the first element of Z(a|n) under the order
<(x).

We can now define the required map g from XxI to I. For each x in X and each x in
I, there is a unique g(x, x) in I satisfying

g(x, Yln = y(ax)|n, )
for each n=1.

Using the nesting properties of the sets of constancy and the properties of the
ordering <(y) it is easy to verify that g(x, y) is uniguely and consistently defined in this
way.

For each x in X and each y in I, we have

g(x, Yn € Z(a)|n),
so that
g(x, YnEF(n;x),

and
F(x) EX(g(x, p)|n) + 2.
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Now the sets

F(x)nKglx, )in),

n=1,2,..., form a decreasing sequence of non-empty closed sets in I, and the diameter
of the sth set is at most 27". As F(x) is closed in the complete space I, it follows that

g(x, x) EF(x).

Further, if y € F(x), then, for each n=1, the first element in Z(a(x){n) under the ordering
<(y) will be x|n. Thus, in this case, when y € F(x), we have

g, x)=x.
Thus g satisfies the condition (a) in the statement of the theorem.
For each y in I the function g(x, x) is a selector for F(x) on X. Let H be any closed
subset of I and take
P={x:F(x)nH=*J},

Q= {x:g(x,y) EH}.

By the upper semi-cintinuity of F, the set P is closed in X. To prove that Q is a ¥;-set in
X it suffices to prove that P\ Q is an %,-set in X. By the method used to discuss the
restriction of F to X>, in the proof of Theorem 2, we verify that

PN\Q=Pnu{Q(aln):y(aln, )N {njn:n€H} =D, a €A and n=1}.

Thus P\ Q is an %,-set. Hence g(x, ) is of the first Borel class, for each fixed y. This
shows that g satisfies the required condition (c).

For each x in X, we already know that g(x, ) is a surjective map of I to F(x). If y’
differs from y first in the nth place, the orderings <(y') and <(y) coincide, when they
are applied to finite sequences o}r with 1<r<n. Thus

glx, x Wr=g(x,)lr whenl1<r<n.

Hence
o(glx, x), g, ) <o, 0

for all x in X and y, " in I. We need to prove that the map g(x, x) is a closed map from I
to I when x is fixed in X. Let H be any closed set in I. Suppose that ¥, 7@, ... is any
sequence of points of H and that the sequence

g(x, 7, g(x, n?), ...
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converges to a point, y say, in I. We need to find an » in H with g(x, )=y, in order to
prove that g maps the closed set H in I into a closed set in I. As

glx,n)EF,

for all i=1, and as F(x) is closed, we have y € F(x).
Note that

gl fM|t =y,

for all sufficiently large i. Suppose that for some infinite sequence of such sufficiently
large i, we have

7+ ;.
Then, for these values of i, we have
FNIg") =2,
as otherwise we would necessarily have

g, n N1 =7 +y,.

So in finding the first point of Z(a(x)|n) under the ordering <(?) we are concerned
only with points in INI({?) and so the ordering <(5®) effectively coincides with the

ordering <(o) with 0=0,0,0, .... Thus, for all i in this infinite sequence
g(x, 7)

is independent of i and must coincide with y. Thus g(x, )=y, for some #® in H. Now
suppose, on the other hand, that for all sufficiently large i, we have #{’=y,.Note that

g, n)2 =2,

for all sufficiently large i. Supposet that, for some infinite sequence of such sufficiently
large i, we have

7750 *,.
For these values of i, we have

F)nIn?)2) =2.
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In finding the first point of =(a(x)|n), for n=2, the ordering <(17”) effectively coincides
with the ordering <(yy, 0) with y;,0=y(,0,0,0,.... Again, for all i in the sequence,

g(x, n®)

is independent of i and so must coincide with v, yielding g(x, 7?)=y for some #* in H.
So we may suppose that

2 =y|2

for all sufficiently large i.
Proceeding in this way, we either find an # in H with g(x, )=y, or we find that, for
each n=1,

Pl =vyin

for all sufficiently large i. In this second case, #? converges to y. As H is closed we
have y€EF(x)NH and g(x, y)=y with y €H. Thus the image of H is closed. Hence g
satisfies the required condition (b) and the proof is complete.

§ 6. Upper semi-continuous maps whose values are Borel sets,
Souslin-Z sets or co-Souslin-Z sets

We need the following lemmas for the proof of Theorem 4. The first (Lemma 10) is a
special case of results of Montgomery (cf. [10], Theorems 1 and 2 and the following
remark), who proved that a subset E of a metric space X, which is locally of one of the
four types below (that is, each point x of E has an open neighbourhood U such that
EnU is of the given type in X), is itself of that type in X. Kuratowski [6], pp. 358-362,
gives Montgomery’s proof, Michael [9], Proposition 4.2 and the preceeding remark,
and Stone [13], Lemma 4, give other proofs for the Borel classes via transfinite
induction and locally finite open refinements of open covers, and Hansell {3], Lemma
2, gives an easy transfinite induction proof of the special case, that is, of parts (a) and
(b) of Lemma 10 below: parts (c) and (d) are straight forward.

LEMMA 10. Let {E,},er be a discrete family of sets in a metric space X, and

write

E=UE,
yer
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(@) If0a<w, and each set E,,, y €T, is of additive Borel class a in X, then E is of
additive Borel class a in X.

(b) If 0<a<w; and each set E,,, y €T, is of multiplicative Borel class a in X, then
E is of multiplicative Borel class a in X.

(c) If each set E,,, vET, is a Souslin-F set in X, then E is a Souslin-% set in X.

(d) If each set E,, y€ET, is a co-Souslin-% set in X, then E is a co-Souslin-F set in
X.

Since the families of additive Borel class a sets in X, Souslin-Z sets in X, and co-
Souslin-% sets in X are countably additive, it follows immediately that (a), (¢) and (d) of
Lemma 10 hold for o-discrete families {E,},cr. In general (b) of Lemma 10, of course,
does not hold for o-discrete families, but the following lemma ensures that it does hold
for the g-discrete families that we consider. Lemma 11 is a slight variant of our Lemma
4 in [4). Recall that an ambiguous Borel class a set in X is one that is both additive
Borel class a in X and multiplicative Borel class a in X.

LEMMA 11. Let Y be a subset of a metric space X and suppose that

Y=uy

n
3

TC s

with each set Y, of multiplicative Borel class a, with 2<a<w,, in X. If each set Y,
considered as a subset of Y, is of ambiguous Borel class 8 less than a in Y, then Y is of
multiplicative Borel class a in X.

Proof. If a is a limit ordinal, we can choose a sequence
Bi<pr<...

of ordinals less than a with the property that « is the least ordinal exceeding ;, for all
izl. If a is of the form y+1 with 1<y, we can take

ﬁt’:y’ 121’

and again «a is the least ordinal exceeding §;, for all i=1. Now, in each case, for each
n=1, we can choose a sequence

Ynk’ k=1,2,...,

of sets with Y, of additive class S in X and with

Y,=NY, n=l
k=1
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Since each Y,, considered as a subset of Y, is of ambiguous class § less than a in
Y, as straight forward transfinite induction argument gives a set Y7 of ambiguous class

B in X with
Write Yy= and

for n=1. Then we have
Yyaw,=yY\uyY, nz=i,
i=0
and

n—t

Y,AW,=Y\UY, n=1
i=0

Consider the set

®© ®

Z=0 N (W,nY,)
k=1 n=1

in X. Now for each n, k, the set W,n Y, is of additive class max (3, 8. As a=2, this
set Z is of multiplicative Borel class a in X.
It remains to identify Z with Y. If y € Y, then for just one n=1, we have

n—1

yEY\U Y, =WnY,.
i=0
Then, for each n and each k=1,
)’e vvnrlykk:

and so y EZ. On the other hand, if z €Z, then for each k=1,

ZE U (W,NY,).
n=1

As the sets W, W,, ... are disjoint, there is an n, independent of &, such that

zEE‘Wﬂ,ﬂ th
for k=1. Hence

zENY,=Y,cY.
k=1
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Thus Z=Y as required.
Summarizing we have

LEMMA 12. Let {E,},cr be a o-discrete family of sets in a metric space X, and
write

E=UE,
yer

(a) If 0<a<w, and each set E,, y €T, is of additive Borel class a in X, then E is of
additive Borel class o in X.

(b) If 2<a<w and each set E,, y €T, is of multiplicative Borel class a in X, and if
each E,, y€T, considered as a subset of E, is of ambiguous Borel class 8 less than a in
E, then E is of multiplicative Borel class a in X.

(c) If each set E,, yET, is a Souslin-F set in X, then E is a Souslin-F set in X.

(d) If each set E,, y€T, is a co-Souslin-% set in X, then E is a co-Souslin-F set in
X.

Proof of Theorem 4. We confine our attention to the case (b); the other cases are
similar but slightly simpler.

We use the notation and results of Theorem 1 and its proof. By the result (a) of
Theorem 1, the set K is a s-set and so is a set of multiplicative class o as a>1. By the
result (¢) of Theorem 1, we have

T\K= U PﬂxSﬂ,
BEBRB

where the family {P;XSg}sep is o-discrete, and each rectangle P;XS; is relatively

closed in T, and so also in T\ K, and each set P; is closed in X. We may clearly
suppose that

P+,
for each 8 in B, and we can then choose pg in P4 for each 8 in B. As
{Ps}xSp=({ps}x V)N (PsxSp).
is a relatively closed subset of

{ps}XY)NT=({pg} X F(pp),
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the set Sg is of multiplicative Borel class a, for each 8 in B. Hence PgX Sy is also of
multiplicative Borel class a, for each 8 in B, as well as being relatively closed in

T\K= U PyxS5,

BEB
By Lemma 12, the set
K
and so also
T=(T\K)UK,

is of multiplicative Borel class a in Xx Y.

COROLLARY. If we know that each set F(x), with x€X, is an F,-set in Y, we can
conclude that T is the union of a Ys-set with an F,-set.
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