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It is well known that the topology of various path spaces on a complete riemannian
manifold M is closely related to the existence of various kinds of geodesics on M. Classical
Morse theory and the theory of closed geodesics are beautiful examples of this sort.

The motivation for the present paper is the study of geodesics satisfying a very
general boundary condition of which the above examples and the example of isometry-
invariant geodesics are particular cases. In particular, we generalize a result of Sullivan-
Vigusé {16}

Let NoM x M be a submanifold of the riemannian product M x M. An N-geodesic
on M is a geodesic ¢: [0, 1] M which satisfies the boundary condition

() ((0), c(1))EN and (é(0), —é(1)) €TNY,

where T'N* is the normal bundle of Nin M x M. If N=V, x V,, where V,< M, i=1,2are
submanifolds of M then an N-geodesic is simply a V, -~ V, connecting geodesic (orthogonal
to each V,). If N is the graph of an isometry, A4, of M then an N-geodesic is a geodesic
which extends uniquely to an A-invariant geodesic c: R—~M; i.e.

c(t+1) = A(ct)), tER.

When A has finite order (4*¥=id) then ¢ is in fact closed (c(t k) =c(t), tER).

The study of N-geodesics on M proceeds via critical point theory for the energy
integral on a suitable Hilbert manifold of curves with endpoints in N. This Hilbert manifold
is homotopy equivalent to the space M} of continuous curves f: [0, 11— M satisfying (f(0),
f(1))EN, with the compact open topology (cf. Grove [4], [6])-

(1) Part of this work was done while the first named author visited the IHES at Bures-sur-
Yvette during May 1976.
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In this paper we apply Sullivan’s theory of minimal models to study the rational
homotopy type of M, and hence to obtain information about N-geodesics.

Sullivan’s theory (cf. [14], [15] and [8]) associates with each path connected space §
a certain differential algebra (A X, ds) over Q which describes its rational homotopy type.
(A Xy, dg) is called the minimal model of S and H(N\ X;)is the rational (singular) cohomology
of 8. As an algebra A Xj is the free graded commutative algebra over the graded space
X, If 8 is nilpotent and its rational cohomology has finite type then X is the (rational)
dual of the graded space 74(S) ®Q. (See section 1 for more details.)

Our main result is an explicit construction of the minimal model for the space M),
where G(g) is the graph of a o0 called 1-rigid map and M is any 1l-connected topological
space whose rational cohomology has finite type (Theorem 3.17). This gives in particular
a new proof of Sullivan’s theorem for the space of closed curves M*' [14]. Surprisingly
enough the minimal model for M¢,, has exactly the same form as the minimal model for
the space of closed curves on a space M’. This space, however, is not obviously related to
M and it can be much bigger than M. For this reason the results of Sullivan~Vigué [16]
do not carry over to our more general case in a completely satisfactory manner although
some of the methods from [16] are important for us.

The minimal model for ML, contains all information about the rational homotopy
theory of M%,, in particular about the cohomology. An immediate consequence of the

model is the following (Theorem 4.1).

THEOREM. If the rational cohomology of M, is non trivial and g is rigid at 1 then

M, has non-zero cohomology in an infinite arithmetic sequence of dimensions.
The main application of the model is however (cf. Theorem 4.5).

THEOREM. If M is 1-connected, H*(M) finite dimensional and g: M—>M rigid af 1,
then Mt has a bounded sequence of Betti numbers if and only if

dim 72"**(M)7* ® Q < dim 7#3(M)** Q<1
where st (M)°# is the homotopy of M fixed by the induced map g 4.

When g =id this specializes to the main theorem of Sullivan—Vigué {16). If we combine
this result with the main theorem of Grove-Tanaka [7] we obtain (generalizing the ap-

plication by Sullivan—Vigué of Gromoll-Meyer [3]).

THEOREM. Let M be a compact 1-connected riemannian manifold and let g be a finite
order isometry of M. If g has at most finitely many invariant geodesics then
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dim 7T (M)** ®Q < dim 72 M)y» Q< 1.
As a consequence we obtain (cf. Cor. 4.10).

CorOLLARY. Let M be a l-connected, compact riemannian manifold whose cohomology
1s spherically generated (e.g. M formal) and let g be a finite order isometry of M. If the induced
map g* on cohomology fixes at least two generators then g has infinitely many invariant geo-
desics.

The paper is divided into 4 sections. In section 1 we recall briefly the main results
in the theory of {minimal) models and explain how they generalize when an action of a
finite group is involved. Besides being of interest in itself we use these results in section 3.

In section 2 we translate the fibration

n
QM —— ML 2N,

to models. Here M is any 1-connected space, and N a path connected subspace of M x M.
Furthermore, my(f) = (f(0), (1)), QM is the ordinary loop space of M and M} is defined as
above. We exhibit a {not necessarily minimal) model for M} (Theorem 2.8). In particular
(Cor. 2.11) we obtain explicitly the space of generators for the minimal model of M%. We
also apply results from the theory of models to our model of M} (Theorem 2.15 and Cor.
2.16).

In particular, suppose N is a closed submanifold of M x M and M is a complete rie-
mannian manifold. Let p,;: N—M, i =0, 1 be the left and right projections and assume that
either po(N) or p,(N) is compact and that V=N N A (M) is a closed submanifold of N.
Then according to Grove [5] if there are no N-geodesics on M the inclusion V—~M} is a

homotopy equivalence. Thus Theorem 2.15 yields:
THEOREM. Suppose in addition to the above conditions N is 1-connected and let
(Pi)#: (V) ®Q > mu(M)®Q, i=0,1

be the linear maps induced by p,, 1 =0, 1. If for some complete metric on M there are no N-
geodesics, then coker ((pg)» —(P1) =) s spanned by elements of even degree and
dim coker ((pg)x — (1)) Sdim V.

As a second application we get from Example 2.21 the

THEOREM. Let X, X, and X, be spheres (possibly exotic) and suppose X, and 2, are
tmbedded in X so that X, 0 X, s a (collection of) closed submanifold(s) of X. Then for any rie-

mannian metric on T there are X, — X, connecting geodesics.
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Finally in section 3 and section 4 we specialize to the case N =G(g) and get the results

on isometry invariant geodesics.

1. Equivariant minimal models

Throughout the paper all vector spaces are defined over the rationals Q unless other-
wise said. We begin by recalling some facts from Sullivan’s theory of minimal models (see
Sullivan [14], [15] and Halperin [8]).

A commutative graded differential algebra (c.g.d.a.) is a pair (4, d,) where A = @3¢ A°
is a non-negatively graded algebra (over Q) with identity, such that ab=(-—1)"?ba for
a€A4?, beA?and d: A— A is a derivation of degree 1 with d%=0.

AX will denote the free graded commutative algebra over a graded space X i.e.

A X = exterior (X°%) @symmetric (X°"2),

A+X is the ideal of polynomials with no constant term i.e. A+X =3,., N'X.
A KS-complex is a c.g.d.a. (AX, d) which satisfies:

(ks,) There is a homogeneous basis {#,},¢; for X indexed by a well ordered set J such

that dx, is a polynomial in the x, with f<a.
If (AX, d) in addition to (ks,) satisfies
(ksy) dX<A*X-N*X

then (AX, d) is said to be minimal.

In the rest of the paper (AX, d) is always assumed to be a connected KS-complex.
Let QAX)=A+X/A+X - A+X be the indecomposables of AX and ;: A+*X —@Q(\ X) the projec-
tion. Define a differential @Q(d) on QA X) by @(d)=(d. Then (AX, d) is minimal if and
only if @(d)=0. If y: (AX, d)~>(AX’, d') is a c.g.d.a. map, we define Q(y): QA X)>QAX")
by Q)¢ ={"y. Note that { restricts to an isomorphism X->Q(AX) which allows us to
identify these spaces.

We shall now recall the notation of homotopy due to Sullivan [15, § 3] (see also {8;
chap. 5]). Let (AX,d) be a KS-complex with X strictly positively graded (i.e. AX is
connected.)

(ANX?, D) is the c.g.d.a. obtained by tensoring (AX, d) with the “contractible” c.g.d.a.
(NX®ADZX, D), where

(¢;) X is the suspension of X i.e. X?= X7+
and

(¢g) D: X~ DX is an isomorphism.
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The degree . —1 isomorphism X =X is written z+—%.

A derivation ¢ of degree —1 and a derivation 0 of degree zero in A X7 are defined by

=%, 1 =1DZ=0 forallz€X
and
0 = Di+1D.

Let 4;: AX—AX? denote the standard inclusion and set A, =efol,. Here ef is well de-
fined because for any ® € AX? there is an integer n such that 6"® =0 [8)]. Note that if
II: AX’>AX is the projection defined by

Me=2,11Z=IIDE=0 forallz€X
then 4, and I induce inverse cohomology isomorphisms because (AX ® A DX, D) is acyclic.

Definition 1.1. Two homomorphisms y,, y3: (AX, d)—>(4, d,) of c.g.d.a.’s are called
homotopic (written yq~1;) if there is a c.g.d.a. map I': (AX?, D)~(4,d,) such that T'old; =y,
=0, 1.

If the c.g.d.a. (4, d,) is homology connected i.e. H*(A)=0Q a model for (4, D,) is a
KS-complex (A X, d) together with a homomorphism of c.g.d.a.’s

@ (NX,d)—~ (4, d,)
which satisfies

(m) @ induces an isomorphism ¢* on cohomology.
If the KS-complex (A X, d) is minimal we speak of the minimal model ¢: (AX, d)—

(A: dA)
We can now state the following important result (see [15, § 5] and [8, chap. 6]).

TueorEM 1.2. Let (4, d,) be a c.g.d.a. with HYA)=Q. Then there is a minimal model
@ (AX,d)> (4, dy).

If ¢': (NX', d')~> (A, d,) is another minimal model, then there is an isomorphism of c.g.d.a.’s
o (NX, d)~(\X', d') such that o ~¢’ox. Finally, o« is unique up to homotopy.

A number of choices are involved in the construction of ¢: (AX, d)—(4, d,). If a finite
group G acts on (4, d,), the flexibility in the construction enables us to obtain an induced
action of @ on (AX, d) and to make g equivariant. In fact, one can carry out Sullivan’s
proof of Theorem 1.2 equivariantly using that any G-invariant subspace of a vector space

has a G-invariant complement. Hence
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TEEOREM 1.3. Let (4, d,) be a c.g.d.a. with HY(A)=Q and let G be a finite group acting
on A by c.g.d.a. maps. Then there is a minimal model

‘P: (AX3 d) g (A: dA)

such that G acts on (NX, d) and @ is equivariant. If ¢': (NX',d’)~>(4, d,) is another G-
equivariant minimal model, then there is a G-isomorphism a: (NX, d)—(ANX’, d') such that

g~¢'ox and o is unique up to homotopy.

There is also an equivariant theorem for maps which again can be proved by making
the corresponding non-equivariant proof (cf. e.g. [8, Theorem 5.19]) equivariant.

TaEOREM 1.4. Let (4,d,) and (A',d,) be a c.g.d.a’s with HYA)=HY(A")=Q and

with actions of a finite group G. Furthermore, let
g: NX,d)y~(4,d,) and¢: (NX',d)—~(4’,d,)

be equivariant minimal models as in Theorem 1.3. Then for any equivariant c.g.d.a. map CQ:
(4, d)—~(4’, dy) there is an equivariant c.g.d.a. map w: (NX, d)—>(NX’, d’) such that
¢’ ow~Qop.

Now suppose M is a topological space. Denote by (4(M), d) the c.g.d.a. of rational
differential (PL) forms on M.

A rational p-form ®EAP(M) on M is a function which assigns to each singular ¢-
simplex o: A%~ M a C« differential p-form @, on the standard ¢-simplex A? such that

(dy) @, isin the c.g.d.a. generated (over Q) by the barycentric coordinate functions.
and

(d3) The map g+—®,, is compatible with face and degeneracy operations.

Multiplication and differentiation are defined in 4(M) by (® AY), =P, AY, and (dD),=
d(@,).

If g: M-~ M’ is a continuous map, there is an induced map A(g): A(M')~A(M) of
c.g.d.a.’s given by (4(¢9)P); =D ,00- One has the following important result.

TrEOREM 1.5. (Sullivan—~Whitney~Thom). Integration yields a natural isomorphism
of graded algebras

f tH*(A(M))—~H*(M)

where H*(M) denotes singular cohomology with coefficients in Q.
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When M is path connected a (minimal) model for (A(M),d) is called simply a
(minimal) model for M. The minimal model for M will be denoted by

@a: (NXy, dyy) ~ (A(H), d).
The space of indecomposable elements:
(M) = QINX )= Xy

is called the pseudo dual homatopy of M. If H*(M) has finite type (i.e. finite dimensional
in each degree) and M is nilpotent then there is a natural isomorphism

7y(M) ~ Homg, (z+(M), Q)
(cf. [15] and [8]).

2. A model for the space M},

Let M be a simply connected space whose rational cohomology has finite type, and
fix a path connected subspace N M x M.

Let M’ be the space of continuous maps f: [0, 1]-M with the compact open topology.
In this section we shall determine a model for the subspace My< M’ given by

MY = {fe M| (0), (1)) EN}.

We have the commutative diagram

MxMZ—pl _qou
iy || inel 2.1
N Mi—QM
Ty In

where 7(f) =(#(0), f(1)), 7y is the restriction of z and QM =mz'(m,y, m;) ={f € M| {(0) =m,
and f(1) =m,} for a chosen base point (my, m;)EN.

Both rows in (2.1) are Hurewicz fibrations which we denote respectively by F and Fy.
Note that Fy=1i5(F).

We also have a homotopy equivalence u: M —>M! given by: n(m) is the constant map
I—>m. Clearly

mon=A: M->MxM (2.2)

is the diagonal of M.

181 — 782908 Acta mathematica 140. Imprimé le 9 Juin 1978
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Now we begin the translation of (2.1) to models. Since M is 1-connected and H*(M)
has finite type it follows that AX,, is 1-connected; i.e. X% =X};=0, and has finite type
(see [8; Cor. 3.11 and Cor. 3.15]).

Consider the diagram

(/\X

o

AXy@NXy B (NXu,0) (2.3)
incl. Pproj.
AXyONX @ NXy
where A, and A; are defined on page 281 and

2@ (DPRY) = 2,0 L, ¥
0x=pDr=0 and gt ==
and
HORY ®F) = 4,0 -4, F (1®i®1).

By [8, Lemma 5.28] b is an isomorphism of graded algebras (because A X,, is minimal.)
Since AX,, is 1-connected, dyy X <A\ (®F=3 X)y). Hence (5.5) and (5.6) of [8] yield

Max—Aox =Di+Q(x), z€XYy (2.4)
where Q(z)= z (‘ ) e NXP) O NX? ) © NDX#)} N ker TT

and II is defined on p. 281.

An easy calculation shows that gD =giD =0, and it follows from (2.4) that (2.3) is
commutative. Thus (ef. [8, chapers 1 and 5]) (2.3) exhibits AX,, @A X,,~AXL—>N\X,; as
a minimal KS-extension.

We shall now define a commutative diagram of c.g.d.a.’s

A ®2 e

ANX,®ONX, LLAXL AXy
Prxm Y Pa (2.5)
AM x M) TN A(MY a0 AQM)

in which all the vertical maps induce isomorphisms on cohomology.
First let P,, Pp: M x M — M be the left and right projections, and define

Puxu(@®F) = A(Pp)ogy @ A(Pg)ogy Y.
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Since H*(M) has finite type, the Kiinneth theorem holds and @y, induces an isomorphism
@< on cohomology. In particular gy A Xy @A\ X~ A(M x M) is a minimal model for
MxM.
Next, note that the projection II: AX},~AX,, satisfies [Tlody=1IIo4, =id. Hence
Mo (A, ®4,;) =p is the multiplication homomorphism
w NXy@NXy~NX,y,.

From this and (2.2) we see that the following diagram is commutative.
A(MY __Am A(M)

A@)o Py« Py

AX,®NXy AXY,

A ®%
Since # is a homotopy equivalence it induces an isomorphism 4(»)* on cohomology. There-
fore by Sullivan [15, § 8] or Theorem 5.19 of [8] there is 2 homomorphism of ¢.g.d.a.’s

v: (NX},, D)~ (A(MY), d)

such that po(ly®4,)=A(w)e@y,y and A(n)op~gyoll. Because A(n)*, g3 and II* are
all cohomology isomorphisms, so is ¢*,

Finally (2.3) shows that ker g is generated by 4,®4,(X, ®X,,) and hence y (ker ) is
generated by A(m)opuu(Xy®Xy). Since A(j)oA(m)=0 on elements of degree >0 it
follows that y factors to give a c¢.g.d.a. homomorphism

pa: (NXy, 0) - (A(QM), d)
such that (2.5) commutes.

Now since F is a Hurewicz fibration, M is 1-connected and H*(J) has finite type,
a theorem of Grivel [2] or [8, Th. 20.3] asserts that because @i, and y* are isomorphisms
so is ¢f. In particular @q: (A Xy, 0)~A(QM) is a minimal model for the loop space of M.

We now turn our attention to the fibration Fy. Recall that ox: (NXy, d)—>(A(N), d)
is a minimal model for the path connected space N.

Use (2.1) to obtain from (2.5) the commutative diagram

AXuohXy2®M Axt 2 Ax,
A(in)Oo@arxu Afincl)oy |gg (2.6)

A(N)

MI >
Ay A0 g 4QH0
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Using’ again Sullivan [15, § 5] or [8, Th. 5.19] we obtain unique (up to homotopy) c.g.d.a.
maps

@o: (NXy, dyy) > (N Xy, dy)
and

@10 (NXy, dy) > (N Xy, dy)

such that gyope~A(PLoiy)opy and pyop,~A(Pgoiy)op,. Define a homomorphism of

c.g.da.’s
U NXy @AXy > NXy
by
Un(@ YY) = go(D): @y (V).
Then

Puoiy ~ Aliy) o Parar

Therefore we can apply (9.15.4) of [8] to obtain from (2.6) another commutative diagram
of c.g.d.a.’s

AX,@NX, 084 Axt_ & Ax,

PnO Uy Yy Pa

A(N) A(My) ——— A(QM)

Al7y) A(7w)

in which g ~@q. In particular g is an isomorphism.
Finally, write AX,=AX,,®AX,,®\X,, using the isomorphism 4 of (2.3). The ideal
ker uy®/N\X,, is D-stable, and so a c.g.d.a.

(AXy@NXy, Dy)
is defined by

Dy(®®1) =dy®®1 and Dyo(uy®id) = (uy®id)o D.

Clearly vy factors through (AXy®AX,, Dy) to produce the commutative diagram of
c.g.d.a.’s

incl. - P
AX, 25 A Xy @A Xy Dy) EI A X,

’ !

Pn Yn L2 (2.7)

AN AQM)

" dmy AW 55

Because gy and ¢ are isomorphisms the comparison theorem, applied to the spectral
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sequence of Grivel [2] or [8, Th. 20.5] for the fibration JFy, shows that yy* is an iso-
morphism. Thus we have established

THEOREM 2.8. 4 model for the space M7 is given by

In particular (cf. Sullivan [15] or [8, Cor. 2.4]) the minimal model of MY, is generated by
H(XN@XM> Q(DN))’ ?'e
n:;(Mil) = H(XN®XM, Q(Dy)).

Next recall that A Xy is minimal and (cf. see. 1) project the top row of (2.7) to the
short exact sequence
0> (Xy, 0) > (Xy@ Xy, QDy)) = (Xsy, 0) > 0.
This leads to a long exact sequence

* %
_pa

s X HP( X, @ Xop, QD)) Xz, X5t (2.9)

in which clearly ¢* =Q(Dy).
A straightforward caleulation using (2.4) shows that

Dy(1 @) = (g1 —@o) & — (y @1d)Q(x), 2E€Xy.
Since Q(x) is decomposable we conclude
" = (@) — o)) .
If 23 X~ X, is the canonical isomorphism we can write this as

& = [Q(g1) —Qpo) 108} (2.10)

Now the sequence (2.9) allows us to identify H(X,®X,,, @(Dy)) with coker o* @ker o*,
and so Theorem 2.8 has the following

CoRrOLLARY 2.11. The space of generators for the minimal model of MY is given by

g (M) = H(Xy ® Xy, Q(Dy)) = coker (Q(¢1) — Q(g,)) D ker (Q(1) — Q(po))-
Next recall that we identify X, = (N) etc. Since ¢, and ¢, correspond respectively
to py=Proiy: N—-M and p,=Proiy: N—~M we have Q(p,)=p%, and (2.9) can be written
in the form (cf. [10, sec. 4])

# ok E ok
() 2 0ty () PPN oy, (219

19 — 782908 Acta mathematica 140. Imprimé le 9 Juin 1978
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Observe that (2.10) is analogous to a result of Grove [6] and that (2.12) is the y-analogue
of a sequence in [6, Theorem 1.3]. However, unless N is assumed nilpotent (2.12) cannot
be obtained from [6] by dualizing; it may be a different sequence entirely!

Now let V=N N A(M) and let : V—M% be the inclusion defined by

o(x, z): I -2, (2, 2)ENNAM).
Because of applications to geodesics we consider the following conditions:

¢ is a homotopy equivalence (2.13)
H(V)=0, p>r. (2.14)

Note that (2.13) implies that V is path connected, and that ¢ induces an isomorphism
7ty (My)—~>7,(V). Moreover if y: ¥ —N is the inclusion then swyoo =y, and so we can identify
7 with y#.

TrEOREM 2.15. Suppose (2.13) and (2.14) hold. Then

(i) ker (p7% —p%) has finite dimension <r, and is spanned by elements of even degree.

(ii) The sequence

#_ aF #
0 , nﬁ,"d(M) P Po n't;dd(N) Y n;dd( V)
amojn o)™

AN N) — (V) ——0

2 (M)

pf — i

18 exact.

Proof. (i) follows from Lemma 2.18 below, applied to (A Xy®NAX,,, Dy). (ii) follows
from (i) and the exactness of (2.12).
COROLLARY 2,16, The following are equivalent when (2.13) and (2.14) hold

(i) dim 7(N) < oo
and
(ii) dim (V) < oo and dim 7fy(M) < oo.

Furthermore, if (i) and (ii) hold then

2 NV) = (M) +2:(V),

where y, =dim 7§y’ —dim 3** is the homotopy Euler characteristic.
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Proof. If (i) holds then dim #3*(M) < co; then nz? " (M)=0, if 2p—1>m, some m.
Apply Theorem 5.9 of [10] to the projection (A Xy, &)= A(S;.m X%), 0) to obtain X}, =0,
j>m. Hence dim (M) < co and so (i) implies (ii).

Consider in general (cf. top row of (2.7)) a sequence of connected K8 complexes of the

form

(Y, d)—— (A\Y®AZX, D)—2— (\X, 0)

in which (AY, d) is minimal. As above we obtain a long exact sequence
\% * *
—»Y”QQ»H”(Y(EX,Q(D))@Q—)—»X”—-@—-»Y”“———»... (2.17)

Lemma 2.18. If HAY ® \NX, D)=0 for 1>r then every homogeneous element in ker o*
has odd degree and dim ker 0* <r.

Proof. Choose a graded subspace X;< X so that
X =X,@ker &*.
This decomposition defines a linear projection X —»ker 0* which extends to a homorphism

03: NX ~ A ker o*.

Composing with ¢ we obtain
02 =0100: (NY®AX, D)~ (Aker &, 0).

Moreover, by exactness ker &* =im @(o)* and since Q(p,) is the identity in ker &* we obtain
that Q(g,)* is surjective. Thus Theorem 5.9 of [10] applies and shows that the product of
any r+1 elements of positive degree in H(/ ker &*) is zero. Since H(A ker 0*) =\ ker &*
this implies the lemma.

We close this section with two examples in which N=V,x ¥V, and V,= M, ¢=0, 1.
Note by the way that it would be no real restriction to consider only the case N=V,x V,
since in fact ML =M x M¥, ac)-

I N=VyxV, and iz V,—~M, j=0, 1 are the inclusions then p] —p§": wH(M)—>my(N)
can be written as

if —if: M) > 7V ) D Vy) (2.19)

and if (2.13) and (2.14) hold this can be substituted in the sequence of Theorem 2.15 (ii).

Ezxample 2.20. Suppose Vy and V, are even spheres of dimensions 27 and 2m, and
V =V¥,n V,is properly contained in each. Assume (2.13) and (2.14) hold and dim H*(M) < co.
Then
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H*(V) = H*(pt)
and
> dim HP (M) = (1 + *) (1 + £*™). (2.21)

Indeed, since V is contractible in each of V, and V,, y* =0. From (ii) of Theorem 2.15
we then deduce that

if =45 cw (M) ~>a (Ve x V,)
is an isomorphism and

if — i A > (Vy % Vy)

is surjective. Since dim n5'%(V, x V;)=dim 5™V, x V;)=2 on the one hand, and since
by Theorem 1’ of [9]

dim 7y} (M) > dim 75" M)
on the other, we must have equality above and hence
17 —iF :n;(M)—uz;(Vox Vi)

is an isomorphism. Again by Theorem 2.15 (ii), this implies 7, (V) =0 and so H*(V)=H*(pt).
It also allows us to apply Corollary 2 to Theorem 5 of [9] which gives (2.21).

Example 2.22. Let M, V, and V, all be spheres and suppose V,N V, is properly con-
tained in each V, 4=0, 1. Then (2.13) and (2.14) cannot hold. Otherwise as in the above
example

i =i M) > 2 (Ve X Vy)

would be an isomorphism, but dim 7*(M) =1 and dim a3*(V, x V,)=2.

3. The minimal model for the space of g-invariant curves

Let M continue to denote a 1-connected space whose rational cohomology has finite
type, and fix a continuous map ¢g: M—+M. We shall apply the results of section 2 to the
case IV is the graph of ¢:

N =G(g) = {(x g(x))|x€M}.

When g satisfies a condition we call rigidity at 1 (this is always true if g*=id, some %) then
we give an explicit form of the minimal model of Mg,
Since M, consists of paths f: I M such that f(1) =g(f(0)) we can identify it with the
space of paths
fR~>M satisfying f(t+1) = g(/(2)),
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i.e. the space of g-invariant curves. Similarly if g* =id we can identify M, with the space
of continuous maps
f: 81— M such that f(e*™* ) = g(f(e")),

i.e. M, is then the space of g-tnvariant circles on M.

For the moment let g: M —~M be any continuous map. We translate from section 2
with N =G(g). Note that p,: G(g)— M is a homeomorphism, and so ¢, (which represents it)
is an isomorphism. Moreover if

Q/)g: (/\XM’ dM) > (AXM, dM)

represents g (py oy, ~ A(g)op,) then p, is represented by ¢; =@,0,.
Next recall (Theorem 2.8) the model (A X, @A Xy, Do) for M. Define a c.g.d.a.
(ANX,®N\X,, D,) by requiring that

(p0® id: (AXM®AXM, Dg) - (AXG(g)®/\XM, Dg(g))
be an isomorphism. Set ¢, =9¢,0 (g, ®id), then Theorem 2.8 reads:
CoRrROLLARY 3.1. 4 model for My, is given by

@s: (NXy®N\ZXy, D)~ (A(ME), d),
where D, is determined by
D,o(u,®id) = (p,®id)o D,

and py: NX @A\ Xy~ N Xy, is given by
Lo(@BY) = O -y ().
For the induced differential @(D,) we have
QD) Xy =0 and via (2.10)
Q(D,)z = (Qy,) —id)x, TEX, (3.2)
which translates Lemma 1.5 of [6].

Remark 3.3. In view of our hypotheses on M there is a canonical isomorphism as

mentioned at the end of section 1,

QU X 3) ——> Homg(ma(M); Q).

Because M is simply connected ¢ induces a well defined homomorphism of homotopy
groups
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g5 (M) = (M)
even though g may not preserve base points. Moreover if
g*: Hom (n.(M); Q) - Hom (7.(M); Q)

is the dual of g, then the isomorphism above identifies @(y,) with g#. In particular the
generators for the minimal model of M% ., are determined by g4.
Now let (A X,,), be the subalgebra of A X,, of elements @ satisfying

v, @ =0,
and let Q(AX,,), be the subspace of elements a €Q(\ X,,) satisfying

Qy,)a =a.
Definition 3.4. A map g: M—M will be called rigid at 1 if
QAXy) = QN X,),® im (Q(y,) —id) (3.5)
and if for a suitable choice of y, the projection

¢ (A+XM)0 - Q(AXM)O (3.6)

is surjective.

Remark 3.7. Since QA Xy) = X, is a graded space of finite type, condition (3.5) simply
says that if (Q(yp,)—id)"a=0 then Q(y,)a=a. Equivalently, Q(y,)—id restricts to an
isomorphism of the subspace im (@(y,) —id).

Condition (3.6) says that any Q(y,)-invariant vector can be represented by a ,-
invariant element in A X,,.

Thus while (3.5) can be interpreted as a condition on g, (3.6) is more subtle. Nofe that
if @, and Xy, can be chosen so that X, is stable under vy, then (3.6) is automatic.

Ezample 3.8. Suppose ¢: M~ M is a continuous map such that ¢g*=id for some k€Z.
Thus g makes M into a G-space, where G=1Z,. In this case by Theorem 1.3 we can choose
Y, 80 that yj=id, which allows us to choose X, to be stable under y,. (In fact the construc-
tions in the proof of 1.3 already make v, act on X,, with order %.) According to the remark
above g is rigid at 1.

Using another approach we have more generally

TrHEOREM 3.9. Let M be 1-connected and suppose g: M ~~M satisfies

g ~id.
Then g is rigid at 1.
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Proof. Let ¢p: NX - A(M) be the minimal model and choose y,: AX—~AX so that

Puy ~ A(G)pu-
Then y}~id.

By a result of Sullivan [15; Prop. 6.5] or [8, Th. 11.21}, this implies
gm

m!

5. 0
Yi=e=

of\M18

where 6 =sd +ds and s is a derivation of degree —1 in AX. Moreover

o __ id)*
0=1n (vh= 3 (-1y1 =

In particular
Oy, =y, 0

Set 0,=—0/k= — (% d+d %), then e*~id (cf. Sullivan [15, Prop. A.3]) or [8,
Th. 11.21]. Also 0,y, =1,6,, whence
Py =y, ™.
Hence (P Y =ePryi =e Oyl =id
and ey~

Put p=ePyp,. Then
Y~ = guyp ~ AG)pu

and so y represents g. On the other hand
p*=id in AX
and so by the argument above v is rigid at 1.

Remark 3.10. Without proof we mention that there are many more 1-rigid maps e.g.

retractions and more generally maps ¢ satisfying g*** =g¢* for some k and s.

Henceforth we assume g to be rigid at 1 and determine the minimal model of M{,.
It is immediate from definition 3.4 that we can choose X, and y, so that X, =Y @ U,
where
Yoy =9y, y€Y
and
U<im (p,—id).
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LeEMMA 3.11. With the choices above
(i) im (y, ~id) cAY QA+U, and
(i) AY @ N\*U s dy-stable.

Proof. (i): Choose a graded subspace V< A+X,, so that {(V)= U and (y,—id): VU is
an isomorphism. If we regard U as a subspace of Q(/A X)), then clearly

(y,—id) = (Q(y,) —id)ol: V = U.
Since g, —id: V'~ U is an isomorphism it follows that {: ¥V U is an isomorphism. Therefore

A+XM =A+XM'A+XM® Y@ V
and so

($ =Ny = (9, —id) (N Xy N Ki) 4+ U < [, —i)A*X, ] A+ Xy + AT OAT.

An easy degree argument completes the proof.
(ii): Since AY ® AtU is the ideal generated by U, (ii) follows from the relation

dy U < dyim (p, ~id) < im (p,—id) cAY QAU

Since the ideal AY®@A+U is dy-stable we may divide out by it to obtain a c.g.d.a.
(MY, 8) such that the projection
P:AX,~N\Y (3.12)
is a homomorphism of c.g.d.a.’s.
We now associate to (AY, 8) the corresponding ¢.g.d.a. (AY?, D) (p. 280), with AY'=
AY®AY ® A\DY, and derivations ¢ and 6 in AY?, and c.g.d.a. maps Ay, 4y AY—>AYL
Moreover 1, and 4, determine an isomorphism

@A ®id: A YQAY @AY ~AY!
(compare (2.3)). Thus a homomorphism of graded algebras

u®id: AY -AY @AY
is defined by
(p@id)4,P = (u®id) 4, & =0 and (uQid)j=§F

for all ®EAY and §€Y. Asin section 2 a differential Din AY @AY is defined by requiring
4 ®id to be a map of c.g.d.a.’s.
In order to identify D, we define a degree —1 derivation iy in AY®AY by

iyy=9 and 1;§5=0,
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and a degree +1 derivation d, in AYQAY by
d,y =0y and d,f= —iydy, y€Y.

Since obviously % =0 we get
d,0iy-Figod, =0 (3.13)

and therefore d2=0; i.e. (N\Y ®A\Y, d,) is a c.g.d.a.

Remark. (NY ®\Y, d,) is obviously a minimal KS coniplex. If ¥ is the minimal model
for a space S, then (AY ®\Y, d,) is Sullivan’s model for the space of maps 8*— S ([14], [16]).

LremMma 3.14. The differentials D and d, agree, i.e.
u®id: (NY%, D)~ (ANY®NY, d,)
18 a homomorphism of c.g.d.a.’s.

Proof. Note that D=0 in AY. Hence we need only show
.Dg = —iyay, yE Y.

which we do by induction on the degree of y.
First recall that the derivation ¢ in AY’ (p. 281) satisfies 2=0, whence by (2.4)
(A, y) =i(Agy) =7 for all y€ Y. I follows that

(u®id)ot =iyo(u®id)
and using (2.4) we conclude

Dj=-3"

If degy=p then dy is a polynomial in the y,’s with degy;<p ((AY, d) is a 1-connected
KS-complex) and it follows from (3.13) and our induction hypothesis that

.D'l:y(sy = dgiy(sy = iyézy = 0.

Hence the equation above reads Dj= —iydy and we are done.
Now extend the c.g.d.a. map P of (3.12) to a c.g.d.a. map P: (ANX},, D)~(A\Y’, D)
by setting
P'% =Py and P'Df=DPz, z€Y
and
Pig=P'Dz=0, xz€U.
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Then P! commutes with ¢ and 6 so that
Plojy=72y0oP and Plol,=A0P. (3.15)
Also, extend P to an algebra homomorphism
P ANX,ONX,~ANYONY

by setting P, &= Pz for all € X, (i.e. P,&=0, € U).

For these extensions we have

LeMwMA 3.16. The diagram

I
Ax,—T Ay
U, ®id u®id

g

commutes. In particular Pyjo D, =d,oP,, i.e. P, is a homomorphism of c.g.d.a.’s.

Proof. If € X, then (u®id)oP's=P,0(u,®id)& is immediate from the definitions.
Moreover by (3.15)

(u®id)oPAgx = (4 ®@id)olyo Px = Px = P,0(u,®id) Ay.
Finally recall that im (y,—id)c AY @ A+U by Lemma 3.11. It follows that

Poy, =P
and hence by (3.15)

(u®id)oPlok,x = (u®id)od 0 Px = Px = Poy,x = P,op,x = P,0(u,®id)ol,z

i.e. the diagram commutes. Since u,®id, P’ and x4 ®id are all morphisms of c.g.d.a.’s and
1, ®id is surjective, it follows that P, is also a ¢.g.d.a. homomorphism.

TuEOREM 3.17. The homomorphism P, induces an isomorphism
HNAX,®NX,, D,)~HNAY®NY,d,)
of cohomology. In particular (NY @Y, d,) is the minimal model of Mk,
Proof. According to Theorem 7.1 in [8] we need only check that

Q(Pg)*: H(XM®XM: Q(Da)) g Y@Y
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is an isomorphism. But it follows from 3.2 that @(D,) is zero on X,, and on Y and restricts
to an isomorphism U->U. Hence Q(P,)* identifies H(X, ® Xy, @(D,)) with YoY.
Finally, consider the commutative diagram

AX,oNT Lt AY QAT
id
Q ANY@N\Y.

Since Pj is an isomorphism Sullivan [15] or Theorem 5.19 of [8] implies there is a homo-
morphism ¢: (NY ®AY, &,)>(AX,,®\X,,, D,) of c.g.d.a.’s such that p* is theisomorphism
inverse to P,.
Thus
95t (NYONY, d,) > (A( M), d)

is a minimal model for A(M%,), where ¢, =@ 0.

Remark. As mentioned earlier the c.g.d.a. (A\Y ®AY, d,) is exactly Sullivan’s construc-
tion applied to (AY, 8). Moreover if g=id,, then y,=id, X;,;=Y and P,=id. Hence we
recover Sullivan’s theorem [14] (with a different proof) as a special case of Theorem 3.15.

Remark 3.18. The fact that the minimal model of M, ,, appears to be the minimal model
for a space of closed curves can be.explained as follows:

Let A(p) be the rational c.g.d.a.c A(A?) generated by the barycentric coordinate
functions. In [15, § 8] Sullivan constructs the function adjoint to ‘“‘differential forms”
which associates with each c.g.d.a. (R, dj) the simplicial set (R) given by

(R, = {all homomorphisms (R, ds) ~ (4(p), d))}.
Now suppose g is rigid at 1. The homomorphism v, yields a map of simplicial sets
P ANy > Ny
The fixed point set of {g,> is the sub-simplicial set (A X,,>? defined by
{NX,p¢ = {all homomorphisms (AX,,, d,,) S . (4(p),d) such that yoy, = 7}.

On the other hand, since g is rigid at 1 we have that the ideal generated by im (, ~id) is
exactly AY @ A*U. Hence we obtain (A X5 =(AY), i.e.

(NX? =<(NY.
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Let [{AX,| and |KAY)| be the geometric realizations (cf. Milnor [13]). {y,> defines
a continuous map § of |{AX,)| and we have that the fixed point set of § is given by

[KAZ |7 = [<AT].

Finally note that |(AX,)| is the “rationalization of M and g is the rationalization
of g; thus AY is the minimal model of the fixed point set of the rationalization of g. More-
over the model of the g-invariant paths on M coincides with the model of the space of all

closed paths in the fixed point set of the rationalization of g, g.

Remark 3.19. Note that if g: M — M is periodic i.e. g¥ =id,, then we can prove Theorem
3.17 directly via Sullivan’s theorem by studying the inclusion of M¢,, into the space of all
circles on M (cf. the beginning of sec. 3) and using (3.3) and the remarks concluding sec-

tion 1.

4. On the cohomology of ML,

Throughout this section M is a 1-connected space whose rational cohomology has
finite type and g: M—M is a 1.rigid map. In particular we have a minimal model for the
space ML, of g-invariant curves as in Theorem 3.17.

We show how one can use the minimal model for M, in order to obtain information
about the cohomology H*(M%,). In particular we are interested in the Betti-numbers of
M, because of their significance in applications to geodesics.

As a first application we have the following immediate generalization of a theorem due
to Sullivan [14].

THEOREM 4.1. If the rational cohomology of M, is not trivial, then M, has non-

zero Betti numbers in an infinite arithmetic sequence of dimensions.

Proof. First suppose (AY, §) ((3.12)) has no odd dimensional generators; i.e. AY isa
polynomial algebra in even dimensional generators (which exist for otherwise ¥ =Y ={0}
and consequently H*(M%,) would be trivial) and §=0. Then d,=0 and the d -closed
elements {2'},en in AY®AY provides us with an infinite sequence of non-zero coho-
mology classes.

Secondly, if AY has odd dimensional generators we proceed exactly as in Sullivan
[14, p. 46].

We are now interested in finding necessary and sufficient conditions in order for Mg,
to have an unbounded sequence of Betti numbers. Note that as a consequence of Theorem

4.1 we have
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CorOLLARY 4.2. Suppose the rational cohomology of the spaces (M )G, ¢ =1, 2 is non-
trivial. Then (My X My)eg, gy has an unbounded sequence Belti numbers.
We return to the general case corresponding to the direct sum decomposition ¥ =

Yodd ® yeven

%o = dim Y°H
and

Yo =dim Yo
if both y, and y, are finite

Xn=Xe—Xo

is the homotopy Euler characteristic of (AY, 8).

ProrosiTioN 4.3. The sequence of Betti numbers for Mt , is unbounded if and only
if one of the following conditions is fulfilled:

(i) %0>2

(i) =0 and y,>2

(i) yo=1, ¥ ={0} and 5, >1

(iv) zo=1, 67°% % {0} and y,>3

) go=1, 8Y°2£{0}, y,=2 and dim Qfxy, ,)/(9P/0x,, BP0y = oo, where Y=
span {z,; z,} and 0y =P(x,, x,), y € Y°U.

Proof. In [16] it has in particular been proved that y,>2 implies that H(AY ®\Y, d,)
has an unbounded sequence {b;};cx of Betti numbers.

If 4,=0 then d,=0 and {b,};.y is clearly unbounded if and only if y,>2.

Assume in the following that yo=1. First let Y% ={0}. If 4,=0 then AY =Q(y, §)
and d,=0. Thus {b;} is bounded. Suppose now on the other hand that y,>1. Then clearly
the ideal im d, in ker d, is contained in the ideal generated by y and 7, where y€ Y°%,
Hence dim ker N Y°™*">2 implies that {b;};.» is unbounded. If there are not two even
closed generators of Y we range the generators of Y by increasing degrees y, &g, ..., &, ...
so that dx, =0, dz, =21y, ..., 02, =Py(%y, ..., To_1)¥, ... and P, >3, belongs to the ideal ge-
nerated by 2y, ..., #,_1. Then we have

a,%; = ocm‘}“l.ily +aty
and dgin\——_ Z 7”%:1/“"137.'?/
for n>3. Hence in AYQAY, im d, is contained in the ideal

(dy29, AyToy Xo G, vny Ty vees TaYs ooy Tl vony LgYs ooy XY oon)
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so the family of closed elements {z{i’}, (a, b)€EN x N are homologically independent, in
particular {b;};cx is unbounded.

In the rest of the proof we assume besides y,=1 that 6Y°* = {0}. Then 6Y°*"*" =0
since §%=0.

If y,=1 we have AY =Q(z, y) with d2=0 and dy=2a". Tt is then easy to prove that
{bi}ien are bounded (see Addendum in [16]). If y,=cc we obviously have {b,};en un-
bounded.

We shall now show that 3 <y, < oo implies {b;};x unbounded. Let ,, ..., z,, p >3, be
a basis for Y*'*", An element of the polynomial ring Q[z,, ..., z,] is easily seen to be a
boundary in (AY®AY,d,) if and only if it is in the ideal generated by d,y, y€ Y°%.
Now, consider the graded ring 4 =Q[z,, ..., z,]/(d,y) of Krull dimension ¢g=p—1>2. By
lemme 1 of [12] there are positive integers N and « and a polynomial P with deg P=
g—121, such that for all n>>N and » =0 (mod «) we have dim 4, =P(n), where 4,, is the
subspace of 4 of elements of degree n.

Finally assume y,=2 and let z;, z, be a basis for Y*'*", If y € ¥°% §y =P(x,, ;) and
hence im d, is contained in the ideal generated by 6P/ox, and 0P[ox,. If A=Q[x;, x,]/
(6P/ox,, dP[0x,) is not finite dimensional, then 4 has Krull diménsion >1 and the ring
B=A4®Q(j) has therefore Krull dimension >2. Again by Lemma 1 of [12] we conclude
that {dim B,},.y is unbounded. But for any non-zero element BEB the element &, %,8
is a cocycle in (NY @AY, d,) and not a boundary i.e. {b;};y is unbounded. If dim A < oo
a direct but lengthy computation of HAY @AY, d,) in even and odd degrees shows that
{b:}ien is bounded.

From Proposition 1 in [16] and the above proposition we get

COROLLARY 4.4. The sequence of Betti numbers for Mt is bounded if and only if
the cohomology ring H(\Y, 8) has one of the following types:
(i) H(NY,8)=Q
(i) H(\Y, 0) is generated by one element
(iii) H(AY, 8) is a polynomial algebra in two variables w;, x, truncated by an ideal
generated by one element P such that dim Q[z,, x,)/(0P[0x,, OP|0x,) < oo.

In Proposition 4.3 and Corollary 4.4 the cohomology of M was only supposed to be
of finite type. If we assume H*(M) to be finite dimensional (e.g. M a finite complex) we

can apply some recent results of Halperin [9] and [10] to obtain:

THEOREM 4.5. Let M be a 1-connected space with finite dimensional cohomology H*(M)
and let g: M— M be a 1-rigid map. Then exactly one of the following holds:
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(T) xo=x.=0. In this case NY =Q and H*(M(g)) =Q.
(A1) go=1, x,=0. In this case NY =\(y) and H*(M%,) =Ny, §) is the exterior algebra
on y tensor the polynomial algebra on §.
(D) yo=y.=1. In this case NY =Ny, x) with dx=0, dy=2"" and H*( M%) =
N, B[22, a"B) QING). In particular {b(M{,)} is bounded.
(IV) {b:(Mé) }ien ts unbounded.

In particular {b;} is bounded if and only if y,<ys<1.

Proof. If dim Y = oo we see from Proposition 4.3 that {b;};.n is unbounded.

Suppose now that dim ¥ < co. Since dim H*(M)=dim H(AX,,, d,,) << e Corollary 5.13
of Halperin [10] implies that dim H(AY, )< oo. We can therefore apply the finiteness
results of Halperin [9]. In particular y, =y, —%,<0 by Theorem 1 in [9].

If y,>2 we know from Proposition 4.3 that {b,};.y is unbounded.

If 4o=1 we must have y,< 1. Suppose y,=1. Then dz=0 and dy=2"*' for some =
because H(AY, ) is finite dimensional. The actual computation of H*(M{,) is then con-
tained in the Addendum of [16].

The case y,=1 and y,=0 is clear.

Finally y,=y.=0 if and only if H*(M{) is trivial,

Note that if dim H*(M) < oo then (iii) in Corollary 4.4 is impossible. If g=id,, then
Y =X,,; ie. (i) is also impossible and Corollary 4.4 is nothing but the main theorem of
Sullivan and Vigué [16].

Theorem 4.5 gives a necessary and sufficient condition on the action of g on 7, (M)®Q
in order for H*(M¢,) to have an unbounded sequence of Betti numbers. As in the case
g=id,,; it would be interesting also to have a (necessary and sufficient) condition on the
action of g on H*(M) in order for H*(M,,,) to have an unbounded sequence of Betti num-

bers. We can illustrate the subtlety of this problem with the following examples.

Example 4.6. Let M =827 x 82 with p=q and p, ¢=1. Then ANX, =Nz, y;) with
deg z;=2p, deg y, =4p—1, di; =0 and dy, == and similarly for AXy, =Nz, ;). Thus
any 1-rigid homotopy equivalence g of M will {ix at least the generators y;, i =1, 2 and by
Theorem 4.5 M{,,, will have an unbounded sequence of Betti numbers. However, g may

map z; to —xz;, =1, 2 and hence not fix any generators in the cohomology H*(HM).

Example 4.7. Take M =CP?+H x CP2+ with p+q and p, ¢>0. Then NXcpp+1=
Az, y,) with degz, =2, degy,=2(2p+1)+1, da; =0 and dy, =23"*% and similarly for

AX cpr1=NA(x,, y,). We can therefore draw exactly the same conclusions as above.
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Example 4.8. Endow 822 and CP2? with their standard riemannian metrics and 82 x
CP?* with the product metric. Let g, = —idge, be the antipodal map on S? and g, the
conjugate map on CP?? ie. in homogeneous coordinates gy(z;, ..., 22g41) = (%15 ves Z2g+1). 1
M =T,(8% x CP%) is the unit tangent bundle of S?” x CP% then the differential of the in-
volutive isometry g, x g, restricts to an involution ¢ on M.

Note that M is the total space of the fibre bundle M 8% x CP?? with fiber §%+4-1,
Therefore A Xy = AXg» @ AXcp2e ® NXgoprag-1 = Ny, %o, Yy, Yo, ¥5) With deg z, = 2p,
degz, =2, degy, =4p—1, degy, =4q +1, degy, =2p +4q —1 and da, =dz, =0, dy, =a3, dy, =
237 and dy, = (49 +2) 2, 259 (2, 437 = orientation class of S2? x CP2¢ and Euler class of bundle
=(4¢ +2)-orientation class). Furthermore g induces an involution on A X,, which is given
on generators by x;— —x;, z3—> —x, and hence y;—>y,, yo—> —y, and y;—> —yg; L6, yp=1
and y,=0. According to Theorem 4.5 the Betti numbers for ML, are uniformly bounded,
in fact H*(MGp) =Ny, 1)-

On the other hand, let u, =(4q+2)23%, —2,y; and u,=(4g+2)x, ¥, — 22y, Then a
family of generators for H(AX,,, d) contains x,, x,, », and u, (or linear combinations of
these), and on cohomology g*(u;) =wu;, =1, 2 i.e. ¢ fixes two generators of H*(M) but the
sequence of Betti numbers for M%, is bounded.

We finally restrict our attention to spaces whose cohomology {over @) is spherically

generated.

Definition 4.9. Let M be a 1-connected space whose cohomology is of finite type.
We say that H*(M) is spherically generated if

ker {* = HHAX,,)- HH(\X,,)

where * is the induced map on cohomology by the projection ¢: A+X,,—>Q(A X)) (p. 280).
Note that [* is the dual of the Hurewicz map. The above definition is therefore equi-
valent to saying that {* imbeds the generators of H*(M) into Hom (=*(M), Q).

COROLLARY 4.10. Let M be a 1-connected space whose cohomology is finite dimensional
and spherically generated, and let g be a 1-rigid map of M. Then Mb, has an unbounded
sequence of Beiti numbers if the induced map g* on cohomology H*(M) fizes at least two genera-

tors. (1}
Proof. By hypothesis, H*(M) is spherically generated, so {* induces an embedding
H*(M)[H (M) H* (M)~ Q(N\Xx)

(*) i.e. the subspace fixed by the linear map induced by g* on H +(M)/I-I +(M )-H+(M) has
dimension > 2.
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commuting with the induced actions by g. Hence we can choose the generators of AX,, so

that we nave two closed generators fixed by y,. They give two closed generators of AY,

and we conclude using Theorem 4.5,

Remark 4.11. According to example 8.13 of [11] any formal space (its minimal model

is a formal consequence of its cohomology) has spherically generated cohomology. Thus

Corollary 4.10 applies in particular to formal spaces. Among formal spaces are riemannian
symmetric spaces [14] and Kéhler manifolds [1] (and [11, Cor. 6.9]).

(11

2.
[3].

[4].

(5].
[61.

[71.
[8].
[93.
[10].
[i1].

[12).

[13].
(14].

[15].
[16].
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