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w 1. Introduction 

In this paper we deal with the Cauchy problem 

utt-a(t)Uxx = O, u(x,O) = q~(x), ut(x,O) = ~(x), (1) 

where O~t<~T, x E R  and a(t) is a C ~ function on the interval [O,T] satisfying the 

assumption 

a(t) >I O. (2) 

Our purpose is to show that (1) may be not well posed in the class ~(Rx) of the C ~ 

functions, contrary to what occurs when a(t)~>2>0. 

More precisely, we shall construct a C ~ function a(t), strictly positive on [0, 0[ and 

identically null on [O, + oo[ where ~ is a given positive number, and two C ~~ functions 

q0(x) and ~p(x) in such a way that (1) has no solution in the class of distributions on 

RxX[0, T[ as T>O. 

By virtue of the strict positivity of the coefficient a(t) for t<p, this problem has a 

C ~ solution on [0,Q[xRx, which is the unique solution in the class CI([0,Q[, ~'(Rx)). 

However, this solution cannot be continued as distribution on any strip ]0,Q+e[xRx, 

Ve>0. In particular it does not belong to C([0, Q], ~'(Rx)). 

Let us recall that problem (1) is said to be well posed in some class o~(R~) of real 

functions or distributions (or analytic functionals) if, for any tp and ~/, in ~(Rx), it admits 

a unique solution u in C1([0, T], ~(R~)) and the mapping (tp, ~ ) ~ u  is continuous. 

The equation utt-a(t)Uxx=O is called hyperbolic (see Mizohata, [2]) when the 

corresponding Cauchy problem is well posed in ~(Rx). 



244 F. C O L O M B I N I  A N D  S. S P A G N O L O  

It is well known that (1) is well posed in ~(Rx), or in @'(R~), provided that (2) is 

reinforced by the assumption a(t)~>2>0, while it is well posed in the class M(Rx) of the 

real analytic functions under assumption (2) alone (see [I]; where these results are 

proved under the weakest assumptions of regularity on the coefficients). 

The example of the present paper, whose structure resembles the counterexamples 

of [1], points out that the assumption (2) by itself does not assure that (1) is well posed 

in ~(R~). It would be interesting to find what additional kinds of assumptions on a(t) are 

needed in order that the problem be well posed. 

Let us finally emphasize that several necessary conditions, such as the Levi's 

condition, are known for the hyperbolicity of the equation uu-a( t )  Uxx+b(t) ux=0, but 

they are all fulfilled when b(t) is dentically zero. 

w 2. Preliminaries 

The initial data q0(x) and ~p(x) of our example will be periodic odd functions, so the 

solution u(x, t) will admit a Fourier expansion such as 

co 

U(X, t) = Z Oh(t) sin (hx), t E [0, T]. (3) 
h = l  

The following well known facts will be used. 

is 

PROPOSITION 1. A sufficient condition in order that (3) defines u E C([0, T], ~(Rx)) 

sup (Ivh(t)l+lV'h(t)l) ~ Cp h -p, Vp, Vh. (4) 
t 

PROPOSITION 2. A necessary condition in order that (3) defines 

u EC[(0, T], ~'(Rx)) is 

for  some M and p. 

sup Ivh(t)I ~ Mh p, Vh, (5) 
l 

When u(x, t) is a solution of (1), then the oh's solVe the ordinary equations 

v"+h2a(t) v = O. (6) 
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Therefore,  estimates as (4) or (5) can be obtained by studying the non,negative 

funcitonal (the energy-functional) 

Eh, o(t) = h 2 a(t) v2(t) + v'2(0. 

By differentiation of  Eh, o(t) with respect  to t, we can easily obtain the energy 

estimate 

Eh o(t2)<~E h o(tl)exp " ~t2la'(t)ldt , 
' " .It1 a ( t )  (7) 

for tl, t2 in [0, T]. 

Later,  we shall use the following special case of  (7): 

PROPOSITION 3. Let us assume that in some interval [0, T,], with T,<.T, the 

function a(t) is strictly positive and admits just v points o f  local minimum and v points 

o f  local maximum. Let us denote by ;~l .. . . .  ~v and by A l ..... Av the values of  a(t) at 

these points. Finally assume that a(t) is decreasing near the extreme points 0 and T,. 

Then for any solution of(6)  the following estimate holds 

~< " a(O) ( A I ' " " ~ [  /2 ' 
E h, o(t) --~ E h, o(T,) ~ ~ ~,. Yt <. T,. (8) 

w 3. Construction of the coefficient 

The coefficient a(t) of  the example will be a C ~ function on the real half-axis t>~0, 

strictly positive on [0, •[ and identically zero on [Q, + oo[, where Q is a fixed positive 

number. 

In order to define a(t) we fix two sequences {Qk} and {6k} of  real numbers 

decreasing to zero and a sequence {vk} of  integer numbers increasing to oo (k= 1,2 . . . .  ). 

These sequences will be defined later (see w 5) in a suitable way.  In particular {Qk} will 

verify the condition 

~.~ 0k = ~" (9) 
k = l  

Correspondently,  we effect the following subdivision of  the interval [0, ~9[ 

[ 0 , e [ =  u Jk 
k=i  

where Jk=[tk--Qk/2, tk+Qk/2 [ and tk=Ql+...+gk_l+QJ2. 



246 F. COLOMBINI  A N D  S. S P A G N O L O  

Moreover,  we consider the function ao(t)=26~ and the functions 

[ t--tk\ 
ak(t)=6ka~2v,~r-~, ) (k > - 1) 

where 

a(~') = 1 - ~ sin 23 - 1-~0(1 - cos 23) 2 . 

(10) 

(11) 

Let  us remark that a is ~r-periodic and 

�89 ~< a(r) ~< 2. (12) 

Disregarding any request of  regularity, we could take as coefficient a(t) of our 

example the piece-wise regular function d(t) which coincides with ak(t) on the interval 

J ,  ( k = l , 2  . . . .  ). 

But we wish for a C ~ coefficient, so we must modify ~(t) near its points of 

discontinuity { t , - p , / 2} .  More precisely, we shall modify ~(t) in a very small right 

neighborhood of  tk--Ok/2, namely in the interval 

[k= tk 2 ' 

To do this, we consider the subdivision 

J,= ], U Ik 

setting 

e ,  9k ek]  
I, = t k - T + S v , '  t k + T  ' 

and the functions 

bk(t)= fl(  8vk t-(t~---~J2)~k / (13) 

where fl(r) is a C = function, increasing on [0, 1] and such that fl--0 for r~<0 and fl--1 for 

r~>l. 

We then define 

ak(t) b,(t) + ak_ 1(0 (1-- bk(t)), if t E J, ,  

a(t)= 0, i f t t > e .  (14) 
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It is immediately seen that a(t)>0 on [0,O[, so a(t) verifies (2) on [0, +oo[. 

Now, in view of  Proposition 3, we look for the local minima and maxima of a(t) on 

the intervals J l ,  J2 . . . .  which form [0, Q[, keeping in mind that Jk=/k UI k. 

On Ik, a(t) coincide with ak(t), i.e. a(t)=rka(r), where r=2vk:r(t--t~)/Ok. The 

variable r runs on the interval [-vkzr+zr/4, vk:r[ as t EIk, and the :r-periodic function 

a(r) (cf. (11)) has just  one point of  minimum and one point of maximum in [0, zr], both 

these points lying in ]zr/4, :r]. Taking (12) into account,  we then arrive to the following 

conclusion. 

At the interior o f  Ik, a(t) has just  2vk points o f  local minimum and 2vk 

points o f  local maximum, with respective values >~Ok/2 and ~<26k; more- (15) 

over a(t) is decreasing near the endpoints o f  lk. 

As for the connecting intervals ]k, instead of  studying the oscillations of a(t) we 

shall arrange the parameters 6k in such a way that 

a(t) is decreasing on ]k. (16) 

To this end, let us consider the expression 

a '=  bka'k+b'k(ak--ak_O+(1--bk)a'k_ 1, 

obtained from (14) by derivation. 

At the interior of /k ,  the functions bk, 1-bk and b~are positive, while ak and ak_ 1 

are decreasing (since a(r) is decreasing on [0, :r/4]), a0 is constant. Henceforth (16) will 

be true if only ak(t)<-ak_~(t) and, in particular, if 

~ k - I  
26 k ~< ~ (17) 

Going back to the regularity of a(t), it is immediate that a(t) is C a on [0,O[. 

Moreover a(t) tends to zero as t---~O-, since {6k}~0, Hence a(t) is continuous on 

[0, +o~[. 

It remains to verify that a(t) is C ~ near the point t=O, i.e. that every derivative 

a(r)(t) of a(O tends to zero as t---->p-. To this purpose, we must add some supplementary 

conditions on 6 k, Ok and v k. 

In fact, (14) gives 

= ~'k ~"k "k-iJ--~'k-l, on J~. (18) 
s=O 
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and 

On the other side, (10) and (13) give 
r 

where {Ar} and {Br} 

Sr~>8"l/~(o(r)l, yr .  

Ib~r) I ~ B,. , 

are two increasing sequences 

(19) 

(20) 

such tha t  Ar~(2ar)rla(~)(r)[ and 

Introducing (19) and (20) in (18), and taking into account that {vflOk} is increasing, 

while {6,} is decreasing, w e g e t  the estimate 

la~r)(t)l<-3"2ArBr ~ 6k_~. YtEJk. 

Hence, a sufficient condition for the C~176 of a(t) on [0, +oo[ is 

(Vk+l~r--*O, a s k - - ~ ,  Vr. (21) 
C~k \ Ok+t / 

w 4. Construction of the initial data 

We intend to find two C ~ functions q~(x) and ~p(x) such that Cauchy problem (1) 

with coefficient a(t) defined in w 3 and with initial data q0, ~p, has no solution u in ~ '  for 

t>0. Of course this involve some further conditions on the sequences {6k}, {Ok} and 
{~,}. 

W e  do not define q0 and ~p directly, but we shall construct a particular solution 

u(x, t) of the equation utt--a(t ) Uxx=O on Rx•  [0, O[, in such a way that 

u E cl([0, O[, g'(Rx)) (22) 

and 

u ~ C([0, O], ~'(Rx)). (23) 

Afterwards, we shall take cp(x)=u(x, 0) and 7~(x)=ut(x, 0), observing that these are 

two C ~ functions by (22). 

Consequently, the problem (1) with T~ O will not admit any solution in 

C([0, T], ~'(Rx)). Otherwise, such a solution should coincide with u(x, t) for t<O, in 
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contradiction with (23) (indeed a(t) is bounded away from zero on each interval 

[0,Q-e[,  Ve>0, and hence (1) is uniquely solvable in C([0, Q-e[,  ~'(Rx)). 

Hence,  let us look for a solution u(x, t) of utt-a(t)Uxx=0, satisfying (22) and (23). 

This solution will have the form 

U(X, t) = ~ Oh(t) sin (hx), (24) 
h = l  

where the Vh'S are real functions satisfying (6). 

Since a(t)=c)ka(2vk~r(t--tk)/Qk) on Ik, we are led to write 

Oh(t ) = Wh, k(Z'), for t E I k, 

where r=2vk:r(t--tk)/Qk. 
Therefore Wh. k will solve the equation 

\4vk :r 2 ] 

Now the equation 

w"+a(r)  w = 0, (26) 

with a(r) given by (11), admits a solution ~,, which we can write down explicitly, such 

that the sup of  [rP(r)[ on {0~<r~<f} has an exponential growth as f___>oo. In fact a solution 

of (26) is 

rP(r) = sin r . exp  [~(r-�89 sin 2r)]. (27) 

So, in order to reduce (25) to (26), we must consider merely those values of h for 
2 2 2 - 1  which h Ok 6k(4Vk :r2) = 1, assuming at the same time that 

2VkZ~ 1 
h k - - = -  is an integer, Vk. (28) 

More precisely, we define the terms Vh(t) of  the Fourier series (24) by taking Vhk 

equal to the solution of 

v"+h~a( t )v=O, t>O,  v(tk)=0, v ' ( tk )= l ,  (29) 

and 

Vh(t) -- 0 if h r {hk}. (30) 
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Hence 

~k . [ t - - tk \  
Uhk(t)~ 2VkzrW~2Vk~r--~ ) ,  for t e l  k, (31) 

where ff,(r) is the function (27). 

Le t  us now prove that for t<0  the Fourier series E Oh(1) sin (hx) converges to some 

function u E C1([0, 0[, ~(Rx)), under suitable conditions on {dk}, {Ok}, {Vk}" 

Since the Vh'S are solutions of (6), it will be sufficient to prove (cf. Propositon 1) 

that, for any e>0 and t E [0, p - e ] ,  

Iohk(t)l <. Cp h; p, Vp, Vk. (32) 

As a matter  of  fact it will suffice to prove (32) for any t E [0, t~], where t~denote the 

first point of Ik, i.e. t'k=tk--Ok/2+Ok/(8Vk)(indeed {t~}---~O-as k~oo).  This can be done 

by using the estimate of  the energy 

Ek(t) = 2 2 ,2 hka(t) Vh,+V h, 

furnished by Proposition 3. 

Indeed by (8), (15) and (16), we get 

4dl 
Ek(t) <~ Ek(t'k) -Z--exp [2(v 1 +. . .  + v k_ l) log 4], Vt ~< t k. (33) 

Ok 

On the other side by the explicit expression of Ohk on Ik (see (31)) we get 

Ek( t' k) = C exp -v~ (34) 

where C is a constant.  

Moreover  a(t)~>dk/2 on [0, t~], so by (28) and (9) we have h~a(t)>ll/o 2 for t<~t'k. 

Henceforth 

iVhk(t)l < 1 [Ek(t)] 1/2. (35) 
O 

Summing up, (33), (34) and (35) give the estimate 

2C 
}Vhk(t) I ~< exp -- Vk--;--A- . exp [(v I +. . .  + v k_ 1) log 4] 

Q 
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which implies (32) for -< ' t~t k, provided that 

at . 1 ,  1 .  --Vk--+--log--+(Vl+...+Vk_l)log4 <~-ploghk+C'p, Vp, Vk. (36) 
l0 2 O~ 

Taking into account the defintion (28) of hk and the assumption {Vk}--->~, we see that 

(36) is satisfied if only 

p + l  1 lk<~Cp, at Vk+(Vl+...+V k l ) l o g 4 + _ _ l o g _ _ + p l o g  - 'r Vk. (37) 
11 - 2 6 k 

In conclusion, we have constructed a solution u(x, t) of (1), which satisfies (22) if 

the parameters Ok, Ok and Vk satisfy (37). 

We shall now prove  that, without any other condition on Ok, Ok, Vk, the solution u 

satisfies also (23). 

Indeed, by the explicit expression of Vhk on Ik (see (31)), we have 

IVhk(t'~)lhk"= C' Q---~k exp (Vk-~o ) ( 2Vkat ~-P, 

where t'~=tk +ok/2--Og/(8Vk). 
Hence, (37) implies that [Vhk(t'~) I h~ p tends to infinity as k--,~, for any p, thus (5) is 

violated. By Proposition 2, we then conclude that u satisfies (23). 

w 5. Choice of the parameters 

In constructing the coefficient a(t) and the solution u(x, t), we have been forced to 

make on the sequences {0k), {6k) and {Vk) several conditions, namely (9), (17), (21), 

(28) and (37). 

To prove that these conditions are not contradictory, we give a concrete choice of 

0k, Ok, Vk, i.e. 

O k = 0 . 2  - k  

V k = 8 k (38) 

where [. ] denotes the integer part. 

Summarizing, we have proved the following result: 
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THEOREM 1. Let O be a positive number and {Ok}, {Ok}, {Vk} be defined by (38). 

Let a(t) be the function defined by (14) and q~(x)=u(x, 0), ~(x)=ut(x, 0), where u(x, t)= 

Z~ Vh(t)sin(hx) and the Vh'S are defined by (29), (30). 

Then a(t) is Coo on [0, +oo[ and a(t)-O for t>>- O, while q~ and ~p are C~176 functions on 

However Cauchy problem (1) has no solution u in the class C1([0, T], @'(Rx)), tf 

T>>. O. 

w 6. Concluding remarks 

Remark  l. By using suitably Proposition 3, one could prove that problem (1) is well 

posed in ~(Rx) whenever the coefficient a(t) is a non-negative function having only a 

finite number o f  oscillations on [0, T], in particular when a(t) is analytic. 

We do not know any examples of non-negative a(t), whose graph has infinitely 

many oscillations touching the t-axis, such that the corresponding Cauchy problem is 

well posed. 

Remark 2. As a matter of fact, the coefficient a(t) constructed in w 3 is more than 

Coo-regular if only the mollifier function fl(r) appearing in (13) is taken sufficiently 

regular. More precisely, fl(r) can be chosen in any Gevrey class (but not analytic), so 

a(t) turns out to be a Gevrey function on [0, +oo[ 

Remark 3. The coefficient a(t) can be modified on [0, 0[ in such a way that it 

becomes analytic on [0,0[ (and C ~ on [0, +oo[) and neverthless the conclusion of 

Theorem 1 is still true. To do this, let us consider an analytic function ao(t) on [0, O[ 

such that ]alr~(t)-a(0r)(t)l<~ek for t ~ [Q- 1/k, Q-  I/(k+ 1)] and r<~k, where {ek} is a sequence 

fast enough decreasing to zero (cf. [3]). Afterwards, let us compare the solution u of 

problem (1) with the solution u0 of the analogous problem with the same initial data but 

with coefficient ao(t) (instead of a(t)). If {e/~} is suitably chosen, we can conclude that 

u0 still verifies (23). 

Remark 4. The solution u(x, t) of (1) constructed in w 4, is a C ~ function on the 

strip [0, O[• which does not belong to C([0, Q], @'(Rx)). 

As a matter of fact, u does not even belong to ~'(]O,o+e[• Ve>0, i.e. it 

cannot be continued beyond the line t=O as a distribution. 

However,  one can observe that u(x, t) does not disappear at all after the instant 

t=Q. Indeed any Cauchy problem as (1), whose coefficients depend only on t, is well 

posed in the space of the periodic real analytic functionals (see [1]). 
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