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§ 0. Introduction
0.1. The fixed point problem

Let & be an algebraically closed field, and let » be an integer prime to the characteristic
of k. By an equivariant variety we shall mean a quasi-projective scheme X over k together
with an automorphism #: X+ X such that 2" =id. The fixed point scheme will be denoted
| X|, and its automorphism will be the identity. All morphisms f: XY are assumed to
be equivariant, i.e., yof =fox, and the induced morphism of fixed point schemes is denoted
I1l: 1X|~ 7.

An equivariant sheaf on X is a coherent sheaf F of Oy modules together with a homo-
morphism

¢ 2*F >3
of sheaves of Ox-modules.

The Lefschetz Fixed Point Problem is to calculate, for an equivariant sheaf F on a
projective equivariant variety X, the alternating sum of the traces of the induced maps
on the cohomology HYX, J), as a sum of contributions from the components of |X|.
We prove a general Lefschetz—Riemann-Roch theorem which solves the fixed point
problem when X is mapped to a point, just as the Hirzebruch-Riemann—Roch formula
follows from a general Riemann-Roch theorem [4]:

(1) Research partially supported by the National Science Foundation.
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In this situation, our theorem extends known results ([2], [7], [10]) to singular varieties,
and improves the results announced in [4]. Explicit calculations of the local contributions
are given for local complete intersections which generalize in a rather surprising way the
Woods Hole Formula for the non-singular case. Both the statement and the proof of the
theorem become particlilarly natural by using the formalism developed in [5].

0.2. K-groups

A morphism y: F—> G of equivariant sheaves is a homomorphism of (Ox-sheaves such
that yog; =pzox*(y). The equivariant sheaves on X form an abelian category. If f: XY
is a proper morphism of equivariant varieties, and F is an equivariant sheaf on X, then
the higher direct image sheaves R'f,(JF) are equivariant sheaves on Y [7]. Define K§'X
(resp. K3, X) to be the Grothendieck group of all equivariant sheaves (resp. locally free
sheaves) on X. Let [F] be the element in K§® X (resp. K3, X) represented by an equivariant
sheaf (resp. locally free sheaf) J. The tensor product makes K3, X into a ring, and deter-
mines a cap product

KL X®KFPXDKPX

making K§*X into a K2, X-module. The structure sheaf Oy, together with its canonical
endomorphism, represents the element 1 in K3 X, and a fundamental class [Ox] in K32 X.

If f: XY is a morphism, there are induced morphisms f*: K3, ¥ K% X given by
PLEI=[f*E]; K3, is a contravariant functor from equivariant varieties to rings. If f is
proper, define f,: K&*X—>KQY by f [F]=> (—1)[RY,F]; K§* is covariant for proper
morphisms. There is the usual projection formula

fa(f*oa) =b~fea

for bEKJ, Y, a€ K X. Note also that exterior powers A'€ of an equivariant locally free
sheaf are naturally equivariant (K3, X is a A-ring).

0.3. Trivial action

In case X is projective and the automorphism z is the identity, any equivariant
sheaf F on X is a finite direct sum of sheaves JF,, for a €%, such that the endomorphism
@3 — al is nilpotent on F,. This determines canonical homomorphisms

Ko X + Ko X @ Z[K] 1)

K3 X » Ks* @ Z[k] @)
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taking [F] to 3 [F,]®[a]. Here Koy, X (resp. K3™ X) is the Grothendieck groups of locally
free (resp. coherent) sheaves on X, without endomorphisms, and. Z[%] is the free abelian
group on the elements of k. By considering the filtration on the sheaves F, given by the
kernels of (p;—al)’, one sees that (2) is always an isomorphism. If X is singular, however,
(1) may fail to be an isomorphism.

0.4. The coefficient ring

It follows in particular that for a point,
K2, (Spec (k) = Z[k];

the product in the ring Z[%] is induced by the multiplication in k. Fix a commutative
Z[k]-algebra A such that for each nth root of unity a €k, a==1, the element {1]—[a] be-
comes invertible in A. Any finite dimensional vector space H over k with a k-linear endo-
morphism determines an element in K, (Spec (k)), and hence an element in A by the
homomorphism from Z[k] to A. We write tr (H) for this element in A. Note that we may
take A =k, and this is the usual trace. If the characteristic is positive, A may be taken
to be the Witt ring of %, a ring of characteristic zero, and tr becomes the Brauer trace
(cf. [7], [14]). The strongest results are obtained by taking A to be the localization of Z[k]
at the multiplicative set generated by the above elements.

0.5. A local invariant

If V is a component of | X| (or a union of several connected components), and X is
non-singular in a neighborhood of ¥, then ¥ is also non-singular, and the conormal sheaf
N to V in X is an equivariant locally free sheaf on V. Then > (—1)'[A'H] determines
an element in K3 V, which by the homomorphism (1) of § 0.3 and base extension from
Z[k] to A determines an element

AyX in K% VRA.

Since the eigenvalues of the endomorphism on ¥ are non-trivial nth roots of unity, our
assumption on A makes A, X invertible in K3, V®A (cf. [7], 4.3 and [6], VI 6.3).

0.6. The Theorem

Let X be an equivariant quasi-projective variety and assume that | X| is projective.
There is & canonical homomorphism

L': KX > K| X|®A
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obtained by composing the restriction (or pull-back) homomorphism from K3, X to K| X |
with the homomorphism (1) of §0.3 from K3 |X| to K2u|X|®Z[k], and then making
the base extension from Z[k] to A. This L' is a natural transformation of contravariant
functors,

LEFSscHETZ-RIEMANN-RocH THEOREM. For each equivariant quasi-projective
variety X such that | X| is projective, there i3 a homomorphism

L:K$X - K| X| @A

which is covariant for proper morphisms and compatible with cap products. For each com-
ponent V of | X | contained in the non-singular locus of X, the component of L.[Ox]in K§* VA
18 (Ay X)"1~[0Oy], with Ay X as in § 0.5.

In general, write L.[Ox] as a sum of terms L, X in K{*® V@A corresponding to the
decomposition of K§™|X| into the direct sum of KV, as V varies over the connected
components of | X|. If € is an equivariant locally free sheaf on X, and X is mapped to a
point, the covariance and cap product assertions in the theorem give a formula for
> (=1)tr (HY(X, £)) as a sum of terms obtained by restricting £ to V, capping with
L, X, and mapping V to a point. For example, if each V =P is an isolated fixed point, and
E(P) is the fibre of £ at P, with its induced endomorphism, we have the following corollary.

COROLLARY. X, (— 1) tr (HYX, E))=reix tr(E(P)) - Lp X.

In the non-singular case, this contains known formulas (cf. [2], [7], [15]) with the
improvement that the equality takes place in the ring A. It is desirable to have an explicit
computation of L, X in case P is an isolated singular point.

We give such a formula in case X is a local complete intersection at P in § 3; the ex-
pression has a denominator of the expected form, together with an interesting numerator
which may well be zero (cf. [3] for further discussion of these numbers). The theorem in
§ 3 also gives information about L, X in case V is not a point.

The complete statement of the theorem in § 2 includes the fact that the contribution
at a component V of | X| depends only on a neighborhood of ¥ in X.

0.7. The construction

We describe the construction of L.[F] in K§*|X|®A for an equivariant sheaf F
on X. Imbed X equivariantly in a non-singular Y, and resolve F by an equivariant complex
E. of locally free sheaves on Y. The restriction of . to | Y| is exact off | X |, so the alternat-
ing sum of homology sheaves

2 A=DIHLE )]
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defines an element in K3*|X|, or an element % in K§*|X|®A, applying homomorphism
(2) of § 0.3. Then
LI =[i[*An Y) 1t~y

where |i| is the inclusion of | X| in | Y|, and ;5 Y is the element defined in § 0.5. As in
[5], the essential step is to prove that this element is independent of the choices.

0.8. Related results
The Lefschetz—Riemann-Roch maps

L':K‘.?QX—»KSD,|X|®A
and
L:KPX—~ KPP X|®A

may be composed with non-equivariant Riemann-Roch maps

7: Kous | X | @A = H' | X| @A
and
1. K®| X| @A~ H.|X|®A

constructed in [4] and [6]. We may take H' and H. to be (1) singular cohomology and
homology, if k=C and A is a @-algebra, or (2) the Chow rational equivalence homology~
cohomology theory, for any k, if A is a Q-algebra, or (3) topological K-cohomology and
homology, if k=C and A is any algebra satisfying the condition in § 0.4. In (1) and (2)
7* is the Chern character. In each case, the compositions give homomorphisms

KnX-H|X|®A
and
Ka“X—>H.|X|®A

satisfying the same formal properties as in the main theorem in § 2. It is these versions of
Lefschetz-Riemann—Roch that were referred to in [4]. They specialize to Riemann-Roch
when the automorphisms are all identity maps. They were originally proved by making
all the arguments of [4] equivariant, a task that is quite straightforward except perhaps
in case (2). B. Moonen has also carried out part of this program in case (1). Cases (1) and
(2) extend Donovan’s work [7] to singular varieties in the same way that [4] extended
Grothendieck-Riemann-Roch to singular varieties.

Note that in the case of isolated fixed points, the use of the (trivial) Riemann—Roch
theorems only weakens the result, in cases (1) and (2), by throwing away torsion.
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In [11] it is proved that L. induces an isomorphism
K(e)qX@z[k]A id KS"’IXI ®A.

The inverse is induced by the inclusion of | X | in X. The Lefschetz—Riemann-Roch theorem
we provein § 2 can be deduc;ed from this localization theorem. A similar localization theorem
was first found in the 'non-si.ngular case by Nielsén [10], where the result was combined
with Riemann-Roch on the fixed point variety to obtain fixed point formulas.

0.9. G-varieties and sheaves

If a finite group @ acts on a variety X, one may form the Grothendieck group K§ X
(resp. K2X) of coherent (resp. locally free) G-sheaves on X. As long as the order of &
is prime to the characteristic, there is no difficulty in extending our results to this situa-
tion. We refer to [3] for a discussion which emphasizes this point of view, and the relation
of these groups to equivariant topological K-theory. When @ is cyclic, the fixed point
theorem we prove in this paper is stronger, however, since we do not require the liftings of
the actions on the sheaves to have finite order.

In § 4 we apply our results to calculate the homology Todd class of a quotient variety
X/@ in terms of data on the fixed point schemes in X of the action of the elements of &.
The formula is particulary explicit for varieties arising from quasi-homogeneous poly-
nomials,

There are other situations where questions regarding more general group actions are
reduced to questions about the action of one automorphism (cf. [2]). On the other hand,
it is not clear how to extend our results to endomorphisms of varieties which are not of
finite order (see [8] for the case of the Frobenius, and [15] for non-singular complex mani-
folds, however).

0.10. Conventions

All varieties, morphisms, and sheaves will be assumed to be equivariant unless other-
wise stated; adjectives such as non-singular, local complete intersection, proper, locally
free, etc., refer to the underlying non-equivariant varieties, morphisms, or sheaves. As
in [5], we use the word ‘“‘variety” for “quasi-projective k-scheme’.
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§ 1. Equivariant K-groups
1.1. Definitions
Let X be a closed (equivariant) subscheme of Y. Consider complexes &£. of locally
free sheaves on Y, exact off X, equipped with a homomorphism of complexes ¢, : y*E.— E..
Define K$Y to be the free abelian group on the isomorphism classes of such complexes,

modulo relations [£.]=[E£."]+[E£."] for each exact sequence
0> & >E+E">0

and [£.]=0 if £. is exact on all of ¥; [£.] denotes the class in K¥ Y determined by the
complex £.. The definitions and basic properties are the precise analogues of those given
in [5), § 1, for the non-equivariant case, so we include only a brief sumniary.

If f: Y'— Y is a morphism, and f~(X)< X', there is a pull-back homomorphism

* KRY->KPY
defined by f*{E€.1=[f*£.]. If X,< Y, there is an external product
KR Y,®KXY; X KXxx(Y1X ¥y)

defined by [€.,]1 X [E.5]=[E.. RE.4], and the corresponding internal products. If i: ¥ —+Z
is a closed imbedding of finite Tor dimension, and X is closed in Y, there is a Thom-Gysin
homomorphism

i KR Y > KRZ

defined by ,[£.]=[F.], where F.—¢, £. is an equivariant resolution, i.e., a resolution in
the non-equivariant sense which is also a morphism of equivariant complexes of sheaves
on Z, The existence of equivariant resolutions follows exactly as in the absolute case [6],
App. 2 and from the fact that an equivariant sheaf on a quasi-projective scheme is the
image of an equivariant locally free sheaf (cf. [7], 2.2).

There is also a komology map

h: KR Y > K38 X

defined by A[E.]1=> (—1)}[H(E.)], where H,(E.) are the homology sheaves of the complex
€. (with the induced equivariant maps); we have used the fact that K3*X may be identified
with the Grothendieck group of equivariant sheaves on ¥ which are supported on X.
The six properties of [5] § 3.3 are equally valid in the equivariant case.
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1.2. Equivariant vector bundles
An equivariant vector bundle E on an equivariant variety X has a morphism ¢: E— §
so that the diagram
BE—2~E
||
X—X
x

commutes, where z is the vector bundle projection. The morphism e must respect the
vector bundle structure on E; equivalently, if £ is the locally free sheaf of sections of the
dual bundle E~, ¢ determines a morphism ¢ from z*€— £ making £ into an equivariant
locally free sheaf in the sense of § 0.1, but with the additional condition that ¢"=1.

Important examples of equivariant vector bundles are normal and tangent bundles,
and their exterior powers. If X is a local complete intersection in ¥, the normal bundle
N =Ny y is an equivariant vector bundle on X, and the conormal sheaf My, y is an equi-
variant locally free sheaf. If ¥ is a non-singular variety, its tangent bundle T'y is an equi-
variant bundle, and the cotangent sheaf Q7 is an equivariant locally free sheaf.

Since 7 is prime to the characteristic, the restriction of E to IX | splits canonically
into a direct sum of vector bundles B, for a €k, a®=1, such that ¢ is multiplication by
a on E®. Let E* be the direct sum of the E® for a=1, so that |5 =EP® E.

When E is regarded as an equivariant variety, the fixed point scheme |E| may be
identified with E'V, and the bundle E“’ measures the extent of non-traﬁsversality in the

square
uln—'iLlEll
X— .E

where the horizontal maps are zero-section imbeddings. The Koszul-Thom complex
A'n*E gives an equivariant resolution of i, Oy on E. This restricts to the complex

A-|n|t8(1)®A.|n|t£(x)
on | E|. It follows that the Thom-Gysin maps can only be compatible with the restriction

to fixed point schemes if they are modified as in the following section.

1.3. Modified maps
The groups K§¢ Y are all modules over K2, (Spec (k)) =Z[k]. When A is a Z[k] algebra

as in § 0.4, set
K‘}?‘ YA = K;? Y@z[k]A.
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Let it Y—>Z be a closed imbedding of non-singular equivariant varieties. If X is
closed in Y, define modified Thom—Gysin maps

i Kih| Y] 2~ Kih1Z|

by the formula 7,(£) = [¢|4(A_, H*-§) where |i|, are the Thom-Gysin maps of §1.1, 1
is the conormal sheaf to ¥ in Z, and A_, N =3 (- 1)'A'H* in K3, | Y.
These modified Thom—Gysin maps satisfy the same properties as before. The func-

toriality follows from the equation
A 8‘2”) =A_(&") .A—l(gl(3><))

for an exact sequence 0— E,—~> E,— E;—0 of equivariant vector bundles.

The homology maps must be modified to be compatible with the modified Thom-
Gysin maps. If X is a closed subscheme of a non-singular ¥, j: X~ Y the inclusion, and
{X| is projective, define the modified homology map

k: K| Y|~ K3 | X | ®A
by the formula
k&) =j|* An Y) 1~ R(E).

Here h is the unmodified map of § 1.1, and we have identified K§°| X | , with K§™|X|®A
by § 0.3; 4y, Y is the invertible element in K3,s| Y| @ A constructed in § 0.5.

It is easy to verify that the modified homology maps also satisfy the six properties
in [5], § 3.3. The compatibility of the modified' homology maps with the modified Thom-
Gysin maps, for example, uses the standard exact sequence relating the tangent and
normal bundles of an imbedding of non-singular varieties—which is the reason for the

modification.

1.4, Deformation
Define the homomorphism

for X closed in Y, to be the pull-back homomorphism induced by the inclusion of | Y|
in Y, followed by the base extension from Z[k] to A. It is obvious that L commutes with
pull-backs and products. For the Thom—Gysin maps we have the following lemma.
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MaIN LeMMa. If i: Y—Z is a closed imbedding of non-singular varieties, X is closed
in Y, and | X| is projective, then the diagram
L q
K3Y —— Ki3}{|Y|5
i Ta

k$z—2 K132,
commules,

Proof. Construct the deformation diagram of [5], § 2, i.e.,

YA yxal vy

and note by its construction that all the varieties and maps are equivariant; here Al is
the affine line over k, with the identity automorphism. The induced diagram of fixed point
schemes is )

7] Al e oy

il l Ji

T g 1

which is the deformation diagram for the inclusion of | ¥| in |Z|. All the squares of the
above diagrams are transversal (Tor independent). The proof now concludes precisely as
in [6], § 2. (Note that we have already checked the compatibility of L with the modified
Thom-~Gysin maps for the normal bundle situation.)

§ 2. The Lefschetz—-Riemann-Roch theorem

Definition 2.1. Let X be a quasi-projective, equivariant scheme such that |X| is
projective. Define a homomorphism
L:KPX > K™ X| @A
as follows. Choose an equivariant imbedding of X in a non-singular quasi-projective ¥
(cf. Lemma (i) below), and then L. is the composite
KX rpy L 7|, K| X] @A

where L, b and % are defined in § 1.
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THEOREM 2.2, The homomorphism L. i independent of the imbedding, and satisfies:
1 (covariance), For every proper morphism f: X~ X', the diagram

Kex —E ., koo x| 0 A

f,,j [m,,
K?;“X'—-L—'-—> KS"’IX'|®A
commutes.

2 (module). For every X, the diagram

L'®L.
K% X QKPX 8%, (K2,| X|® A) @ (K| X| @ A)
A h
K&X L K3™| X|®A

commuies.

3 (product). For every X,, X,, the diagram

L.®L.
KX, @ K3X, B2 (K3%| X, | @ A) @4(K8™| X, | ® A)
X X
L. v
Ko(X, x Xy) - K™ X, x X))@ A

commutes.

4 (restriction). If §: U~ X is the tnclusion of an open equivariant subscheme in X, then
the diagram

L.
Ko X —+ K| X|®@A
j* Fl
L.
K, U——">K*|U|®A
commules.

5. If X is non-singular, then
L.[0x] = 4x X)*~[Ox)
where A x| X t8 the class defined in § 0.5.

6. If the automorphism z of X is the identity, then L.: KX+ Kg™|X| @A is the homo-
morphism (2) defined in § 0.3,

14 — 792908 Acta mathematica 143. Imprimé le 28 Décembre 1979
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The proof is entirely analogous to the proof of the Riemann-Roch theorem in [5],
§ 4. Only in steps (5) and.(7), and the proof of the module property in that. proof were
facts required that did not follow formally from the general properties. The analogous
facts needed for Lefschetz—-Riemann—~Roch are given in ‘the following lemma, parts (iii),

(i), (iv) respectively.

Lemwma 2.3. (i) If X i3 an equivariant quasi-projective variety, then there is a projective
space P=P", whose automorphism is given by a diagonal matriz, an open equivariant sub-
variety U of P, and a closed equivariant imbedding of X in U

(ii) With P as in (i), and any equivariant variety X, the product mapping

K8X @ K$*P—— K$(X x P)
8 an tsomorphism.
(ili) With P as in (i), and f the mapping of P to a point, the diagram

EpP—L . k3w p|oA

f.J jm.
E§(pt.) —2— K§™(pt.) @A

commutes; the horizontal maps L. are defined by imbedding the varieties in themselves.

(iv) If € is an equivariant locally free sheaf on an equivariant variety X, there is a non-
singular equivariant variety Y, with an equivariant locally free sheaf Eon Y, and an equi-
variant morphism f: XY such that f‘é and E are isomorphic (as equivariant locally free
sheaves).

Proof. Parts (i)—(iii) are variations of rather standard facts. We sketch the proofs in
geometric language, and refer to the literature for alternative descriptions.

For (i), choose a (non-equivariant) closed imbedding of X in an open subvariety ¥V
of a projective space Q. Let Q,=@Q and V,=V for ¢=1, ..., n, and define an automorphism
on the product @, x ... x@, by sending (p,, ..., p,) to (P2, Ps, «..s Pp, P;). Imbed X equi-
variantly in ¥, x ... x ¥, by sending p€X to (z(p), z*(p), ..., z"(p)). Use the Segre imbed-
ding to imbed @, x ... x@, in a projective space P¥, The above automorphism extends
canonically to a linear automorphism of order » on P¥, and there is a canonical open set U
of P¥ that intersects @, X ... x@, in V; x ... x V,,. The automorphism is diagonizable since
n is prime to the characteristic.

A simple proof of (ii) can be obtained by following Quillen ([12], § 8). A matrix for
the automorphism p of P gives a homomorphism from p*O(1) to' Q(1), so all the sheaves
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O(k) become equivariant. As in [12], we can confine our attention to those equivariant
sheaves J on X x P such that H'(F(—1)) =0 ¢>0; such sheaves have canonical resolutions

0> TUHRO(—N)> ... > T(FRO~F>0

for coherent sheaves T',(F) on X. The T'(F) are exact. functors of F, from which it follows
that the above is an equivariant resolution of F (by coherent sheaves). If F is locally free,
then the 7',(F) are locally free on X. This proves (ii). This same argument gives the ex-
pected relation between K§¥(P(E)) (resp. K3, P(E)).and K{*X (resp. K2, X) for any equi-
variant vector bundle £ on X.

When X is a point, this shows that K§'P is generated over Z[k] by the elements I,
I=[01)},+=0,1, ..., N.

Let ¢ be the inclusion of |P| in P, and consider the homomorphisms

*
E§|P|p—2— K§'Py = K3 Py~ K%| P|y 2 K| P|a

of free A-modules of rank =N +1; the unnamed isomorphisms are Poincaré duality iso-
morphisms. We have seen in § 1.4 that the composite is multiplication by the unit 4,5 P.
Therefore ¢, and * are isomorphisms. To prove (iii), consider the diagram

Ky|P|—— kP —Tr . ggpr)
L. L. L.
kPl oA~ k3 Floa L. ks 0,

where the vertical maps are defined by using the imbeddings of the varieties in themselves.
The left square commutes by the analogue of Step (1) of [5], § 4, and the cutside rectangle
clearly commutes. The desired commutativity. of the right square follows from the sur-
jectivity of ¢,, after base extension from Z[k] to A. (One can also prove (iii) by the de-
formation argument of [5], Appendix 3.)

To prove (iv), choose a (non-equivariant) non-singular variety @ with a locally free
sheaf F, and a morphism g: X—~@ such that g*F = £ ([4] Appendix § 3.2). Replace @ by
the equivaﬁant variety @; x ... x@, just as in the proof of (i), and F by pry (F), where pr,
is the projection to the last factor. Thus we may assume ¢: X -@Q is an equivariant morphism
g*F=E, but F is not yet equivariant.

Now let H, be the vector bundle on @ whose sheaf of sections is

H=Hom((g")* F. (¢ F)
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fort=1,2, ..., n, and let
Y=H xgqg..xoH,

be the fibre product, with projection zz: ¥ Q. The canonical isomorphisms H#;~q¢*¥,_,
determine an automorphism of ¥ permuting the factors H,, so that = is an equivariant
morphism. There is a canonical homomorphism from ¢*F to F when these sheaves are
pulled back to H,; since 7 factors through the projection from ¥ to H,, this makes E=n*F
into an equivariant sheaf on Y. Since the homomorphism ¢,: *€— £ determines homo-
morphisms (z'-1)*(g,): (z!)* E—(z*-1)* £, the mapping g: X @ factors through ¥, g=nof,
in such a way that /"'é is equivariantly isomorphic to £.

2.4. Uniqueness

Property 6, which has no analogue in the non-equivariant case, follows immediately
from the construction of L.. For a general projective X, if ¢ is the inclusion of | X| in X,
it follows from Properties 1 and 6 that L.os, is the homomorphism K§*|X|~K§™|X|®A
of § 0.3. Since ¢, becomes an isomorphism after base extension to A [11], it follows that
L. is the only homomorphism satisfying Properties 1 and 6 of the theorem.

§ 3. Local invariants
3.1. Local complete intersections

Let V be a connected component of | X|, and let L, X be the component of L.[Ox]
in K V@A (cf. § 0.5). We will describe L, X in case X is a local complete intersection in
a neighborhood of V. By Property 4 of the theorem, Ly, X depends only on an equivariant
neighborhood of V in X, so we may assume X is itself a local complete intersection, and
that V= |X|. For any equivariant imbedding of X in a non-singular Y, there is an equi-
variant homomorphism

n—e i}
of locally free sheaves on X; M is the conormal sheaf to the imbedding ¢ of X in ¥. Define
Ay X = A_y(¢*QF ) A, (H)
in K2, V®A, and define an integer

ey X =rank U —rank (*Q¥V)+dim V,
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where the superscripts (1) and ( x ) denote the trivial and non-trivial eigenspaces of the
restrictions of the bundles to V, as in § 1.2. The usual proof of the unigueness of the co-
tangent complex ([6], VIII 2.2) extends immediately to the equivariant case to show that
these invariants are independent of the imbedding in Y.

ProrosiTiON 3.2. (i) €, X 20.

(i) If ey X =0, then V is a local complete intersection in | Y| of codimension equal to
the rank of U, and
LyX = Ay X) 1 ~[Ovl.

(iii) If ey X >0, then Ly X belongs to the submodule of K§** V@A generated by sheaves
whose support has dimension < dim V.

Proof. We first assume there is an equivariant bundle E on Y of rank equal to the co-
dimension of X in ¥, and an equivariant section ¢ of B which vanishes precisely (scheme-
theoretically) on X. Since this is always the case locally on Y, this case suffices to prove
(i), (iii), and the first assertion in (ii), as well as the entire proposition if V is a point.

Let £ be the sheaf of sections of E~. The seetion s determines a Koszul complex
A-E which is an equivariant resolution of Ox on Y. Corresponding to the decomposition
E|iyy=E®® E™, the restrictions of s to ¥ decomposes‘ into sV @™, Then =0
since s is equivariant and s™ vanishes precisely on X ~ |Y|=V. It follows that
codim (V, | Y|)<rank E. Since €|y=M, inequality (i) follows. The Koszul complex
A € restricts to the tensor product of A* £ and A'E® on | Y|. The complex A° €V is
the Koszul complex determined by the section ¢*, while A* £’ is a complex of locally
free sheaves with zero boundary homomorphism.

If e, X =0, the complex A' £ is a resolution of Oy on | Y|, and (ii) follows from the.
definition of L. Oy. If ¢, X >0, however, the alternating sum of the homology of the com-
plex A' £V is zero when localized at a generic point of a top-dimensional component of V
([13]), from which (iii) follows.

We sketch the proof of the formula in (ii) in the general case. Consider the fibre square

| X| —X

|lr|—>l'

and deform both inclusions X< Y and |X|<|Y| to the normal bundles N and N’ re-
spectively, by the process of § 1.4. In general we have an inclusion of N’ in N ®_ but under
the assumption ¢, X =0, the previous local description shows that N'=N%, We must
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therefore show that if we resolve O on Y, and restrict to | Y|, we have the same alternating
sum of homology as when we resolve O on N and restrict to N'; in symbols,

2. (= 1)'[Tor{*(Oy1, Ox)] = 2 (— 1)![Tor?*(Ow., Oyx)]

in K§?|X|. This is the equivariant analogue of the formula proved in [9] § 6, and it is
proved in the same way.

3.3. Isolated fixed points

In case P is an isolated fixed point in X, and X is defined in a non-singular ¥ by a
regular sequence of functions f,, ..., f,, we may assume y*(f,)=b,f, for some nth roots of
unity &,, ..., b,. Let ay, ..., a,, be the eigenvalues, counted with multiplicity, of the indueed
action on the tangent space to Y at P. Then

e X =4 {i[b, =1}~ 4t {jla, =1}
and the local invariant is given by the formula

0 ife,X>0
x| T =)

[T (- (a;)) if ep X =
l;I'([l]_-[a;]) length (05| X|) if e, X =0

where the products are over the indices corresponding to eigenvalues which are not one;
we have identified K§**(P)® A with A and used the same notation [¢] for an element in
Z[%] as for its image in A.

This generalizes the Woods Hole Formula det (1 —df;)~! to the singular case. See [11]
for examples where Ly X =0.

§ 4. Group actions
4.1. Quotient varieties

In this section G will be a finite group of order n prime to the characteristic of the
ground field k; the coefficient ring A will be & if char (k) =0, or the quotient field of the
Witt ring of k if char (k)==0.

If @ acts trivially on a projective scheme X, and F is a coherent G-sheaf on X, then

w[F%] =2 [F(g, a)]®][a] (1)

in K,X®A. Here J¢ denotes the G-invariant subsheaf of F, F(g, a) is the subsheaf of
J on which g acts by multiplication by a; the sum is over all g in @ and all nth roots of



LEFSCHETZ-RIEMANN-ROCH FOR SINGULAR VARIETIES 209

unity @ in k. When X is a point, this amounts to a well-known formula for (Brauer) char-

acters of @ (cf. [14], Chap. 18.1 (ix)); the general case follows formally from this as in § 0.3.

Now let @ act on a projective scheme X, with quotient X =X/@, and quotient map

m: X—~X. For each g in G, let X? be the fixed point subscheme of the action of g on X,

and let #% X?—X be the induced map. Let L denote the transformation constructed in
§ 2 for the endomorphism g on X (or X). If (1) is applied to the sheaf 7, Oy, it gives

2[0z]= 3 L®(m, Oy). (2)

0€G
By the covariance of L, this implies the formula

n[Oz]= 3 =, LOX @3)
geG
it KoX®A, where LO?X=L? 0y in K(X°)®A. This is similar to the procedure-
followed by Zagier [16].

If 7: K, X—>H.X is one of the Riemann—-Roch transformations constructed in [4], [5],
with H. either ordinary homology or Chow theory (or topological K-theory), T may be
applied to (3) to give a formuls for the homology Todd class (or K-theory orientation
class) of X:

1X)= %b Eona (LOX). 4)

This gives a Riemann-Roch formula for the Euler characteristic of locally free sheaves
E on X in terms of invariants of the actions of @ on X. For example, if the hypotheses of
Proposition 3.2 (ii) are satisfied for each g in @, the formula

S (- 1) dim H(X, E)=1 f (7 E) o ch(Ae X) 1 otd (T x) (5)
i Xv

Ngee

results. Here X" is a local complete intersection with virtual tangent bundle 7'y, and the
integral takes the degree of the cohomology class of highest codimension.

4.2, Weighted homogeneous varieties

Fix positive integers m,, ..., m,. Grade the polynomial ring k[z, ..., z,] by giving 2,
the degree m,. A homogeneous ideal I in this ring has polynomial generators f such that

f(t™ 2y, ..., tr2,) =10f(2,, ..., 2,)
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for some d. The multiplicative group G, acts on k™! by t-(zy, ..., 2,) =({™z,, ..., t™2z,),
preserving V =V(I), and the quotient X =V —{0}/G,, is a projective scheme:

X =Proj (k[zy, ..., 2,/ ).

Let @: k+1—>k™+ be the map @(x,, ..., Z,) = (25", ..., 27). Then ¢*I is a homogeneous
ideal in k[, ..., z,] with its usual grading, and hence defines a projective scheme X; ¢
induces a morphism #: X~ X.

Let G'=pin, X ... X iy, be the product of the groups of m,th roots of unity, acting as
usual on &*!; ¢ may be identified with the quotient map from %™+ to 2"+1/@. Then & acts
on X, and X =X/@, with quotient map 7.

If 7 is generated by a regular sequence. of weighted homogeneous polynomials, then X
will be a complete intersection in P'. The fixed point subschemes of the various g in @
are the intersections of X with projective subspaces of P* obtained by setting some of the
coordinate functions equal to zero. The calculation of the L®X may be made as explicitly
as desired.

For example, if I is generated by a single weighted homogeneous polynomial f, and
f(P,)40, where P, is the point with a 1 in the th place and 0 elsewhere, then each of the
coordinate subspaces meets X properly, and the last formula of § 4.1 holds. In particular
| may be the ‘“Brieskorn polynomial”’

fodie . 2

In this case, when k=0, Atiyah [1] has an interesting Riemann-Roch formula identifying
the Euler characteristics of the sheaves Ox(m) with the index of an elliptic operator on
the Brieskorn manifold obtained by intersecting V with a sphere §27+1,
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