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1. Introduction and allegro

A differential operator L is locally solvable at a point x, if there exists a neighborhood

U of x, such that
Lu(x) = f(z), allz€U,

has a solution ©w€C®(U) for any fECT(U). We shall give necessary conditions for local
solvability for some classes of left invariant differential operators on nilpotent Lie groups.

Let @ be a connected, simply connected, nilpotent Lie group which admits a family
of dilations &,, r>0, which are automorphisms. The §, extend to automorphisms of the
complexified universal enveloping algebra U(g), where g is the Lie algebra of G. The ele-
ments of U(g) may be identified with the left invariant differential operators on G. An
element L€ U(g) is homogeneous of degree d if 6,(L)=r%L, all r>0. We equip G with a
norm, | |, which is homogeneous in the sense that if U,={x €6 |x| <s}, then §,(U,)=U,,.

We shall prove two main theorems concerning the local solvability of a homogeneous
element L€ U(g), with transpose L*. The first says that L is unsolvable if ker L* contains
a function in §(@), the Schwartz space of G. The second result uses the first to obtain a
representation-theoretic criterion for unsolvability of L. Let G be the set of all irreducible

unitary representations of G. If there is an open subset of representations & in G such that

(1) ker z(L%) contains a nonzero C® vector, and

(2) ker m(L") varies smoothly with 7,
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then L is not locally solvable. We use this theorem to give some new examples of unsolvable
operators on the Heisenberg group. Next, we show by example that one cannot weaken (1)
to the condition that ker z{L*) is nonzero. Finally, we give an example of an unsolvable
operator L such that ker 7(L7) is trivial for almost all 7.

The idea of studying the kernel of 7(L) and 7z(L%) for local properties of L is suggested
by the following. A differential operator D is hypoelliptic in an open set U if Du=f with
F€0°(U) implies u €C®(U). Helffer and Nourrigat [14] have shown that L is hypoelliptic
if and only if

ker (L) =0 for all €@, & nontrivial; (1.1)

here G is the set of all irreducible unitary representations of G. Since L* hypoelliptic implies
L locally solvable, it is reasonable to suppose that the complete failure of (1.1) to hold,
with L replaced by L*, might imply L is unsolvable. Our second result then shows this is
true under some further hypotheses.

The theorem of Helffer and Nourrigat was first conjectured by Rockland [23], who
proved a special case. Rockland also conjectured some results on local solvability, parts of
which were later proved independently by the second author [24], G. Lions [20] and the
first author [2]. A detailed study of local solvability for second order operators on two
step groups was made in [25].

Rockland’s conjecture was motivated by the work of Folland and Stein [8], in which
the sufficiency of (1.1) for hypoellipticity for a class of second order operators on the
Heisenberg group was proved by the construction of a fundamental solution. The idea of
using homogeneity and a transformed operator to study hypoellipticity was introduced by
Grusin [11], to study operators like D =82/0x? + x%(8?/dy?) + tx(6/0y). Grusin proves that D is
hypoelliptic if and only if ker D is trivial, where D =d?/dx? — 2272 — av. In a later paper [12]
he also studies local solvability.

The first example of an unsolvable differentiable operator was given by Hans Lewy
in his study of the boundary values of holomorphie functions. In fact Lewy’s operator is
a homogeneous element of U(}), where §j is the Heisenberg algebra. Greiner, Kohn and
Stein [10] studied the Lewy operator L from this point of view and were able to show that
Lu=f is solvable in an open set U if and only if the projection of f onto ker L7 is real
analytic. Further results were obtained by Geller [9]. Our present results were motivated
by these.

A brief overview of the techniques used in this paper is given as follows. The first
main result, Theorem 1, Section 2, is based on the fact that a left invariant locally solvable

differential operator on a Lie group must possess a local fundamental solution [25]. Using
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the fundamental solution we prove that if ¢ €03(G@) we may find functions vy, €CF(G)
which are uniformly bounded by a polynomial in m and which satisfy Ly, () =¢(x) for
|#| <m. In connection with Theorem 1 we may note a recent result of Duflo and Wigner
which states that any left invariant differential operator on a simply connected nilpotent
group has no nontrivial compactly supported distributions in its kernel.

The proof of our second theorem amounts to constructing a Schwartz function in
ker L” from representation-theoretic data. (A function f on @ is in $§(@) if and only if
foexp€ §(g), where exp denotes the exponential map.) The difficulty involved here is in
identifying an element ¢ of the Schwartz space by studying the operators m(p)=
Je p(g)7(g)dg, n€G. Here we rely on earlier work of Greenleaf and the first author [4].

2. A necessary condition for local solvability of an operator in
terms of the kernel of its transpose

Let @ denote a simply connected nilpotent group with dilations.

THEOREM 1. Let L be a left invariant homogeneous differential operator on G and L*
its transpose. Suppose that L is locally solvable at 0. Then there exists an integer k such that
of LTf =0 with (1+ |x|¥)f €LXG), then f=0.

CoroLLARY. If L is as above, then L has trivial kernel on the space of Schwartz func-

tions on Q.

We shall show by example in Section 7 that in general k cannot be taken to be zero.

Lemwma 1. Suppose that L is as in Theorem 1. Then there exists an integer k, =0 satisfying
the following. For any @ € CF(Q) there is a constant C >0 and a sequence {h,} <= CF(G) such that

(i) supp b, < {x€G: || <n+1}
(ii) sup |Lh,(x)| < Cn®
re@

(iii) Lh,(x) = @(x) if |z] <n.

Assuming Lemma 1, we can prove Theorem 1.

Proof of Theorem 1. Let k;>>0 satisfy Lemma 1 and put £=2%,. Suppose f satisfies
(1+ |z|*)f€L? and L*f=0. We shall show that if L were locally solvable, for any ¢ €CP(G),

J‘ flx) p(z) dx=0, (2.1
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which would prove the theorem. Let {#,} be the sequence defined in Lemma 1. Then for

any integer >0,

< +

ﬁ <nt1 f(z) (p — Lh,) (x)dx|. (2.2)

f f(x) () dz f f(z) Lh,(x)dx
|lz[<n+1 |lzl<n+1

Since supp kb, < {: || <n+1}, integration by parts is justified for the first integral on
the right in (2.2) and we obtain

ff(x) Lh,(x)dx= fL’f(x) h,(x)dz=0
since L?f=0 by hypothesis. For the second term we use (iii) to obtain

flzknﬂﬂw) (%= Lhs) () de= f f(x) (p — Lh,) (z) dz.

ngizisn+l

By (i),
sup | (g —Lh,) (x)| < C, ™,

C, a constant depending on ¢. Hence for |z| <n+1

1

P &)

[f@) | | (@ —Lh,) (@)] < Cplf(@)| |[* < Co| fl)| {=]*

By Schwarz’ inequality

e[, orersf{[_, il
fnélrlgnﬂ If(x)‘ |(<P Lhn) (90)|dx< Ow{fn<|z|<n+1 |f(x) ‘ kal dx} nlzl<n+l (1 + lxl )k .
2.4)

As long as k, is chosen sufficiently large so that (1+ |#|)™ €L?, both terms on the right
hand side of (2.4) go to zero as n—> <o, Since » is arbitrary it follows that (2.1) must hold.

This proves Theorem 1, modulo Lemma 1.

Proof of Lemma 1. Let o be the homogeneous degree of L. If L is locally solvable at 0,
then by [25, Theorem 15.4] there is a neighborhood U of 0 and a distributionr ¢ on ¢ such

that ¢ is a fundamental solution for L in U, i.e.,
Lo=6 inU,

where 6 denotes the delta distribution at 0. We may take U ={z: |x| <¢} for some £>0.
Now for any function y on G, let ¢, be defined by

() =p(x1), z€G
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and for y€G let ¢¥ be the function defined by

p(x) =yp(yx), x€Q.

Now for p €CP(G) let y, be the function given by

Wo(y) = o{(y?ed,,);), for fixed =, r,.

We denote by x the usual function variable, i.e. ¢ =¢(x) and write L, or L, and ¢, or ¢,
to emphasize which variable L or ¢ is acting on. Let V<@ be an open set, and suppose
that for a given » the functions @+>(y”06, ), (x) all have supports contained in U for all

y€V. Then
Ly(y,) = Ly(o.(y*00,,)1) = oo(Ly(y* 0d,,(= ™))

= G:c("';aLz((wyoar") (x—l))) = r;zo'x(Lx(Q/){oar,,))
=157%0.L,) (pied,,) = ra%ypiod, (0) = rz%p(y). (2.5)

Now choose C” to satisfy
ley] < 0"(J=] +|y]) (2.6)

(which is possible by Knapp and Stein [19, § 2, Remark (3)]) and let ¢'>C". We shall
choose h,(y) €ECF(G) so that

o v
A od,)) for [y|<n 2.7)
0 ly|>n+1,
where r,=C"(e+n)/e. Suppose h,(y) satisfies (2.7) above. Then
supp [z+>(¢¥04,,); (@)] < {|| <e}, (2.8)

for all |y| <n. Indeed, (¢*04,,); (x) =¢(yé, x~1). Now by (2.6),

|6, 27 < C"(|y] +4ydr,a2|),
and it follows that )
~-1 |6rn m_ll P |
I?/(Srnx |> Clr Iy l
If 2] >e,
Fp €

= c”

-1
0, x

0”

so that if |y| =|y~1| <n,

|98, 27" >%§——n> e
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Hence 9, 1 ¢supp ¢ for |z| >¢, |y| <n, which proves (2.8). Hence we may apply (2.5) to

obtain
L,(rio((¢"0d,,)1)) = (). (2.9)

We have now shown that if k,(y) satisfies (2.7) then it satisfies (iii) of Lemma 1. For
(ii) we shall prove first that if h,(y) is defined by (2.7) for |y| <=, then there exists k,
such that

sup | D%k, (y)| < Cn® (2.10)
<
for some constant C, depending on ¢. Let Y, Y,, ..., Y be a basis of g consisting of homo-
geneous vector fields. Then since
9 X
—= > a,(x) Y, 2.11
& (%) Y (2.11)

where the ag(x) are polynomials, (2.10) will follow if we can prove there exists k5 such that

sup | Y, Y, ... Y, h,(y)| < C'nf (2.12)
k<o
lyl<n

Now
Yi: Yiz szhn(y) = 7.1—;0: ;Jz glz %Ik(o‘z((p(?/arnx—l)))

= (= 1frmo (YEYi_, ... Yi(p(ydrx™), (2.13)
where the homogeneous degree of ¥, Y;, ... Y, isl,
=(— D %0, (Y3, ... Yi(¢g¥od,)).

Finally, since ¢ is a distribution of compact support, contained in {z: |z| <&}, it is of finite
order, so that there exists an integer I’ and a constant C, such that for any y € 09(4),
lo(2)| < Oy sup | D*X(x)]

|| <&
led<?

Now (2.12) follows from (2.11) and (2.1.3).

The proof of Lemma 1 will be completed if we can extend A, so that (ii) is still satisfied.
Given (2.10) this may be done by standard techniques. Thus the proof of Lemma 1 is com-
pleted by the following.

Lemua 2. Let p, €EC®(RY) satisfy

sup |D*p,(x)| < C(n+1). (2.14)
e
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Then there exists q,(x) ECFRY) and C', K’ such that

sSupp gn(x) < {z: 2| <n+1}, (2.15)
@n(2) = polx), || <m, (2.16)
and
sup | D*q,(x)| < C'n¥. (2.17)
lel<t
Proof. Define Q,(z) €ECP(RY) by
1, |z|<n+}
Q) =1 by(z), n+i<z<n+l
0, |z|=n+1,
where

ba(x) =€ exp (— (1/(Ja] — (0 +1)))) (1 —exp (— (1/ (=] = (n + $))))

Put ¢,(z) =p,(x)Q,(x). Then (2.15), (2.16) and (2.17) are easily checked.
The proof of Theorem 1 is now complete.

3. Generic representations of nilpotent Lie grounps

We shall need to extend some results on representations of nilpotent Lie groups that
were given in Section 2 of [2]. These results also apply to groups without dilations.

We begin with an account of Kirillov theory; proofs can be found in [18] or [21].
Given 1€g*, we let B, be the bilinear form on g given by By(X, ¥)=[[X, Y], and we set
N,=Rad B,={X€g:[X, g]=0}. Then codim R, is an even integer 2k. One can show
that there exist subalgebras m; of g such that codim m;=% and B;|n; xm;=0; m=m,is
called maximal subordinate or polarizing. The condition on B; shows that I: m—R is a Lie
algebra homomorphism, and thus the map A: M =exp m->S? defined by A (exp X) =¢&'®
is a one dimensional representation of G. Let 7z, be the unitary representation of G

induced from A.

TrrorEM (Kirillov). (1) Up to unitary equivalence, 7, w is independent of the choice of
1. (Thus we may write 7, unambiguously.)

(2) The representation 7, is irreducible.

(8) If o is any irreducible unitary representation of G, then there is an element IEg*
such that o ~m,.

(4) If 1,V €g, then 7,7, if and only if there exists x €G: I = (Ad* 2)l. (Thus the Ad* (G)

orbits parametrize the space G of equivalence classes of irreducible representations.)
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Let 7z be an irreducible unitary representation of @ on a Hilbert space M, and let

X €g. We may define 7(X) by
7(X)v=lim ¢ *(z(exp tX)v— )
>0

when the limit exists. It turns out that n(X) is densely defined and closed, and that by
iteration we can define 7z(L) for all L € U(g). These generators have a dense common domain,
H*(r), the space of C® vectors for m, i.e. the space of vectors f€ } for which g>n(g)f is
a C function from G to Y. Let w=zn; and let {¥,, Y¥,, ..., ¥,;} be a basis of g such that
for all 4, )y =span {Y,, Y,, ..., Y} is a subalgebra, and §) =1),_, is polarizing for . Then the
subset {exp &, ¥, 1,1 ... €xp & ¥ i 6y, &y, .., 5, ER} is a cross-section for H/G (where H =exp}))
and this identification lets us realize ;r; on L2(R¥). In this realization, H®(r)= S(R*), the
space of Schwartz class functions on R*. (See [21] or [6].)

We next examine what happens when we vary the representations n;. Let X, ..., X,
be a basis of g such that for all 4, g,=span {Xj, ..., X;} is an ideal of g. (We call such a
basis a strong Malcev basis for g.) Let 1, ..., I, be the dual basis of g*.

TrroREM 2. There are complementary subsets S and T of {1, ..., n} and subsets U, V
of g* such that if V,=span {l;: j€8} and Vy=span {I;: jE€T'}, then

(1) V 4s a Zariski-open subset of V, and U is a Zariski open subset of g*.

(2) U s closed under the action of Ad*.

(3) EBvery Ad*-orbit contained in U intersecis V, in exactly one point, and UNV =V,
(Thus one can use V to parametrize the Ad*-orbits in U.)

(4) There is a function Q: Vi x Vo=V, rational in V, and polynomial in V,, such that
if LEV, then graph @Q(I, -) =0, the Ad*-orbit parametrized by 1.

(This is essentially Theorem 1 of [2].) We say that the Ad*-orbits in U (or the cor-
responding irreducible representations under the Kirillov correspondence) are “in general
position” or “typical”, and we denote by I" the set of corresponding representations of G.
It should be noted that whether a representation is or is not in general position depends
the choice of Malcev basis (or, more precisely, on the choice of the chain of ideals g, <
4, < ...< (). Furthermore, the polynomial function P on g such that [€ U< P(l)==0 can be
explicitly described; it is analogous to a Pfaffian. Let k=1 card (7'); k is an integer, 2k
is the dimension of a typical orbit, and the usual way of describing a typical representation
is as acting on L2(R*). We shall return to this point soon.

For a crucial step in the proof of our second main result (Theorem 3) we shall have

to embed g as a subalgebra of a larger algebra 1 and lift properties of the representations of
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g to those of 1. For this, let g be a nilpotent Lie algebra such that g is an ideal of g! of
codimension 1. We identify objects corresponding to g by the superscript!. We therefore
choose a basis X, X,, ..., X,,;; of g' such that X, ..., X,, span g; we let B ..,B.1 be the
dual basis in (gl)*, and we let S! and 7! be the complementary subsets of {1, ..., n-+1}
described above (but for gl). According to results in Section 3.1 of [21], k'=k or k' =k +1.
In the former case, an analysis of the proof of Theorem 1 shows that T1=7 and 8=
SU{n+1}.

ProrosiTion 1. Suppose kl=k. Then Ut is the pre-image of U from the restriction
map taking (g1)* to g*. The restriction map is bijective from each orbit in U* fo its image in U.

Proof. The second statement follows from the discussion in Sections 3.1 and 3.2 of
[21]. For the first, we need to analyze the function P. P! js an Ad*-invariant polynomial

defined on V! by
P = det (X, X,)): 4, j€TY).

But since Tt=1T, PY(I*) =P(l), where I =I'|,. Thus V! is the pre-image of V, and the first
claim follows.

We now consider the representations in general position (still in the case k1=k). It
is possible (see [5] or [27]) to find a rational function I>m, from g* to the subspaces of g
of codimension %k such that for all I in a Zariski-open set, m, is a maximal subordinate
(=polarizing) subalgebra of I. The construction in [27] makes it clear that in our case,
if I=0|g, then m, is a subalgebra of codimension 1 in m} and mu < g.

Let Y,(IY), ..., Yu()(mt=n+1—k) be a basis of m} such that for each j<ml,
Y (1Y), ..., Y,(I') is a subalgebra. Extend this basis to a basis Y,(I1), ..., ¥, 4(I*) of g with
the same property. We may assume that Y,(I!)€g for j==m'; as noted in [5], we may also
assume that the Y; vary rationally with I'. Then every element of G! =exp g has a unique
expansion z=exp (z; Y,(I1)) ... exp w54 ¥, 1 ().

Since 7} is induced from a representation of Mp (=exp m}), we may realize 75 on

L%R*) by using
exp RY ,u1q(11) ... exp RY, , (IY) @ R¥

as a cross-section for ML\ G1. Of course, mll/ G =m,. Finally, we may compute
1 d
(X 1) =5 7n(exp uX,41)

du ua-O.

A tedious but straightforward computation shows:
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ProrosiTioN 2. If k=KL, then there is a rational map It — Dy of (g1)*—> U(g) such that
on a Zoriski-open set of g*, ’
%zll(Xnﬂ) ==7z,11(D,,) =m(D)).

Indeed, the same sort of argument shows that for all D€ U(g), the operator z,(D) is
a differential operator with polynomial coefficients which are rational functions of I.

We now turn to the case where kl=k+ 1. In this case, the proof of Theorem 1 shows
that n+1€ 7" and that S1<S. For all representations 7; of N parametrized by orbits in a
Zariski-open subset of U, Indg¢,(7;) is irreducible, and Indgg,(7r;) =75, where I! is any
element of gi whose restriction to g, is 1. (From now on, we restrict attention to these l.)
The representations x;, and 7,, of G induce to equivalent representations of G' if and only
if there is a tER: Ad* (exp tX,,,) (i) €O,,, the orbit of l,. (Note that for x€G1, Ad x takes
g to g; we call the contragredient Ad* even if 2¢G.) All these facts are proved in Section
3.1 of [21].

Let Y;(1), ..., Y,(0) be a basis for m(l), a maximal subordinate subalgebra of I; we may
assume that the Y, vary rationally with I. We may complete this basis to a rationally
varying basis Y,(), ..., Y,(I) of g, and, as discussed above, we may model 7, on R* by using
exp RY (1) ... exp RY ,(I) as a cross-section for M(I)\ G. If I* is any extension of I, then
m(l) is also maximal subordinate for I!, and we may use Y,(1), ..., Y(I), X, as the basis
for constructing representations. The next proposition is proved in [21, Part II, Chapter 11,
Section 5].

ProrositioN 3. If kl=k+1, and if I 4s as above, let l(u) =Ad* (exp uX,.,)I. Suppose
that It extends 1, and that 7} is modeled as described above. Then if f=f(t, u) =f, () ¢ €R*, w ER)
is @ function in S(R*Y), we have

_ar
ow’

ﬂ}l(Xru-l) f

ﬂlll(Y)f(t’ u)=75l(u)(y)fu(t)’ Vyeg'

Note. The restriction f € S(R¥+1) is simply to insure that f is in the domain of the various
unbounded operators. The same formulas apply to any f in the domain of the given opera-
tors.

Note also that if 1€U, then l(u)€U. For l(u) is certainly in general position with
respect to the dual basis to Ad (exp uX, ;)(X,), ..., Ad (exp uX,,)(X,,), and this basis

gives rise to the same chain of ideals as the original basis.
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4. Representation-theoretic criteria for unsolvability

We continue with the notation of the previous section. Our first task is to make precise
the notion of vectors varying smoothly with respect to representations.

Consider the elements of g* in general position and the corresponding set I' of re-
presentations of @; thus I'& V. (We shall sometimes restrict to a Zariski-open set of these
elements in g* and to the corresponding subset of I'; we shall still refer to these elements as
in general position and to the set of representations as I".) As we have seen, we may choose
rationally varying polarizing subalgebras of g for the elements of I'. Tt is now easy to check

the following:

ProProSITION 4. Lef notations be as in the previous section. For each 1€V, we can
choose an explicit realization of 7, on LC2(R¥) such that if p: V— S(R¥) is a C® map, then for
every DeU(q), the map

L= y(D)ep(l)
is O,

We describe @ (or the functions @(1)) as smoothly varying. Note that the choice of

realization for the proposition is far from unique; we can conjugate each z, by a unitary

operator U,;, where [+ U, is a 0© map.

ProrosiTION 5. Let G be a connected normal subgroup of G2 of codimension 1, and let
LeU(g). Suppose that there is a nonzero smoothly varying famsily @ of vectors for G such that
o(l) €ker 7z,(L), YIEV. Then there is a nonzero smoothly varying family ¢! of vectors for GU
such that g'(I') €ker (L), VILE V1,

Proof. We may assume that ¢ has compact support in I. Let k and %! be as in Section
4. There are two cases to consider.

Case 1. k=k'. In this case, any representation m}s, I'€ V1, has the property that
75| ¢ =1, =15 We define ¢(It) =¢(l). [Then @!(It) €ker zi(L) because mh(L) =m (L), and
(1) is smoothly varying because of Proposition 2.

Case 2. k'=k+1. We may (perhaps by reducing supp ¢ further) assume that if
l€supp ¢, then 7, induces to an irreducible representation of G. For [€ V, define (u) as in

Proposition 3 and ¢* by
g (¢, w) = @) (t), T=1],.

It is easy to see from Proposition 3 that ¢! meets the requirements of the proposition.
We require a consequence of Theorem 2.1 in [4]; it may be convenient to have a

specific statement of what we need.
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Proros1iTION 6. Suppose that § contains an Abelian ideal m such that for all IE€U, m is
a polarizing subalgebra for 1. Let ¢ be a smoothly varying function on V, and let x€CP(V)
satisfy supp o< supp @. Then there is a function f€ $(G) such that

w(f) =al)P,, VIEV
where P, is the projection on the space spanned by ¢(l). (For l¢supp «, 7,(f) =0.)

Proof. Theorem 2.1 of [4] says that under the given hypotheses on @, we can identify
@ with R* and V with R*"% g0 as to make $(@) = S(R") and to arrange that if I€ V, then

7,(f) is an integral operator on R* with kernel given by
Kl.f(x> t) = (JOfOA)(x’ t, l)

where J,f is a partial Fourier transform and 4 is a rational map with no singularities on V.
Conversely, if K,(x,t)=K(z,,1) is such that KoA-! extends to a Schwartz function g,
then K;,=K, ,, f=3F9. In our case, we may assume that [[p(l)|| =1 for all /€supp «. Then
Kz, t)=¢() (x)m o(l) ECX(R™) and Ko A-1€CT(R™); the proposition follows.
THEOREM 3. Let g be a nilpotent Lie algebra with dilations, and lei L be a homogeneous
differential operator in U(g). Suppose that there is a monzero smoothly varying function @
on the representations of G such that 7w (L¥)p(l) =0 for all 1. Then ker L* N § is nontrivial and

L is not locally solvable.
Proof. In view of Theorem 1, it suffices to show ker L* N § is nontrivial. Since
Lff = f% L = (L* %),

we need to find a function g€ §(GF) such that m,(L7)m,(g)=0 for all representations m; in
general position. For then 7,(L? % ¢) =0, VI, and the Plancherel theorem says that L% % g =0.

Suppose first that §=m,,, the Lie algebra of all upper triangular (2n) x (2n) matrices.
(11, can be given dilations in a variety of ways.) Let m be the subspace of all matrices of

(s o)
0 0/’
where each entry stands for an » x» matrix. Then m is maximal subordinate for all I in
general position, as noted in Section 9 of [18]. Let C be a compact subset in V N supp ¢,

and let o be a nonzero O function with support & C. Now Proposition 6 applies; we can
find a funection g € §(&) such that

the form

7ig) = o(l)P;, P,= projection on span ¢(l).
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Moreover, nj(L)7,(g) =0, VI, since sj(L)p(l)=0. Thus the theorem holds in this special
case. A similar proof shows that the theorem holds if g =mn,,,,, the algebra of all (2n 1) x
(2n +1) upper triangular matrices.

In general, we can imbed any nilpotent Lie algebra g in some N,,. (The proof given in
[1] is easily adapted to give an imbedding such that the dilations extend to dilations of
N,,. But see the note after the proof.) Proposition 5 and induction show that there exists
a nonzero smoothly varying function ¢,, on the representations of V,, such that 7 (L) p,(1) =0
for all representations s; of N, in general position. Hence we can find a nonzero Schwartz
function g, on N, such that L7g, =0. Define g on G by g(x) =¢,(y»), where y is so chosen
that g% 0. Then L7g =0, and the theorem follows.

Note. The homogeneity of L and the existence of dilations of g were used only in
applying Theorem 1, and not in constructing the function g. Thus the fact that g can be

imbedded in some 1, so that the dilations extend is not necessary for this proof.

5. Unsolvable operators on certain stratified groups

The nilpotent Lie algebra g (or the corresponding group, &) is called stratified if it can

be written as a (vector space) direct sum,

g= jgl 9,
such that
(86 0,1 Girs (When i+j>s, giy; = (0)

and 6, [, =r". We assume that g,=(0). Let g’ =g/g;, and let ¢’ be the corresponding group.
We identify (g')* with {I€g=1|, =0} and G’ with the set of representations 7, 1€(g’)*,
up to equivalence. Thus G’ is a subset of @, of Plancherel measure 0.

As in [14], we define Sobolev spaces H"(w), m€EN, corresponding to each unitary

representation 7z, by completing the space H®(xr) of O vectors with respect to the norm
loll. = 2 (P o, (5.1)

where P runs over a basis for the elements of degree <m in U(g). By [14], if 4 is any homo-
geneous, left invariant hypoelliptic differential operator on G of degree m, with m=>s°, m
divigible by s!, then for every nontrivial irreducible representation s of G there is a constant

(' =05 5 such that
[l=(P)o|| < O|lm(A)v|, v€H(m). (5.2)

Thus the norm given by ||z(4)v]| is equivalent to the norm on H"(7x).

18 — 812903 Acta mathematica 147. Imprimé le 12 Février 1982
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We say that the stratified Lie group & has a locally uniform differential structure on
representations if for each element €V, there is a neighborhood U of I, such that for

each homogeneous element P € U(g) of degree k, we can write
k
:nl(P) =nlu(P) + zonlo(PJ(l))a leU! (53)
j=

where P,(I) is a homogeneous element of degree j in U(g) depending rationally on I (and
P,(l,) =0). For instance, any two-step nilpotent group g =g, + g, has a locally uniform dif-

ferential structure on representations. Here is a sketch of a proof. If X €g,, then

K K
m(X)= 23 ¢ty + 2. di(l) -Dzi’
i=1 i=1
and Theorem 7.1 of [18] implies that we ean write n;(X) =z, (X) +7;,(X(!)), where X(I) is
an element of g, depending rationally on I. Since 7; is scalar on g,, a similar elaim holds
for X €g,.

Another example of a group with a locally uniform differential structure on representa-
tions is N,, the group of 4 x4 upper triangular matrices with 1’s on the diagonal. The
verification is straightforward.

Suppose that the stratified group G has a locally uniform differentiable structure.
Then (5.3) shows that the space H"(7;) is independent of [ locally, and hence on components
of V. We shall therefore write simply " for H"(x,).

Let Vy,c be the complexification of V,. For [€V; ¢ sufficiently close to V, we can
use (5.3) to define m,{P) for all P€ U(g). Furthermore, the Sobolev norms for z;, (as defined
by (5.1)) are the same as those for 7, I, real (and near l), again by (5.2). Let V¢ be an
open set in ¥y ¢ containing ¥V on which these statements are true and which satisfies

7c= V¢ (where —=complex conjugate). Notice that if P is self-adjoint, then
m(P)* =7 (P); (5.4)

this is essentially the Schwarz reflection principle.

We can now state and prove the main result of this section.

TurEoREM 4. Let G be a stratified nilpotent Lie group with a locally uniform differentiable
structure on representations, and let L be a homogeneous left invariant differentiable operator

on G. Suppose that -
ker m,(L7) = (0), Vm€G with 1=0, (5.5)

and that m,(L7) has a nontrivial kernel for all 1 in an open subset of g*. Then L is unsolvable.
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Proof. Let Ly=(LL*)™, where m,>s* and m, is divisible by s! Then L, satisfies (5.5),
and ker Ly N §(G)==(0).

Let A be a self-adjoint homogeneous left invariant differential operator on G* which
is hypoelliptic. (Examples are given in [14].) Furthermore we may assume that A and L,
are of the same degree, m.

From [14] and the hypothesis of local uniformity, we know that for all [,€V, there is
a neighborhood U of I, in V¢ such that if deg P<<deg 4, then there is a constant C,

satisfying
|l P)o|| < Cp|| mi(A)o||, YvES(RF) and VIEU. (5.6)

293

Moreover, since L, satisfies the “Ro dégeneré” condition of [14], there is a constant C,,
for every P€ U(g) with deg P <deg L, such that

Iz Py 0|2 < Col||v)|2 + || L) v)|?), Yo € S(RF). (6.7)

From (5.5), we see that ,(4) and 7,(4)* =7(4) are bounded below (let P =identity), and
hence that 7,(4) is invertible, for [€ V.

LemMA 3. (a) The map li—m,(A), § 21, is a holomorphic function from Vcto B(L2, #™),
the set of bounded operators from L2(RY) to H™, in the sense of [17, § VIL1].

(b) The map l>m(A)Y2n,(L,) 95 a holomorphic function from V¢ to the operators from
H™ to L2(RF) for all 5.

Proof (for j21). Formula (5.5) shows that n,(4) and 7,(4)"-7,(L,) are bounded from
W™ to L2, and (5.2) implies directly that Ii>{m(4) v, w) and Iz, (4) 1, (Ly) v, w) are
both holomorphic functions for v, w€ S(R"). Hence l->m,(4) and l>m;(A) -1, (L,) are
holomorphic functions (to B(H™, L£2(R*)). That proves (b). As the inverse of a holomorphic
family is holomorphic (see § VII.1 of [17]), (a) also holds. The case j=0 is similar.

CoroLLARY. The map l—>m(A)tny(Ly) is a holomorphic family of bounded operators
on H™ for all 4.

Proof. From the lemma, {—>m;(A4)*17,(Ly) 7,(4)~7 is holomorphic from ¥ to ¥ (for
all §), and 7,(A4)? is an isomorphism of ™ with .

Lemma 4. For L€V, suppose that m,(Ly) has a nontrivial kernel. Then the kernel consists
entirely of elements of H®(r,), and 0 is an isolated point in the spectrum of m;(A)2m;(Ly).

Proof. Since mj>s°* the injection of W™ into L, is compact (see [14]). Now Peetre’s
lemma (see [13] and [14]) implies that m;(L,): H™— I has a right inverse when restricted to
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ker m;(Ly)*. Hence 0 is an isolated point in the spectrum (since 7;(L,) is self-adjoint). The
claim about }¥* is proved in [13].

We proceed with the proof of Theorem 4. Choose I, such that 7;(L,) has a nontrivial
kernel when [ is in a neighborhood of I, and such that dim ker n;,(L,) <dim ker 7;(L,) for !
in that neighborhood (and [ real). Let B,=m,(4)'m,(Ly). From Lemma 4, we can choose
¢>0 such that for I€ V near l,, B,—AI on } is invertible if |A| =¢, and such that B, —4I
is invertible if 0<|i| <z. As noted in § 7.1.1 of [17], for each 4, satisfying |4,] =& there is
an open neighborhood U, of [, in V¢ such that B;—A,1 is invertible on U,,. By shrinking
U, slightly if necessary, we may bound {|{(B; —AI)~||: 1€ U,,}. Now the standard Neumann_
series argument shows that there is a neighborhood O, of 4, such that if A€0;,, then
B,~AI is invertible on U,. Compactness now gives a neighborhood U of I, such that
B,—11 is invertible for all |1]| =& and all IEU.

Define

_ L _ap-t
PO=5 ] (B AD)"'dA.

Theorem VII, 1.7 of [17] states that P(l) is a (not necessarily orthogonal) projection onto
the part of H associated with the piece of the spectrum in the circle || <e, and that P(l)
varies holomorphically with I. When 1 is real, n;(L,) is self-adjoint, and therefore P(l,) is
the projection onto ker 5z;,(Ly). For IEU N ¥V (and I sufficiently close to 1), P(l) is a projec-
tion onto a space containing ker s;(L,), and dim range P(l) =dim range P(l,). Hence P(l)
must be a projection onto ker 7,(L,). From the Coroflary to Lemma 3, P(l) varies holo-
morphically on all the spaces H™. Let v€ker m,(L,), v=4=0, and let v(l) =P(l)». Then v(l)
varies holomorphically with 7 in all the 3™, and »(l) € S(R¥) for each I.

To complete the proof, it suffices to show that »(l)(x) is a C® function in ! and z
together, since Theorem 3 then applies. For simplicity of notation, we assume that k=1.
Let k; be the 7th Hermite function. Recall that

5l = OG), By = OV§)hyg + OV Py,

and that a function >0 a;h,€ L3(R) is in S(R)<= >, (2+1)"a, converges for all 5. Now set

=]

o) (@)= 2 ay(l) hy(x), (5.8)

s=90

and define |[o(l)[|ty =37 (s2+1)]as(l)|2. For each ¢, there is a j such that the || || norm
is weaker than the norm on H™. Since the map I+><{v(l), wd,; is holomorphic for all w
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(the mj indicates that the inner product is in ™) the vectors Dfv(l) are bounded in some

neighborhood of ! for every multi-index o« and every j. That is,

M8

(s* + 1)| Di(a (1) [

=0

is uniformly bounded near [, for every ¢ and every multi-index e. This shows that (5.7)
can be differentiated termwise, first with respect to I arbitrarily often and then with respect
to x arbitrarily often, and that the resulting series converges uniformly. Hence all the
partial derivatives of v(I)(xz) exist and are continuous, and Theorem 4 is proved.

The following answers a question raised in [25].

THEOREM 5. Suppose =0, +g, with [gy, g1=0, and X,, X,, ..., X, is a basis of g;.

Let (a,,4,...;,) be a positive definite d-form on R? and put

L= Z @irtyig Ny Xig or X (5.9)

Y

Then if 7,(L7) has a nontrivial kernel for all 1€ U, an open subset of g*, then L* has o nontrival
kernel on $(Q) and L 1s unsolvable.

Proof. The positive definiteness of the form (a,,, ) is exactly the Ro dégeneré

condition (5.4) of Theorem 4. Hence Theorem 5 is an immediate consequence of Theorem 4.

Remark. The converse of Theorem 5 has been proved recently by D. Tartakoff and the

second author for a special class of 2-step groups, including the Heisenberg groups.

6. Some examples of unsolvable differential operators on
the Heisenberg group

Let H” be the Heisenberg group of dimension 2n+-1. As is well known, see e.g. [21,
Chapitre II, § 1], there is a 1-1 correspondence Ar>sm; between R—{0} and the set of
infinite dimensional irreducible unitary representations of H". Furthermore, the measure
|A]*dA on R-{0} is the Plancherel measure on H". For each A€R—{0}, 73 is a unitary
representation on the Hilbert space L#(R"), and if D is a homogeneous differential operator,
then 5 can be chosen so that
|A|*2my(D)  if 2>0

Y=
(D) { |A[#2_yD) it 2<0,

where d is the degree of homogeneity. Now the following may be derived immediately from
Theorem 3. (It may also be obtained directly from Theorem 1.)



282 L. CORWIN AND L. P. ROTHSCHILD

ProOPOSITION 8. Let L be a left invariant homogeneous differential operator on the
Heisenberg group H™. Suppose that 7,(L7) or m_y (L) has a nontrivial kernel in the space of
C'™ pectors of the representation space i.e. $(R®). Then L is not locally solvable.

CorOLLARY. The Lewy operator

o (0 0
L= pr t(-é?/ + ma-t)

s unsolvable.

Proof. n,(L7) = — (d/du +u). Let p(u)=e 2. Then 7,(L%)p =0, and clearly ¢ € S(R).

We now use Theorem 3 to construct a family of unsolvable operators on the three
dimensional Heisenberg group H with Lie algebra f) spanned by X, ¥, T, and nonzero
bracket [X, Y1=T. Then }) has dilations given by 6,(X)=rX,§(Y)=rY, §,(T)=r>T. We
may realize zr; on L*R) so that

7 X) = Ml%%, a(Yy=isgn A|A|tx-I, my(T)=iA-1, (6.1)

where sgn denotes sign and 7 is the identity. The following result is then immediate.

Lemma 3. Let D be the ordinary differential operator

d 241 d 23 d a;
D= a8\ 7 ﬂ*(—) b (—) #i. 6.2
lzzl+lﬂlz=d-—2k K 'ﬂ(dx) “ dx @ dz) * (6.2)

0<k<(d/2}
Then D=z (L), where
L= S Cup X (—iY)B X~ iY)Pr .. XU — i Y B (— T TIBNE - (6.3)

lx| +|pl=d-2k
0<x<14/2)

Furthermore, L 1s homogeneous of degree d.

Now suppose that p(x), ¢,(x), g,(z) are monic complex valued polynomials where p
consists only of odd degree terms while ¢, and ¢, consist only of even degree terms. Consider
the ordinary differential operators

d ,
Dy =~ — 6(@) + ¢:(2) p(z) p'(2), (6.4)
and
dS ” ’
Dy= 25— g+ augida+ (019190) — 430 0 (6.5)
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where ’ denotes derivative. Now put @,(x) =¢,(x)e” P2 and @,(x) =g,(x)e~@"2, Then

;€ S(R) and D;p;=0, i=1, 2. From Proposition 8 we therefore have

THEOREM 6. Let p, ¢y, ¢, be polynomials as above and D,, D, the ordinary differential
operators defined by (6.4) and (6.5). Then D, and D, are of the form (6.2). Then the left in-
variant differential operators P;,i1=1, 2 defined by P,= — Lf, with L, as in (6.3), are unsolvable.

In particular, if p(x) =2 and q,(x) =1, then P, =X —iY is the Lewy operator.

7. Some counterexamples

We here exhibit two examples. The first is of a homogeneous left invariant operator L
on the Heisenberg group for which there exists a smooth, £2 function f such that L7f=0,
but which is locally solvable. This shows that the integer k of Theorem 1 cannot always be

taken to be zero.

ProprosiTioN 9. Let X, Y, T be a basis for the three dimensional Heisenberg Lie
algebra as defined in Section 6, and let L= (Y?—iT)X. Then L is locally solvable, but L*®

has a nontrivial kernel in L*(G), where G is the corresponding simply connected group.

Proof. First, we claim that Y2—¢7 and X are each locally solvable operators on G.
For this note that since {¥, T1=0, there is a system of coordinates (2, ,, ¥3) in which
Y =¢/6x, and T =0/0x,. Hence Y2 —4T may be written as a constant coefficient differential
operator, which is therefore locally solvable 15, Theorem 3.1.1]. Similarly X is a locally
solvable operator. Thus L, being the composition of locally solvable operators, is again
locally solvable.

To find f€ker L*, we realize the representations of H! as in (6.1). Then for >0,

m(Lf)=m(—X(Y2+iT))=z3'2d%(x2+ 1)-1. (7.1)

Therefore a(x)=(x2+1)"1€ L3(R) Nker 3(L*) for all 1>0. Let P: L3R)—>L%R) be the
orthogonal projection onto the subspace spanned by a(z), and let & be a nonzero continuous
function with compact support in (0, o). Clearly P is a Hilbert—Schmidt operator; thus the
Plancherel Theorem (see, e.g., Part II, Chapter III of [21]) implies that there is a unique
function f € £*(@) determined by the condition

()P, A>0

3 (1>={ o 0z
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where F is the extension to L2(G) of the operator defined by

FHpy(A) = L ¥(g)7ilg)dg, @€CP(G).

We now claim that L*f=0 in the sense of distributions. For this, it suffices to prove
that for any p €CP(H), for

ff(g) Ly(g)dg =0. (7.2)

By the Plancherel formula, the left hand side of (7.2) is [ tr (F(Lg)(A) F(f)(2))|A]dA. Since
FLo) Ff) = F@)maL7) Fa(f) =0, (7.2) is proved.

CoroLLARY. There is a smooth function f € L3(G) such that L*f =0.

Proof. Let p €CP(G), and put f' =@xf. Then f is smooth. Indeed, if D is any right-
invariant differential operator, D(gxf)=Dg*f€L* Hence by Sobolev’s lemma, ¢xf is

smooth. Finally,
L pxf) =@*L7f=0.

Our second example is of a nonsolvable operator L on a nilpotent group G' with the
property that ,(L7) has trivial kernel for all ; €T". The group G has a Lie algebra g spanned
by X, Y, T, Z, with [X, Y]=T, [X, T1=Z%, [ Y, T1=0, and [g, Z] =(0). The dilations on g
are given by 0,(X)=rX, 6(Y)=rY, 6{(T)=r2T, and 6,(Z)=r3T. G can be realized as a

matrix group:

1 2z 3a2%z2
01 = ¢
G= cx,y, 8 2ER }.
0 01 y
0 0 0 1

The representations in T" act on £3(R), and are given by
$ d . 3 xz .z .
7, (X)) =a ga‘:, To,o ¥) =10 C+"2‘ s T oT)=t1atz, 7Taz,c(Z)z"'a‘I (CGR,QGR—'{O}).

{The other irreducible unitary representations of G annihilate Z and reduce to representa-
tions of A1)

ProrosiTioN 10. L=X +¢Y is not locally solvable on G, but n, (L*) has trivial kernel
for all =, €T,
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Proof. L is not locally solvable by Theorem 6.1.1 of [15]. On the other hand, &, (L*)f=
a¥(df/dx —cf —L2?f). Thus

Tl LVf =0 = flw)=Ae” 0, deC; if A0, f¢L*R).
This proves the proposition.

Note. The operators n, .(LF) actually have bounded right inverses in L3(R), given by
(es]
Aa.cf(x) — a—iezal6+cxf f(t) e'tS/G‘Ctdt.

{See Section 4 of [2] for a proof.) In fact, the 4, , actually map § continuously into §.
To prove this, note that it suffices to prove that f€S = 4, .f€S, by the closed graph
theorem. Moreover, if f is differentiable, then

2
(ael) @)= (5 + o) ueh @) f

by an easy induction it now suffices to prove that f€S = (4, .f) is rapidly decreasing.
It suffices (by homogeneity) to assume that ¢ =1. One checks easily that

K

(4, ()= f ™ g @D @AR—UN £ 1 ) .
0

Now it is easy to see that A4, .f decreases rapidly at + oo if f is rapidly decreasing. As for
the behavior at — oo, set 2= —|¢| —1—y, y>0. Then

2

® 2
o< oot [ 3eo (-)

where g(y) =f(— |¢| —1—y). Split this integral into one from 0 to »~*% and one from u~>?

to oo to see that A, .f decreases rapidly at — co.

8. Hypoellipticity and local solvability

It is well known that if D is any differential operator which is hypoelliptic, then D*
is locally solvable. Furthermore, there is an example, due to Kannai [16] of a hypoelliptic
differential operator which is not locally solvable. However, in the context of homogeneous,
left invariant differential operators, there are no known examples of unsolvable hypoelliptic

operators.

19 — 812903 Acta mathematica 147. Imprimé le 12 Février 1982
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ProrostTion 11. Let D be a hypoelliptic, left invariant differential operator on a Lie
group. Then D is locally solvable if and only if DT is again hypoelliptic.

Proof. By the above comments it suffices to show that if D is hypoelliptic and locally
solvable, then D7 is hypoelliptic. By [25, Theorem 15.4], D locally solvable implies it has
a local fundamental solution ¢ in a neighborhood U of 0. However, if D is also hypoelliptie,
then Dg(x)=0 for x€ U — {0} implies ¢ is smooth in U — {0}. Now the operator k: fr>fx 0,
fECT(G) is a local right inverse for D, and hence its transpose £* given by

kf(y) = f*0,

where & is the distribution defined by &(h) =o(h) with h(x) =h(z~1). Since & is again smooth
in U {0}, k* is pseudo local in U, i.e. f smooth in an open set V< U implies k*f is again

smooth in V. This proves that D is hypoelliptic.

9. Open questions

We collect here some unanswered questions suggested by either our results or our
methods.

(1) Proposition 6 in Section 4 asserts that if [P, is a smoothly varying family on G
and if o is a O function in ! with compact support, then there is a function f€ §(G) with
w(f) =a(l) P;, provided that G meets a further stringent condition (that there be an ideal
m of g which is polarizing for all functionals ! in general position). Can one prove this
proposition for a more general class of nilpotent Lie groups? More generally, can one find
general necessary and sufficient conditions on a set of operators {4,} so that there exists
a function f€ §(G) with m,(f) = 4,, Y, €T, the generic representations in G

(2) Let L be a homogeneous left-invariant operator on ; suppose that s,(L%), regarded
as an operator from §(G) to $(G), has a continuous left inverse 4, for all [ in general posi-
tion. There exists an integer s, such that 4, is continuous from the | ||;, Sobolev seminorm
on R* to the || ||, seminorm. If the 4, vary continuously with I, and if the s, are uniformly
bounded, and if one has an appropriate bound on the norms of the operators 4;: || [[,=] [lo>
then a procedure like that of [24] or [2] (compare also [19]) should prove that L is locally
solvable. Can one weaken these hypotheses? In particular, can one settle this matter for
two-step nilpotent Lie groups? Note that the existence of the 4,, even for s,=0, is in-
sufficient in general (see Section 7).

(8) Conversely, what are the representation-theoretic implications of local solvability
of L? In particular, must there be an open set IV = @ of full Plancherel measure such that
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a(L¥) is invertible in some sense for all w €1"'% Also, can the necessary conditions be strength-
ened in order to give a representation-theoretic proof of the unsolvability of the example
in Section 7? Finally, is it possible to find a global fundamental solution ¢ to an equation

of the form Lo =Z§, for some homogeneous, locally solvable operator Z?
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