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1. Introduction

Suppose that D is a simply connected domain of hyperbolic type in the extended
complex plane C=CU {oo}. Then the hyperbolic or noneuclidean metric g, in D is given by

en(2) = (1—[9(2) [ g'()],

where g is any conformal mapping of D onto the unit disk {z: |z| <1}. For each function ¢
defined in D we introduce the norm

lello= sup |p(2)| ep(z) %

Next for each function f which is locally univalent and meromorphic in D we let S,
denote the Schwarzian derivative of f. At finite points of D which are not poles of f,

8; is given by AR Y AR Y %
5-(7) =a() -7 -3(F) v

and the definition is extended to oo and the poles of f by means of inversion.
Now let L denote the lower half plane, L={z=x+iy: y <0}, and let B,=B,(L, 1)
denote the complex Banach space of functions ¢ analytic in L with the norm

lll=llell = sup 4% o(@)] < o

Next let S denote the family of functions ¢ =8, where ¢ is conformal in L, and let 7'=7'(1)

denote the subfamily of those =5, where ¢ has a quasiconformal extension to C. Then

(*) This research was supported in part by a grant from the U.S. National Science Foundation,
Grant MCS-77-02842.
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llll <6 for all p€S by [11], and hence T<S< B,. The set 7' is called the universal
Teichmiiller space. See [4], [5], [6], [7].

In a recent paper [8], the author established a result, which when combined with an
extension theorem of Ahlfors [1], yields the following characterization of T'.

TrrEoREM 1. T is the interior of 8.

Theorem 1 is closely related to the following interesting open problem raised by
Bers in [4], [5], [6], [7].

QUESTION. Is 8 the closure of T?

The purpose of this paper is to answer this question in the negative by establishing

the following result.

TrEOREM 2. There exists a simply connected domain D of hyperbolic type and o
positive constant & with the following property. If f is conformal in D and if ||S||p <0, then

(D) is not a Jordan domain.
COROLLARY. There exists a ¢ in S which does not lie in the closure of T.

Proof of Corollary. Let D and 8 be as in Theorem 2, and let g be any conformal
mapping of L onto D. Then p=9,€S. Choose y €S with |ly —¢|| <4. Then y =35, where &
is conformal in L. Set f=hog 1. Then from the composition law

Su(2) = S4(9(2)) 9’ (z)? +8,(2)
it follows that
184l = 18~ 8]l = |y —e@ll <o.

Hence k(L) =f(D) is not a Jordan domain, » does not have even a homeomorphic extension
to L and ¢ 7T. We conclude that ¢ is a point of § which does not lie in the closure of T'.
The domain D in Theorem 2 can be described in a very explicit manner. Namely,

D=C-—y, where y is the arc
y ={z=tie"**Ph€[0, o)} U {0}

and a €(0, 1/87). Hence it is not difficult to derive an analytic expression for the conformal
mapping g of L onto D, and ¢ =38, turns out to be a rational function.
The idea behind the proof of Theorem 2 is quite simple. For a €(0, =) let

oy = {2=€"Pt$€(0, o0)}, ap={z: —2€0y}.
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Then «; and o, are logarithmic spirals in D which converge onto the point 0 from
opposite sides of 0.D. Next suppose that f is conformal in D and fixes the points 1, —1, oo,
As ||8/]|» approaches 0, f converges to the identity mapping in D. Hence for ||S;||, small,
f maps oy, o, onto a pair of disjoint open arcs of, ¢ which spiral onto f,(0), f,(0), the
points which f(z) approaches as z—0 from the two sides of 9.D. This assertion follows from
Lemmas 3, 5, 6 and 8.

Now the rate at which «; and «,, and hence «f and o, spiral depends on a. If a is
sufficiently small, then of, o will spiral very slowly onto f,(0), f,(0). Since of, a3 are
disjoint, the points f,(0), f,(0) will either coincide or be separated by a distance greater than
a positive constant d. This is a consequence of Lemma 1.

Finally if we make ||S/||, still smaller, we can arrange by Lemma 9 that f,(0), f5(0)
lie near 0 and hence within distance d of each other. Then 7,(0) and f,(0) will coincide
and f(D) will not be a Jordan domain.

The complete proof for Theorem 2 is given in section 3. As indicated above, it

depends on a number of results for a class of spirals. These are established in section 2.

2. Spirals
We derive here the results on spirals which will be needed in the proof of Theorem 2.

Definition. Suppose that « is an open arc in €, that 2,, 2,€C and that b€(1, o). We

say that « is a spiral from 2, onto z, if « has the representation
2 =2(t) = (2, —z5)r(t) et +2, $€(0, ), (2)
where r(t) is positive and continuous with

lim r() =1, lim r(f)=0. 3)

>0 t->00
We say that « is a b-spiral if, in addition,
|2(ty) — 25| < b]2(ty) —2s] (4)
for all #,, £,€(0, ) with |, ~£,| <2ax.
Ezample. Suppose that >0 and that « is the analytic open arc
z ="t {E(0, o0),

Then « is an ¢*™-spiral from 1 onto 0 and

Balel= @+ 17, % )= aga+ 1) ©)



102 F. W. GEHRING

for all z€ e, where & denotes the curvature and s the arclength of « taken in the direction
from 1 to 0.

ProrosiTioON 1. If o is a spiral from z, onto z, with the representation (2), then

|2(t+27) ~2| < [2(0) 2 (6)
for t€(0, oo).

Proof. Let A denote the set of t€(0, o) for which (6) holds and let B=(0, o°)—4.
Since « is an open arc, B is the set of £€(0, o) for which the inequality in (6) is reversed.
Hence A and B are both open. If B+, then B=(0. o) and

|2(2n7) — 2z, | = |2(27) —25| >0

for all integers n>1 contradicting (3). Thus 4 =(0, o).

Prorosition 2. If « is a b-spiral from z, onio z, and if | is a conformal similarity
mapping, then f(a) is a b-spiral from Hz;) onfo f(2,).

Proof. This is an immediate consequence of the above definition.

The proof of Theorem 2 is based on a simple geometric fact. Namely that when
b€E(1,2), the two points, onto which a pair of disjoint b-spirals converge, must either
coincide or be separated by a distance greater than }b~2 times the diameter of the smaller

spiral. This observation is an immediate consequence of the following result.

LeMmA 1. Suppose that « is a b-spiral from z, onto z,, that B is a b-spiral from w; onto
wy and that anNB=0. If b€(L, 2), then either z,=w, or

1 .
25— wy| Zpmn (12— 2], |21 —wa)).
Proof. Suppose otherwise. Then
1 .
0<|zz—w2|<5mln(lzl—z2l,le—wzl). 7

If « has the representation (2), then arg (2(fy) —2,) =arg (w, —z,) for some £,€(0, 2z], and
we obtain

1., 1
|z(t0)—z2|>5 hmlz(t)—22|=5|zl—zzl> Iwz_zzl
t—>0
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from (3), (4) and (7). For each integer m >0 let ¢, =¢,+2mg. Then |2(t;) —z,| decreases to

0 as m~—oo, and we can fix m so that

{arg (2(ty) —25) = arg (wy—2,) = arg (2(t; +27) —2,), 8)
|2(ty) —25| = |wy— 25| > |2(t; +27) —2,].

Similarly if 8 has the representation w=w(u), u€(0, o), then we can choose u, €(0, >°) so
that
{arg (w(u,) —wy) = arg (2, —w,) = arg (w(u, +2m) —w,), 9)

|w(uy) —wy| = |2 —w,| > |w(w, +27) —wy,| .

Now let A denote the line through z, and w, directed from z, to w,. Then (8) and (9)
imply that z(t,), z(t, +27), w(u,), w(u, +27) lie on A, that w(u,) precedes or coincides with
%y, that z(t,) coincides with or follows w,, and that z(f; +2x) and w(u, +27) lie between
25 and w,. We claim that

|2(ty +27) — 25| < |w(ey +27) — 2, - (10)
To see this set
A = {z=s(z(t) —25) +25: SE(0, 1), tE(t, +, b, +37)},
B = {z=5(2(t) —25) +2: SE(1, o), LE(fy +7, 1 +3m)},
oy = {z=2(f): tE(ty, +7, 1, +37)} < «,
By ={z=w(u): u€(uy +2m, )} < f,
Ay = {z=5(2(t, +7) —25) +25: SE[0, )} = 4.

Then A and B are open and disjoint, 8, joins w(u, +27) to w,€B in C, and
C=A4UVUBUax,UA,.
From Proposition 1 it follows that
Bin(gUA) =4NA =0

and hence that 8, < B. Thus w(u,+2n)¢A4 and we obtain (10).
Finally since o and f are b-spirals, Proposition 1 and (10) yield

[2(t1) — 23] <b|a(ty+27) —z5| <b|w(uy +27) —2,|
< b|wluy) —w(u, +2m) |
= b(| w(uy) —wy| —lw(ul'*‘gﬂ)“wzl)

S0 —=1) |wluy) —w,| < |w(ug) —w,].



104 ¥. W. GEHRING

Next we can reverse the roles of « and # in the above argument to obtain

| w(u,) —w,| <|2(t) —2].

This contradiction shows that (7) cannot hold, completing the proof of Lemma 1.

We derive next in Lemmas 2 and 3 conditions, similar to (5), which guarantee that
an analytic open arc is a spiral or a b-spiral, respectively. By Proposition 2, we may
restrict our attention to the case where the arc has 1 and 0 as its endpoints,

LeMMA 2. Suppose that ¢, d€(0, =), that « ts an analytic open arc with 1 and 0 as
endpoints, and that

k(z)|z]| >, %—f(z)]zF?d

for z€ o, where s is taken in the direction from 10 0. Then a is a rectifiable spiral from 1 onio 0.

Proof. For each z€a let p(z) and C(z) denote the radius and circle of curvature for
« at z. Since £ is positive and increasing in s, the part of « from z to 0 must lie inside C(z)

by a theorem due to A. Kneser. (See p. 48 in [9].) Hence

%
_2 _de,_d __d

for z€a. If 8 is any closed subarc of « from w; to w,, then

- (9 st 4

and hence « is rectifiable with length

I=l(x)=sup lB)<

BCe

A

Let s denote the arclength of & from 1 to z, let z=z(s), s€(0, !), denote the corresponding
parametrization for «, and choose a continuous branch of logz(s) so that logz(s)—>0
as s-—>0. Then #(s) =Im (log 2(s)) is continuously differentiable with

Suppose that #'(s,) =0 for some s,€(0, ). Then 2'(s,) =az(s,) where a is a real constant.
This implies that the circle of curvature C(z(s,)) is tangent to the ray from O through
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2(sp) and hence that C(z(s,)) cannot contain the point 0, thus contradicting the above

mentioned theorem of Kneser. We conclude that

t'(s)=Im (zz'(f))) +0 11)

for s€(0,1) and hence that #(s) is a strictly monotone function of s in (0, 1).

By (11) we can choose a continuous branch of log (z(s)/2(s)) such that

|6(s)| <7, O(s)=Im (log z’((:))) (12)
in (0,7). Then
@(s) = #(s) +06(s) = Im (log 2'(s)) (13)

determines the angle of inclination for the tangent vector 2'(s) and
@'(8) = k(z(s)) = c|2(s)[ L = c(l—s)2

for s€(0,1). If s,€(0,1), then

S

(p(s)——qy(so)>f c(l—s)'ds=clog 7

So

0
—8

for s€(s, 1), and g@(s)— oo as s—~I. Thus #(s)—>oo as s~ by (12) and (13). Since #(s)—>0 as
s —0, we conclude that s is a strictly increasing function of £, s=s(#), in (0, ). Set r(t) =
|2(s(t))|. Then

z=r(t)e, t€(0, o),

is a representation for &« which shows that « is a spiral from 1 onto 0.

LeMma 3. Suppose that ¢,, ¢y, dy, dy€(0, o) and that 4nd,<c}. Suppose also that o is
an analytic open arc with 1 and 0 as endpoints and that

¢ <hk@)z|<c, d,< ;ﬂ: ()|e2< d,

for 2€a, where s is taken in the direction from 1 to 0. Then « is a rectifiable b-spiral from 1
onto 0, where

CyC
b=§1?._.> 1.

Proof. Lemma 2 implies that « is a rectifiable spiral from 1 onto 0 with the representa-

tion
z=2(t) =r(t)e®, t€(0, o).
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It remains only to prove that |z(t;)| <b|z(t;)| for all ¢, ,€(0, =) with |t —t,| <27. Let

o(z) denote the radius of curvature for « at z. Then since

|l < es0(2) < 21al,
G
it suffices to show that

0(e(t)) < 2 bo(a(t) (14)

2
for all such ¢,, ¢,.

Fix t,, t,€(0, o) with |t, —t,| <2z and for j=1, 2 let z,=2(t,), s;=s(t;), 0,=0(s;) and
@;=@(s;) where 0(s) and ¢(s) are as in the proof of Lemma 3. Since

*
do . _ds” _d,

0<_ds (z)zk—(z)?<c§

for z€u, p(z) is decreasing as a function of s. Suppose that s,<s;. Then

0() < 0(2) < 2 bo(zs)
2

and (14) holds. Suppose next that s; <s,. Then

52 d; d,
0(z1) — 0(z5) = f (_ d—g) ds< :;% (82— 81)

S
while
P2 ds @2
82—81=f (@)dtwf 0dp<o(z)|p;— @1l

1 ['3]

Then (12) and (13) imply that

lps— 1| <[ty —t;] +]0.—6,] <47,
and we obtain

47d,
0(z) —o(z) < c—¥2 0(z1),

from which (14) again follows. Hence the proof is complete.
We conclude this section with a result similar to Proposition 2. It implies that the
image of a logarithmic spiral under a conformal mapping, which is nearly a similarity, is

again a spiral. We require first the following result.
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Lemma 4. Suppose that « is an analytic arc with the representation z=2(t) where
2'(t)=F0, and suppose that f maps a neighborhood of « conformally into C. Then o* =f(x) s an
analytic arc with the representotion w={foz(t) and

w140 m (55 )

a* ak 2 ()
dS ‘f I ds ) Im (Sf(z) I t)l2) 3

where k, k* denote the curvatures and s, s* the arclengths of o, o* in the direction of increasing t.
Proof. If w(t)=foz(t), then w'(t)=f(2)2'(t)==0 and

w'(t) _2"(t) _f'(=) B .
w(t) 2(b) f‘(zf)'z @), Sut)—8,(t)=S8,(z) 2 (¥)", (15)

where z=2z(t) and where 8, and S, are defined exactly as in (1) with the differentiation
now taken with respect to the real variable . Then

" ") 2"\ s -t
F*(w) [f(z)l k(z)= ( w0 z,(t))lz(t)l (16)

by elementary differential geometry and

dk* dk

w)|f @) 7 @) =Tm (8,(t) = 8, )] (7)

by Exercise 3 on p. 21 of [3]. The desired conclusion now follows from (15), (16) and (17).

LeMMA 5. Suppose that b, ¢,, ¢y, di, dy and « are as in Lemma 3 and that b*€(b, o).
Then there exists an ¢>0, depending only on b*, ¢;, ¢y, dy, d,, with the following property.

If { maps a neighborhood of « conformally into €, if {(z)—~1 and 0 as z—1 and 0 on «, and if

2f"(2)
f(2)

21"@)

1)

<E

>

2 (2) _
1) 1l<a,

<e (18)
for z€a, then o*=f(a) is a b*-spiral from 1 onfo 0.
Proof. By hypothesis we can choose % €(0, min (¢,, d;)) so that

(01_77) (62+7]) < b*.

) <@=nh s S
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Fix €€(0,}) so that (4+2c,)e<n and (20+6d,)e<7, and suppose that f satisfies the
hypotheses of Lemma 5. Then o* =f(a) is an analytic open arc with 1 and 0 as endpoints.
If w€eo*, then z=f"(w)€a and (18) implies that

Hence we obtain the inequalities

/)

f

2f"(z

= ’ <2, |228,(z)| < 5e

el 7o)

< 2elz],

ol kalel|<| K2 | eeplr @) -+ || A3 | - o] ke
<2|z||§,((:))'+28|z]k(z)
and
o* dk 2 \dk
o el -2 b | <[ 12 ey -2 o |+ || FA - 1ar| 5

dk
< 4|2P|82)| + 68|z|2;l; ()<
from Lemma 4, where k* and s* denote the curvature and arclength of a*. Thus

dak*
<k w)|w|<e+y, di—-n<——

i (w)|wlE<dy+7

for w€a*, and the desired conclusion follows from Lemma 3.

3. Proof of Theorem 2
For each a€(0, o) let

={z=e"o*0% 1€(0, )}, oy = {21 —2€aq},
B ={z=tiel "D t€(~o0, 0)}U {0, o0},
y ={z: 2€p, |z| <1}.

Then 8 is a Jordan curve which separates «, and a,. Let D, denote the component of
€ —p which contains «; and set D =C—y. Then D is a simply connected domain of hyper-
bolic type which containg D;U D, and hence &, U a,.

Now suppose that a €(0, 1/87) and that f is conformal in D. We shall show that there
exists a d =d(a) >0 such that f(D) is not a Jordan domain whenever ||S||, <d; for this we

may clearly assume that f is normalized so that it fixes the points 1, —1, oo. The argument
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then consists of three steps. First in Lemma 8 we show there exists a d,>0 such that
f(ay) and f(a) are b*-spirals with 6* € (1, 2) whenever ||S,||, <d,. Next in Lemma 9 we show
there exists a J;>0 such that the points onto which f(e) and f(a,) converge must lie
in {z: |z| <}} whenever ||S;||;<0d;. Finally set é =min (3, ;). Then Lemma 1 implies
that f(oy) and f(«;) converge onto the same point and hence that f(D) is not a Jordan
domain whenever ||S,||,<é.

We begin with an application of Ahlfors’ extension theorem [1] to the domains
D, and D,.

LeMMA 6. There exists a 8, =0,(a) >0 with the following property. If f is conformal in D
and if ||S;||p <8y, then for j=1, 2 the mapping f,=f|D; has a quasiconformal extension g, to
C and

K(g;) < (1 —c|}8,]lo) (19)

where c=c(a) and K(g,) denotes the maximal dilatation of g,.

Proof. Let
h(reif) = rael®-1o8n (20)

for r€(0, o), and set A(0)=0 and h(oc)=oco. Then it is easy to verify that A is a K-
quasiconformal mapping of C, where K =a+(2/a), and that h maps the imaginary axis
onto B. Thus 8D;=8 is a K-quasiconformal circle. By the above mentioned theorem of
Ahlfors, there exists a d;=d,(a) such that each f, conformal in D, with ||S,[5,<d, bas
a quasiconformal extension g, to C, where

]l < €8 11,2 —ell S 1)) (21)

and ¢=c(a). (For this last estimate see p. 22 in [10] or p. 132 in [2].)
Now suppose that f satisfies the hypotheses of Lemma 6 and let f;=f|D,. Then
since gp<gp, in D;,

I8 5llo; < IS0 < 8y
Thus f, has a quasiconformal extension g, to C satisfying (21), and (19) follows directly.

Remark. If f is conformal in D with ||S/||,<4,, then Lemma 6 implies that f,=f|D,
has a homeomorphic extension to D,U {0} and hence that f(z) has limits as 20 in D,
and as z—0 in D,. We shall denote these limits by f,(0) and f,(0), respectively.

We require next the following consequence of a distortion theorem due to Teichmiiller
[13].
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Leuwma 7. For each 1>0 there exists a K, =K (n) €(1, o) with the following property.
If g is a sense preserving quasiconformal mapping of C with K(g) <K, and if g fizes three
POINtS 24, 25, 2, then
l9(2) 2] <7]21—2)] (22)
for z with |z—z,| <|z —2].

Proof. Let g and o denote respectively the hyperbolic metric and distance in G=C—
{0,1, >} and set
b=inf {p(z): z€GN B}, B={z |z|<2}. (23)

Then g is positive and infinitely differentiable in @ and g(z)->c° as 20 or 1. (See, for
example, p. 51 and p. 246 in [12].) Hence b€(0, o). Set

K, =exp (2b min (5, 1)) €(1, =°).

Now suppose that g is a sense preserving quasiconformal mapping of € with
K(g)<K,, and suppose that g fixes the points 0, 1, . Then by the above mentioned

theorem of Teichmiiller,

0lg(e), 2) <} log K(g) <bmin (7, 1) <b

for z€G. (See pp. 29-31 in [13]) If |z| <I, then (23) implies that

o(g(z), 2) =inff gds}inff bds > b min (|g(2) — 2|, 2 —|z|),

wnB
where the infima are taken over all rectifiable arcs w joining z to g(z) in G. Hence
|g(2) —2| = min (|g(z) —z|, 2—|2|) < min (y, 1) <y

for |z| <1 and we obtain (22) for the special case where z, =0 and z, = 1. The general case then

follows by applying what was proved above to the mapping

h(z) = g(z(z2 —z:ﬂ:lzl) ! )

Remark. Lemma 7 also follows from a more elementary contra-positive normal family
type argument. However this second method does not yield an explicit estimate for K, in

terms of 7.

Lemma 8. For each a€(0, 1/8n) there exists a §,=06,(a)€(0, 6,] with the following pro-
perty. If | is conformal in D with ||S,||p <8, and if f fizes oo, then for j=1, 2, af =f(a;) is a
b*-spiral onto f,(0) where b*€(1, 2).
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Proof. Set ¢, =c,=(a*+1)t, d =d,=a(a®+1)2

€16 , -1
== = (] — 4 1,2
b= = (L= ) (L, 2),

and fix b*€(d, 2). Next let ¢ be as in Lemma 5, set
n=4erd, r=4%dist (1,0D,) <4,

and choose 0,€(0,d,] so that (1 —cd,)*<K,, where c=c(a) and K,=K,(n) are as in
Lemmas 6 and 7. Then §, depends only on a.

Now suppose that f satisfies the hypotheses of Lemma 8. Then of =f(oq),and
a5 =f(ory) are analytic open arcs with endpoints f(1), f,(0) and f(—1), f4(0) respectively.
We shall show first that of is a b*-spiral from f(1) onto f,(0). By Proposition 2 we may
assume without loss of generality that f(1)=1 and f,(0)=0.

Let g, denote the quasiconformal extension of f,=f|D, to € given by Lemma 6, fix
z, €ay and set

h(z)= gl(zlz).
91(z1)

Then A is a sense preserving quasiconformal mapping of C, K(h) <K, and % fixes the
points 0, 1, co. Hence
[h(z) —2| <7 (24)

for [z—l] <1 by Lemma 7. Since ¢(z)=z;, z maps D, onto D, f(2,2) =g,(z,2) for z€E D,.

Hence b ig analytic in D, and

af @) . 1 [ ]hz) 2| n
Lt 1l_|h sk Ola<t <

by (24), where w is the positively oriented circle {z: |z—1| =r}. Similarly we obtain

21" ()| _

f(z1)

A1)

f(z1)

< _.1 =g.
7‘2 ’ = 7‘3

Then (5) and Lemma 5 imply that of is a b*-spiral from 1 onto 0.
Next let g(z) =f(—2). Then g is conformal in D with ||S,||, <9, and g(co)=oo. Hence

oz =g(oy) is a b*-spiral by what was shown above and the proof is complete.

LeEMMmaA 9. For each £>>0 there exists a 8;=04(a, €) €(0, 6,] with the following. property.
If f is conformal in D with ||8,||p <05 and if f fixes 1, —1, oo, then |f,(0)| <& and |f,(0)| <e.
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Proof. Set =min (¢/4, 1) and choose §;€(0, 6,] so that (1 —cdg)2<K,, where ¢ and
K, are as in Lemmas 6 and 7. Then §, depends only on a and e&.

Now suppose that f satisfies the hypotheses of Lemma 9 and for j=1, 2 let g, denote the
quasiconformal extension of f,=f|D; to C given by Lemma 6. Then g=g,og;" is a sense
preserving quasiconformal mapping of € with K(g)<K,. If z,€8—y, then for j=1, 2,
% €D, and

9(z0) = lim g,(2) = lim f,(2) = f(z),

where the limits are taken as z—>z, in D;. Thus ¢ fixes points in f—p and hence, by
continuity, the points ¢, —%, . Thus
l92(1) 1] =|g(1) ~1] <2n, 0<|gy(1)+1]|<3

by Lemma 7. Set
2 gs(1)—1
z)— .
)+ 199 @ F1

h(z)=

Again h is a sense preserving quasiconformal mapping of €, K(h) <K, and h fixes 1, —1, oo,
Thus |A(0)| <27 by Lemma 7 and

|7200)] = [92(0)] <}|ga(1) +1]|A(0)| +3[ga(1) - 1] <&

Finally applying what was proved above to the mapping — f(—z) yields the inequality
1,00)| <e.

Proof of Theorem 2. Suppose that 4 € (0, 1/8x) and set
6 =min (62(”’)’ 63(a’ %)) < 617

where §, and J; are as in Lemmas 8 and 9. Next suppose that f is conformal in D with
[|8]lp <d. We shall show that f(D) is not a Jordan domain. By following f by a Mdbius
transformation, we may assume without loss of generality that f fixes the points 1, —1, co.
Now Lemma 8 implies that of =f(«;) and o3 =f(«,) are disjoint b*-spirals from 1 onto
f1(0) and from —1 onto f,(0), respectively, where b*€(1, 2). Next Lemma 9 implies that
[£1(0)] <% and |f,(0)] <%. Thus
|4(0) = £20)| <& < 55 min (1= 4(0)], | - 1= (O],

and we conclude from Lemma 1 that f,(0)=/,(0).

Next let B={z: |z| <1} and for 2€ B set g(z)=h(1

2
formal mapping of C defined in (20) in the proof of Lemma 6. Then fog is a quasicon-

(z +%)) , where b is the quasicon-
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formal mapping of B onto f(D) and fog(z)—f,(0), f,(0) as z—>14, —% respectively in B.

Hence f(D) cannot be a Jordan domain, since otherwise fog would have a homeomorphic
extension to B and f,(0)=f,(0).
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