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0. Introduction

Much progress has been made in recent years in describing the structure of
L,=LJ0,1], and, in particular, the C, spaces (complemented subspaces of L, which are
not Hilbert space) have been studied extensively. The obvious or natural L, spaces are
b, L@, (L,al,®...), and L, itself. These were the only known examples until H. P. Rosen-
thal [18] discovered the space X, (see below). This space perhaps seemed pathological
when first introduced; however, it now appears that X, plays a fundamental role in the
study of L, and L, spaces.

The discovery of X, permitted the list of separable C, spaces to be increased to 9 in
number [18]. Then G. Schechtman [20], again using X, showed that there are an infinite
number of mutually non-isomorphic separable £, spaces, and recently Bourgain, Rosenthal
and Schechtman [2] succeeded in constructing uncountably many such spaces. It now
appears improbable that a complete classification of the separable L, spaces will be ob-
tained. However, it might be possible to classify the “smaller’” C, spaces. For example it
was proved in [11] that the only L, subspace of I, (1 <p <<c0) is I,. Also all complemented
subspaces of [,®l, and (l,®1,®...), are known (see [4], [21] and [17]). (X, is, for p>2, a
L, space which embeds into {,®1, and thus into ([, ®1,@...),, but does not embed into these
spaces as a complemented subspace.)

One question with which we are concerned in this paper is ‘“What are the £, subspaces
X of [, ®1, (1 <p=£2<o0)?” We answer this in Section 2 for those X with an unconditional

basis (although every separable L, space is known to have a basis [10], it is a major un-
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solved problem as to whether each one has an unconditional basis). More precisely, we
prove in Theorem 2.1 that if 1 <p <2 then X is isomorphic to either I, or [,®1,. In proving
this result we obtain a representation of unconditional basic sequences in [,®1, which might
prove useful elsewhere (Lemma 2.3).

In Theorem 2.12 we show if 2<p<oc and X is a £, subspace of I,®l, with an un-
conditional basis, then X is isomorphic to 1, [,®1, or X,. The fact that X, enters into the
p>2 case necessitates our proving several preliminary results which are of interest in
their own right. In Proposition 2.5 we show if X is a subspace of [,®1, (2<p <o) and
T:L,~X is a bounded linear operator, then 7' factors through X,. A consequence of this,
Corollary 2.6, is that the class of £, subspaces of [, ®l, (2 <p <o) is the same as the class
of complemented subspaces of X,. In Theorem 2.9 we prove that if X is isomorphic to a
complemented subspace of X, and X, is isomorphic to a complemented subspace of X,
then X is isomorphic to X,. Theorem 2.10 shows that X, is primary. This means if X, is
isomorphic to Y @Z then either Y or Z is isomorphic to X,,.

Finally, in Section 3 we are concerned with a specific case of the following general
question: if ¥ is a given L, space, give necessary and sufficient conditions to insure that if
X is a subspace of L, which satisfies these conditions, then X is isomorphic to a subspace
of Y (i.e. X embeds into Y). For example it was shown in [9] (respectively, [5]) that a
subspace X of L,, 2<p < oo (respectively, 1 <p<2) embeds into l, if and only if X does
not contain an isomorph of I, (respectively, there exists A< oo so that every normalized
basic sequence in X has a subsequence which is 2-equivalent to the unit vector basis for 7,).

In Theorem 3.1 we give a sufficient condition (which is trivially necessary) for the
space I, @1, (2 <p < o0). Namely, if X is a subspace of L, which is isomorphic to a quotient
of a subspace of [,®l,, then X embeds into I, ®1,. Theorem 3.1 of course implies that if X
is a L, subspace of [,®l, (1<¢<2; 1/p+1/g=1) then X*is a L, subspace of [,®/,, so that
Theorem 2.1 can be derived from Theorem 2.12. However, Theorem 2.1 is simpler to prove
than Theorem 2.12 and the proof of Theorem 3.1 is terribly complicated, so we prefer to
give a direct proof for Theorem 2.1. Moreover, this presentation allows Sections 2 and 3

to be read independently of each other.

1. Preliminary material

In this section we present some background material and also set certain notation.
Our terminology is standard Banach space terminology—any terms not defined below
may be found in the books of Lindenstrauss and Tzafriri ([14] and [15]).

A subspace of & Banach space shall be understood to be closed and infinite dimensional

unless otherwise noted. If S is a subset of a Banach space, then [8] is the closed linear
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span of S. We write X~ ¥ if X and Y are isomorphic. All operators are bounded and linear.
If (X,) is a sequence of Banach spaces, (3 X,), is the space {(z,): v,€X, for all » and
l@)]| = ||zal|?)P < o0}. By is the closed unit ball of the Banach space X. If basic
sequences (z;) and (y;) are equivalent we write (x,) ~ (y;).

We denote the norm in L, by |- ||,-

The Haar system is an unconditional basis for L, (1 <p < cc) and we let its uncondi-
tional basis constant be A,. If (x;) is an unconditional basic sequence with unconditional
constant K in L, (1<p<oo) then || a,x,||, may be calculated by means of the “square
function”. Thus

KK, e
15 waly ™ ([ (S @l pyeas) 180

where K, is a constant arising from the Khinchine inequality, (a;) are scalars and « Lo
means that each side is no greater than M times the other side. Thus 4 ~ Bmeans ASMB
and B<MA. Note by (1.1) if (y;) is an unconditional basic sequence in L, and |y,(s)] =
|,(s)] for all s€[0, 1], then (y,) is equivalent to (z,). This observation was used in a clever
way by Schechtman [19] and we employ it in the sequel. We shall also require the fol-
lowing well known inequalities.

Let (x;) be a normalized unconditional basic sequence in L, with unconditional constant
K. Then

(KK, (3 e < |2 ez, < KK, (S af)2 if 2<p<oo and (a;) arescalars

(1.2)
and

(KKt (S a2 < |3 a, < KK, (S |af?)? if 1<p<2. (1.3)
We use the basic results of Kadec and Pelczynski [13] which we now recall. Let

My(e) = {f €Ly(m): mit: [f(0)| = e f||,} > e}

where m is a finite measure. If (z,) is a normalized unconditional basic sequence in L,
(2 <p <o) with x,€ M ,(e) for all ¢ and some £>0, then (z,) is equivalent to the unit vector
basis of I,. If (z,)& M, (¢) for any ¢>0 then for every §>0, some subsequence of (z,) is
(1+0)-equivalent to the unit vector basis of I,. Of course (z;)< M,(e) implies ||z;||, >&%?2 for
all ¢ and (x,)§ M, (¢) for any &>0 means inf, ||2,]|,=0.

Much of our interest centers around ,®l, and X,. We shall write |z|, for the ,-part
of the norm of a vector x€1,®1, and similarly [z|, for the I,-part.

Let w=(w,) (a weight sequence) be a sequence of positive scalars. X, ,, is defined to be
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the completion of the space of all sequences of scalars (a,) with only finitely many a,==0

under the norm
”(a’n)”D,w =max ((z lanlp)l/p, (2 [anwnl2)1/2)-

Rosenthal (18] showed that for all weight sequences w, X, ,, is complemented in L,
and if w;{0 with 3 uf?® ®=0co then X, ,, is not isomorphic to a complemented sub-
space of |,®l,. He also showed, if the weight sequence v=(v,) also satisfies for all £>0,
Snivg<ey VPP =co, then X, , and X, , are isomorphic. This is the space we call X,
For any weight sequence w, X,, , is isomorphic to one of the spaces [, I,, [,®1, or X,.
{e;)71 will often be used to denote the natural basis for some X, , space which is

isomorphic to X, and we write for x=37.1a,¢,€X, ,,
|zl = (2 [an|” and |z, =|a]s,0 = (2 |anw, |2V

The most important tool we need for this paper is the “‘blocking technique” introduced
in [11] in its simplest form and then developed in later papers (e.g. see [12], [6], [5]). Briefly,
if (E,) is a shrinking finite dimensional decomposition (shrinking f.d.d.) for X and 7' is an
operator from X into ¥ where ¥ has an f.d.d. (F,), then there exist blockings (E;) (£, =
[E 5y, for certain integers k(1) <k(2)<...) of (£,) and (Fy) of (F,) so that TH, is
essentially contained in Fy+ Fr .1 for each n. The overlap between TE;, and TE, . in
F; ., causes some problems which can sometimes be overcome (e.g. see [5]). We use these
tricks below where we describe them in more detail. The technical difficulties are parti-

cularly troublesome in Section 3, in part because the operator 7 is defined only on a sub-

space of X.

2. Subspaces of I,0 1, and X,

The first part of this section is devoted to a proof of

TasoreM 2.1. Let X be a subspace of L, (2<p <o) which has an unconditional basis
and which is isomorphic to a quotient of 1,D1,. Then there is a subspace U of 1, (possibly
U ={0}) so that X is isomorphic to U or UDl,.

CoroLLarY 2.2. If X is a L, subspace of 1,®1, (1 <q<2) with an unconditional basis,

then X is isomorphic to either 1, or [,®1,.

Proof of Theorem 2.1. Let (z;) be a normalized unconditional basis for X and let @ be

a guotient mapping of 1,7, onto X. There are two plausible cases.
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Case 1. There exist ¢,}0 and a sequence (N,) of disjoint infinite subsets of N such that
2 €M, (e,) M py(e, ;) for ¢EN,. (2.1)

Case 2. There exists £ >0 such that for all 0 <§ <e,
{2, € MO M,(e)} is finite. (2.2)

Our first objective is to show that Case 1 is impossible. Let (f,) be the unconditional
basis for X* which is biorthogonal to (z;) and assume Case 1 holds. Then for each n, (;);ex,
is an unconditional basic sequence in X which is equivalent to the unit vector basis of I,.
Thus (f;)ien, i8 also equivalent to the unit vector basis of I,. Since ¢ is a quotient map,
Q* is an embedding of X* into I,®l, (1/g+1/p=1) and thus since 1 <¢ <2 we have (see
e.g. [18])

lim |Q*f;|,=0.
ieN,

>0

In particular there exist integers m, € N, so that (f, ) is equivalent to the unit vector basis
of 1,. However, by (2.1) a subsequence of (z,, ) is equivalent to the unit vector basis of [,
[13], and this is impossible.

Our discussion of Case 2 requires the following lemma, the proof of which uses an idea
due to Schechtman [19].

LeEMMA 2.3. Let (2,) be an unconditional basic sequence in L, ®1, (1 <p <oo). Then there
is @ monotonely unconditional basic sequence (x;) in 1, and an orthogonal sequence (y;) in I,

such that if w; =z, @y, €l,®1,, then (w,) is equivalent to (z,).

Proof. Let (e,) be the unit vector basis for [, and let (8,) be the unit vector basis for I,.
By a standard perturbation argument we can assume that for each n only finitely many
of the z,’s have non-zero nth coordinates with respect to the basis {(e,®0), (0®d,)}n1
for [,®l,. Embed I,®1, into L,[—1, 1] in such a way that (e, ®0)5; is a sequence of L,-
normalized indicator functions of disjoint subsets of [ —1, 0) and (0©4,)s-; are the Rade-
macher functions on [0, 1]. Let 2, =z, +y,; where x,€[(e, ®0)% 1] and y,E[(0DF,)5-1]-

The sequence (z;) is then equivalent to (r;®x,+7r;®y,;) in L,([0, 11 x[ -1, 1]), where
(r;) are the Rademacher functions on [0, 1]. Now the terms of the monotonely uncondi-
tional sequence (r;®@x,) are measurable with respect to a purely atomic sub-sigma field of
[0,1]x[—1, 0] so that [(r;®=,;)] embeds isometrically into I, Furthermore (r;®y;) is

equivalent to an orthogonal sequence in /. Q.E.D.
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Let us return to the proof of Theorem 2.1. Assume Case 2 holds and let ¢>0 be as in
(2.2). Since [{x;: x;€ M (¢)}] is either finite dimensional or isomorphic to I, ({13]) we may
assume that for all >0

(o 2, €M,(8)} is finite. 2.3)

As before let (f;) be the basis for X* which is biorthogonal to (x;). We shall show [(f,)]
embeds into I, which by [11] yields that [(f,)] is isomorphic to (321 [fJi%d "), for some
1=n(l)<n(2)<.., and thus X is isomorphic to (332; [z,]i%3 ")y, whence X embeds into
l,- By Lemma 2.3 we may assume f;=¢g,®h, where (g;) is a K-unconditional basic sequence
in I, and h;=|h;|,8; ((8;) is the unit vector basis of ;).

By (2.3), no subsequence of {z;) is equivalent to (§,) and so the same is true of (f)).
Thus there exists d >0 and an integer » such that |g;|,>d for i>n. Define T [(f,)72.] 1,
to be the natural projection;

r (Z a{g: ® ki)) = gn ;g

i=n

Then 7 is an isomorphism, for if w=>2, a,(g;®h;) then by (1.3),

=} 1/2
(Z aiz) <(KK,0™")

i=n

oo
Z a4
i=n

q

and so [|Tw| <| w| < KK,6-1|| Tw|. Q.E.D.

Proof of Corollary 2.2. By Theorem 2.1, X*~ U or X*~ U®l, for some infinite dimen-
sional subspace U of I,. Since X* is complemented in L,, U is also complemented, and
hence by [11], U~1,. Q.E.D.

We turn now to the case 2 <p <eoo. Our first result (Proposition 2.5) says that every
operator from L, into a subspace of [,®I, factors through X,. We begin with a simple

blocking lemma.

Lemma 2.4. Let X be a Banach space with a shrinking f.d.d. (E,), let Y have £.d.d.
(F,) and let 1<p<oo. If T: X—=Y is a bounded linear operator, then there exist integers
0=k(1)<k(2)<... so that if B, =[E "5 and Fn=[F 5.0 then T: (3 Ep),—~ (3 Fr),y

18 bounded.

Proof. Let P, be the natural projection of ¥ onto [FJj_1, P*=1I1—P, and for k<],
P.L=P,—P,. The conclusion of the lemma means there exists ¢ <o so that if x, € B, and
x=> x, then

(3 | P TP < O [l [IP).
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We may assume both (E,) and (F,,) are bimonotone f.d.d.’s. By the blocking technique
there exist 0 =k(1) <k(2) <... such that

(a) €[ B, 1% 1= E; and i <n implies |[P*"*VTx|| <27"||z||, and

(b) x€ E; for i >n implies ||Pyu, Tz[| <27 ||z||.

Let x,€ B, so that > ||z,[?=1. Then
© o\ 1/p ©
(2 )= (2]

n=1
k(n+1
Pliny T _1 + 0, + ,11)

k(n+1)
Z P ™T:

i=

o) \ 1/p
P%E?J"T( S x) )

i=1
00 o\ 1/p [ee) i/p
(2 ) (2 )
n=1 n=1

o /n-2 np ] 1/p
<(Z (Z2mtal)) (S 1Pl = lewlle)

2 Pk(n+1)

i=n+2

o L p\ Y/p
(S (2 2 al))” oy @ mma o

n=1 \i=n+2

1/p

e 1/p (o] 1/p [e ]
(3 @mp) "eannl(S limle) T+ (2 @) T<slzl+s QED.

ProrosiTioN 2.5. Let X be a subspace of L@l (2<p<oo) and let T: L,~X be a
bounded linear operator. Then T factors through X,

Proof. We wish to find operators R: L,—~ X, and 8: X,—~ X so that T=SR. For z€X,
||lz|| =max (|z|,, |¢|,). By a theorem of Maurey [16] we may assume 7T is |-|[;—|].
bounded; i.e. there exists K < oo so that | Tz|,<K|z||, [indeed by Maurey’s theorem there
exists a change of density ¢ making the operator induced by 7' on Ly(¢pdu) bounded].

By Lemma 2.4 there exists a blocking (E,) of the Haar basis for L, so that
T: (3 (B |- |0 (X, | -|,) is bounded. To see this embed (X, |-[,) into I, and block

the unit vector basis there. Thus if we define for x=> «,, z,€E,,

oll] = max (3 |22, (2 [lzafl2v2)
we have T (3 E,, |||-/|)~(X, || -||) is bounded. Since p>2 by (1.2) the natural injection
L,~(3 E,, |||*1]}) is bounded. Thus we will be done once we check that the completion
of (3 E,, [||-]l]) is complemented in X, ,, for some w.
To see this let H, =[h,]3 " where (h;) are the Haar functions in L,, and &(n) is chosen
so that H,2 E,. Then (> H,, ||[-]||) is isomorphic to X, ,, for some w, where as above

N2 zalll = max (T l2l[5)77, (2 [|zali2)).



124 W. B. JOHNSON AND E. ODELL

Indeed (f,”)fgm is a basis for H, where

7
fi' = Xpa -2k, a—kmy.

Suppose

ofe(n)

w— 3 BMIAI.

i=1
Note [{|f{1l|={|f]|,- Then
(5 o= (3 3 |y,
while
(S ol = (3 3 [aut )2

where wi = ||/,

Clearly (3 E,, |{|-[i]) is norm 1 complemented in (3> H,, |||-||) by means of the ortho-
gonal projection. This proves the proposition. Q.E.D.

CorROLLARY 2.6. Every L, subspace X of 1,®l, (2<p <o) is isomorphic to a com-

plemented subspace of X,,.

Proof. Let T: L,—~X be a projection. By Proposition 2.5 there exist E: L,—~ X, and
S: X,—X so that T=8R. Then RS is a projection of X, onto BX which is isomorphic
to X. Q.E.D.

COROLLARY 2.7. 4 quotient of L, which embeds into 1, D1, (2 <p < o) is isomorphic fo a

quotient of X,.

LeMMa 2.8. There exists M, < oo so that if T is a bounded linear operator on X, ,, for
some weight sequence w=(w,), then there exists a weight sequence v=(v,) so that |T |, ,<

M|\ 7| and |||=||| =max (|],, |®],,,) is M ,-equivalent to ||x||.

In other words we can renorm X, ., by [||-]||, another X -norm, so that 7' is bounded

with respect to the |- |, , part of the norm.

Proof. We shall use M, below to denote constants depending solely on p. Let (e,) be

the natural basis for X, ,, so that

[ anen]| = max (3 [an| )7, (2 |anwa|)2)

and define

én =Wty +Gn eLp(O> 1)

where (r,) are the Rademacher functions supported on [0, ) and (g,) are disjointly sup-
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Mp

ported functions on [§, 1] with ||g,|[,=1, and g, ||, <w,. Then (e,) ~ (&,) and

|Z anenlz.w’%; ”Zanénllz'

Let T be the operator on [(é,)]< L, induced by 7. Then 7' is bounded and so by [7], there
exists a change of density ¢, ¢ >4 on [0, 1], with | ; @(t)dt =1 which makes 7' L,-bounded.
By this we mean if e, =¢,/¢? and 7" is the operator on [(e,)]< L,{pdm) induced by 7', then
TN L@ am < M| T]|. We claim for all scalars (a,);

max ((> |“n|p)1/p7 ” 2.y e;L”Lz@dm)) 2 ||Z An e;t”Lp(tpdm) = ||Z U, én“p'

Indeed “<” is clear since (e;) are disjointly supported norm 1 vectors in L,{@dm) and
2<p. To see “ ="’ observe that

1/2
1S an € lpam = ( f IS a, en|2¢<ﬂ~2>mdm) > (1|3 4,2

Hence

|3 @ allp 2 max (3 |@n[P)2, |3 a0, lle) < max (3 |a,|P)2, 2222 || 5 a, ;]

La(p dm))

which proves the claim.
Let

v =wi [ ga @™ P g am-

To finish the proof we need only check that

2 anvy)* 2 ” 2a,e, “medm»

But
” 2y, e;L”%z(ipdm) = ” 2, 0y Wy Ty q’ril/p“%z«odm) + ” 2 GG (P_l/pll%z(wdm) 2z 2 |a,n wn|2

+2 “?z\|9n¢*l/p||iwdm»

since the g,’s are disjointly supported, and
Mp(z aﬁ w?z)llz = “Zan Wy, 77;“1; = “Z Ay Wy Ty, (phlllp“Lp(tpdm) = ” Z Oy Wy Ty, (p_llp “Lz(Wim)

1/2
= (f, z G Wy Ty }2¢(P—2)/pdm) > 2(241))/217(21(}” wn!2)1/2 QED

We are finally ready to prove
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TurorEM 2.9. If X is isomorphic to a complemented subspace of X, (1 <p <o) and X
contains o complemented subspace isomorphic to X, then X is isomorphic to X,,.

Proof. By duality we may assume 2 <p <o, Ag above, let (¢,) be the natural basis of
Xy =X, 03
112 azenf] =max (3 }an "), (2 |@nw, |2)7).

By Lemma 2.8, we may assume the projection P: X,,—~ X satisfies
[Py =K <o,
By Lemma 2.4 there exists a blocking B, =[e,J5%"Y of (e;) such that

P (3 (B, |- ID)o~ (S (Has - IDs
is bounded.
For =3 x,, x,€ E,, define |x|,=(3 ||2.||")'”. Then we see ||z|| ~max (|2|, |#]s,4)-
Define
X, =(X,0X,® . )p»

By this we mean if z, € X, then

“ (xn) “‘;fp =max ((Z lxnlg)lm’ (Z Ixn |§,w)1/2)'

Claim: X, is isomorphic to X,,.
Let us assume the claim and finish the proof. As usual we write X~7 if X and ¥

are isomorphic. Since X, is complemented in X, there exists W so that
X~nXoW~X,0X,0W~X,®X.
Thus we need only show X,~X,®X. Let X®Z =X, where Z=ker P. Then since P is
bounded both in |- |, and |-}, , we have for (y,)= X and (2,)=Z,
max (2 |9+ 2af5)""s (3 0+ 20800 ~ max (S 19als + 12287 (29w + 20 [5.) ")

Thus
X,~X,=(X02)D(XDZ)®D ..)p.»

~XOZB(XDL)D(XDZL)D ... )p.2
~XOZOXDZOX® ..),.,
~XO(ZOX)D(ZOX)D..), .~ XX, ~ XDX,,.

It remains only to prove the claim that X,~X,. Let ¢} be the ith basis vector in the
nth copy of X, in X,. It is enough to show
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(Z 06161) _ ~max[( Z|cx"|1’ VP (S o[22, (2.4)

Xp i.n

since the expression on the right is an X,-norm. Now

o 0 k(@G+1)y o\ 1/p 1/2
(Se)” | ~max[(£ 3] 75 )7, (Statur) ]
n=1||X, n=1j=1|ji=k()H+1 in

which dominates the right side of (2.4). On the other hand,

© k(j+1) 7\ 1/p 1/p kG+1) /2\ 1/p
(Z > 2 apel ) < 2max ((Z ,“?'p) s (Z ( > |°‘?’wi|2) ) )
n=1j=1{}i=k()+1 i“n n,j \i=k(i+1
1/2
<zmax ((31a1P) 7, (5 Jouit) )
since p >2. This proves (2.4) and the theorem. Q.E.D.

THEOREM 2.10. X (1 <p <o) is primary.

Proof. Let X,=X®Z. In [1] an argument of Casazza and Lin [3] was used to show
that either Y or Z contains a complemented isomorph of X,. By Theorem 2.9 this space
is isomorphic to X, Q.E.D.

Recall that one of our objectives in this section is to characterize the L, subspaces of
I,®1, (2<p<co) with an unconditional basis. The main tools we shall need are Theorem

2.9, Lemma 2.3, Corollary 2.6 and the following proposition.

Prorosition 2.11. Let X be a subspace of 1,®1, (2<p< o) with a normalized basis
x, =Y, Dz, where (y,) is a basic sequence in |, and (z,) is a basic sequence in l,. Assume |z,|,~0

as n—oo. Then either X embeds into 1, or X, is isomorphic to a complemented subspace of X.

Proof. 1f 1, does not embed into X, then X embeds into I, [9]. Thus we may assume X
contains a copy of /.

Since |z,|,—~0, we can assume without loss of generality that |2,|,<1 for each n.
For a subspace Y of X, let 6(Y)=sup {|y|.: |ly]| =1}. Note that since X contains a copy
of Iy, if dim X/¥ <o, then ¢(Y)=1. By the blocking technique [11] there exists 0 =%(1) <
k(2)<... such that if E,=[(y,)in 4] and F, =[(z,)iny 3], then (E,) is an ,-£.d.d. for [(y,)]
and (F,) is an I,-f.d.d. for [(z,)]. Thus if u,€E,, then |> u,|,~ (> |u,|5)? and a similar

k(n+1)

statement holds for (F,). Also by our above remark we can insure that 8([z;li 1) = § for
each n. Since |z,|,~>0, we can find k(n) <g(n) <k(n+1) such that if H,=[(z;)]&n.1 then
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1>4(H,) >0 for each =,

Ms

a(Hn)2pf(ﬂ*2) = o0 a,nd hm 6(Hn) = 0

n=1 —>00

i

Let e,€H, so that [fe,||=1 and |e,|,=0d(H,). Clearly [(e,)] is isomorphic to X, We
must show it is also complemented in X. Thus we wish to find f.€X* so that (f,) is bi-
orthogonal to (e,) and P(x)=> f.(x)e, is a bounded operator, and hence a projection
onto [(e,)].

Let f, be the functional on H, defined by f,(k) =<k, e,]e,|2>>. Then

Ifn,p= max <h7 enlenl£2> < max lh|2|en,£1 = 1:
Plp=1 hlp=1

heH, heH,

since |e,[,=0(H,) and |-]|=]-|, on H,. Thus f, is a norm 1 functional on H,, in the [,
norm. Extend f, to a functional f, on X by letting f,(x,) =0 if 4 <k(n) or i>g(n). Since

(y;) and (z;) are basic, we have
|fo]l, <K and |fn|2 < K|fal, =K|en|2_1

where K is twice the larger basis constant of (y;) and (z;). Moreover, since (X,) and (F,)
are p- and 2-f.d.d.’s respectively, and |e,|,<1, we see that P(z)=> fu(@)e, is bounded.
Q.E.D.

TuerorEM 2.12. If X is a L, subspace of @1, (2 <p < o) with an unconditional basis,

then X is isomorphic to 1, 1,®1, or X,.

Proof. By Corollary 2.6, X is isomorphic to a complemented subspace of X,,. By Lemma
2.3 we may assume X is embedded into [,&1, in such a way that it has a normalized un-
conditional basis (z,), x;=y,®z,, where (y,) is an unconditional basic sequence in I, and

(z;) is an unconditional basic sequence in /,. There are two possibilities:
(1) there exists £ >0 so that if M = {i: |z;|, <&} then
lim |2, =0,
i—>00
ieM
(2) there exists &,|0 so that for all n, M, ={i: &, ;> |z,|s>¢,} is infinite.
Suppose (1) holds. If [, does not embed into [(z;)]ic . then by [9] X is isomorphic to

I, or I,®l, depending upon whether N\ M is finite or infinite. If I, embeds into [(#;)]ic
then by Proposition 2.11 and Theorem 2.10 [(%;)}ie » and hence X is isomorphic to X,.
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If (2) holds then by a diagonal argument we can find infinite M, < M, so that (#,)ie . nen
is a small perturbation of a block basis of the natural basis for X,,. It follows that X'=
[:)ie a1, nen i isomorphic to X, and of course X' is complemented in X, so again by Theo-
rem 2.10, X is isomorphic to X, Q.E.D.

We do not know how to extend the above results to an arbitrary £, subspace, X, of
l,®1,. Of course one approach would be to show every L, space has an unconditional
basis, or perhaps just an unconditional f.d.d. Unfortunately we do not even know how to
handle the latter case. We illustrate the difficulties encountered in trying to show X has an

unconditional f.d.d. with the following.

Example 2.13. There exists an £.4.d. for [, ®1, which cannot be blocked to be an uncondi-
tional £.d.d. (This is false in 1, [11].)

Indeed let (8;) be the unit vector basis of I, and (e;) the unit vector basis of [,. Let
E,=[0®6,] and for n=2, E,=[e, ;Db,_,, 0®3d,]. It is easily checked that %, is an f.d.d.
for I,®l,. Also if F,=[E;\%%,1 is any blocking of (E,), let

,fl = O®6k(2)>
fr = €xmy @ Oy +0kn+1y) for n>1.

Then f,€F, for all n and

~ i

while
m

Z ( - l)nfn” ~ ml/p. QED

n=1

3. Quotients of subspaces of [, 01, (2<p< )

In this section we prove

THEOREM 3.1. Let X be a subspace of L, (2 <p < o°) which is isomorphic to a quotient
of a subspace Y of I,®l,. Then X embeds into [, D1,.

COROLLARY 3.2. Let Z be a L, subspace of 1,01, (1<q<2). Then Z* is isomorphic to
a L, subspace of 1,®1, (1/p+1/g=1) and hence to a complemented subspace of X,,.

CoRrROLLARY 3.3. Let X be a subspace of L, (2<p<oo). Then X is isomorphic to a
quotient of X, if and only if X is isomorphic both to a quotient of L, and to a subspace of 1,®1,.

9 — 812901 Acta mathematica 147. Imprimé le 11 Décembre 1981
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Proofs of the corollaries. The first corollary follows directly from Theorem 3.1 and
Corollary 2.6 while the second follows from Theorem 3.1 and Proposition 2.5. Q.E.D.

The remainder of this section is devoted to the proof of Theorem 3.1. Since 1,1,
embeds into X, we can regard Y as a subspace of X, and let (e,) be the natural basis for
X, Sofory=73 a,e,€X,,

gl =max (|1, {52

where
lylo = aa P and  |y|, = (2 |apw,| 12

for a suitable sequence 1>w,{0. Let @ be a mapping from Y onto X so that ||@|| =1 and

KQB,2By
for a certain constant K.
Notice that to prove Theorem 3.1 it is sufficient to define a blocking (H,) of the Haar
system (h,,) for L, so that for some >0 and every € X with =3 «x, (x,€H,), we have:

max ([|alo (Z {|za[|5*?) = Bll]l,- (3-1)
Indeed, if x=3 =, (x,.€H,), then by (1.2) we have
(S [|lzallp® < 2, K ||l
so (3.1) implies that the operator

@ X > (2 Ha, || [lo)) ©Le
defined by
i = ((xn)’ x)

where x=> x, (z,€H,), is an isomorphism from X into a space which is isometric to a

subspace of [, ®l,.

We would like to construct the blocking (H,) of the Haar system (4,) so that if x=
> #,€X (x,€H,), then we can find y,€ Y so that Qy,==2,, |[y|s<K|@n|o [|#n]] <K ||.llns
and the terms of (y,) have pairwise disjoint supports relative to the basis (e,) of X,. Set

Y =2, Yn; since Qy ==, we have if ||y|| =|y|, that
Il < gl = S 9372 < K (3 [la]3)2

while if [|y|| = |¥|,, then
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el < lloll = gl < 2 flwall? < K (2 Jl2a]l2.

Consequently, (3.1) would be satisfied.

Of course, we cannot do all of this, but we carry out the spirit of this approach. The
main technical problem is that we need to check that @ is essentially a quotient mapping
from (Y, |- |,) onto (X, ||-{|,); this is the content of Lemma 3.4. A second problem is that
for any blocking (H,,) of (k,), there may be vectors x € X with 2 => =, (x, €H,) so that some
of the x,’s are not in X. A third difficulty is that  is not defined on all of X,, so it is
technically troublesome to do blocking arguments relative to the basis (e,) of X,.

In order to state Lemma 3.4, we need a definition. For KX <L and x€ X, set

Wi(z) =inf {|y|,: y€Y, |ly]| <L||, Qu ==}

It is easy to check that the inf in the definition is really a minimum.
Let P, denote the natural norm one projection from L, onto [A;]i-,. Of course, P, is

the restriction to L, of the orthogonal projection from L, onto [A,]i_1.

Lemwma 3.4. There are M = K and A <oo so that for every £¢>0 there exists an n€EN so
that if x€X and P,x=0 then

Wy(x) <max (g, A]jz|)-

The proof of Lemma 3.4 will be postponed for a while. To fix the main ideas in the
derivation of Theorem 3.1 from Lemma 3.4, we first sketch the proof in a special case
which avoids the second and third technical difficulties mentioned above. We assume that

X has a basis (w,) which is a block basis of the Haar system, say
wy, E[AETEDTY (1 =s(1) <s(2) <...).

Letting P, = Py 1,1, We have that P, X < X for all n. The P;’s are the partial sum operators
associated with the blocking H, =[h,[{% " of the Haar basis.

We will also assume that ¢ can be extended to an operator (also denoted by @) from
X, into L,, and that the extended operator also has norm one.

We can get a blocking () of the natural basis (e,) for X, and a blocking of (H,)
{which we continue to denote by (H)) so that QE; is essentially contained in H;, +H .1
for n=1, 2, ...; let us assume that QE, is actually a subset of H,+ H, ;. Therefore, for
any L= K,

if x€X N [Hln+1 then thereis y€[E;]", so that
(3.2)
(Pr—Po)Qy ==, |yl <Ll |yls=Wilw)
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(since if z=3 z; (2;,€E{) and Qz=x, then setting y=>7.,2, we have (P,—P,)Qy=x,
Joll <=l an [y]=<]z]).

Let €, 0 so that 6, =K, >x.s¢£,<1 and use Lemma 3.4 to get constants M > K and 1
8o that we can choose 0=Fk(1) <kE(2) <... to satisfy

Wy(x) < max (gq||z||,, Al|2|l,) if 2€X and Pip-12=0. (3.3)

We claim that the blocking
H, = Hyme1+ - +Hinoyy

of (k,) satisfies (3.1). Indeed, let =73 x,€X with «,€H,. Since each z, is also in X, we
can by (3.2) and (3.3) choose

Yn€ By + - + By
so that

(Prnsty = Pe) QY = @as 9]l < Mjanll, and  |yn]s < max (ep]|u]lp, A|all2)-

Now (y,,) and (y,,_;) are both disjointly supported relative to the basis (e,) for X, so
if we assume, for definiteness, that §|[#(|, < [[>%1 #an_4[|, We get by Tong’s diagonal principle
(cf. Proposition 1.c.8 in [14]) that the linear extension, S, of the operator which for n=
1,2, 38, ... takes y€Eion_ 3+ ... +EBrony, to (Piem—Pien1)@y and vanishes on
(B i¢ Uy {k(2n—1), B(2n—1)+1, ..., k(2n)})] has norm at most [|@|| times the uncondi-

tional constant of (H,). Consequently, we have

(o)

<4,

Hi=ll,< .

<A, max [(C]y. 27, Cly. B

[oe]
Z Yon—
n=1

<y max [(M+1) (X [lealle) s Al
that is, (3.1) is satisfied for §=(24,)"Y min (M +1)72, A-1).

Bemark 3.5. Schechtman observed in [19] that every unconditional basic sequence in
L, is equivalent to a block basis of the Haar system, which puts one of the simplifying
assumptions above in perspective. The other simplifying assumption can be replaced by
the assumption that the operator @, considered as an operator from Y into L,, factors
through X,. It may be that every operator from a subspace of I, ®l, into L, factors through
X,; if so, the derivation of Theorem 3.1 from Lemma 3.4 given below can be simplified

somewhat.
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In deriving Theorem 3.1 from Lemma 3.4 in the general case, we use several lemmas.

Given A< V*, we use the symbol A" to denote the annihilator of 4 in V.

LumMA 3.6. Suppose T is an operator from the reflexive space (Z, || ||) onto V, KT B, 2
By, 8 is a finite rank operator from Z, and (v})io1 S V* with [(vn)] = V*. Supposethat | - | < |- ||
18 another norm on Z. For M > K and €V, set

Wy(w) =inf {|z|: 2€Z, (2| < M||z|, Tz =}
Then given any >0, there exists mEN so that if x €[(vE)n_1]", then there is €% so that
llell <2Ml=z||, |2]|<(2+¢) max (g]jz)], Wy(x), |Sz]| <e||}| and Tz=uw.

Proof. Suppose the lemma is false for a given M > K and a given ¢>0. Then we can
find for n=1, 2, ... unit vectors x, in [(¢¥;)71]" so that if for some n there is z€Z so that
lzl| <2M, |z} <(2 +¢) max (¢, W,y(z,)) and Tz=u,, then ||Sz|| >e.

For each n€N, pick 2,€Z with ||z,|| <M, |2,| = Wy(,), and T2, =zx,. This can be
done since the “inf” in the definition of W,(-) is easily seen to be a minimum. Since § has
finite rank, there exist integers n(l)<n(2)<... so that (|Szus —Szuy|| <e for all 7 and j.

By passing to a subsequence of {n(7)){21, we can also assume that

S‘jlp Widan) < max (g, (1 + &) Wylzn))-

Now z,~ 0 weakly, so we can find for all ¥N=1, 2, ... a vector

with,

and |jyy]| - 0. Letting

we have

"zn(l)“‘wzv” <2M, "S(zna)—wN)” <g, Izn(l) “le < (2+&) max (g, Wy(2)))

and
” T(zn(l)"wjv) “xn(l)n ~0 as N oo,

Thus if we define the convex set ' by



134 W. B. JOHNSON AND E. ODELL
C={2€Z: ||z]| <2M, |Sz|| <&, |z|<(2+¢)max (e, Wylznw))}

then @,q, is in the closure of 7°C. But C is closed, since |- | is continuous, and hence T'C'

is closed, because Z is reflextive, whence x,q, € T'C. Q.E.D.

Remark 3.7. The proof shows that the reflexivity assumption in Lemma 3.6 can be
dropped if we replace the “Tz=2"" conclusion by || Tz —x|| <¢”. In fact, an open mapping
argument shows that the reflexivity assumption can be dropped if we merely replace the
“|lz]| <2M||x[]” conclusion by “|z| <(2 +&) M |||

If 4 is a subset of the normed space Z, and z€Z, d(z, 4) denotes the distance from z
to 4, and A* is the annihilator of 4 in Z*.

LeEmMa 3.8. Suppose that V is a subspace of Z, V, is a finite codimensional subspace of
V,and F,< F,< ... are finite dimensional subspaces of Z* with U2, F, dense in Z*. Then for
all >0 there is mEN so that if 2€ Fy, then

dz, V) < (2-+e)d(z, V).

Proof. Let T': Z*—>Z*/V+ be the quotient mapping; of course, under the usual iden-
tification of V* with Z*/V*, Tz* is just the restriction of z* to V. Since dim Vi/V*=

dim V|V, <o and U, F, is dense in Z*, given £>0 we can pick m€N to satisfy
(1+&)TBp, 2 TBy:.

Let 2€F), and pick f€Byt so that d(z, V,)={(z). Select g€(1+¢) By, so that Tg=T7.
Then f —g€(2+¢) Byt and hence

Az, Vi) = 1(0) = (—9) () < @ +e)d(z, V). QE.D.
LeMMA 3.9. Suppose V is a subspace of Z, F is a finite dimensional subspace of Z so that
FnVech,cFc..cV

where dim F;<oc and |J21 F; is dense in V. Then for each ¢>0 there ts mEN so that for

each 2€2Z,
dz, Fp) < (L+e)d(z, V)+(2 +o)d(z F).

Proof. We need to show that there is m €N so that for every z€ F,
d(z, F,) <(1+e)d(z, V). (3.4)

This is sufficient, because if 2€Z, we can pick € F so that d(z, F)=|z—=z||. Then (3.4)
yields
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d(z, Fp) < |z —2| +d(z, F,) < ||z—z|| + (1 +e)d(x, V)
< @2+e)|lz—af| + (L +e)d(z, V) = (2-+e)d(z, F)+(1+e)d(z, V).

The elegant proof of (3.4) which follows is due to T. Figiel. First assume F 0 V={0}
and for n=1, 2, ... define real functions f, on the unit sphere Sy={z€ F: ||z| =1} of F by

The f,’s are continuous functions which decrease pointwise to the constantly one function,
hence the convergence is uniform on the compact set Sp by Dini’s Theorem. Now just
choose m so that f,(2) <1 -+¢ for all z€8;.

In the general case, let T: Z~Z/(F N V) be the quotient mapping. Now for any z€Z,
d(z, Vy=d(Tz, TV) and d(z, F,)=d(Tz, TF,) (n=1, 2, ...) since V and all the F,’s contain
FnV. Consequently, the general case follows from the special case by passing to the
quotient space Z/(F N V). Q.E.D.

Lemwma 3.10. Suppose Z is reflexive, V is a subspace of Z, (G,) is an £.d.d. for Z, and
R, Z—~G+..+G, are the natural projections. Given £>0 and n€N, there exists mEN so
that for each €V,
d(Ryx, V) <max 2|(R,—R,)z|, ¢||z])).
Proof. This is Lemma 3.7 in [5] with the second parenthesis placed correctly. Q.E.D.

We turn to the derivation of Theorem 3.1 from Lemma 3.4. By perturbing the space
X in L, slightly, we can assume without loss of generality that Ui.1 [;]i-1 0 X is dense
in X. A formal consequence of this is that for all N=1, 2, ..., UXy [2;}i~y N X is dense in
[AJ2yN X. Let M >K and 1 be constants which satisfy the conditions of Lemma 3.4, and
recall that () denotes a norm one operator from the subspace ¥ of X, onto X which satisfies
KQBy, = By. Eventually we will verify that (3.1) holds for §=16-! min [(12M)-1, (324)~1].
Let ¢,| 0 so that &; <min (882 277) and 2s,,, <¢, for n=1, 2, ....

We define a blocking (H,) of the Haar system and a blocking (E,) of the natural
basis for X, to satisfy conditions (3.5)~(3.10), where P, denotes the natural projection
from L, onto Hy+...+Hy, and R, denotes the natural projection from X, onto B, +...+ E,;
Py=0 and R,=0.

(3.5) If x€X and Pyx=0, then

W) < max (ele] Afjf]s)-
(3.6) If x€ X and Pyx =0, then there is y€ Y which satisfies

1Beasll <allzll, llgll <28 flafl,,  |yle <3 max (gl|all,, Walw), and Qy ==
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(8.7) If x€X, 1<¢ <k, and Pix=0=(I —P;)x, then there is y€ Y which satisfies
1Byl <2elzll, (- Byl <allel [yl <3M|],
[yls < 4 max (g))|z|,, Wu(z)) ond Qy==.
(3.8) If x€ X, then
APy, X) < max (g4 [|2|, 2(|(Pr —Pr-1)x||,).
(8.9) If z€L, and Pyz=0, then
Az, X 0 (I~P}_y)L,) < 3d(z, X).
(3.10) If 1<i<k and z€L, with P;_12=0, then
d(z, X 0 (P, —P;_1) L) <2d(z, X 0 (I —P;_y) L) +3d(z, (Pi_1—Pi_1)L,).

Suppose that Hy+...+H; 1=[h]1 and B +..+ Ey_,=[e;}i.1 have been defined.

Now if m>n is large enough and we set
H I; = [hi];nzrwl

then (3.5), (3.6) and (3.8) will be satisfied by, respectively, Lemma 3.4, Lemma 3.6 and
Lemma 3.10. That (3.9) will be true for large m follows from Lemma 3.8. To see this, set
Z=L,, V=X, Vi=X0(I—-P;_y)L,, e=1, F,=[h}l.acL,=L; (1/p+1/g=1), and apply
Lemma 3.8. Similarly, (3.10) is satisfied if m is large enough by Lemma 3.9. To see this,
for each fixed 1<7<#k apply Lemma 3.9 with Z=(I P ,)L,, V=XnN(I-P;_1)L,, F=
(Pi-1—Pi1) Ly, Fy=[h,Tpiy+10 X, (where Hy+ ...+ H;_;=[h,F%) and e=1.

Now fix m >n so that (3.5), (3.6) and (3.8)—(3.10) sare satisfied. We need to get t>s
so that (3.7) will be true if we set

E, = [ej]it'=3+1-

Call statement (3.6) with “¢”’ substituted for “k” (3.6);. For 1<¢<k and a small
4>0 we can apply (3.6), to a finite §-net (say, 4,) of the unit sphere of X N (H; +...+ Hy)
to get a finite set (say, B;)in Y so that for all z € 4, there is y € B, which satisfies the condi-
tions in (3.6); with &, replaced by 6. Now we choose t>s so that, setting B, =[e,ll.;11, we
have for y€ U By, ||[(I - Ry)y|| <2~ It is easy to check that if 6>0 is small enough
relative to the strictly positive numbers ¢, and inf [Wy(x): x € Hy +...+ Hj, ||| =1] then
(3.7) is satisfied.
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Now we choose 0=n(1)<n(2) <... with n(j) ~n(j —1) >4 so that if

n(k+1)
rx= 2 a, with wx€H,
i=n(k)+1
then
min [l + Izl e ll, < S e 2], (3.11)

ny+F2<j<nk+1)—-2
This is possible by (1.2). Finally, we define the blocking which satisfies (3.1): set
Hk =H;z(}.¢)+1 + ser +H,I1(,1H_1).

Suppose that 2€X, |z|,~1, =3 z, (z;€H;). By (3.11) we can select for k=1, 2, ...,
n(k) +2 <j(k) <n(k+1)—2 so that
”%’(kyl”p + ”90;‘<k>”p+ ”xj(k)+1”p K27, (3.12)

and set, for notational convenience, §(0)+2=5(0)+1=4(0)=1; j(0)—1=0. Since (g,) is
decreasing and k+1<j(k)—1, we have from (3.12) and (3.8) that

(k)—2
d( Z Ly X) S &4

i=1

hence

j®)~2
d( Z iy X) S%Ek‘*' 8k+1<28k

i=j(— 142
whence by applying (3.10) and (3.9) to the vector

jk)-2

z= E £
i=j(k-1)+2
we can find
ZkEX n Hj,(kgl)-}—l"‘ e +H]{(k)—1 (313)
s0 that
-2
2| <12¢,. (3.14)
i=j(k-1)+2 D
Therefore,
<0 o0
x— 2 %l <13 2 g <4 (3.15)
k=1 D k=1

By (3.13), (3.7) and (3.5), (and the fact that j(k—1)>k for k>1) we can get y,€Y
so that
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I Rice-1y-1 vl < 265 || 21|l »
1T = Rigoy—1) wiell < &l 2l
el < 3M || 2 [loy Q= 2,

ly}clz <4 max (g “zk”w A ||zk|l2)

(3.16)

In particular, ¥, is, essentially, in Hjy 1)+ ...+ Ejx-1, 80 that the terms of the sequence
{#) are, essentially, disjointly supported relative to the basis (e,) of X,.
Set

Since Qy=>%.1 2, we have from (3.15) that

8

llyll= > 1. (3.17)

2
k=1

Now

e0)
Z (Bioy-1— Bie-1-1) Yo
k=1

and by (3.16)

o
<3 2 allal, <1

o0
“y— 121 (Bigo-1 — Bige—1-1) Y

so if {|y|| = |¥|,» we have by (3.17) and (3.16) that

@ 1ip © 1jp o 1ip
b (S nds) < (3 awle) " <01 (S k) 19)
k=1 k-1 K=1
Similarly, since >3 1 &,<27°® we get that if ||y|| = |y|,, then
0 1/2 [ee] 1/2
b (2 tuk) <o (2 1ault) .19)
Fo= k=

Recalling that
B =16"1min [(12M)-1, (324)71],

we have from (3.18) and (3.19) that

o] 1/p [} 1/2
max [(21 “zk”g) , (12:1 ”zk”g) ] > 168. (3.20)
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Using the fact that the Haar system is a monotone basis for L, and for L,, we have if
r€{2, p} that

o0 nlk+1) 7 Jky=2 r 1 n(k+1) 3
> 2442( 2wl +Hl Y )
k=1 | i=n)+1 r k=1 i=n()+1 |r i=ik)+2 T,
@ j(k).—2 T
=877 Z 2 £
k=1 ||i=itk—1)+2 r

0

=877 (121 [lzellr — 12*}2;1 s,c) (by 3.14)

[0} o
=877 gl ([zl[z— 8" (since 4? 2 £, < 82) .

Thus from (3.20) it follows that

0 n(k+1) o\ Yip fee] nk+1) 2\ 1/2
max [ (21757 <) (375 a]) |20
k=1 |}i=n()+1 P k=1 ||i=n()+1 2,
which is (3.1). Q.E.D.

In order to prove Lemma 3.4, we need several lemmas which may not be as routine
as Lemmas 3.6, 3.8, 3.9 and 3.10. The first lemma restates the notation set up at the
beginning of this section, except that X is not required to embed into L, and it is con-

venient to regard Y as a subspace of [, @1,

Lemma 3.11. Let Y be a subspace of 1,®1l,, 2<p<oe, Q a norm one operator from Y
onto X, KQBy> By, and V a subspace of X which is isomorphic to 1,. Set for x€X,

Weix) =inf {|y|,: y€ Y, |y|| < K|=|, Qy ==}

where for Y=y, ®Y,€L,D, |y|s=|w)|. Then there exists 6=05(p, K)>0 and a finite co-

dimensional subspace V of V so that for oll x€V,,
Wi(x) = 0d(V, )1 ||=|.

Proof. Since X is 2K-isomorphic to a quotient of a subspace of L,, X has type 2 with
constant <2K, K, so by Maurey’s extension theorem [16] there is a projection P from X
onto V so that

1Pl < 7e(P) < 2K, Kd(V, 1y).

Again by Maurey’s theorem, there is an operator

S: L,@L—~>V
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so that
Sy=PQy (y€Y), |8| <4K;Kd(V,1,).

Since the restriction of § to I, is compact (as is any operator from I, into I,; cf. Proposition
2.¢.3 in [14]}, given £>0, there is N =N{¢} so that

18] < eE=|=]

if z€l, and the first N coordinates of z are zero.

Now let ¥V, be any finite codimensional subspace of V such that for all z€V,,
d(z, Sl(e)iz1)) = (1+e)~ x|

where (g,) is the unit vector basis for 7,. (For example, if F is a finite dimensional subspace
of X* which is 14+ e-norming over S[(e;)i_;], we canlet V,;=V N F'.)
Suppose that €V, [jz]| =1, and choose y€ Y with [ly[| <K, Qy==, and |y|,= W c(z).
Write
Y=Y1+%+Ys Y€,

Y2 €[(e)2ni1), Y3 €l
Then z =Sy, + Sy, + Sy,, but

“Sfllzu <e, “x”'S?h“ > (1+¢)t
so that
(1+e&)t—e<|lz—Sy;+v)|| = || Sys|

SAKLKAV, L) lys|| = 4K Kd(V, L)]y|s
=4RK2KA(V, L) W ().

This gives the desired conclusion for any
o < (4KZK)-. Q.E.D.

Remark 3.12. Notice that in Lemma 3.11, if (v})< V* and [(v})] = V*, then ¥V, can be

taken to be of the form [(2})_,]" for some n.

Remark 3.13. The definition of Wg(+) and |- ], given in Lemma 3.11 is the same as
that given in the beginning of this section if we regard Y as being contained in X, (w,

and X, (,,S1,®l, in the natural way; i.e., the nth basis vector for X, ,, ise, ®w, 5, €L, Dl,.

Lemwma 3.14. Suppose that Z is veflexive and has an £.d.4. (E,), W is a subspace of Z

such that Ur.a W O [(E)i-1] is dense in W, and T is a norm one operator from W into some
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space V. Given any L <o, &0, and a weakly null normalized sequence (x,) in V, there is a
subsequence (y,) of (x,) so that if y=> any,, ||yl =1, and if zEW with ||z|| <L, Tz=y with
z=> z; (2,€ E,), then there are 1 <m(1) <m(2)<... and w, € W 0\ [(E,}F%0"1] so that

mUe+ 1) -1

Wy
i=m(k)

<&y, || Ty, — a9 || < &

Proof. We can consider ¥V to be embedded in C[0, 1] in such a way that the operator
T has an extension to a norm one operator from Z into C{0, 1]. By passing to a subsequence
of (z,), we can also assume that (z,) is a block basis of some basis for C[0, 1]. Therefore

Lemma 3.14 is a simple consequence of the following blocking lemma:

Lemma 3.15. Suppose that Z is reflexive and has an £.4.4. (E,), W is a subspace of Z
such that U1 W 0 [(E))i-1] is dense in W, T is a norm one operator from Z into V,and V
has an £.4.4. (F,). Given any L< oo and &0, there is a blocking (F,) of (Fr) so that if 1<
n(l)<n(2)<...and €V,

xr = Z Ty with xREFn(k)+1+ aee +Fn(k+1)v17 “.’L'” =1

and if z€ W with |z|| <L, Tz=ax, where 2= 2, (2,€ E,), then there are 1 <j(1)<j(2)<... so
that for every k=1,2,3, ...

i+ -1
J(k+1)-1
d( >z, WNE)SE < engo
=)
and
Haer1y—1
x,— T Z 2y

i=j(k)

< Engiy

Proof. Since the concluding condition on (E,) becomes more restrictive as we pass
to blockings of (H,), we can assume by passing to blockings of (Z,) and (F,) that TE,

is essentially contained in Fy+ Fy,, for all n=1, 2, .... The technical condition we use is:
W(Bn—Ba) Ty|| <6ul|y|| for yE€[(E)T U (B)Em] (3.21)

where R, is the natural projection from V onto [F;Ji-; and where ,}0 at a rate which will
be specified in (3.27a) and (3.27b). Next, by passing to a further blocking of (£#,) (and
the corresponding blocking of (F), to preserve (3.21)) we can by Lemma 3.10 assume that
if yeW, y=> y, with y,€E,, then

k-1
a (;1 " W) < max Gullyll, 2 ([l for k=1,2, ... (3.22)
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Moreover, as in the verification of (3.10), we have from Lemma 3.9 that we can assume, by
passing to a further blocking of (Z,), that for y€[EJ2,, 1<n<m<co,

dy, W N [(E)5) < 2d(y, W N [(E)2,])+3d(y, [(£)a)). (3.23)
Also, by Lemma 3.8 we can guarantee that if y €[ E;)2,.1 for some n=1, 2, ..., then
dly, W N [(E,)i2.]) < 3d(y, W). (3.24)

Putting together (3.23) and (3.24), we have that if y€[H,]2,,1 for some n=1, 2, ..., and

n<m, then
dly, W N [(B)ER)) < 6d(y, W)-+3d(y, [(B)i-r)). (3.25)

Finally, by Sublemma 3.16 (see below), we define 1 =m(1) <m(2)<...so thatif y=> y, €W,
{(y,€ E,), then for each k=1,2 ...

min —lyafl gl + lgrall < delly]l- (3.26)

m()+1<j<mk+1)-1
Set for k=1, 2, ...
Fo=[(F)i508 7.
Suppose 1 <n(l)<n({2)<... and
2 €[(F ) nt1] = [(F)sn ]
with || 2|| =1 and z€ W with |[z|| <L, Tz=x. Write
z=32z (z,€E)

and, using (3.26), choose j(k) for k=1, 2, ... so that m(n(k))+1<j(k) <m(n(k)+1)—1 and
1zier ]| -+ Jzico|| + | zi00+1]] <6neo||2]]- Then by (3.25) and (3.22) we have for k=1, 2, ...

ikt 1)1 '
d(Z%meﬂmﬂ

i=j(k)

f=j()+1

JRe+1)—2 »
<”zi(k)”+”zj(k+1)—1”+d( >z, Wn[(Ei)%(:kJ‘-‘(}fl))il])

H(k+ 12
@WMH%Mwmm(zzﬂ@

f=ir1
e+ 1)—-2 (k)
< 20, l2]] + 6{d( 2 % W) +d(Z % W)]
i=1 i=1
< 20ug5 || 2]| + 6[max (Bje-1y-1 | 2], 2| Ziac+1r-1]])

+max (1|2, 2l|zi00+11D]

< 260,05 || 2] < 260,y L
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This gives the first conclusion as long as
d; <(26L)"te; for 1=1,2, ... (8.27a)
Lastly, since for k=1, 2, ...,
wp = (Bnoer1-1— Bnngoy+1-1) 1'%

and, by (3.21) (which applies because j(k) <m(n(k)+1) and m(n{k+1)) —1 <j(k-+1)),

< Onnir+ -1 3K || 2| < 8y BKL,

j(k)—1

o0
”(Rm(n(k+1))71“Rm(n(k)+1)I)T( Z 2+ Z Zz’)

i=1 i=fk+1)

where K is the basis constant for (E,). Consequently,

jk+1)—1
)
so the second conclusion follows as long as
6, < (BKL)'e, for ¢=1,2,... (3.27D)

Q.E.D.

In the proof of Lemma 3.15 we used the following simple sublemma:

SUuBLEMMA 3.16. Suppose that (EB,) is a boundedly complete £.d.d. for a space Z. Given

any n and £>0, there is m>n so that if 2€Z, z=>%1 2z; (z,€ E,), then

in [z afl+ i+ 1l < el

Proof. If the sublemma is false for a certain # and &>0, then we can find 2*€Z for

k=1,2, ... so that ||2*]| =1,

oc
oF = 21 2, (2f€E), and min |25, ||2h]) + ] 2haseal] > e
i= <j<

By passing to a subsequence of (zF), we can assume that for each ¢=1, 2, 3, ..., there is

2;€ E, so that
[z —2;f| =0 as k- oo.

Then
. inf J|znl] + znsseall + l|znessall = ¢
< j<00

and (|| >i-1 24)))7-1 is bounded by the basis constant for (E,), which contradicts the bound-
edly completeness of (Z,). Q.E.D.
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A sequence (x,) in a Banach space is said to be a symmetric X, sequence with weight

w =0 provided

|2 ana,|| = max ((3]a, |27, w (3| an|2)V?)
for all sequences of scalars (a,).

LemMma 3.17. Suppose that Y is a subspace of X, (p>2), T is a norm one operator from
Y onto X, and KT By, 2 By. There is a constant A so that if (x,) is a normalized symmetric

X, sequence in X with weight w>0, then

lim sup W p(x,) < AKw,
N—>00
where for x€X and L=K,

W) =inf {|y|,: y€Y, |y|| <L, Ty ==}

Proof. For w=0 (i.e., if (x,) is isometrically equivalent to the unit vector basis of ),
Lemma, 3.17 is a special case of Lemma II1.4 in [5], because X, can be embedded into L,
in such a way that |- ||, is equivalent to |- |, on L,. (The p-Banach-Saks assumption in [5]
is satisfied only by the space [(x,)] and not necessarily by X, but Lemma II1.4 can be
applied to the restriction of 7" to T-'((z,)].) So we assume w >0. However, we should men-
tion that the proof below—which is much simpler than the proof of Lemma II1.4 in [5}]—
can be easily modified to take care of the case w=0.

We can also agsume that U1 (¥ N[eJi=1) is dense in Y, where (e,) is the natural
basis for X,

Choose m so that

mlP — /2 (3.28)
and assume (by perturbing the norm on X and increasing K by a constant factor at most)
that m is an integer.

Let 0 <g <1. If the conclusion is false for the constant 4 =5, we can assume, by passing

to a subsequence of (x,), that
5Kw < Weg(x,) (n=1,2,..) (3.29)

and, by Lemma 3.14, that if

xr= Z,

1

Mz

y€Y, |yl <Kll| = &Em"?,

bR
n

and Ty =z, then there are (y,)/~; in ¥ which are disjointly supported relative to the basis
{e,) for X so that
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<e and max |z, — Tyl <e. (8.30)

1<ism

1f such a y is chosen so that also |y|,= Wg(x), then

m 12 m
(leyiﬁ) - iilyi <|yla+e=W()+e. (3.31)
i= =1 |2
Moreover, since.
m 1/p I m |
(Z |Iy.ll”) <2 Zy1‘<2llyll+23<21{mhv+2s,
i=1 i=1

we have, if £>0 is small enough, that

lyill <4K for at least m/2 values of 4,1 <i<m, (3.32)

which we assume, for definiteness, to be 1 <i<m/2.
Note that by (3.30) and (3.32) we have

Wig(z;) <|y,|.+Ke for 1<i<mf2. (3.33)

Putting everything together, we get
5Km*? =5Kuwm™® (by 3.28)

<V2 [("'22 WsK(x,.)Z)m] (by 3.29)

i=1
m/2

1/2
<V2 [( > |yi|§) + Ketm/2)?  (by 3.33)
i=1

<V2 [Wg(x) +e(1+ Km'®)] (by 3.31)
< V2 [K |||+ + Km''?)]
= V2 [Km*? 4+ ¢(1 + Km"®)] (by 3.28)

which is a contradiction if £>0 is sufficiently small. Q.E.D.

We now turn to the proof of Lemma 3.4. We can assume, without loss of generality,
that U1 (¥ N {(e;)i-1]) is dense in ¥ and Ui (X N [(h,)i-1]) is dense in X, where (e;) is
the usual basis for X, and (k;) is the Haar basis for L,

Suppose that the conclusion is false for a value of M which will be specified momen-
tarily. Then for each fixed k=1, 2, ..., we can find a sequence (z%)2_y of unit vectors in

X which is a block basis of the Haar system so that
Waler) > k||2klls (n=1,2,..) (3.34)
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and
inf W, (xk)>0. (3.35)
n

By passing to a subsequence of each (zf)¥.1, we can in view of Theorem 1.14 of [8]
assume that each (27)7%; sequence is M -equivalent to a symmetric X, sequence with
weight w,. In view of (3.35), we have from Lemma 3.17 (or Lemma III.4 in [5]) that w, >0
for all k=1, 2, ..., as long as M is sufficiently large.

Now for each k=1, 2, ..., define m, by

mi? = w,mi® (3.36)

and assume (by adjusting M, if necessary) that each m, is an integer. As was already
alluded to, if M is large enough we have from Lemma 3.17 that if (x,) is any sequence in
X which is M,-equivalent to a symmetric X, sequence with, say, weight w>0, then
lim sup, Wy(z,)<Mw. (This specifies our choice of M, as was promised above.) Con-

sequently, we can assume that for all » and %
Wos(af) < Mwy. (3.37)

Notice that for each k=1, 2, ..., the sequence (y%)x., defined by
(n+1)my—1
Yo=m® > af

j=nmy

is M -equivalent to the unit vector basis for [, so if n=n(k) is sufficiently large, we have
from Lemma 3.11 that W,(ys) >, where § =d(p, M,, K) >0 does not depend on k. Assume
without loss of generality that n(k)=1 for all k; i.e.,

WM(Zk x}‘) >0mi® (k=1,2,...). (3.38)

j=1

Recalling that («})5-1 is a block basis of (k,) and thus orthogonal, we have for k=1,2, ...:

2 %
my . 1/2
<kt (z WM(xf)z) (by 3.34)
1

=1 2:
<E'mi®Mw, (by 3.37)

<k'MM, (by 3.36).

Mg
k
2. %
i=1 n
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That is, if we set

my -1 my
2= x]k z x;cy
j=1 p j=1
then there is a constant B so that for k=1, 2, ...,
zlle <%-1B

and hence by [13], (z;) has a subsequence which is equivalent to the unit vector basis of
I,. However, by (3.38) and (3.36),
wy(2) = O M, !

and this is a contradiction. Q.E.D.
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