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1. Introduction and allegro 

A differential operator L is locally solvable at  a point x 0 if there exists a neighborhood 

U of x 0 such tha t  
Lu(x) =/(x),  all x E U, 

has a solution uEC~176 for any  ]EC~(U). We shall give necessary conditions for local 

solvability for some classes of left invariant differential operators on nilpotent Lie groups. 

Let  G be a connected, simply connected, nilpotent Lie group which admits a family 

of dilations 6r, r >0 ,  which are automorphisms. The ~r extend to automorphisms of the 

complexified universal enveloping algebra U(g), where g is the Lie algebra of G. The ele- 

ments of U(g) may  be identified with the left invariant  differential operators on G. An 

element LEU(g)  is homogeneous of degree d if ~r(L)=r'*L, all r > 0 .  We equip G with a 

norm, [ ], which is homogeneous in the sense tha t  if Us={xEG: Ix] <s}, then eSr(Vs)= V~8. 

We shall prove two main theorems concerning the local solvability of a homogeneous 

element LE U(g), with transpose LL The first says tha t  L is unsolvable if k e r L  * contains 

a function in S(G), the Schwartz space of G. The second result uses the first to obtain a 

representation-theoretic criterion for unsolvabflity of L. Let  G be the set of all irreducible 

unitary representations of G. I f  there is an open subset of representations Jr in G such tha t  

(1) ker ~(L v) contains a nonzero C ~ vector, and 

{2) ker ~(L *) varies smoothly with ~, 
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then L is not locally solvable. We use this theorem to give some new examples of unsolvable 

operators on the Heisenberg group. Next, we show by example that  one cannot weaken (1) 

to the condition that  ker ~(L ~) is nonzero. Finally, we give an example of an unsolvable 

operator L such that  ker ~(L ~) is trivial for almost all g. 

The idea of studying the kernel of ~(L) and g(L ~) for local properties of L is suggested 

by  the following. A differential operator D is hypoelliptic in an open set U if D u  = / w i t h  

/E C~176 implies u E C~176 Helffer and Nourrigat [14] have shown that  L is hypoelliptie 

if and only if 

kern(L)  = 0 for all g E 0 ,  g nontrivial; (1.1) 

here G is the set of all irreducible unitary representations of G. Since L ~ hypoelliptie implies 

L locally solvable, it is reasonable to suppose that  the complete failure of (1.1) to hold, 

with L replaced by L ~, might imply L is unsolvable. Our second result then shows this is 

true under some further hypotheses. 

The theorem of Helffer and Noun~gat was first conjectured by Rockland [23], who 

proved a special case. Rockland also conjectured some results on local solvability, parts of 

which were later proved independently by  the second author [24], G. Lions [20] and the 

first author [2]. A detailed study of local solvability for second order operators on two 

step groups was made in [25]. 

Rockland's conjecture was motivated by the work of Folland and Stein [8], in which 

the sufficiency of (1.1) for hypoellipticity for a class of second order operators on the 

Heisenberg group was proved by  the construction of a fundamental solution. The idea of 

using homogeneity and a transformed operator to study hypoellipticity was introduced by 

Gru~in [11], to s tudy operators like D = ~2/~x 2 + x2(~2/~y 2) + i~(~/~y). Gru~in proves that  D is 

hypoelliptie if and only if ker b is trivial, where b =d~/dx 2 - x 2 ~  2 -  ~T. In a later paper [12] 

he also studies local solvability. 

The first example of an unsolvable differentiable operator was given by Hans Lewy 

in his study of the boundary values of holomorphie functions. In fact Lewy's operator is 

a homogeneous element of U(~), where ~ is the Heisenberg algebra. Greiner, Kohn and 

Stein [10] studied the Lewy operator L from this point of view and were able to show that  

L u = ]  is solvable in an open set U if and only if the projection of ] onto k e r L  ~ is real 

analytic. Further results were obtained by Geller [9]. Our present results were motivated 

by these. 

A brief overview of the techniques used in this paper is given as follows. The first 

main result, Theorem 1, Section 2, is based on the fact that  a left invariant locally solvable 

differential operator on a Lie group must possess a local fundamental solution [25]. Using 
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the fundamental solution we prove that  if qJEC~(G) we may find functions ~mEC~(G) 

which are uniformly bounded by a polynomial in m and which satisfy L~pm(x)=~(x) for 

]x I ~< m. In connection with Theorem 1 we may note a recent result of Duflo and Wigner 

which states that  any left invariant differential operator on a simply connected nflpotent 

group has no nontrivial compactly supported distributions in its kernel. 

The proof of our second theorem amounts to constructing a Schwartz function in 

ker L ~ from representation-theoretic data. (A function / on G is in S(G) if and only if 

/oexp r S(g), where exp denotes the exponential map.) The difficulty involved here is in 

identifying an element ~ of the Schwartz space by studying the operators ~(~)= 

~a qJ(g)~(g)dg, ~r riO. Here we rely on earlier work of Greenleaf and the first author [4]. 

2. A necessary condition for local solvability of an operator in 
terms ot the kernel ot its transpose 

Let G denote a simply connected nilpotent group with dilations. 

THEOREM 1. Let L be a left invariant homogeneous di//erential operator on G and L ~ 

its transpose. Suppose that L is locally solvable at O. Then there exists an integer k such that 

i / L ~ / = 0  with (1 + Ix lk ) /eL2(G) ,  then 1=0. 

COROLLARY. 1 / L  is as above, then L ~ has trivial kernel on the space o/Schwartz/unc- 

tions on G. 

We shall show by example in Section 7 that  in general k cannot be taken to be zero. 

LEMMA 1. Suppose that L is as in Theorem 1. Then there exists an integer k 1 >10 satis/ying 

the/ollowing. For any q~ E C~( G) there is a constant C > 0 and a sequence (hn) c C~( G) such that 

(i) supp h n c  {xeG: Ix /~<n+l}  

(ii) sup ILhn(x) l <~ Cn k' 
x e G  

(iii) Lhn(x) =~(x) if I x / < n .  

Assuming Lemma 1, we can prove Theorem 1. 

Proo/o/  Theorem 1. Let kl>>0 satisfy Lemma 1 and put  k =2k 1. Suppose / satisfies 

(1 + ] x l k) / eL  2 and L~/= 0. We shall show that  if L were locally solvable, for any ~ E C~(G), 

f /(x) q~(x) ax = 0, (2.1) 
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which would prove  the  theorem.  Le t  {hk} be the  sequence defined in L e m m a  1. Then  for 

any  integer n > 0, 

Ifix,<n+l/(x)q~(x)dx <~lflx,<_<.+/(x)Lh,~(x)dx +lflx,<n+/(x)(cp-Zh, J(x)dx I. (2.2) 

Since supp h~c  {x: Ix] ~<n+ 1}. in tegrat ion b y  par t s  is justified for the  first  integral  on 

the  r ight  in (2.2) and  we obta in  

f/(x)Lh~(x)dx=fL~/(x)h~(x)dx=O 

since L~/= 0 by  hypothesis .  For  the  second t e rm  we use (iii) to obta in  

- ,-Ixl<~+ l/(x ) (el- Lb,)(x)dx = .-f~<,x,~<~+ / ( x ) ( ~ -  Lh,) (x) dx. 
B y  (if), 

sup ](~ -Lh.)(x)] <~ C~n ~', 

Cr a constant  depending on ~. Hence  for Ix[ < n + 1 

1 

B y  Schwarz '  inequal i ty  

(2.4) 

As long as k 1 is chosen sufficiently large so t h a t  (1 + i x  I) -k' EL ~, bo th  te rms  on the  r ight  

hand  side of (2.4) go to  zero as n-~ oo. Since n is a rb i t r a ry  it follows t h a t  (2.1) mus t  hold. 

This proves  Theorem 1, modulo  L e m m a  1. 

Proo/o/Lemma 1. Let  a be the  homogeneous degree of L. I f  L is locally solvable a t  0, 

then  b y  [25, Theorem 15.4] there  is a neighborhood U of 0 and a distr ibution a on G such 

t h a t  a is a fundamen ta l  solution for L in U, i.e., 

L~  = (~ in U, 

where  ($ denotes  the  del ta  dis t r ibut ion a t  0. We  m a y  take  U = { x :  Ix] <~} for some e > 0 .  

Now for any  funct ion ~ on G, let  ~Pl be defined b y  

~ ( x )  = ~(z-~), xeG 
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and for y E G let ~Y be the function defined by 

yfJ(x) = yJ(yx), x E G. 

Now for ~pEC~(G) let yJ~ be the function given by 

~0a(y) = O ' ( (~f fYo(~rn) i ) ,  for fixed n, r n .  

We denote by x the usual function variable, i.e. ~ =~(x) and write Lx or i y  and a~ or qy 

to emphasize which variable L or a is acting on. Let  V c  G be an open set, and suppose 

that  for a given n the functions xe-->(yPo(~r,,) 1 (x) all have supports contained in U for all 

y E V. Then 
L~(~)  = 4(a~(VZ o ~rn)i) = ~ ( L ~ ( r  o ~r.(x-i))) 

= ax(r;~L~((yPo~rn)(x-l))) ---- r;~ax(Lx(yj~o(~r,)) 

= r;~(axLx)(~o~r~) = rn~0~~ = r~yJ(Y) �9 (2.5) 

Now choose C" to satisfy 

]~yl < c"( l~l  + ly])  (2.6) 

(which is possible by Knapp and Stein [19, w 2, Remark (3)]) and let C' >C". We shall 

choose h~(y)E C~(G) so that  

{ r~a((~Yo~)l ) for l y [ ~ n  (2.7) 
h~(y)= 0 ] y l > n +  1, 

where rn = C'(e + n)/~. Suppose h~(y) satisfies (2.7) above. Then 

supp [x~+(q2o~r,)~ (x)] ~ {Ixl  <~),  (2.8) 

for all I Y I < n. Indeed, (~Y o (~r,)l (x) = cf(y($~x-1). Now by (2.6), 

I(~r x--i[ < C"(ly--1 ] + ~y(~r x--ll), 
and it follows that  

c" lY-~]" 

If Ixl ~ ,  

SO t h a t  if IY] -- lY -1 ] ~ n ,  
r n 

269 



270 L. CORW1N AND L, P. ROTHSCHILD 

Hence y6~ x-~ Csupp ~ for ]xl >~e, lyl <~,  which proves (2.8). t tence we may apply (2.5) to 

obtain 
L~(r~a((~Yo~r~)~)) = ~(y). (2.9) 

We have now shown that  if hn(y) satisfies (2.7) then it satisfies (iii) of Lemma 1. For 

(ii) we shall prove first tha t  if h~(y) is defined by (2.7) for lyl ~n ,  then there exists k 2 

such that  
sup ID~h~(y) l < ~ "  (2.10) 
lYl<n 

for some constant C, depending on ~0. Let  Y1, Y2, ..., YN be a basis of g consisting of homo- 

geneous vector fields. Then since 
N 

- - =  Y~ ajk(z) Y~ (2.11) 
~Yj k=l  

where the ajk(x) are polynomials, (2.10) will follow if we can prove there exists k s such that  

sup [Y,, Y~.... Y~kh~(y)[ <~ C ' n  k'. (2.12) 
k~<~ 

I.Yl<n 
:No~u 

r - " Y  ~' r ~  . . .  r~,,(,r:,(~(y~r, Z-~)))  

k arl z x . . .  y x  x -1  = (-- 1) r~ ~ %(Y~kY~k_~ ,,(~(Y~r, ))), (2.13) 

where the homogeneous degree of Yi~ Y~ ... Ytk is l, 

= ( - -  1)tcrzn-~(yz(y~ . ."  Y~l(~UO(~r~)l). 

Finally, since a is a distribution of compact support, contained in {x: Ix[ <e}, it is of finite 

order, so that  there exists an integer l' and a constant C~ such that  for any Z E C~~ 

I,r(z)[ < c,, sup ID~'z(:~)[ 
Izl<~ 

Now (2.12) follows from (2.11) and (2.13). 

The proof of Lemma 1 will be completed if we can extend h n so that  (ii) is still satisfied. 

Given (2.10) this may be done by standard techniques. Thus the proof of Lemma 1 is com- 

pleted by the following. 

L ~ M M A 2. Let  Pn E C~ ~) sat is /y  

sup [D~pn(x)l < V(n+ i) ~. 
]x]<~n+l 

(2.14) 
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Then there exists qn(x) E C~(R N) and C', K '  such that 

and 

supp qn(x) c {x: Ix] <<. n + l } ,  

q.(x) =p=(x), Ixl 

sup ]D~q~(x)[ <~ C'n k'. 
Izr 

where 

Pro@ Define Qn(x) EC~~ N) by 

1, Ix l -<~+�89  

Q~(x)= bn(x), n + � 8 9  

o, Ixl>  +l, 

bn(x) = e ~ exp ( - (1/(Ix] - (n + 1)))) (1 - exp ( - (1/(Ix] - (n + �89 

Pu t  qn(x)=pn(x)Qn(x). Then (2.15), (2.16) and (2.17) are easily checked. 

The proof of Theorem 1 is now complete. 
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(2.15) 

(2.16) 

(2.17) 

3. Generic representations ot nilpotent Lie groups 

We shall need to extend some results on representations of nflpotent Lie groups tha t  

were given in Section 2 of [2]. These results also apply to groups without dilations. 

We begin with an account of Kirillov theory; proofs can be found in [18] or [21]. 

Given leg*, we let Bz be the bilinear form on g given by  Bz(X, Y)=I[X,  Y], and we set 

~ , = R a d  Bl={X~g:  l[X, g]=0}.  Then eodim ~z is an even integer 2k. One can show 

tha t  there exist subalgebras m~ of g such tha t  codim m l = k  and -Bi] m~ • rot=0;  i l l=m~ is 

called maximal subordinate or polarizing. The condition on Bz shows tha t  l: m-~R is a Lie 

algebra homomorphism, and thus the map ~: M = e x p  m-~S  1 defined by  2 (exp X ) = e  "(x) 

is a one dimensional representation of G. Let  7~z.m be the unitary representation of G 

induced from ~. 

THE O~EM (Kirillov). (1) Up to unitary equivalence, zz.r, is independent o] the choice o] 

1!t. (Thus we may write ~, unambiguously.) 

(2) The representation gl is irreducible. 

(3) I /  a is any irreducible unitary representation o/ G, then there is an element 1E g* 

such that a ~ z .  

(4) I / l ,  l' E g, then 7tz~=u r i /and only i/there exists x E G: l' = (Ad* x)1. (Thus the Ad* (G) 

orbits parametrize the space G o] equivalence classes o] irreducible representations.) 
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Let z be an irreducible unitary representation of G on a Hilbert  space ~ ,  and let 

X ~  0. We may  define ~(X) by  

~(X) v -- lim t-~(~(exp tX)  v - v) 
t--~) 

when the limit exists. I t  turns out tha t  zc(X) is densely defined and closed, and tha t  by  

iteration we can define ~(L) for all L E U(fl). These generators have a dense common domain, 

~4oo(~), the space of Coo vectors for z,  i.e. the space of vectors ]E ~4 for which g~--).z~(g)[ is 

a C ~ function from G to ~ .  Let  ~=ze~ and let {Y1, Y~ ..... Y~} be a basis of 0 such tha t  

for all i, ~ = span { Y1, Y~ ....  , Y~} is a subalgebra, and ~) = ~ - k  is polarizing for l. Then the 

subset (exp t 1 Y~-k+l ... exp t~ Y,~: tl, t~ ..... tkeR} is a cross-section for H / G  (where H = e x p  ~) 

and this identification lets us realize z~z on L2(R~). In  this realization, ~oo(~)~ S(Rk), the 

space of Schwartz class functions on R ~. (See [21] or [6].) 

We next  examine what  happens when we vary  the representations zz. Let  X1, ..., Xn 

be a basis of 0 such tha t  for all i, ~ = s p a n  {X 1, ..., X~} is an ideal of 0. (We call such a 

basis a strong Malcev basis for 0") Let  11 . . . .  , l~ be the dual basis of 0". 

T~wORE~ 2. There are complementary subsets S and T o] {1 . . . .  , n} and subsets U, V 

o/fl* such that i] V l = s p a n  {lj: ?'eS} and V2=span {ls: ?'eT}, then 

(1) V is a Zariski-open subset o/ V 1 and U is a Zarislci open subset o] 0". 

(2) U is closed under the action o /Ad* .  

(3) Every Ad*-orbit contained in U intersects V 1 in exactly one point,  and U fl V 1 = V. 

(Thus  one can use V to parametrize the Ad*-orbits in U.) 

(4) There is a ]unction Q: V1 • V2 -+ Vx, rational in V 1 and polynomial in Ve, such that 

i] l e  V, then graph Q(l, �9 )= 0~, the Ad*.orbit parametrized by 1. 

(This is essentially Theorem 1 of [2].) We say tha t  the Ad*-orbits in U (or the cor- 

responding irreducible representations under the Kirillov correspondence) are "in general 

position" or "typical" ,  and we denote by  F the set of corresponding representations of G. 

I t  should be noted tha t  whether a representation is or is not in general position depends 

the choice of Malcev basis (or, more precisely, on the choice of the chain of ideals 01c 

0 ~  . . . c  0)- Furthermore,  the polynomial function P on ~ such tha t  lE U~=~P(I)=#O can be 

explicitly described; it is analogous to a Pfaffian. Let  k=�89 card (T); /c is an integer, 2k 

is the dimension of a typical orbit, and the usual way of describing a typical representation 

is as acting on s We shall return to this point soon. 

For a crucial step in the proof of our second main result (Theorem 3) we shall have 

to embed ~ as a subalgebra of a larger algebra 11 and lift properties of the representations of 
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g to those of 1t. For  this, let gl be a ni lpotent  Lie algebra such tha t  g is an ideal of $1 of 

eodimension 1. We identify objects corresponding to  gl by  the superscript 1. We therefore 

choose a basis X 1, X~ ... . .  X=+ 1 of 61 such t h a t  X 1 .. . . .  X ,  span ~; we let 11 ..... /~+1 be the 

dual  basis in (gl)*, and  we let S 1 and T 1 be the complementa ry  subsets of {1 . . . .  , n + l }  

described above (but for ~1). According to  results in Section 3.1 of [21], k l =  k or k ~ = k + 1. 

I n  the former case, an analysis of the  proof of Theorem 1 shows tha t  T I =  T and S~= 

S U { n + l } .  

1)ROPOSITIOI~ 1. Suppose k l=k .  Then U 1 is the pre-image o/ U ]rom the restriction 

map taking (ill). to ~*. The restriction map is bijective [tom each orbit in U 1 to its image in U. 

Proo[. The second s ta tement  follows f rom the  discussion in Sections 3.1 and 3.2 of 

[21]. For  the first, we need to analyze the funct ion p1. p1 is an Ad*-invariant  polynomial  

defined on V 1 by  
PI(P) = det  (/l([X~, Xj]): i, j E T1). 

Bu t  since T I =  T, PI(P)=P(1), where l=llIg. Thus V 1 is the pre-image of V, and the first 

claim follows. 

We now consider the  representations in general position (still in the case k l=k) .  I t  

is possible (see [5] or [27]) to  find a rat ional  funct ion l e+ml  from g* to  the  subspaces of g 

of codimension k such tha t  for all 1 in a Zariski-open set, rn~ is a maximal  subordinate  

(=polar iz ing)  subalgebra of 1. The construct ion in [27] makes it clear t h a t  in our case, 

if l = l 1 [ g, then m l is a subalgebra of eodimension 1 in IIt,ll and tn 1, ~= g. 

Let  YI(I 1) .. . . .  Y,~ , ( l l ) (mX=n+l-k )  be a basis of m~, such tha t  for each j~<m 1, 

YI(P) . . . . .  Yr is a subalgebra. Ex t end  this basis to  a basis Yl(l 1) . . . . .  Ym+l(l 1) of g with 

the same property.  We  m a y  assume t h a t  Yj(l 1) E g for j~=ml; as noted in [5], we m a y  also 

assume tha t  the Yj v a r y  rat ionally with l 1. Then every element of G I =  exp gl has a unique 

expansion x = exp (x 1 Yl(ll)) ... exp x,+ 1 Yn+l(ll)). 

Since ~1 is induced from a representat ion of M~, ( =  exp ml,), we m a y  realize ~,~1 l o n  

s by  using 
exp RY,n,+l(l 1) ... exp RYe+l(/1 ) = R k 

as a cross-section for MII~G 1. Of course, :~IlG = ~ .  Finally, we m a y  compute  

d 1 uXn+l) u @" ~ , (X,+l )  = du =,,(exp 

A tedious bu t  s t raightforward computa t ion  shows: 
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P R 0 P 0 S I T I 0 N 2, I f  ]~ = k 1, then  there is  a ra t i ona l  m a p  11 ~ Dl, o/(~1)$..~ U(~)  such  that  

on a Zariski-open set of ~*, 

ze~,(Xn+l) ~- 7~l,(Dz,) = zz(Dl). 

Indeed,  the  same sort  of a rgumen t  shows t h a t  for all D r  U(6), the  opera tor  ~z(D) is 

a differential  opera tor  wi th  polynomial  coefficients which are ra t ional  functions of 1. 

We  now tu rn  to  the  case where/c1=/c + 1. I n  this case, the  proof  of Theorem 1 shows 

t h a t  n + 1 E T 1 and  t h a t  $ 1 ~  S. For  all representa t ions  az of N paramct r ized  b y  orbits  in a 

~1, where 11 is any  Zariski-open subset  of U, Indc~-~,(~z) is irreducible, and Inda- ,a , (a l )=  l ,  

e lement  of g* whose restr ict ion to  gl is I. (From now on, we restr ict  a t t en t ion  to these 1.) 

The  representa t ions  z G and zG of G induce to equivalent  representa t ions  of G 1 if and  only 

if there  is a t E R: Ad* (exp tXn+l)(ll)r Oz~, the  orbi t  of 12. (Note t h a t  for x E G 1, Ad x takes  

to  g; we call the  contragredient  Ad* even if x t G . )  All these facts  are p roved  in Section 

3.1 of [21]. 

Le t  Yl(1) . . . . .  Y~(l) be a basis for re(l), a max ima l  subordinate  subalgebra  of l; we m a y  

assume t h a t  the  Yj v a r y  ra t ional ly  wi th  1. We  m a y  complete  this basis to a ra t ional ly  

va ry ing  basis Yl(l), ..., Y,(1) of g, and,  as discussed above,  we m a y  model  az on R ~ by  using 

exp  RYm+I(I) ... exp  RYn(1) as a cross-section for  M(1)~G.  I f  11 is any  extension of l, t hen  

re(l) is also max ima l  subordinate  for 11, and  we m a y  use Yl(l), ..., Ym(l), Xn+l as the  basis 

for  construct ing representat ions.  The  nex t  proposi t ion is p roved  in [21, P a r t  I I ,  Chapter  I I ,  

Section 5]. 

PROPOSITION 3. I / k l = k + l ,  and i /1  is as above, let l (u)=Ad* (exp uXn+l)l. Suppose 

that l 1 extends l, and that ze~, is modeled as described above. Then if ] = [( t, u) = fu(t) (t E ttk: u r R} 

is a ]unction in S(R~+I), we have 

~l,(x~+l) / = a!- ~u' 

=~l(r)/(t,u)=.~(u)(r)Mt), v r e ~ .  

Note. The restr ict ion ] E $(R ~+1) is s imply  to  insure t h a t  ] is in the  domain  of the  various 

unbounded  operators .  The  same formulas  ~pply to  a n y  / in the  domain  of the  given opera-  

tors.  

No te  also t h a t  if 1r U, then  l(u)E U. For  l(u) is cer ta inly in general  posit ion with 

respect  to the  dual  basis to Ad (exp uXn+l) (X1) . . . . .  Ad (exp uXn+l) (Xn+l), and  this basis 

gives rise to the  same chain of ideals as the  original basis. 
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4. Representation-theoretic criteria |or unsolvability 

We continue with the notation of the previous section. Our first task is to make precise 

the notion of vectors varying smoothly with respect to representations. 

Consider the elements of g* in general position and the corresponding set F of re- 

presentations of G; thus F~-* Y. (We shall sometimes restrict to a Zariski-open set of these 

elements in g* and to the corresponding subset of F; we shall still refer to these elements as 

in general position and to the set of representations as F.) As we have seen, we may  choose 

rationally varying polarizing subalgebras of g for the elements of F. I t  is now easy to check 

the following: 

PROPOSITIO~ 4. Let notations be as in the previous section. For each 1E V, we can 

choose an explicit realization o/~z on s such that i/q~: V ~  $(R k) is a C ~~ map, then/or 

every DE U(g), the map 

l~-->zrl(D)q~(1) 
is C% 

We describe q0 (or the functions ~(1)) as smoothly varying. Note tha t  the choice of 

realization for the proposition is far from unique; we can conjugate each ~z by  a unitary 

operator Uz, where le-> U~ is a C ~ map.  

P~OPOSITIO~ 5. Let G be a connevted normal subgroup o /G 1 o/codimension 1, and let 

LE U(g). Suppose that there is a nonzero smoothly varying/amily q~ o/vectors/or G such that 

q(1) Eker 7~l(L), VlE V. Then there is a nonzero smoothly varying/amily q~l o/vectors/or G 1 

such that q~l(ll) Cker ~l,(L), Vl 1E VL 

Proo/. We may  assume tha t  ~0 has compact  support  in 1. Let  k and/c 1 be as in Section 

4. There are two cases to consider. 

Case 1. k =/c 1. In  this case, any  representation g~,, 11 E V 1, has the property tha t  

z~l[a=~z, l=P[~. We define q~(l ~) =q~(1). ~hen  ~ ( l  1) eker  ~,(L) because ~ , ( L ) = ~ ( L ) ,  and 

~l(ll) is smoothly varying because of Proposition 2. 

Case 2. k ~ = k + l .  We m a y  (perhaps by  reducing supp ~ further) assume tha t  if 

l E supp ~, then ~z induces to an irreducible representation of GL For l E V, define l(u) as in 

Proposition 3 and ~l by  
~l(p) (t, u) -~ q~(l(u)) (t), 1 ffi P[ g. 

I t  is easy to see from Proposition 3 tha t  ~1 meets the requirements of the proposition. 

We require a consequence of Theorem 2.1 in [4]; it may  be convenient to have a 

specific s ta tement  of what  we need. 
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PROPOSITIOI~ 6. Suppose that ~ contains an Abelian ideal 11l such that/or all I E U, m is 

a polarizing 8ubalgebra/or I. Let ~ be a smoothly varying ]unction on V, and let ~ E C~(V) 

satis/y supp ~ supp of. Then there is a ]unction /~ S( G) such that 

~( / )  = a(1)P~, u V 

where P l is the pro~ection on the space spanned by qJ(l). (For 1 ~ supp ~, g l ( / )=  0.) 

Proo/. Theorem 2.1 of [4] says tha t  under  the  given hypotheses on G, we can identify 

G with R n and  V with R ~-2~ so as to make  $(G) = S(R n) and to  arrange tha t  if 1E V, then 

gz(/) is an integral operator  on R k with kernel given by  

K~.r(x, t) = (ffo/oA)(x,  t, l) 

where ~0 / i s  a part ial  Fourier  t ransform and A is a rat ional  map with no singularities on V. 

Conversely, if K~(x, t )=K(x,  t, l) is such tha t  K o A  -1 extends to  a Schwartz funct ion g, 

then K~=K~.j, /=  :~-lg. I n  our case, we m a y  assume t h a t  I[~(l)I] = 1 for all lEsupp a. Then 

Kl(x, t) =~(l)  (x)q~(l) (t) ~(l) eC~(R ~) and _KoA -1 EC~(Rn); the proposit ion follows. 

T~:EOR:EM 3. Let g be a nilpotent Lie algebra with dilations, and let L be a homogeneous 

di]/erential operator in U(g). Suppose that there is a nonzero smoothly varying ]unction ~o 

on the representations o/G such that 7rz(LT)qD(1) = 0 ]or all 1. Then ker L v N S is nontrivial and 

L is not locally solvable. 

Proo/. I n  view of Theorem 1, it suffices to show ker L ~ N $ is nontrivial.  Since 

LV = / ~ L  = (L" ~*/')', 

we need to  find a funct ion gE t (G)  such tha t  7~(LT)~(g)=0 for all representat ions ~, in 

general position. For  then 7~l(L* ~e g) = 0, u and the  Plancherel  theorem says t h a t  L * ~  g = 0. 

Suppose first t h a t  6 = ~t2n, the  Lie algebra of all upper  t r iangular  (2n) • (2n) matrices.  

(11~ can be given dilations in a var ie ty  of ways.) Le t  m be the subspace of all matrices of 

the  form 

(: 
where each en t ry  stands for an  n x n matrix.  Then nt is maximal  subordinate for all l in 

general position, as noted in Section 9 of [18]. Let  C be a compact  subset in V N supp % 

and let ~ be a nonzero C ~176 funct ion with support  ___ C. Now Proposi t ion 6 applies; we can 

find a funct ion g 6 S(G) such t h a t  

7~z(g) = c~(l)Pz, P~ = projection on span ~(l). 
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Moreover, 7~7(L)az(g)=0, Vl, since 7~T(L)q~(1)=0. Thus the theorem holds in this special 

case. A similar proof shows tha t  the theorem holds if ~ = n~,+l, the algebra of all (2n + 1) • 

(2n + 1) upper triangular matrices. 

In  general, we can imbed any  nilpotent Lie algebra g in some Nn. (The proof given in 

[1] is easily adapted to give an imbedding such tha t  the dilations extend to dilations of 

N, .  But  see the note after the proof.) Proposition 5 and induction show tha t  there exists 

a nonzero smoothly varying function ~0, on the representations of Nn such tha t  az(L ~) ~0,(1) = 0 

for all representations ~ of N ,  in general position. Hence we can find a nonzero Schwartz 

function g, on N ,  such tha t  L~g, =0.  Define g on G by  g(x) =g,(yx), where y is so chosen 

tha t  g ~ 0. Then L~g =0,  and the theorem follows. 

Note. The homogeneity of L and the existence of dilations of g were used only in 

applying Theorem l, and not in constructing the function g. Thus the fact tha t  fi can be 

imbedded in some l~n so tha t  the diIations extend is not necessary for this proof. 

5. Unsolvable operators on certain stratified groups 

The nilpotent Lie algebra g (or the corresponding group, G) is called strati/ied if it can 

be written as a (vector space) direct sum, 

g =  ~ g j ,  
i=1 

such tha t  
[g~, g~]___ fl,+j (when i + i  > s ,  fl,+j = (0)) 

and 6r lot = r (  We assume tha t  gs4(0). Let  g'= g/.qs, and let G' be the corresponding group. 

We identify (~')* with { le f l= l ]gs=0 } and G' with the set of representations ~l, lC(g')*, 

up to equivalence. Thus G' is a subset of G, of Plancherel measure 0. 

As in [14], we define Sobolev spaces ~/m(~), meN,  corresponding to each unitary 

representation ~ ,  by completing the space ~4oo(~) of C ~ vectors with respect to the norm 

Ilvll m,  = II (P)vll (5.1) 
P 

where P runs over a basis for the elements of degree ~<m in U(~). By [14], if A is any homo- 

geneous, left invariant  hypoelliptic differential operator on G of degree m, with m>~s~, m 
divisible by  s !, then for every nontrivial irreducible representation ~ of G there is a constant 

C=Ce.~ such tha t  
II (p)vU < cII (A) II, ve  (5.2) 

Thus the norm given by  ll~(A)vl] is equivalent to the norm on ~/m(~). 

1 8 -  812903 Acta mathematica 147. Imprim5 le 12 F6vrier 1982 
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We say t h a t  t he  strat if ied Lie group G has a locally uni[orm di//erential structure on 

representat ions  if for each e lement  l 0 E V, there  is a neighborhood U of l 0 such t h a t  for  

each homogeneous e lement  P E  U(g) of degree k, we can write 

k 

~ ( P ) = ~ r z , ( P  ) +  ~ zr~o(Pfl)), l e V ,  (5.3) 
t = 0  

where P f l )  is a homogeneous  e lement  of degree j in U(g) depending ra t ional ly  on 1 (and 

Pj(lo) =0),  For  instance,  any  two-s tep  ni lpotent  group g = gl + g~ has a locally uniform dif- 

ferential  s t ruc ture  on representat ions,  t t e re  is a sketch of a proof.  I f  X E gl, then  

k 

a,(x)  = 2 cj(1) xj + 2 dj(l) Dx,, 
1=1 . f=l  

and Theorem 7.1 of [18] implies t h a t  we can write ~r~(X) =xet0(X ) +~rzo(X(1)), where X(l)  is 

an e lement  of gl depending ra t ional ly  on 1. Since Jrz is scalar on g,, a similar  claim holds 

for X E g~. 

Another  example  of a group with  a locally uni form differential  s t ructure  on representa-  

t ions is N 4, the  group of 4 • 4 upper  t r iangular  matr ices  wi th  l ' s  on the  diagonal.  The  

verif icat ion is s t ra ightforward.  

Suppose t h a t  the  strat if ied group G has  a locally uniform differentiable s t ructure.  

Then  (5.3) shows t h a t  the  space ~/~(~rt) is independent  of 1 locally, and  hence on components  

of V. We  shall therefore write s imply  ~ for ~/~(~rz). 

Le t  Vt.c be the  complexif ieat ion of V 1. For  l C V1. c sufficiently close to  V, we can 

use (5.3) to  define ~ ( P )  for  all P E U(~). Fur the rmore ,  the  Sobolev norms  for Jr~, (as defined 

b y  (5.1)) are the  same as those for ~rl0, l0 real (and near  l), again b y  (5.2). Le t  Vc be an  

open set in V1. c containing V on which these s t a t ements  are t rue  and  which satisfies 

Vc = Vc (where - -  = complex conjugate).  ~o t i ce  t h a t  if P is self-adjoint,  t hen  

az(P)*  = ~r~(P); 

this is essentially the  Schwarz reflection principle. 

We  can now s ta te  and  prove  the  ma in  result  of this section. 

(5.4) 

T H w 0 R w M 4. Let G be a stratified nilpotent Lie group with a locally uni/orm di//erentiable 

structure on representations, and let L be a homogeneous left invariant di//erentiable operator 

on G. Suppose that 
kerzr~(L ~) = (0), YzrzeG' with 14=0, (5.5) 

and that 7rz(L T) has a nontrivial kernel /or all 1 in an open subset o/g*. Then L is unsolvable. 
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Proo/. Let Lo= (LL*) m~ where m o >~s s and m o is divisible by s! Then L o satisfies (5.5), 

and ker L 0 ~ ~(G) ~=(0). 

Let  A be a self-adjoint homogeneous left iavariant differential operator on G which 

is hypoelliptic. (Examples are given in [14].) Furthermore we may assume that  A and L 0 

are of the same degree, m. 

From [14] and the hypothesis of local uniformity, we know that  for all 10 E V, there is 

a neighborhood U of 10 in Vc such that  if deg P ~<deg A, then there is a constant C~ 

satisfying 
II~(P)vll ~< c~[ I~~ VvE$(R ~) and V1EU. (5.6) 

Moreover, since L 0 satisfies the "Ro ddgenerd" condition of [14], there is a constant C~ 

for every P E U(~) with deg P ~<deg L 0 such that  

ll  (P)vll < c' (ll ll + VveS(R ). (5.7) 

From (5.5), we see that  ~(A)  and ~(A)* =g~(A) are bounded below (let P =identity),  and 

hence that  ~rt(A) is invertible, for 1E V c. 

LEMMA 3. (a) The map le->~t(A ) -~, ~ >~ l, is a holomorphic /unction /rom Vc to B( F~ ~, ~mi), 

the set of bounded operators/tom E2(R g) to ~mi, in the sense o/[17, w VII. l / .  

(b) The map l~-->xrt(A)r is a holomorphic /unction /rom Vc to the operators/rom 

~m~ to i:~(R ~)/or all ]. 

Proo/(for ~ ~> 1). Formula (5.5) shows that  gt(A) j and ~z(A)J-lzz(Lo) are bounded from 

~4 mj to 1:2, and (5.2) implies directly that  l~--><Tlz(A)Jv, w> and l~--><~z(A)J-l~z(Lo)V, w> are 

both holomorphic functions for v, wE S(Rn). Hence l~->~z(A) j and l~->zz(A)J-17r~(Lo) are 

holomorphic functions (to B(74 mj, 122(R~)). That  proves (b). As the inverse of a holomorphie 

family is holomorphic (see w VII.1 of [17]), (a) also holds. The case ?'=0 is similar. 

COROLLARY. The map l~->gl(A)-lTrz(Lo) is a holomorphic /amily o/ bounded operators 

on ~mj /or all ]. 

Proo/. From the lemma, l~-~zz(A)J-zzz(Lo)zz(A)-J is holomorphie from ~ to ~ (for 

all j), and g~(A) j is an isomorphism of ~mJ with ~4. 

LEMMA 4. For 1E V, suppose that xel(Lo) has a nontrivial kernel. Then the kernel consists 

entirely o/ elements o/ ~~176 , and 0 is an isolated point in the spectrum o/ gz(A)-l~z(Lo). 

Proo/. Since mj>~s 8 the injection of 74 mj into Ez is compact (see [14]). Now Peetre's 

lemma (see [13] and [14]) implies tha t  zz(L0): ~m-~ ~4 has a right inverse when restricted to 
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ker zz(L0) ~. Hence 0 is an isolated point in the spectrum (since zz(Lo) is self-adjoint). The 

claim about ~/~ is proved in [13]. 

We proceed with the proof of Theorem 4. Choose l 0 such tha t  ~(L0) has a nontrivial 

kernel when I is in a neighborhood of l o and such that  dim ker zl,(Lo) ~<dim ker ~(Lo) for l 

in tha t  neighborhood (and l real). Let  Bl =~l(A)-l~(L0). From Lemma 4, we can choose 

e > 0  such that  for 1E V near lo, B z - 2 I  on ~ is invertible if [21 =e, and such tha t  B~,-2I 
is invertible if 0 <  ]2] <e. As noted in w 7.1.1 of [17], for each 20 satisfying ]20] =e there is 

an open neighborhood U~, of 10 in Vc such that  B l -~01  is invertible on U20. By shrinking 

U~0 slightly if necessary, we may bound {ll (Bz - 2 I )  -~ [[: 1 e Uz0}. Now the standard Neumann 

series argument shows that  there is a neighborhood 0~, of 20 such that  if 2 e O~0, then 

B t - 2 I  is invertible on U~o. Compactness now gives a neighborhood U of 10 such that  

B z - 2 I  is invertible for all 12[ =e  and all 1E U. 

Define 

1 fl (Bz-2I)-ld~" P(/) = 2~/ al=~ 

Theorem VII, 1.7 of [17] states that  P(1) is a (not necessarily orthogonal) projection onto 

the part  of ~ associated with the piece of the spectrum in the circle ]2] <e, and that  P(1) 
varies holomorphically with I. When 1 is real, zl(Lo) is self-adjoint, and therefore P(lo) is 

the projection onto ker zl~ For  1E U ~ V (and 1 sufficiently close to 10), P(l) is a projec- 

tion onto a space containing ker ~z(L0) , and dim rangeP( l )=d im range P(lo). Hence P(1) 
must be a projection onto ker ~l(L0). From the Corollary to Lemma 3, P(1) varies holo- 

morphically on all the spaces ~4 m~. Let vEker 7~t0(L0) , v ~0 ,  and let v(1)=P(l)v. Then v(1) 
varies holo'morphically with 1 in all the ~mj, and v(l) E $(R ~) for each 1. 

To complete the proof, it  suffices to show that  v(1)(x) is a C ~ function in 1 and x 

together, since Theorem 3 then applies. For simplicity of notation, we assume that  k = 1. 

Let  h, be the ith Hermite function. Recall that  

I Ih, lloo = o(j), hi = O ( V j ) h , _ ,  + 

and that  a function ~=o ajhj E s is in S(R)<:~ ~~ (is+ 1)naj converges for all j. Now set 

o0 

v(1) (x) = ~ as(1 ) he(x), (5.8) 
S=O 

and define Hv(/)H~t)=~ (s2+l)t]a~(1)] 2. For each t, there is a ] such that  the I[ H(t)norm 

is weaker than the norm on ~4 ms. Since the map l~-><v(1), W}mj is holomorphie for all w 
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(the m] indicates tha t  the inner product is in ~H aj) the vectors DTv(l) are bounded in some 

neighborhood of l for every multi-index ~ and every ]. That  is, 

oo 

(s u § 1)t[DT(a~(1))12 
s=0 

is uniformly bounded near 10 for every t and every multi-index :r This shows tha t  (5.7) 

can be differentiated termwise, first with respect to I arbitrarily often and then with respect 

to x arbitrarily often, and tha t  the resulting series converges uniformly. Hence all the 

partial derivatives of v(l)(x) exist and are continuous, and Theorem 4 is proved. 

The following answers a question raised in [25]. 

THEORE~ 5. Suppose ~=~1+~2 with [~1, f12]=g2 and X1, X 2 . . . . .  X v is a basis o/ ill. 

Let (a~i~... ~d) be a positive de/inite d-/orm on R ~ and pu t  

L = ~ a~,~...~dXi~ X~2 ... Xid. (5.9) 

Then i/ ~l(L ~) has a nontrivial kernel/or all l E U, an open subset o/ ~*, then L ~ has a nontrival 

kernel on S(G) and L is unsolvable. 

Proo/. The positive definiteness of the form (a~ i2...~d) is exactly the Ro ddgenerd 

condition (5.4) of Theorem 4. Hence Theorem 5 is an immediate consequence of Theorem 4. 

Remark.  The converse of Theorem 5 has been proved recently by D. Tartakoff  and the 

second author for a special class of 2-step groups, including the Heisenberg groups. 

6. Some examples of unsolvable diIierential operators on 
the Heisenberg group 

Let H n be the Heisenberg group of dimension 2 n +  1. As is well known, see e.g. [21, 

Chapitre I I ,  w 1], there is a 1-1 correspondence 2~->z~ between R - ( 0 )  and the set of 

infinite dimensional irreducible uni tary representations of HL Furthermore,  the measure 

I~lnd2 on R - { 0 }  is the Plancherel measure on H n. For each 2 e R - { 0 } ,  7r~ is a uni tary  

representation on the Hilbert  space Z2(Rn), and if D is a homogeneous differential operator, 

then zr~ can be chosen so tha t  

z~(D) = [~[~/2z_l(D) if 2 < 0 ,  

where d is the degree of homogeneity. Now the following may  be derived immediately from 

Theorem 3. (It  may  also be obtained directly from Theorem 1.) 
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PROPOSI~O~ 8. Let L be a left invariant homogeneous di//erential operator on the 

L ~ Heisenberg group H n. Suppose that g~(L ~) or ~-1( ) has a nontrivial kernel in the space o~ 

C ~ vectors o / the  representation space i.e. S(Rn). Then L is not locally solvable. 

COROLT, ARY. The Lewy  operator 

is unsolvable. 

Proo/. 7c1(L ~) = -- (d/du + u). Le t  q~(u) = e -u'/2. Then 7ll(L~)~ = 0, and clearly ~ E $(R). 

We now use Theorem 3 to construct a family of unsolvable operators on the three 

dimensional Heisenberg group H with Lie algebra ~ spanned by X, Y, T, and nonzero 

bracket IX, Y] =T.  Then ~ has dilations given by ~(X)=rX, 5 ~ ( Y ) = r Y ,  ~r(T)=r2T.  We 

may realize ~ on L~(R) so that 

~a(X)=]2] �89 z a ( Y ) = i s g n 2 1 2 1 � 8 9  I , ~ a ( T ) = i 2 . I ,  (6.1) 

where sgn denotes sign and I is the identity. The following result is then immediate. 

LEMMA 3. Let D be the ordinary differential operator 

(al+l~(=d-2k 
O~k~[d/2] 

Then D =z1(L), where 

L = ~ ca.zXa'( - i Y ) ~ X ~ (  - i Y ) ~ . . .  X ~ (  - i Y ~ )  ( - iT)  t~-(l~l+l~l)~l~. (6.3) 
[~l+lflfffid-2k 

Furthermore, L is homogeneous o/ degree d. 

Now suppose that p(x),  ql(x), q2(x) are monic complex valued polynomials where p 

consists only of odd degree terms while ql and q2 consist only of even degree terms. Consider 

the ordinary differential operators 

and 

d 
D1 = d x -  q l ( x )  + q l ( x ) p ( x )  pt(x),  ( 6 . 4 )  

4 2 it i t i t 2 t 2 
- q l ( q l )  q~ ,  D~= dx ~ q~ § qlqlq~ + (qlqlq~) - 

(6.5) 
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where ' denotes derivative. Now put  ~Ol(X ) =ql(x)e -(v(~))'/2 and ~2(X)=q2(x)e -(qi(x))~/2. Then 

q~E S(R) and DiqJ~=O, i =  1, 2. From Proposition 8 we therefore have 

T ~ E O R ~  6. Let p, ql, q2 be polynomials as above and D 1, D~. the ordinary di//erential 

operators defined by (6.4) and (6.5). Then D 1 and D 2 are o / the /orm (6.2). Then the left in- 

variant di/ferential operators P~, i = 1, 2 defined by P~ = -L~,  with Li as in (6.3), are unsolvable. 

In  particular, i / p (x )  = x  and ql(x) = 1, then P1 = X  - i Y  is the Lewy operator. 

7. Some eounterexamples 

We here exhibit two examples. The first is of a homogeneous left invariant operator L 

on the Heisenberg group for which there exists a smooth, s function / such that  L~/= O, 

but which is locally solvable. This shows that  the integer k of Theorem 1 cannot always be 

taken to be zero. 

PROPOSITION 9. Let X ,  Y, T be a basis /or the three dimensional Heisenberg Lie 

algebra as defined in Section 6, and let L = (  y 2 - i T ) X .  Then L is locally solvable, but L ~ 

has a nontrivial kernel in L2(G), where G is the corresponding simply connected group. 

Proo/. First, we claim that  Y 2 - i T  and X are each locally solvable operators on G. 

For this note tha t  since [Y, T] =0,  there is a system of coordinates (Xl, x 2, xa) in which 

Y = ~/~x 1 and T = ~/~x2. Hence y 2 _  i T  may be written as a constant coefficient differential 

operator, which is therefore locally solvable [15, Theorem 3.1.1]. Similarly X is a locally 

solvable operator. Thus L, being the composition of locally solvable operators, is again 

locally solvable. 

To f ind /Eker  L ~, we realize the representations of H 1 as in (6.1). Then for ~>0,  

d 
~x(L ~) = zrx( - X(  y2 + iT)) = ~3/2 dx @2 + 1). I .  (7.1) 

Therefore a(x)=(x2+l)-lEF~2(R)Nkerztx(L ~) for all 2>0 .  Let  P: C2(R)-->s be the 

orthogonal projection onto the subspaee spanned by a(x), and let ~ be a nonzero continuous 

function with compact support in (0, oo). Clearly P is a Hilbert--Sehmidt operator; thus the 

Plancherel Theorem (see, e.g., Par t  II,  Chapter I I I  of [21]) implies tha t  there is a unique 

function /E s determined by the condition 

{ ~(~,) P,  ~ > 0  
:~(1) (,~) = o ,  ;t < o ,  
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where :~ is the extension to L~(G) of the operator defined by 

:~(q~) (~) = f q~(g) ~(g)  dg, ~ ~ C~(G). 

We now claim that  L~/= 0 in the sense of distributions. For this, it suffices to prove 

that  for any ~ E C~(G), for 

S/(g) dg -- O. (7.2) Lqv(g) 

By the Ylancherel formula, the left hand side of (7.2) is y tr (~(L~)0'):~(/)(~))I ~ I d~. Since 

:~(Lq) :~(/) = :~(~)a~(L ~) ~ ( / )  =0, (7.2) is proved. 

CO~OLL~-RY. There is a smooth/unction/' EL2(G) such that L~/' =0. 

Proo/. Let qpEC~(G), and p u t / '  =~0~/. T h e n / '  is smooth. Indeed, if D is any right- 

invariant differential operator, D@ ~/)  = Dq~ ~e / EL ~. Hence by Sobolev's lemma, qv ~ / is 

smooth. Finally, 
L~@~ [) = qD~e L~/ = O. 

Our second example is of a nonsolvable operator L on a nilpotent group G with the 

property that  ~t(L ~) has trivial kernel for all g~ E F. The group G has a Lie algebra $ spanned 

by X, Y, T, Z, with [X, Y ] = T ,  [X, T]=Z, [Y, T]=0,  and [~,Z]=(0). The dilations on g 

are given by (3~(X)=rX, 6~(Y)=rY, 5~(T)=r2T, and ~r(Z)=raT. G can be realized as a 

matrix group: 

l 
l 

0 
G= 

0 

0 

X ) / 
1 x t 

: x , y , t , z ~ R  . 
0 1 y 

0 0 1 

The representations in F act on s and are given by 

za.r ~ d ,  ~a.c(Y)=ia~(c+ 22), ~a.c(T)=iaix, ~a.o(Z)=iaI (cER, aER--{O}). 

(The other irreducible unitary representations of G annihilate Z and reduce to representa- 

tions of H1.) 

I~RO~OSlTIOX 10. L = X + i Y is not locally solvable on G, but xe~. o( L ~ ) has trivial kernel 

/or all ~a. c e F. 
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Pro@ L is not  locally solvable by  Theorem 6.1.1 of [15]. On the other hand,  7~a,c(LV)/= 
ai(dl/dx - cl- �89 Thus 

z~ . r  ~ / ( x ) = A e  -(~x+x'/6), AEC; if A~kO,/~EL2(R). 

This proves the proposition. 

Note. The operators ~a.c(L ~) actual ly  have bounded r ight  inverses in s given by  

/; A~.d(x) = - a-~ e ~16+~ l(t) e-tVe-~t dt. 

(See Section 4 of [2] for a proof.) I n  fact, the  Aa. ~ actual ly  map  $ continuously into $. 

To prove this, note  t ha t  it suffices to prove t h a t / E S  ~ A~.~/E$, by  the closed graph  

theorem. Moreover, if / is differentiable, then  

) (Aa.~l)' (x)= ~ +c (A~.ol)(x)+l(x); 

by  an easy induct ion it now suffices to  prove t h a t  IES ~ (Aa.J) is rapidly decreasing. 

I t  suffices (by homogeneity)  to  assume tha t  a = 1. One checks easily t h a t  

(Al .cl)(x)= e-C%-(x'u/2)-(~'l~)-"'16l(x+u)du. 

Now it is easy to  see t h a t  A : . J  decreases rapidly at  + oo if / is rapidly decreasing. As for 

the  behavior  at  - 0% set x = - I c ] - 1 - y, y > O. Then 

/0 [ u[ 3y~ 2] - - - 8  I(Al.ol)(x)l< 

where g ( y ) = / ( -  ]c] - 1 - y ) .  Split this integral into one f rom 0 to u -~/2 and one f rom u -~/2 

to ~ to see tha t  Al.c/decreases rapidly at  - ~ .  

8. Hypoellipticity and local solvability 

I t  is well known tha t  if D is any  differential operator  which is hypoelliptic, then D * 

is locally solvable. Furthermore,  there is an example, due to  Kaimai  [16] of a hypoelliptic 

differential operator  which is no t  locally solvable. However,  in the context  of homogeneous,  

left invariant  differential operators, there are no known examples of unsolvable hypoelliptic 

operators. 

1 9 -  812903 Acta mathematica 147. Imprim6 Ir 12 F6vrier 1982 
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PROPOSITZO~ 11. Let D be a hypoelliptic, left invariant di//erential operator on a Lie 

group. Then D is locally solvable i/and only i / D  ~ is again hypoeUiptic. 

Proo/. By the above comments it suffices to show tha t  if D is hypoelliptic and locally 

solvable, then D ~ is hypoelliptie. By  [25, Theorem 15.4], D locally solvable implies it has 

a local fundamental  solution a in a neighborhood U of 0. However, if D is also hypoelliptic, 

then Da(x)=0 for x e  U - { 0 }  implies a is smooth in U -  {0}. Now the operator k : /~->/~a ,  

/E C~(G) is a local right inverse for D, and hence its transpose k ~ given by 

kV(y) = / ~ 5, 

where 5 is the distribution defined by  5(h) =a(h) with f~(x) =h(x-1). Since 5 is again smooth 

in U - { 0 } ,  k * is pseudo local in U, i.e. / smooth in an open set V c  U implies k*/is again 

smooth in V. This proves tha t  D * is hypoelliptic. 

9. Open questions 

We collect here some unanswered questions suggested by either our results or our 

methods. 

(1) Proposition 6 in Section 4 asserts tha t  if l~+Pt is a smoothly varying family on G 

and if ~ is a C ~ function in l with compact support, then there is a funct ion/E$(G)  with 

~l(/) = ~(l)Pt, provided tha t  G meets a further stringent condition (that there be an ideal 

r~ of g which is polarizing for all functionals l in general position). Can one prove this 

proposition for a more general class of nilpotent Lie groups? More generally, can one find 

general necessary and sufficient conditions on a set of operators {Al} so tha t  there exists 

a function /E $(G) with ~l( /)= At, V~t E F, the generic representations in G? 

(2) Let  L be a homogeneous left-invariant operator on G; suppose tha t  ~l(L~), regarded 

as an operator from S(G) to $(G), has a continuous left inverse At for all I in general posi- 

tion. There exists an integer s t such tha t  A t is continuous from the ][ [[st Sobolev seminorm 

on R ~ to the [[ [[0 seminorm. I f  the A~ vary  continuously with l, and if the st are uniformly 

bounded, and if one has an appropriate bound on the norms of the operators At: [[ [[~-~ [[ [[0, 

then a procedure like tha t  of [24] or [2] (compare also [19]) should prove tha t  L is locally 

solvable. Can one weaken these hypotheses? In  particular, can one settle this mat ter  for 

two-step nilpotent Lie groups? Note tha t  the existence of the Az, even for st=O, is in- 

sufficient in general (see Section 7). 

(3) Conversely, what  are the representation-theoretic implications of local solvability 

of Z? In  particular, must  there be an open set F '  c ~ of full Planeherel measure such tha t  
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~(L ~) is inver t ib le  in some sense for all  g ~ F ' ?  Also, can the  necessary  condi t ions  be s t reng th-  

ened in order  to  give a represen ta t ion- theore t i c  proof  of the  unso lvab i l i ty  of t he  example  

in Sect ion 7? F ina l ly ,  is i t  possible to  f ind a g lobal  f u n d a m e n t a l  solut ion a to  an  equa t ion  

of the  form L~ =Z~,  for some homogeneous,  local ly  solvable  opera to r  Z? 
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