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1. Introduction

The classical Yosida—Malmquist theorem [24] states that if R(z,y) is a rational
function of z and ¥, and if the differential equation ()™= R(z, y), where m is a positive
integer, possesses a transcendental meromorphic solution in the plane, then the equation

must be of the form,
' )" = Bo(2) + By () y + ... + B (2)y", (1)

where n<2m. The same conclusion holds (e.g. see [2]) if the equation possesses a mero-
morphic solution in a neighborhood of oo whose Nevanlinna characteristic is not O (log r)
as r—>co. Similarly, the same conclusion holds if R(z, y) is a rational function of y whose
coefficients are analytic functions of z in a neighborhood of ©o having no essential
singularity at co. Other proofs and other generalizations of these theorems have been
obtained by various authors including H. Wittich [20], [21], E. Hille [6], [7], Sh. Strelitz
[17], 1. Laine [12], [13], F. Gackstatter and I. Laine [3], and N. Steinmetz [16]. (Hille
[8], [9] has also done extensive work on Briot-Bouquet equations @(w, w*®)=0, where @
is a polynomial.)

In the case when m =1 in equation (1), it was proved by Wittich [23] that the order
of growth of any solution y,(z) which is meromorphic in a neighborhood of oo and for
which T'(r, y,)==0 (log r) as r— oo, must be a positive integral multiple of }. However, this
result does not extend to the case m>1. It was shown several years ago by the authors
{1, p. 298] that in the case m =2, the equation (1) can possess transcendental meromorphic
solutions whose order of growth is zero, although subsequent investigation revealed that

in this case, the order of growth could not be strictly between zero and 3.
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In this paper, we consider the general case of equations (1), where m is an arbitrary
positive integer, and the R,(z) are analytic functions in a neighborhood of cc having no
essential singularity at oo. It is shown (see §2 below) that the order of growth of a
meromorphic solution in a neighborhood of oo, is either zero, a positive integral multiple
of 4, or a positive integral multiple of §. Conversely, we show that any such number is the
order of growth of a transcendental meromorphic solution in the plane of an equation of
the form (1). In addition, our methods permit us to determine the form of any mero-
morphic solution y,(z) in a neighborhood of oo, whose order of growth is not a positive
integral multiple of {, and for which 7'(r, y,)==0 (log r) as r—co. We show (see § 5 below)
that for some constants a, b, ¢, d with ad —bc==0, the function (ayy(z)+b)/(cy,(z) +d) has
one of the four forms, (i) P(g(2); b, ,), (if) @'(9(2); &y, &), (i) P*(g(2); 8, 83), (iv) P¥(g(2); 01, J,),
where p(z; §,, d,) is the Weierstrass p-function with certain primitive periods d;, d,, and
where g(z) is an analytic function in a slit region D={z: |z| > K, argz=n} for some
K >0, with the property that the function (¢9'(z))? (where ¢=2, 3,4, or 6 depending
respectively on the forms (i), (ii), (iii), (iv)) can be extended to an analytic function in
|2] > K having no essential singularity at co. In our final result (§ 6), we show that for
such a function g(z), there always exist primitive periods d;, d,, such that the functions
given by (i), (ii), (iii), (iv) (depending respectively on whether ¢=2, 3, 4, or 6) can be
extended to be meromorphic functions in a neighborhood of co. In addition, for any
elliptic function w(z) and any analytic function g(z) in the slit region D, which has the
property that for some positive integer ¢ the function (¢'(z))? can be extended to be
analytic in |z| > K having no essential singularity at oo, we derive a necessary condition
(which is always satisfied if ¢ is 2, 3, 4, or 6) for the function w(g(z)) to be extendable to a

meromorphic function in a neighborhood of oo,

2. The main result

We now state our main result. The proof will be completed in §4.

TurorEM 1. Let m be a positive integer, and let Q(z, y) be a polynomial in y of degree
at most 2m, whose coefficients are analytic functions in a neighborhood of oo having no
essential singularity at oo. Let y,(2) be a meromorphic function in a neighborhood of oo which is

a solution of the differential equation,

)" =0 y), @)

and for which
T(r,y,) 0 (logr) as r—>oo, 3)
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Then the order of growth of y,(z) is either zero, a positive integral multiple of L, or a positive
wntegral multiple of §. Conversely, any such number is the order of growth of a transcendental

meromorphic solution in the plane of an equation of the form (2).

3. Preliminaries

If f(2) is a meromorphic function in a neighborhood of oo, say |z| =K, and if 1 is a
complex number or oo, we will use the standard notation for the Nevanlinna functions
T(r, f), m{r, 4, ), n(r, 4, f) and N(r, A, f) (see [22, p. 49] or [2, p. 98]). (In the definitions of
n(r, A, f) and N(r, 4, f), only the A-points lying in K < |z]| <r are considered.) The order of
growth of f is lim sup,., log T(r, f)/log 7.

We will denote by H, the field of all functions which are analytic in a neighborhood of
oo and have no essential singularity at co. As usual, we identify two elements of 3 if they
agree on a neighborhood of oo, and we will call an element of I nontrivial if it is not
identically zero.

We will require the following results concerning the Wiman-Valiron theory (see [19],
[22], or [23].) If w(z)= D5 - @,2" is an analytic function in a neighborhood of < such
that T'(r, w)==0 (log r) as r—>oo, let M,(r) denote max,,_, |w(z)| and let k(r) denote the
centralindex of w(z). Then the following hold:

(a) For every a=0, M(r)/ro— + oo ag r— 4 oo,

(b) If g is a positive integer, there exists a set ¥ in (0, o) having finite logarithmic
measure, such that if r¢ £ and z is a point on |z| =r at which |w(z)| =M,{r), then for

i=1,...,q,
w(z) = (k(r)[2) w(z) (1 +-6,(2)), (4)

where §;(2) =o0(1) as r—oc. In addition, for some « >0,
k(r) = O((log My(r))*) as r-—>co,r¢E. (5)

The order of w(z) is also given by lim sup,_,, (log k(r)/log r).

(c) If @z, w, w', ..., w'™) is a nontrivial polynomial in w, w’, ..., w'™, whose coefficients
belong to H, and if @ possesses only one nontrivial term of maximum total degree in
w,w’, ...,w™, then the differential equation Q(z, w,w’, ..., w™)=0 cannot possess a
solution w(z) which is analytic in a neighborhood of oo and for which T(r, w)=+0 (log r)
as r— oo, (This follows easily, e.g. see [22, pp. 64-65], from Parts (a) and (b), since k(r) is an

unbounded increasing function for all sufficiently large r.)
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4. Proof of Theorem 1

We will now prove a sequence of lemmas from which the theorem will immediately

follow.

Lemma 1. Let m, Q(z, y) and yy(z) be as in the statement of the theorem. Then:

1) The degree of Q(z,y) in y is at least m.
. (ii) Let the factorization of Q(z,y) into trreducible factors (e.g. see [25, p. 31]) be

Qz, y) = BR)Qi(= )™ ... Qulz, y)™, (6)

where R(z) is a nontrivial element of W, ¢=1 (by Part (i), the m, are positive integers, and
where the irreducible polynomials Q,(z, y) over H are monic and distinct. Let § denote any of

the numbers 1, ..., q. Then the following are true:

(a) If the function Q,(z, y,(2)) has only finitely many zeros in a neighborhood of o, then
Q;(z, ) is of the form y—a, where a is a constant.

(b) The function Q;(z, y4(z)) cannot be identically zero.

(c) If the meromorphic function Q«z, yo(2)) has infinitely many zeros, say {z,}, on
|z]| =K for some K, and if F(z,y) is any polynomial in y, with coefficients in W, which is
not the zero polynomial and which is relatively prime to @, as polynomials in y over W, then
far some ny, F(z,, Yolz,)) 0 for all n=n,,.

() If m;&{m, 2m}, then Q,(z, y) is of the jorm y—a where a is a constant.

Proof. Part (i): First, (z, y) cannot be the zero polynomial in y, for otherwise y,(z)
would be a constant function contradicting (3). Let d denote the degree of Q(z, ¥) in y, and
assume d <<m. Then, in a neighborhood of oo where the coefficients of Q(z, ) are analytic,
and the leading coefficient is nowhere zero, the solution ¥¢(2) can have no poies since the
multiplicity « at such a pole would satisfy the relation (ax+1)m =d« contradicting d <m.
Hence y,(2) would be analytic in a neighborhood of oo, However, if d<m, then equation
{2) has only one term of maximal total degree in y, ¢', and hence from § 3, Part (c), this
equation eannot possess any analytic solutions in a neighborhood of oo satisfying (3).
This contradiction proves that d>m and hence Part (i) is proved.

Part ii(a): Let Q,(z, ) =% a,(z)¥*, where 4>0, the a,(z) belong to H and a,(z)=1.
Assume that the function f(2) =@,(z, y,(2)) has only finitely many zeros in a neighborhood
of oo, and set w(z)=1/f(z). Then w(z) is analytic in a neighborhood of oo, and since
(e.g. [2, p. 100]), T'(r, w) =AT(r, y,) + O (log r) as r—> oo, clearly T'(r, w)==0 (log r) in view of
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(3). Hence the Wiman-Valiron theory (§ 3) is applicable to w(z). Set M,(r) =max ,_, |w(z) |
and for all sufficiently large r, let z, denote a point on |z| =r for which |w(z,)| =M(r).
Then in view of § 3(a), it follows that,

r|f(z,)| >0 as r—> oo forall a>0. ("N

Since the coefficients a,(z) belong to H, it is easy to see that if a,(z)==0 then there
are real constants oy, K, Ly, and 4,, with K, L, and 4, positive, such that

K. |2|* < |a(2) | < Ly 2] for |z]| > 4. (8)

(Of course, a; =0 and we may take K; =L, =1.) Now a4(z) =0 since @,(z, y) is irreducible.
In view of (7) and (8), it easily follows that for all sufficiently large r, say r >y, we have
[ag(z,) | = Kyr™ > |f(z,) |, and hence yo(z,) 0. If we set Wi(2) = (ax(2)[@1(2)) yo(2)* %, then we

have

A-1
fzr) = aaz,) yolz,) (1 + IZO‘Y;C(%)) . 9)

Let I denote the set of all £€{0, 1, ..., A—1} for which a,(z)=0, and let B denote the set
of all r>ry for which |yez,)|**>(A+ 1)L, K;'r*-*, for all k€ 1. Then clearly from (8),
if r€ B, we have |Wi(z,) | <(1/(A+1)) for all £, and hence from (9) (and the fact that 0€I),
we obtain |f(z,)| =Lyr*. This, of course, contradicts the definition of r,. Hence B must
be the empty set, and thus if r>r, there is an index k€1, depending on r, for which
[%o(z) |* *<(A+1) L, K7*r***. Hence if L denotes the maximum of the numbers
(A+ 1)L, K;)*® for k€I, and if ¢ denotes the maximum of the numbers (o, — o3)/(A — k)
for k€1, then

[yo(z) | <Lro for all r>r,. (10)

Now let @,,(z, y) denote 6Q,(z, y)/oz, and let @,,(2, y) denote &Q;(z, ¥)/ey. Then clearly,

w'(2) = —w(2)*(@n(z: Yo(2)) +Qal2: Yo(2)) Yo(2))- (11)

We distinguish three possibilities: (A) The polynomial @,,(z, ) is the zero polynomial;
(B) @;,(2, y) is not the zero polynomial, but @,(z, y) and @,,(2, y) are not relatively prime as
polynomials over 3 (C) @,,(2, y) is not the zero polynomial, but Q;(z, y) and Q,(z, y) are
relatively prime as polynomials over .

In Case (A). clearly @;(2, y) has constant coefficients, and since it is irreducible over ¥,
it must have the form y—a which is the conclusion of Part ii(a). Case (B) is easily seen to
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be impossible because the irreducibility of @;(z,y) would imply that @z, y) divides
Q{2 y) (as polynomials over ), while Q(2, y) is clearly of smaller degree in y than
@Q;(z, v) since Q,(z, y) is monic. Thus to prove Part ii(a), it suffices to show Case (C) is
imposgible. If we assume Case (C) holds, then there exist polynomials G(z, %) and G,(z, %)
over I such that

Gz, 9)@)(2 y) + G2, ¥)Qn(z, y) = 1 12)

as polynomials in y over ‘H. We observe first that if D(z, y) denotes any of the polynomials
Rz 1), Qi Y), G2, y), Gufz, ), or @z, y) for k=1, .., ¢, then since D(z,y) has
coefficients in W, it easily follows from (10) that there are veal constants ¢>0 and o, such
that

| D(z,, yolz,)) | < cr®,  for all sufficiently large 7. (13)
Since f(z,) =@z, y4(z,}) satisfies (7), it now follows from (12}, that
| Gs(2,, Yo(2:) Qa2 Yolz,)) | =% for all sufficiently large r.
Applying (13) with D=@,, we obtain,

lel(zr’ ?/o(zr)) I = (1/26) r‘m: (14)

for all sufficiently large r. Since each factor @, in @ satisfies (13), while the factor @;
satisfies (7), we see that r*{Q(z,, y,(2,)) | =0 for each >0 as r— + oo. From the differential
equation (2), it then follows that r¢|yy(z,) | 0 for each >0 as r— + oo, In view of (13) for
D =Q,, we thus see that for all sufficiently large 7, we have |Q,,(z,, ¥o(2.)) yo(2,) | <(Lf4cyr—.
It now follows from (11) and (14) that

[w'(2)fwiz,) | 2 Mo(r) (1/de)r™, (15)

for all sufficiently large r. But by the Wiman—Valiron theory, relation (4) holds for all »

outside of a set & of finite logarithmic measure, and hence together with (15), we obtain,
2k(r)[r = M(r)(1/4c)r™*, (16)

for all sufficiently large r which lie outside E, where k(r) is the centralindex of w(z).
Since k(r) satisfies (5), and M,(r) grows faster than every power of r (by § 3(a)), clearly (16)
is impossible for arbitrarily large r. Hence Case (C) is impossible and thus Part ii(a) is
proved.



MEROMORPHIC SOLUTIONS OF THE DIFFERENTIAL EQUATION (y')" = R(z 229
v 'Y

Part ii(b): If f(z) =@;(2, yo(2)), then since (e.g. [2, p. 100]), T'(r, /) =AT(r, y,) + O (log ),
we cannot have f(2)=0 in view of assumption (3).

Part ii(c): In view of Part ii(b), the sequence {z,} of zeros of Q;(z, ¥o(2)) in |z| =K
must tend to oo. Hence for all sufficiently large =, the point 2, cannot be a pole of y,(2)
since the coefficients of Q;(2, y) are analytic on some neighborhood of oo, and the leading
coefficient is 1. If F(z, y) is relatively prime to §,(z, ) ,then as in (12), some linear combi-
nation of F and );is 1, and it clearly follows that F(z,, y,(2,))==0 for all sufficiently large n.

Part ii(d): Suppose now m,;§{m, 2m} in (6), and let f(z) =Q;(2, ¥,(2)) be meromorphic
on |z| =K for some K >0. If {(z) has only finitely many zeros on |z| > K, the conclusion
follows from Part ii(a). Hence we may assume that f(z) has infinitely many zeros, say
{z.}, on |z| > K. Let «, denote the multiplicity of the zero z, for f(z). In view of Part ii(c),
no other function Q(z, ¥o(z)) can vanish at z, if » is sufficiently large (and, of course, in
some neighborhood of oo the function R(z) in (6) is analytic and nowhere zero), so
Q(2, y4(2)) has a zero of order m;a, at z,. Thus from (2), y, has a zero at z,, say of order
Ay, and md, =m;a,. But since the degree of @ is at most 2m, we have m;<2m by our
assumption in this case. It follows that 1, <2a, for all sufficiently large n. It is not possible
for any «, to be 1, since this would imply 4,=1, and thus m=m;. Hence «,>1 for all
sufficiently large », and hence f'(z,) =0. Since also yy(z,) =0, it follows that Q;;(z,, ¥o(z.)) =0
for all sufficiently large », where as in Part ii(a), @;;(z, y) denotes 8@,(z, y)/0z. 1f Q;,(2, ¥)
were not the zero polynomial, it would follow from Part ii(c), that §,(z, y) and Q,(2, ¥)
cannot be relatively prime. Since Q,(z, y) is irreducible over ¥, it would follow that @),
must divide @,; as polynomials over , and this would be impossible since the degree of
@, is smaller than that of @; because @; is monic. Hence §;,(z, y) must be the zero poly-
nomial over , and hence Q;(z, y) has constant coefficients. Since @,(z, %) is irreducible
over H#, it must have the form y—a and this proves Part ii(d).

We will require the following form of Wittich’s theorem [23]. We omit the proof
since it is exactly the same as the proof given in [23] for the case when the Riccati equation
has rational functions for coefficients. (We remark that if the Riccati equation is actually

linear, the result follows immediately from the Wiman—Valiron theory (§ 3).)

Levmma 2. (Wittich [23]). Given a Riccati equation,
u' = Ry(z) + B,(2)u + Ry(z) u?, (a7)

where the R;(z) belong to . Let uy(z) be a solution of (17} which is meromorphic in a neighbor-
hood of oo, and such that T(r, ug)+0 (log r) as r—oo. Then the order of growth of uy(z) ts a

positive integral multiple of 4.
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Using this result, we can now prove:

LeMMA 3. Let m, Q(z, y), and y,(2) be as in the statement of Theorem 1. Then, at least
one of the following holds:
(a) The order of growth of y,(z) s a positive integral multiple of };

(b) The polynomial Q(z, y) is of the form,
Qz y) = R@)(y—ay)™ ... (y—a))™, (18)

where R(2) is a nonitrivial element of W, ay, ..., a, are distinct complex numbers, and

My, ..., My are positive integers satisfying,
m<my .. tm,<2m, and m;¢{m,2m} forallj. (19)

Proof. If (b) fails to be true, then it follows easily from Lemma 1, Parts (i) and ii(d),
that in the representation (6), we must have m;€{m, 2m} for some j€{l, ..., q}. By
renumbering if necessary, we may assume m, €{m, 2m}. In this case we will show that
the order of growth of y, is a positive integral multiple of }.

Suppose first that m, =2m. Since the degree of Q(z, ) is at most 2m, clearly §;(z, ¥)
must be linear in y. Hence the equation (2) is of the form, ()" = R(2) (y + B(z))*", where
R(z) and B(z) belong to . If we set V=yo/(y,+ B)?, then V() is meromorphic in a
neighborhood of co. But since y,(z) satisfies (2), we have V™ =R, and hence V is actually
analytic in a neighborhood of oo, having no essential singularity at co. Since y,(z) satisfies
the Riceati equation, y’ = V(y + B)? whose coefficients belong to H, it follows from Lemma
2, that (a) holds in this case.

Now assume that m, =m, and we consider the possibilities for ¢ in the representation
{6). If g=1, then since the degree of Q(z, y) cannot exceed 2m, equation (2) must have

one of the forms,
(¥)" = R@)(y+B@)" or (y)"=RE) (y*+BRry+AR)" (20)

where A, B and R belong to . As above, it again follows from Lemma 2 that the order of
y, is a positive integral multiple of 1, by setting V=y;/(y,+ B) in the first case, and
V =yo/(y5+ By, +A) in the second case.

Hence we are left with the case m, =m and ¢>2. Of course Q,(z, y) must be linear in y,
or the degree of Q(z, y) would exceed 2m. We distinguish two subscases. Suppose first that
for some j>2, we have m;€{m, 2m}. Then we must have q=2, my=m, and @,(z,y) is
linear in y. Hence equation (2) is of the form (y')"=R(y+ B)"(y + A)™, where A, B, and E
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belong to H. As before, by setting V =uyo/(y, + B)(y,+ 4), it follows from Lemma 2 that
conclusion (a) holds.

In the only case remaining, we have m;=m, ¢>2, and m,¢{m, 2m} for all j=>2.
By Lemma 1, Part ii(d), it follows that for j >2, each @,(z, y) is of the form y —a;, where a;

is a constant. Hence y,(z) satisfies the equation,
)" = B@)(y+ B@)"(y —a)™ ... (4 —ag)™, (1)

where B and R belong to W, and a,, ..., @, are distinet constants. Since the degree in y
of the right side of equation (21) is at most 2m, and since m;¢{m, 2m} for j>2, we
obviously have,

My+...+my<m, and m;<m forj=2,..4q. (22)

We now assert that for each j€{2, ..., ¢}, the function y,(2) —a; must have infinitely
many zeros in every neighborhood of co. If we assume the contrary for some §, say for
7=2, then vy(z) =1/(y,(?) —a,) is analytic in a neighborhood of co. Since y, satisfies (21),

clearly wy(z) satisfies the equation,
(=1 = B((ay+ B)o+ 1) (1 +bgv)™ ... (L+bgv)™ 07, (23)

where b;=a,—a;, and g=m—(my ... +m,). We observe that each 6,50, and a,+ B =0,
by the distinctness of the factors @(z, ¥) in (6). Hence, as a polynomial in v over H, the
degree of the right side of (23) is 2m —m, which is greater than m by (22). Hence equation
(23) possesses only one term of maximal total degree in v, v/, and by the Wiman-Valiron
theory (§3(c)), it must follow that for the analytic function vy(z), we have T(r, vy) =
O (log r) as r—oo. Of course, this leads to an immediate contradiction of our assumption
(3) for y,, and thus proves the assertion.

Returning to equation (21), let =2, and let z, be a zero of yy(z) —a; of order d;. If
|2| is sufficiently large, then by Lemma 1, Part ii(c), the right side of equation (21), when
y¥=y,(2), has a zero at z, of multiplicity m,d;. From equation (21), y, also vanishes at z,

with multiplicity d;--1, so clearly

d;>1, (m—m;)d;=m, and m;>m/2, (24)

for §=2, ..., ¢. In view of (22), it now easily follows that ¢<3, so either g=2 or ¢=3. In
either case, equation (21) has only one term of maximal total degree in ¥, ', so by the
Wiman—Valiron theory (§ 3(c)), y,(z) must have infinitely many poles in every neighborhood
of oo,

We now distinguish the two cases ¢=2 and ¢=3. If ¢=2 and ¢, is a pole of y(z) of
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order 8, then if |z,| is sufficiently large, it follows from equation (21) that
(0+1)m=d8(m+my). Thus m=0m, Since m,<m by (22), we have §>1. But since

m,>m|2 by (24), we must then have 6 =2, so m =2m,. Hence equation (21) has the form
(y')"™ = R(2) (y + B(2)*™ (y —as)™, (25)

where B and R belong to H. Setting V =(y0)/(y, + B)2(y, —a5), and noting that V" =R,
it follows as before that V belongs to H. Now if we set uy, =yo/(y+ B). then yy=a,+ (w5 V).
Computing y; and substituting into the definition of V, we see that the meromorphic

function u, satisfies the relation,
((Qug V —uy V') V2?2 = (a,+ B+ (ug] V)2 (26)

Hence u, must satisfy one of the two Riccati equations defined by (26). Since both of
these Riccati equations have coefficients belonging to the field H, and since T'(r, yo) =
2T(r, uy) + 0 (log 7) as r—>oco, it follows from Lemma 2 that the order of growth of u,
and hence of y,, is a positive integral multiple of }

Finally, we consider the case ¢=3. In this case if 2, is a pole of y,(z) of order 9,
and if || is sufficiently large, then it follows from equation (21), that (8-+1)m=
O(m +my +my), 80 m=05(my+my). Since m;>m[2 by (24), it easily follows that =1, and

my=ms=m/2. Thus equation {21) is of the form,
()" = B(2) (y -+ B@)™™ (y —as)™ (4 —as)™. @7
Since y,(z) satisfies (27), it easily follows that y,(z) =1/(y,(2) —a;) satisfies the equation,
(y')*™ = Ry(2) (y + By(2)*™ (y —by)™, (28)

where R, =R(a,+ B)*™(ay—ay)™, B;=1/(a,+B), and b;=1/(as—a,). Since R; and B,
obviously-belong to W, clearly (28) is an equation of the form (25), and we saw that any
solution of (25) whose Nevanlinna characteristic is not O (log7) as r—o°, must have
order of growth equal to a positive integral multiple of §. Since T'(r, y,) =T'(r, y,) + O (log 7)
as r— oo, it follows that the order of growth of ¥,, and hence of ¥,, is a positive integral

multiple of . This concludes the proof of Lemma 3.

LEMMA 4. Let m,Q(z, y), and y,(z) be as in the statement of Theorem 1. Then, at least
one of the following holds:

(a) The order of growth of y,(z) is a positive integral multiple of 1;

(b) There exist constants a, b, ¢, d, with ad—bc=0, such that if y,(z) -(ayo(z)-i—b)/
(cyy(2) +d), then y(2) satisfies a differential equation of the form,
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)" = By(2) (y—by)" ... (y—by)", (29)

where R, is a nontrivial element of W; t<4; by, ..., b, are distinct complex numbers, and

where 1y, ..., 7, are positive tntegers satisfying the conditions,
yFet+re=2m, 1<r,<m, and m=>2i(m-—r)), (30)
for 1<j<t, where A; is an integer greater than 1.

Proof. We assume that (a) fails to hold. Then from Lemma 3, we know that y,(2)

satisfies the differential equation,
)" =By —a)™ ... (y—a)™, 31)

where R(z) is a nontrivial element of , a;, ..., a, are distinct complex numbers, and the
positive integers m; satisfy (19).

We first show that for each j =1, ..., g, the function y,(z) —a; must have infinitely many
zeros in every neighborhood of co. This is very easy to prove, since under the change of

variable v=1/(y —a;), equation (31) becomes,

(=1 ()" =R(2) o™ ™[] (1 + (a;— @) o)™ (32)
k=*i

The degree in v of the right side of (32) is 2m —m,; which by (19) cannot equal m. Hence
equation (32) has only one nontrivial term of maximal total degree in v, »’, and thus by
the Wiman—Valiron theory (§ 3(c)), the Nevanlinna characteristic of any analytic solution of
(32) in a neighborhood of co must be O (logr) as r— oo, which proves the assertion in
view of (3).

I j€{l1, ..., ¢}, and 2, is a zero of y,(z)—a, of order A, whose modulus is sufficiently
large, then from (31), yo vanishes at z; so 1,>1, and m(i,—1)=m,A,. Hence, for each

i=1, ..., 9,
(m—m;i;=m, 1<m,<m, and m;>m/2. (33)

We now distinguish two cases. Suppose first that m,+ ... +m,=m. In this case, it
follows from (33), that ¢<2. Clearly ¢=2, or otherwise m, =m contradicting (19). Since
m;=>m(2, it follows that m,=m,=m/2, and hence (31) has the form,

¥)™ = RB(2) (y —ay)™ (y — an)™. (34)
If we set vy(2) =1/(yo(2) —a,), then v, would satisfy the differential equation,
(©')™ = R(z) (@1 —a)"v"™(v — (1/(a; —ay)))™. (35)

16 ~792902 Acta mathematica 144. Imprimé le 8 Septembre 1980



234 S. B. BANK AND R. P. KAUFMAN

Of course, this is an equation of the form (25), and for such equations we proved that the
order of growth of any solution v(z) for which T'(r, v) %= 0 (log r) as r— oo, must be a positive
integral multiple of }. In view of our assumption (3), it would follow that the order of growth
of vy(z), and hence of y,(z), would be a positive integral multiple of §, contradicting our
assumption that conclusion (a) fails to hold.

Hence m, +...+m,+m, and so by (19) we must have,
m <my+...+m, < 2m. (36)

Thus equation (31) possesses only one term of maximal total degree in y, y’, so in view of
assumption (3) and the Wiman-Valiron theory (§ 3(c)), y,(z) cannot be analytic in some
neighborhood of o, 50 y,(2) must have infinitely many poles in every neighborhood of co.

If 2, is a pole of y,(2) of order s whose modulus is sufficiently large, then from (31),
(8+1)ym =(my+... +my)s. (37)

Now from the last relation in (33) and the second inequality in (36), it follows that
g<4 {with equality holding only if m, +... +m,=2m). Hence, if m; + ... +-m,=2m, then in
view of (33), equation (31) is already in the desired form (29), and we may take {=g,
‘by=ay, r;=m;, B;=R, and y, =y,.

Thus we need only consider the case m, +... +m,<2m (in view of (36)). In this case,
set {=g+1 (so t<4), choose a complex number a,¢{a,, ..., a,}, and set y, =1/(yy—a,). It

is easily verified that ¥, is a solution of an equation of the form (29), where,
By =(—~1)"Ra;—a)™ ... (a,—a)™, (38)
b; =1{(a;—a;) for 1<j<gq, while b,=0, and where,
ry=my; for 1<j<q, while 7, =2m—(m;+...-+m,). (39)

Since we are assuming m; + ... +m, < 2m, it follows (using (36) and (37)) that 1 <r,<m,
m=s(m—ry), and s>1. In view of (33), it now follows that the conditions (30) are all
satisfied proving Lemma 4.

Before proceeding to solve equation (29), we require a simple result concerning elliptic
functions. We recall that the order of an elliptic function w(z) (which we will call the elliptic
order of w(z) to distinguish it from the order of growth of w(z)) is the number of poles
(counting multiplicity) of w(z) lying in the fundamental parallelogram. (Of course, we
use the convention that if §,, J, are primitive periods for w(z), then the fundamental

parallelogram consists of the interior of the parallelogram with vertices at 0, d,, &,, §; +3,,
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together with the vertex 0, and the two sides intersecting at 0, but without the endpoints
d, and §,.) It is well-known (e.g. [15, p. 366]) that if w(z) is of elliptic order ¢, then w(z)

assumes every complex value exactly ¢ times in the fundamental parallelogram.

Lemma 5. Let G(w) be a polynomial having constant coefficients, and let w(z) be a non-
constant elliptic function of elliptic order q, which is a solution of the differential equation
(W =GQ(w). Then:

(a) If ¢, and ¢, are complex numbers satisfying ¢ =G{c,), then there exists a complex
number { such that w(l)=c, and w'({)=c¢,.

(b) Any solution of the differential equation (w')? =G(w) which is meromorphic and non-

constant in a region of the plane must be of the form w(z+ K) where K is a constant.

Proof. Part (a): If ¢, is a root of G{w), and if { is a point for which w({) =c¢,, then clearly
w'({) =0=c¢,. Hence we may assume that Q(c,}=£0. Then, from the differential equation it
follows that all roots of the equation, w(z)=c, are simple, and hence there are ¢ distinct
roots z,, ..., 2, of w(z)=c¢, in the fundamental parallelogram. Since ¢,==0, the equation,
y?—c{=0, has g distinct nonzero solutions for y, say c,, ..., ¢,. Assume that w'(z;)==c, for
7€{L, ..., q}. From the differential equation it follows that for each §, (w'(z;))?=c{, and
hence from our assumption, the value of w'(z;) is one of the g —1 numbers ¢,, ..., ¢,. Thus
for at least two distinet values of j (say j=r and j=n), we have w'(z;) =¢; for some
k€{2, ..., g}, so that

wlz,) =cp=w(z,) and w'(z,)=c,=w'(z2,). (40)
Then if we set,
wy(2) = w(z+2,—2,), (41)

it easily follows from {40) that w{z) and w;(2) are both solutions of the initial-value problem,
w” = (W) (w)[gG(w), w(z,) =cy W(2) =0 . (42)

and hence must coincide by the standard uniqueness theorem for ordinary differential
equations (e.g. [2, p. 19]) since the right side of the differential equation in (42) is analytic
as a function of (w, w’) around (c,, ¢;). Hence z,—z, is a period -of w(z) which obviously
contradicts the fact that 2, and 2, are distinet numbers both lying in the fundamental
parallelogram. This contradiction proves that w'(z;) =¢, for some j€{1, ..., ¢} and we may
take { =z, proving Part (a).

Part (b): If wy(z) is another solution of the differential equation (w')}?=G{w), which is

meromorphic and nonconstant in a region D, then obviously there exists a point 2,€ D
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such that ¢, =w,(z,) is not co or a root of G(w). Setting ¢, =wy(z,), we have ¢i=G{c,) so by
Part (a), there is a complex number z, such that w(z,)=c, and w'(z,)=c,. Hence if we
define w,(2) by (41), then clearly wy(z) and w,(2) are both solutions of the analytic initial-
value problem (42) and thus must coincide as in the proof of Part (a). This proves Part (b).

LuEMMA 6. Let m, Q(z, y), and yo(z) be as in the statement of Theorem 1. Then, at least
one of the following holds:

(a) The order of growth of yo(z) is a positive integral multiple of %,

(b) There exist constants a,, by, ¢, dy, with a;d, —b,c,+0, such that if y,=(a,y,+b,)/
(€1Yo+d,), then y,(2) satisfies a differential equation having one of the following forms:

¥')? = Ry(2) (y — 1) (y — €2) (¥ — &), (43)
(') = Byf2)(y — By (y +P)* (44)
(¥')* = By(2) (y —B)*y, (45)

(¥')® = By(2) (y —)°y*. (46)

Here, R, is a nontrivial element of N, the e; are distinct constants whose sum is zero, and f3
is a nonzero constant.

Furthermore, in Case (b), there exist primitive periods 8, 0y, for the Weierstrass
p-function (z; 8y, 8,), and a function g(z) which is analytic in a slit region, D={z: |z| >K,
arg z=Em} for some K >0, such that the following hold:

(A) If ys(z) satisfies (43), then (g9'(2))? = Ry(2)/4 and yu(z) =p(g(2); 8y, 8)-

(B) If yu(2) satisfies (44), then (g'(2))* =2R4(2)/27 and yo(2) =’ (g(2); 6,1, Os).

(C) If yy(2) satisfies (45), then (g'(2))* = Ry(2)/4* and y,(2) = p*(g(2); 0y, Os)-

(D) If yy(z) satisfies (46), then (g'(2))® = By(2)/6° and y,(z) =p*(g(2); 61, 6).-

Proof. We assume that the order of growth of y,(z) is not a positive integral multiple
of 4. Then from Lemma 4, we know that some linear fractional transform g, of y, satisfies
an equation of the form (29) where (30) is satisfied. Since 7;=m/2, it follows easily that ¢
is either 3 or 4, and we distinguish these possibilities.

Assume first that t=4. It follows from (30), that A7’ +...+A;*=2, and since the 4,
are integers exceeding 1, we must have 4,=2 for j=1, 2, 3, 4. Hence r,=m/2 for each j

so m is even, and if we set r=m/2, then y, satisfies the differential equation,

(YY" = By(2) (y —by)" (y —ba)" (y — Do) (y —b,)". (47)
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If we set Ry =(y1)2/{y; —By) ... (y; —by), then Ry(z) is meromorphic in a neighborhood of oo,

and Ry = R,. Hence Ry is a nontrivial element of #, and y, satisfies the differential equation,
(¥')* = Ry(2) (y —by) (y —ba) (y —b3) (y —ba)- (48)

If we set y,=(y, —b,)1— 51 (b;—b,)"Y/3, then it is easily verified that y, satisfies a
differential equation of the form (43), where R, is a nontrivial element of 3 and where the
e; are distinct constants whose sum is zero. In view of this latter condition it is well-known
(e.g. [15, pp. 403-404]) that there exist a pair of primitive periods é,, 3, such that the
Weierstrass p-function p(z) =p(z; d;, §,) satisfies the equation,

("(2))* = 4(p(2) —e1) (9(2) —&5) (p(2) —ea)- (49)

Now let K>0 be so large that y,(z) is meromorphic on |z|>K, and R,(z) is analytic
and nowhere zero on |z| >K. With the region D as in the statement of the lemma,
there exists an analytic branch of (R,(2)/4)* on D. Let ¢;(2) denote a primitive of this
branch on D, so that (g:1(z))2= Bx(2)/4. Choose & point z, €D so that b,=y,(z,) does not
belong to the set {e;, e, €5, oo}, and set b, =¥2(%)/g1(z). Then from (43), we have
b2 =4(by—e,) (by—ey) (by—es). In view of (49) and the fact that p(z) is of elliptic order 2, it
follows from Lemma 5, that there is a point z; such that p(z,)=b, and p'(z,) =b,. Now
for z€ED, set

9(2) = ¢1(2) +21 —91(20), (50)

and y,(2) =p(g(z)). Then from (49), it easily follows that y,(z) also satisfies the differential
equation (43) on D, and clearly,

Ys(%o) = by = yy(%,) and ?/é(zo) = yé(zo)- (81)

By our choice of b, and b,, there exists an analytic branch F(u) of (4(u —e;) (u —e,) (v —e5))*
in a neighborhood of u =5, such that F(b,)=b,. From (43) and (51), it now easily follows
that y,(2) and y,(z) are both solutions of the analytic initial value problem,

Y =g ), ylz)= by (52)

and hence must coincide by the uniqueness theorem for ordinary differential equations.
This proves the representation described in Part (A).

We now consider the case where ¢=3 in (29) and (30). Then ;' + 45 +43 =1, and by
renumbering if necessary, we may assume A, <1,</l,. It is clearly not possible for A,
to exceed 3, so 4, is either 2 or 3. If A, =2, then 43" +43'=1. Clearly then 4,>2. If 1,=3,
then A,=6, while if A;=4, then A;=4. It i3 clearly not possible for 4, to exceed 4 if
Ay=2. Secondly, if 1, =3, then 15" +25"=%. If A,=3 then A;=3. It is clearly not possible
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for A, to exceed 3 if 1, —=3. Hence the possibilities for (4,, 4,, A,) in (30) are (3, 3, 3), (2, 4, 4),
and (2, 3, 6), and we consider each case separately.
Suppose first that (4;, A, 43)=(3, 3, 3). Then each 7, in (29) is 2m/3 so that m is a

multiple of 3. Hence if we set r=m/3, then y,(z) satisfies the equation,

(¥')* = Ry(2)(y —b,)* (y —b2)™ (y — bg)™". (53)

Setting Ry =(y1)3/(y, —b1)2(yy —ba)2(y, —b3)2, it follows that ZR,(z) is meromorphic in a
neighborhood of o, and R;=R;. Hence R, is a nontrivial element of 3, and y, satisfies

the differential equation,

(¥')* = Ry(2) (y —b1)* (y —b2)* (y — by)™. (54)

If we set y,=(y, —bg)t~>7; (b;—by)"1/2, then it is easily verified that y, satisfies an
equation of the form (44) where R, is a nontrivial element of , and f is a nonzero constant.
In view of this later condition, it follows from well-known results (e.g. [15, p. 403]) that
there exist primitive periods §;, d, such that p(2)=gp(z; 6, J,) satisfies the differential
equation, (p')?=4p%+ % Hence p’(z) satisfies the equation,

(")) = (27/2) (9’ (2) —B)* (9" (2) + B)*. (85)

Choosing K sufficiently large as before, there exists an analytic function g,(z) on D such
that (91)®=2R,/27. Choose a point z,€ D such that b,=y,(z,) does not belong to the set
{B, —B, =}, and again set b, =ya(2,)/91(2,). Then in view of (44), (53), and the fact that o’
is of elliptic order 3, it follows from Lemma 5 that there is a point z, such that '(z,) = b,
and p”(z,) =b;. Setting y,(2) =p’(g(2)), where ¢(z) is defined by (50), it easily follows that
¥2(2) and y,(z) are both solutions of equation (44) and that (51) holds. Hence if F(u)
denotes the analytic branch of (27(w —pB)2(u-B)%/2)"® around u =b,, satisfying F(b,) =b;,
then it is easily verified that y,(z) and y,(z) are both solutions of the initial-value problem
(62) and thus coincide. This proves the representation described in Part (B).

Now assume (4, Ay, 43) =(2, 4, 4) in (30). Then it easily follows from (29) and (30)
that m is a multiple of 4, and that y, satisfies a differential equation,

(')t = By(2) (g — b1)* (y —ba)* (y — b5)?, (56)

where Rj is a nontrivial element of ¥, and the b; are distinct constants. Then if we set,
Yo=(y; —b3) 1 — (b, —bs)7, it is easy to verify that y, satisfies a differential equation of

the form (45), where R, is a nontrivial element of H, and g is a nonzero constant. From
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this latter condition, it follows as before that there exist primitive periods §,, d,, such that

p(z) =p(2; 04, 0,) satisfies the equation, (p’)2=4p%—4fp. Hence G'=p? satisfies,
(G')F =44GQ - £)265. (67)

For K >0 sufficiently large, there exists an analytic function ¢,(z) on D such that
{91)* = R,[4% Choose z,€ D such that by=y,(z,) does not belong to the set {0, §, o}, and
set by =4a(z,)/91(2,). Since G is of elliptic order 4, it follows from (45), (57) and Lemma 5
that for some point z;, we have G(z,) =b, and G'(z;) =b,. Setting y,;(z) =G(g(2)), where g(z)
is defined by (50), it follows that y,(z) also satisfies (45), and that (51) holds. Then if F(u)
is the analytic branch of (44 —f)243)"'* around w =b, satisfying F(b,) =b,, it is easy to see
that y,(z) and y,(2) are both solutions of the initial-value problem (52) and thus coincide.
This proves the representation described in Part (C).

The only remaining possibility in (30) is that (4, 4y, A3) =(2, 3, 6). It easily follows that

m is a multiple of 6, and that y,(z) satisfies an equation,
(") = Ry(2)(y — 1) (y —ba)* (y —~b3)%, (58)

where R, is a nontrivial element of ¥, and the b, are distinct constants. If we set
Yo =y, — b3}t —(by—b,)1, then it is easily verified that y, satisfies an equation of the
form (46), where R, is a nontrivial element of } and the constant f§ is nonzero. As before,
there exist primitive periods 6,,d, such that p(z)=gp(z; §;, 0,) satisfies the equation,
(©')2=4p%—4p. Tt easily follows that G, =p3 astisfies the differential equation (G)é=
6%(G; —B)*G:. If K >0 is sufficiently large, let g,(z) be an analytic function on D such
that (g1)® = R,/6%. Choosing a point z,€ D such that by =y,(z,) does not belong to the set
{0, 8, o}, and setting b, =ya(20)/g1(2,), it follows from Lemma 5 that for some point z,,
we have G,(z,) =b, and Gi(z;) =b;. Setting y,(z) =G(g(z)) where g(z) is defined by (50),
it is easy to see that y,(2) satisfies equation (46) and the conditions (51). Then if F(u) is
the analytic branch of (66(u—pB)3u%)*® around % =b, satisfying F(b,)=b,, it now follows
easily that y,(2) and ys(z) both satisfy the initial-value problem (52) and hence must
coincide. This proves the representation described in Part (D), and concludes the proof of
Lemma 6.

In order to compute the order of growth of the function ¥,(2) in Lemma 6, we require

the following result.

Lumma 7. Let D be a region of the form, {z: |z| > K, arg 2=~} for some K>0. Let
g(z) be an analytic function in D such that as z—oo in D,

g’ (2) =cz(1-+0(1)) and ¢"(2) =z*>"1{ca +0(1)), (59)
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for some constants o and ¢, with a> — 1 and c==0. Let wy(z) be a nonconstant elliptic function
and assume that y(z) =wy(g(z)) is meromorphic in a neighborhood of . Then for some con-
stants K, >0 and K,>0, the inequalities n(r, ©, y) = K,7**2* and T(r, y) > K,r**** hold for
all sufficiently large r.

Proof. Choose a constant B >0 which is greater than the length of the longer diagonal
of the fundamental parallelogram for wy(z), and set 4 =(2+2B)/|c|, where ¢ is as in (59).
For a point z, in the right half-plane, with |z,} =7, let D(z,) denote the closed disk,
|z—2,| <Ar—=. For {€D(z), clearly,

r—Are<|l| <r+4+Are, (60)

and since o> —1, it easily follows from the first inequality in (60) that if r is sufficiently
large, then D(z,) lies in the slit region D so that the estimates (59) are valid on D(z).
From (59) and (60), we see that

l9"@) | <[] |e] +1)(r £ Ar==)==1 on D(z,), (61)

if = |2, is sutficiently large (where the plus sign is used if a>1, while the minus sign is
used if —1<a<1). Since the radius of D(z,) is Ar—*, and since > —1, we see from (61)

that if r=|z,| is sufficiently large, then
19'(2) —9'(z0) | <2A(Ja| [e} +1)r1 for 2€D(z,). (62)
For fixed z,, define the function A(z) on D(z;) by
9(z) = g(zp) + (2 — 20)g"(20) + h{2), (63)

so that k'(z) =g'(2) —g'(2,) and h(z,) =0. In view of (62), we see that if r = |z, | is sufficiently
large, then
|hz)| < 242(]a||c] +1)r1= for 2€ D(z,). (64)

Let w be a point in the disk |w—g(z)| <B, and write
9(z) —w = f(z) +h(2), (65)

where (from (63)), f(z) =g(zg) ~w+ (2 —2,)¢ (%) on D(z;). In view of the first estimate in
(69) and the definition of 4, it easily follows that if r = |z,| is sufficiently large, then on
the boundary of D(zy) we have |f(z)]| >1, and hence in view of (64), |(z)| > |h(2)| since
a> —1. Since it is easy to see that the linear function f(z) has its zero inside D(z), it
follows from Rouché’s theorem {and (65)) that g(z)—w has a zero inside Df{z,) if
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|w —g(2,)| < B. Thus we have shown that if z, is a point in the right half-plane with r = |z,
sufficiently large, then the image under g(z) of the interior of D(z,) contains the disk
|w—g(z,) | < B. By definition of B, the latter disk must contain a pole of the elliptic
function w,, and hence y(z) =wy(g(z)) has a pole on the interior of D(z,). Thus clearly, if
¢y(r) denotes the maximum number of disjoint open disks of the form [z —2zy| <4 |z,|=
which lie in the set J, defined by Re () >0, r/2< |z| <7, then for all sufficiently large »
we have n(r, oo, y)=¢q,(r). Since the radius #(z,) of each such disk clearly satisfies
t(zg) < Kor—2, where Ky=max {4, 224}, it suffices to compute the maximum number g(r)
of disjoint open disks of radins s=Kyr—* which lie in J,, for then g¢,(r)>q(r). Let
Dy, ..., Dy, be disjoint open disks of radius s lying in J,, and let z; be the center of D,.
Then clearly, if I, denotes the set defined by Re (z) >s, (r/2) +s<|z| <r—s, and if z€1,,
then the open disk of radius s around z clearly lies in .J,, and hence by the definition of
q(r) must have a point in common with some D;. It follows that |z—z;| <2s, and hence
the disks of radius 2s around z, ..., z,,) cover I,. Hence the area of I, must be at most
47s%q(r). But since > —1, an elementary estimate on the area of I, shows that this area
exceeds c¢;72 for some fixed ¢,>0 if » is sufficiently large, and hence gq(r) exceeds

(c /4 K3)r** 2>, Since n(r, oo, y) = q(r), the conclusions of the lemma now follow immediately.

LrEmMA 8. Let m, Q(z, y), and y,(z) be as in the statement of Theorem 1. Assume that
Case (b) in Lemma 6 holds, and let y,(z) and R,(z) be as in that case. Let the Laurent expansion

of R,(z) around oo be,
Ry(2) = ¢y 42 M+ ...,  with ¢y ==0. (66)

Then the following are true:

(A) If y,(z) satisfies equation (43), then d= —2, and both y,(z) and y,(z) have order
of growth equal to d+2.

(B) If y,(2) satisfies equation (44), then d= —3, and both yo(z) and y,(z) have order of
growth equal to (2d/3)+2.

(C) If yo(z) satisfies equation (45), then d= —4, and both yy(z) and y,(z) have order of
growth equal to (d/2)+2.

(D) If yu(z) satisfies equation (46), then d= —6, and both yu(z) and y,(z) have order of
growth equal to (d/3)+2.

In all of the four cases (A), (B), (C), (D), above, if A denotes the order of growth of y,(z),
then the following hold:

(a) If A=0, then T(r,y,)=0 (log%r) as r—oo.

(b) If >0, then 4 is either a positive integral multiple of 1 or %, and in addition, there
are positive constants K, and K, such that



242 S. B. BANK AND R. P. RKAUFMAN
Kir2 < T(r, yy) < Korr for all sufficiently large r. (67)

Proof. Each of the equations (43)-(46) are of the form (y')?=R,(2)G(y), where ¢ is
2, 3, 4, or 6 respectively, and G(y) has constant coefficients. It follows from [4, Th. 4] or
[1, §§3,4], that if R,(z) has the Laurent expansion (66) around oo, then as r—-co,
() T(r, y,)=0 (log r) if djg< —1, (ii) T(r, y,)=0 (log %) if djg= —1, and (iii) T(r, y,) =
O(r24/9+2y if d/q> —1. Since T(r, y,) = T(r, y,) + O (log r) as r— =0, it follows from assump-
tion (3) on y,, that (i) cannot hold so d/g> —-1. If d/g= —1, then by (ii), y, and y, have
zero order of growth, and conclusion (a) holds. Assume now d/g> —1. From the representa-
tions (A)-(D) in Lemma 6, the function y,(z) is of the form wy(g(z)), where w, is a
nonconstant elliptic function, and where g(z) is analytic in a slit region {z: |2|>K,
arg z==m}, and in view of (66), both ¢’ and g” possess expansions of the form (59) with
a=d/q. Hence by Lemma 7, together with (iii), we conclude that y, and hence y, have
order of growth precisely 2(d/q)-+-2, and (67) holds with A=2(d/q)+2. Finally, since
q€{2, 3, 4, 6}, clearly 1 is either an integral multiple of } or §, which concludes the proof

of Lemma 8.

Proof of Theorem 1. The first conclusion of Theorem 1 is contained in Lemmas 6 and 8.
For the second conclusion, we note first that it was shown in [1, § 5] that the function,
Yol2) =p (log ((z+ (22 —4)%)/2; 1, 2m1), is a transcendental meromorphic function in the

plane whose order of growth is zero, and satisfies the differential equation,
(¥)? = (22 —4) (4Y* ~ 929 — ), (68)

where g, and g, are the invariants for p(z; 1, 272).

Now let # be a positive integer. As in the last case of Lemma 6, there exist primitive
periods 8,, &, such that G(z) =g%z; d,, J,) satisfies the equation, (G)8 =65(Gy + (1))3 6.
Set Gy(z) =G4(2/3) s0 that (G3)8=(4G,+1)3Gs. But if Gy(z)=G,(e™?2), then also (G5)°=
(4G5 +1)3G5. Since G, has elliptic order 6, it follows from Lemma 5, Part (b), that for
some constant K, Gy(z)=G,(z+ K). Evaluating at 2=0, we see that K/3 is a pole of
(2 6,, 8,), and hence K is a period of Gy(z). Thus Gy(e”*2) =G,(2), and it easily follows
that G,(l)=G,(£"®) is single-valued on || <oo. Clearly G4({) is meromorphic on
0< || <oo since there exists an analytic branch of '® in a neighborhood of any point
£o==0, but in addition, it follows easily from the definition of Gy(z), that =0 is actually
an isolated singularity of G4(Z), and is, in fact, a pole.

Hence G,({) is meromorphic in the plane, and y,(z) =G,(2") satisfies the equation

"% = (n/3)52"*(y + (D)Py*, (69)
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which is an equation of the form (46). Since y,(z) clearly satisfies assumption (3), it follows
from Lemma, 8, Part (D), that y, is a transcendental meromorphic solution in the plane of
equation (69), whose order of growth is precisely #/3, where » is any preassigned positive
integer.

For transcendental meromorphic solutions of order =/2, we give three diverse
examples of such solutions.

First, y(z)=2""%tan2"® is a transcendental meromorphic solution of order n/2 of
the Riccati equation,

Y = (n]22) — (n]22)y -+ (n/2)2" . (70)

Secondly, ¥(2)=cos2™® is an entire transcendental solution of order /2 of the

equation,
(¥')? = (n?/4)2"">(1 —3?3). (71)

Thirdly, we know that there exist primitive periods d;, d,, such that G(z) = p2(z; d,, d,)
satisfies equation (57) with §=1. By an argument very similar to that used earlier for @3,
it is easy to see that the function G(z)=G{(z/4) satisfies the condition Gy(z) =G,(i2). From
this it follows that y,(z) =G,(z"'*) is meromorphic on the plane, satisfies the differential

equation,
@)t = (n/4)*2"*(y — (D), (72)

and is of order of growth /2 by Lemma 8, Part (C).
This concludes the proof of Theorem 1.

5. Remarks

The results in Lemmas 6 and 8 permit us to obtain a representation of those solutions
of equation (2) which satisfy condition (3) and whose order of growth is not a positive

integral multiple of §. We summarize these results now.

THEOREM 2. Let m be a positive integer, and let Q(z, y) be a polynomial in y whose
coefficients belong to the field H described in § 3. Let y,(z) be a meromorphic function defined in a
nesghborhood of oo which satisfies the differential equation, (y')"=Q(z, y), and which has
the property that T(r, y5)==0 (log ) as r—>oco. Let A denote the order of growth of y,(2), and
assume that 1 is not a positive integral multiple of 4. Then there exist constants a,, b,, ¢, d;,
with a;dy—b,c, =0, such that if y,={(a,1p-+b,)/(c;¥o+d,), then the following are true:
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(a) If A=0, then yy(z) must have one of the forms described in (A), (B), (C), (D), of the
statement of Lemma 6, where in the expansion (66) of Ry(z), we have d = —2, —3, —4, or —6,
depending respectively on the form (A), (B), (C), or (D).

(by If 2>0, then y,(2) must have one of the forms described in (B), (D), of the statement
of Lemma 6, where in the expansion (66) of Ry(2), the integer d is not a multiple of 3, and
d> —3 for form (B), while d> —6 for form (D).

2. This remark concerns those solutions of equation (2) which are meromorphic in a
neighborhood of oo, which satisfy condition (3), and which have zero order of growth. In
Lemma 8, it was shown that any such solution y,(z) satisfies the condition 7'(r, yy)=
O (log? r) as r—oo. We remark here that for any such solution, 7'(r, y,)3-0 (log® r) as r— =0,
which is in accord with the conjecture (still unproven) of the authors [1, p. 290] that
arbitrary equations of the form F(z, y, ') =0, where F is a polynomial in all its arguments,
cannot possess transcendental meromorphic solutions whose Nevanlinna characteristic is
o(log?r) as r—>co. Although we will not give a detailed proof of this fact, we will outline
the argument. As stated in Part (a) of Theorem 2, if y,(z) is a solution whose order of
growth is zero, then some linear fractional transform y, of y, is of the form wy(g(z)), where
wy(2) is a nonconstant elliptic function, and g(z) has the properties (59) where o= —1.
In this case, one can modify the proof of Lemma 7 to show that for all sufficiently
large r, T(r, y,) > K, log?r where K,>0 is fixed, and hence T'(r, y,)>K,log?r where
K,>0 is fixed. To see this, we let 4 be a constant satisfying 0 <4 <}, and 1-64 +42>0,
and we choose B>0 satisfying the condition, B<(1—4)2(4 —642+A43%)|c|/2 where ¢
is as in (59). As in Lemma 7, we denote by D(z,), the disk [z—z,| <Ar where |z,|=7
and z, belongs to the right half plane. Using the estimates (59) where o= —1, and defining
h(z) by (63), we find that |h(z)| <2|c|A42/(1 —A)? on D(z,). Decomposing g(z) —w as in (65),
it follows exactly as in the proof of Lemma 7 (by using Rouché’s theorem and our choice
of B), that if r=|z,| is sufficiently large, then the image under g(z) of the interior of
D(z,) contains the disk |w—g(z,)| <B. Now subdivide the fundamental parallelogram
for wy(z) by drawing lines parallel to its edges, into congruent parallelograms Q,, ..., £,
whose longer diagonal has length less than B, and set () =] ;-1 ( —wo(C,))~, where [; is
the center of €),. Clearly any disk of radius B contains a point of the form ;+n,;6, +n,0,,
where n,, n, are integers and &;,d, are primitive periods for wy(z). Hence from the
mapping property of g(z) proved above, it follows that if » = |z,| is sufficiently large, then
@(y,(2)) has a pole on D(z,). Choosing z, to be of the form 2¥ where k is a sufficiently large
integer, it follows that for some fixed integer k,, we have n(2"*), co, @(y,(2))) =k —k, if
k> kg thus, n(r, oo, p(y,(2))) = K, log r for all sufficiently large r, where K3>0 is fixed, and
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hence T'(r, p(y,(2))) = K, log? r where K, >0 is fixed. Since T'(r, p(y,(2))) =sT'(r, y5) + O(log r)

as r— oo, our assertion easily follows.

6. An additional result

In this section, we consider the functions described in Parts (A)~(D) of Lemma 6, and
we show that there always exist primitive periods §;, §, such that these functions are

actually meromorphic in a neighborhood of co.

TEEOREM 3. Let g be a positive integer, and let Ry(z) be an analytic function in a
neighborhood of oo, which is not identically zero, and which has no essential singularity at oo.

Let the Laurent expansion of R, around oo be
Ry(2) = by +b2* ' +..., for |z] >K, where b,=0. (73)

Let D be the region {z: |z| > K, arg z=Fn}, and let g(z) be an analytic function on D such
that (g'(2))? =aRy(z) where « is a nonzero constant. Then:

(8) If wy(z) is @ nonconstant elliptic function with the property that the function wy(g(z))
can be extended to be meromorphic in a neighborhood of oo, then 2% must be either a fourth
root of 1 or a sixth root of 1.

(b) If ¢=2, there always exist primitive periods 0y, 6,, such that each of the functions
©(g(2); 01, 0a), P*g(2), Oy, O5), and E3(g(z); O;, ;) can be extended to be meromorphic in a
neighborhood of oo,

(c) If g=3, there always exist primitive periods 8,, 8, such that both of the functions
©'(g(2); 01, 05) and P3(g(z); 0y, 0,) can be extended to be meromorphic in a neighborhood of .

(d) If g=4, there always exist primitive periods 8, 8, such that p(g(z); 61, 8;) can be
extended to be meromorphic in a neighborhood of oo,

(e) If ¢=6, there always exist primitive periods 0, 8, such that p3(g(z); 8y, 05) can be

extended to be meromorphic in a neighborhood of co.

Proof. Clearly g'(z) possesses a convergent expansion,

g'(2)=2""3 ¢,z in D, where ¢,=+0, (74)

j=0

and where 2/? denotes the principal branch of the power function in D. If d/g is not an

integer, it follows that for some constant K, g(z) possesses the convergent expansion in D,
oo

9=)=2" 3, (¢;z77 (= j+ 1+ (@[g)) + K, (75)
i=0

since the infinite series in (75) converges for |z| >K.
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To prove Part (a), set o =€/, If ¢¢ is real, then ¢®= 11 and the conclusion holds.
Hence we may assume ¢ is not real, and, in particular, d/g is not an integer, so (75) holds.
Since the analytic continuation of 2%? once around the origin results in ¢ 249, it follows
from (75) that if wy(g(z)) can be extended to be meromorphic in a neighborhood of oo,
then we must have wy(l) =wy(0* +K;(1 —0%) on an open set in the plane, and hence
everywhere. Thus if §,, §, are primitive periods for w,(z), then 0%, ¢%6,, ™%, and ¢~%,

are also periods for wy(z). Hence there exist integers m,, my, 7y, n,, such that
%, =m0, +my08, and %0, =n,0, +ny0,, (76)

and there exist integers M, M,, N;, N, such that,

0%, =M, 6, +M,0, and o 6, =N,6,+N,0,. (77)
It follows that
6%% —(my + 1) 6 +my Ny —Mgny =0 (78)
and
0¥ _(M,+N,)o+ M, N,— M,N, =0. (79)

Since ¢? is assumed non-real, it easily follows from (78) and (79) that (m,ny, —myn,) (M, Ny —

M,N)=1 and (m, +n,y)% <4(m,n, —myn,). From these relations, we see that
myny—meny =1, (80)

and (m, +n,)%<4. Thus, if we set k=m; +n,, then k=0, —1, 0r 1, and ¢ = (k + (k2 —4)13y/2,
If =0, then ¢%= +¢ which are fourth roots of 1. If k= —1, then ¢%=¢*%*"® which are
cube roots of 1, while if k=1, then ¢®=e***® which are sixth roots of 1. This proves
Part (a).

We next observe that if d/q is an integer, then from (74), we have g(z) =h(z) +¢ (Log z)
on D, where h(z) is analytic on [z]>K, ¢ is a constant, and where Log z denotes the
principal branch of the logarithm. It is clear that if primitive periods J,, d, are chosen so
that 2mic is of the form r,d; +7,8,, where r,, r, are integers, then for any elliptic function
wy(?) with these primitive periods, the function wy(g(z)) is actually meromorphic in a

neighborhood of <o. Hence for the remainder of the proof, we can assume,
d/q is not an integer, so (75) holds. (81)

Now assume ¢=2. In view of (81), d/g=n+ } for some integer n. Let d;, §, be nonzero

complex numbers with a nonreal ratio, such that

K, =70, +7r30,, for some integers r;, r,. (82)
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Then from (75) and the fact that p(z; d;, 8,) is an even function, the conclusion of Part (b)

now follows.

2nid/q +271/8

Next suppose g=3. In view of (81), we have d/g=n+1%, and thus¢?=e¢ =e
We now assert that if d,, d, are chosen to be nonzero complex numbers with a nonreal
ratio, which satisfy condition (82) and which satisfy equations (76) for some integers
My, My, Ny, Ny, then ’(g(2); 6, J;) and p3(g(2); 8;, d,) are both meromorphic in a neighborhood
of oo, (We observe that in view of the identity 0®*= —1 — 0%, such a padir (,, §,) always exists,
since we may take (3, d,) = (K, K;0%) if K, -0, and (d,, 8,)=(1, ¢?) if K,=0.) To prove
our assertion, we note that since ¢~ ¢ =0, it follows that if (76) holds, then so does (77)
for some integers My, M,, N;, N,. Hence (78) and (79) both hold, and thus (80) holds.
It is well-known (e.g. [11, p. 125]) that this implies that (0%3;, 0%0,) is also a pair of
primitive periods for p(z; d,, d,) so that @(z; §,, d,) coincides with p(z; 6%,, 6%),) as func-
tions of z. ¥From the well-known fact (e.g. {15, p. 374]) that the p-function is homogeneous

of degree —2 as a function of (z; §,, d,) it then follows that

©(z; 81, 0,) =0 %%(07%; 6, 8,) as functions of z. (83)
1s V2

3

Since 677 =1, we see that p'(2; §,, d,) coincides with p'(c7%; 8, 8,) as functions of 2, and

©*(z; 6y, 0,) coincides with p3(0~%; 8;, §,) as functions of z. Since the analytic continuation

1% once around the origin, multiplies these functions by either ¢% or 67,

of the functions z
our assertion now follows easily from (75), (82), and the fact that d/¢g=n-+1 in this case.
This proves Part (c).

Assume now g=4, so in view of (81), either df¢g=n+} or d/g=n+1} for some
integer n. In the first case, the conclusion of Part (d) follows from the proof of Part (b).
In the second case, ¢?=+4, and as in the proof of Part (c), it follows using (83) that if
(91, 9,) satisfies both (82) and equations (76) for some integers m,, m,, 7, 7y, then 2(2; 8,,0,)
coincides with p*(0%; d;, J,). (As in the proof of Part (c), such a pair (d;, J,) always exists.)
Since dfg=n+$, it now easily follows from the representation (75) that p3(g(z); &;, 8,) is
meromorphic in a neighborhood of oo, proving Part (d).

Finally, if ¢=6, then the cases d/g=n-+%, and d/g=n+} were covered in the
proofs of Part (b) and Part (c) respectively. In view of (81), it suffices to consider only the
cases djg=n+t3%. Since ¢?=e*™?, it follows exactly as in the proof of Part (c) that if
(9;, 05) is again chosen to satisfy (82) and equations (76) for some choice of m,, m,, n;, ny,
then using (83), the function g3(g{z); d,, 8,) is meromorphic in a neighborhood of co. (As
in Part (c), (d;,d,) can be taken to be (K, K,¢%) if K,=+0, or (1,¢% if K,=0, since

0**=0%—1 in this case.) This concludes the proof of Theorem 3.
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