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I t  is well known that  the topology of various path spaces on a complete riemannian 

manifold M is closely related to the existence of various kinds of geodesics on M. Classical 

Morse theory and the theory of closed geodesics are beautiful examples of this sort. 

The motivation for the present paper is the study of geodesics satisfying a very 

general boundary condition of which the above examples and the example of isometry- 

invariant geodesics are particular cases. In  particular, we generalize a result of Sullivan- 

Vigu6 [16]. 

Let  2 2 c M  x M be a submanifold of the riemannian product M x M. An N-geodesic 

on M is a geodesic c: [0, 1]-~M which satisfies the boundary condition 

(22) (c(0), c(1))E22 and (d(0), -d(1))qT22",  

where T N  • is the normal bundle of 22 in M x M.  If 22= Vx x V2, where V , c M ,  i=1 ,  2 are 

submanifolds of M then an 22-geodesic is simply a V 1 -  V2 connecting geodesic (orthogonal 

to each Vt). If 22 is the  graph of an isometry, A, of M then an 22-geodesic is a geodesic 

which extends uniquely to an A-invariant geodesic c: R-~M; i.e. 

c ( t + l ) - A ( c ( O  ), t eR .  

When A has finite order (A~=id) then c is in fact closed (c(t+k)=c(O, tER). 

The study of 22-geodesics on M proceeds via critical point theory for the energy 

integral on a suitable l~flbert manifold of curves with endpoints in 22. This Hilbert manifold 

is homotopy equivalent to the space M~ of continuous curves/ :  [0, 1]-~M satisfying (](0), 

/(1)) E22, with the compact open topology (cf. Grove [4], [6]). 

(1) Part, of this work was done while the first named author visited the IHES at~ Bures-sur- 
Yvette during May 1976. 



278 K. GROVE~ S. HALPERII~ AND M, VIOU~-POIRRI]~R 

In this paper we apply Sullivan's theory of minimal models to study the rational 

homotopy type of M~, and hence to obtain information about N-geodesics. 

Sullivan's theory (cf. [14], [15] and [8]) associates with each path connected space S 

a certain differential algebra (A Xs, ds) over Q which describes its rational homotopy type. 

( A X  s, ds) is called the minimal model of S and H(AXs) is the rational (singular) cohomology 

of S. As an algebra A Xs is the free graded commutative algebra over the graded space 

X~. If  S is nilpotent and its rational eohomology has finite type then Xs is the (rational) 

dual of the graded space z , (S) |  (See section 1 for more details.) 

MG(g), Our main result is an explicit construction of the minimal model for the space z 

where G(g) is the graph of a so called 1-rigid map and M is any 1-connected topological 

space whose rational cohomology has finite type (Theorem 3.17). This gives in particular 

a new proof of Sullivan's theorem for the space of closed curves M s` [14]. Surprisingly 

enough the minimal model for M~(g) has exactly the same form as the minimal model for 

the space of closed curves on a space M'. This space, however, is not obviously related to 

M and it can be much bigger than M. For this reason the results of Sullivan-Vigud [16] 

do not carry over to our more general case in a completely satisfactory manner although 

some of the methods from [16] are important  for us. 

The minimal model for z M~(g) contains all information about the rational homotopy 

theory of x M~(g), in particular about the eohomology. An immediate consequence of the 

model is the following (Theorem 4.1). 

TH~:OR]~. I /  the rational cohomology o/ M~(g) is non trivial and g is rigid at 1 then 
I Ma(g) has non-zero cohomology in an infinite arithmetic sequence o/dimensions. 

The main application of the model is however (cf. Theorem 4.5). 

THEOREM. I /  M is 1.connected, H*(M) finite dimensional and g: M ~ M  rigid at 1, 

then M~(g) has a bounded sequence o/Bett i  numbers i /and only i/ 

dim zt,ve=(M)ar | < dim ~r~dd(M) a~ | ~< 1 

where ze,(M) g~ is the homotopy o / M  fixed by the induced map g ~. 

When g =id  this specializes to the main theorem of Sullivan-Vigud [16]. If  we combine 

this result with the main theorem of Grove-Tanaka [7] we obtain (generalizing the ap- 

plication by Sullivan-Vigud of Gromoll-Meyer [3]). 

THeOREm. Let M be a compact 1-connected riemannian mani/old and let g be a finite 

order isometry o] M. I / g  has at most finitely many invariant geodesics then 
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dim x,v~ g~" |  <~ dim x,da(M)g~ | <~ 1. 

As a consequence we obtain (c/. Cot. 4.10). 

COROLLARY. Let M be a 1-connected, compact riemannian mani/old whose cohomology 

is spherically generated (e.g. M/ormal)  and let g be a finite order isometry o] M. I / the  induced 

map g* on cohomology fixes at least two generators then g haz infinitely many invariant geo- 

desics. 

The paper is divided into 4 sections. In section 1 we recall briefly the main results 

in the theory of (minimal) models and explain how they generalize when an action of a 

finite group is involved. Besides being of interest in itself we use these results in section 3. 

In section 2 we translate the fibration 

~ M  ~ M ~  gN , N ,  

to models. Here M is any 1-connected space, and 2( a path connected snbspace of M • M. 

Furthermore, ~N(/) = (/(0), 1(1)), f2M is the ordinary loop space of M and M~ is defined as 

above. We exhibit a (not necessarily minimal) model for M~ (Theorem 2.8). In particular 

(Cor. 2.11) we obtain explicitly the space of generators for the minimal model of M~. We 

also apply results from the theory of models to our model of M~v (Theorem 2.15 and Cor. 

2.16). 

In particular, suppose N is a closed submanifoId of M • M and M is a compIete rie- 

mannian manifold. Let  p~: N-~M, i =0, 1 be the left and right projections and assume that  

either P0i2() or P1(2() is compact and that  V =2(  0 A (M) is a closed submanifold of 2(. 

Then according to Grove [5] if there are no N-geodesics on M the inclusion V-->M~ is a 

homotopy equivalence. Thus Theorem 2.15 yields: 

THEOREM. Suppose in addition to the above conditions N is 1.connected and let 

(p~)~: :~ , (N) |174  i = O, 1 

be the linear maps induced by p~, i =0, 1. I] ]or some complete metric on M there are no N- 

geodesics, then coker ((P0)~ - (P l )~)  is spanned by elements o/even degree and 

dim eoker ((Po)~ - (P l )~ )  ~< dim V. 

As a second application we get from Example 2.21 the 

THeOREm. Let Z, E 1 and Z 2 be spheres (possibly exotic) and suppose Z1 and Z~ are 

imbedded in Z so that Z1 N E~ is a (collection o/) closed submani/old(s) o] E, Then/or any rie- 

mannian metric on E there are E 1 - Z ~  connecting geodesics. 
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Finally in section 3 and section 4 we specialize to the case ~V = G(g) and get the results 

on isometry invariant geodesics. 

1. Equivariant minim~l m~lels 

Throughout the paper all vector spaces are defined over the rationals Q unless other- 

wise said. We begin by recalling some facts from Sullivan's theory of minimal models (see 

Sullivan [14], [15] and ttalperin [8]). 

@p~o A A commutative graded diHerential algebra (c.g.d.a.) is a pair (A, d~) where A ~- oo 

is a non-negatively graded algebra (over Q) with identity, such that  ab=(-1)~qba for 

aeA  ~, beA q and d~: A ~ A  is a derivation of degree 1 with d~ =0. 

AX will denote the ]ree graded commutative algebra over a graded space X i.e. 

AX = exterior (X ~ @symmetric (Xeven). 

A+X is the ideal of polynomials with no constant term i.e. A+X=~j>I AJX. 

A KS-complex is a c.g,d.a. (AX, d) which satisfies: 

(ks1) There is a homogeneous basis (x~}~G1 for X indexed by a well ordered set J such 

that  dx~ is a polynomial in the xp with fl < ~. 

If  (fiX, d) in addition to (ks1) satisfies 

(ks2) d X c  A+X.A+X 

then (AX, d) is said to be minimal. 

In the rest of the paper (AX, d) is always assumed to be a connected KS-complex. 

Let Q( AX) = A +X /A +X �9 A +X be the indecomposables of A X  and ~ : A + X-~ Q(AX) the projec- 

tion. Define a differential Q(d) on Q(AX) by Q(d)~ =~d. Then (AX, d) is minimal if and 

only if Q(d) =0. If ~p: (AX, d)-~(AX', d') is a c.g.d.a, map, we define Q(~p): Q(AX)-*Q(AX') 

by Q(~o)~=~'y. Note that  ~ restricts to an isomorphism X--*Q(AX) which allows us to 

identify these spaces. 

We shall now recall the notation of homotopy due to Sullivan [15, w 3] (see also [8; 

chap. 5]). Let (AX, d) be a KS-complex with X strictly positively graded (i.e. AX is 

connected.) 

(AX z, D) is the c.g.d.a, obtained by tensoring (AX, d) with the "contractible" c.g.d.a. 

(AX| D), where 

(%) X is the suspension of X i.e. X ~ = X  ~+1 

and 

(e~) D: X ~ D X  is an isomorphism. 
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The d e g r e e - 1  isomorphism X = X is written x~+~. 

A derivation i of degree - 1  and a derivation 0 of degree zero in f i X  ~ are defined by 

ix=~,  i~=iD~=O f o r a l l x E X  

0 = Di§  

Let )to: fi X--~fiXx denote the standard inclusion and set )tl =e~176 �9 Here e0 is well de- 

fined because for any qbEfiX z there is an integer n such that  0~(I)=0 [8]. Note that  if 

YI: f i X ~ f i X  is the projection defined by 

H x = x , H ~ = I I D ~ = O  f o r a l l x E X  

then )t o and H induce inverse cohomology isomorphisms because ( f i x  | DX, D) is aeyclic. 

Definition 1.1. Two homomorpMsms ?o, ?x: (fiX, d)-*(A, dA) of c.g.d.a.'s are called 

homotopic (written 70 ~ ?x)if there is a e.g.d.a, map F: (f iX z, D)~ (A, dA) such that  F o)tt =? t  

i=O, 1. 

If  the e.g.d.a. (A, da) is homology connected i.e. H~ = Q a model for (A, Da) is a 

KS-complex (fiX, d) together with a homomorphism of c.g.d.a.'s 

~: (AX, d) ~ (A, dA) 

which satisfies 

(m) ~ induces an isomorphism ~* on cohomology. 

If the KS-complex (fiX, d) is minimal we speak of the minimal model ~: (f iX, d)-~ 

(A, dab 

We can now state the following important result (see [15, w 5] and [8, chap. 6]). 

THEOI~EM 1.2. Let (A, d4) be a c.g.d.a, with H~ Then there is a minimal model 

q~: (fiX, d) -~ (A, dA). 

I / ~ ' :  (f iX' ,  d')-+(A, dA) is another minimal model, then there is an isomorphism o/c.g.d.a.'s 

a: (AX, d ) ~ ( A X ' ,  d') such that ~~~ '  o~. Finally, ~ is unique up to homotopy. 

A number of choices are involved in the construction of ~: (AX, d)~(A,  dA). If a finite 

group G acts on (A, dA), the flexibility in the construction enables us to obtain an induced 

action of (7 on (AX, d) and to make ~0 equivariant. In  fact, one can carry out Sullivan's 

proof of Theorem 1.2 equivariantly using that  any G-invariant subspace of a vector space 

has a G-invariant complement. Hence 
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THEOREM 1.3. Let (A, d~) be a c.g.d.a, with H~ =Q and let G be a finite group act i~  

on A by c.g.d,a, maps. Then there is a minimal model 

~: ( h x ,  d) -* (A, d.) 

such that G acts on (AX, d) and q~ is equivariant. I / ~ ' :  (AX', d')-->(A, dA) is another G- 

equivariant minimal model, then there is a G-isomorphism ~: (AX, d ) ~ ( A X ' ,  d') such that 

q~,,~q~' oa and ~ is unique up to homotopy. 

There is also an equivariant theorem for maps which again can be proved by making 

the corresponding non-equivariant proof (cf. e.g. [8, Theorem 5.19]) equivariant. 

THHOREZ~ 1.4. Let (A, dA) and (A', dA,) be a c.g.d.a.'s with H~ and 

with actions o /a/ in i te  group G, Furthermore, let 

~: (AX, d) ~ (A, d~) and ~': (AX', d') ~ (A', dA) 

be equivariant minimal models as in Theorem 1.3. Then/or any equivariant c.g.d.a, map ~:  

(A, dA)--*(A' , dA, ) there is an equivariant c.g.d.a, map o~: (AX, d)-*(AX', d') such that 

cp'om ~ ~ ocp. 

Now suppose M is a topological space. Denote by (A(M), d) the c.g.d.a, of rational 

di//erential (PL) /orms on M. 

A rational p-/orm r  on M is a function which assigns to each singular q- 

simplex a: Aq-*M a C m differential p-form (P~ on the standard q-simplex Aq such that  

(dl) q)~ is in the c.g.d.a, generated (over Q) by the barycentric coordinate functions. 

and 

(d~) The map a~->(I)~ is compatible with face and degeneracy operations. 

Multiplication and differentiation are defined in A(M) by ((I) h LF)~ = dl)a h 1{~'~ and (dqb)~ = 

dC(I)~). 

If g: M-+M' is a continuous map, there is an induced map A(g): A ( M ' ) ~ A ( M )  of 

e.g.d.a.'s given by (A(g)(I))~ = (I)go,. One has the following important result. 

T aHORV.M 1.5. (Sullivan-Whitney-Them). Integration yields a natural isomorphism 

o] graded algebras 

f * : H*(A (M))--* H*(M) 

where H*(M) denotes singular cohomology with coe//icients in Q. 
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When M is path connected a (minimal) model for (A(M), d) is called simply a 

(minimal) model ]or M. The minimal model for M will be denoted by 

q~M: (AXM, dM) ~ (A(M), d). 

The space of indecomposable elements: 

re~(M) = Q(AXM~ :,'~ XM 

is called the pseudo dual homotopy o] M. If H*(M) has finite type (i.e. finite dimensional 

in each degree) and M is ni]potent then there is a natural isomorphism 

~z~(M) -~ Homz (~,(M), Q) 

(cf. [15] and [8]). 

2. A model for the space M~v 

Let M be a simply connected space whose rational cohomology has finite type, and 

fix a path connected subspace 17c M • M. 

Let  M I be the space of continuous maps/ :  [0, 1]-~M with the compact open topology. 

In  this section we shall determine a model for the subspace M ~ c  M ~ given by 

M~N = (leMII if(0), 1(1))e17}. 

We have the commutative diagram 

M x M ~  

17, 

~z M I, J ~ M  

[I incl. 

gN M~ '  iN ~ M  

(2.1) 

where ~(])---(/(0),/(1)), g~ is the restriction of ~ and ~ M - : ~ l ( m o ,  ml)= {/EMIl/(0) =m o 

and/(1)  =rex} for a chosen base point (m0, mi)EN. 
Both rows in (2.1) are Hurewiez fibrations which we denote respectively by :~ and :~.  

Note that  ~N=i*(~). 

We also have a homotopy equivalence ~: M ~ M  z given by: ~(m) is the constant map 

1-~m. Clearly 

~zo~ = A: M -~ M x M (2.2) 

is the diagonal of M. 

1 8 t -  782908 Acta mathematica 140. Imprim6 le 9 Juin 1978 
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Now we begin the translation of (2.1) to models. Since M is 1-connected and H*(M) 
has finite type it  follows that  AXM is 1-connected; i.e. o 1 XM =XM =0, and has finite type 

(see [8; Cor. 3.11 and Cor. 3.15]). 

Consider the diagram 

(AXe, D) 

Axu| lh (A-~M, 01 (2.3) 

\ I / incl proj 
AxM|174 

where ).o and 21 are defined on page 281 and 

~ x = ~ D ~ = 0  a n d e x = x  
and 

h((I) | | = ~o(I).~q~.(1 |174  

By [8, Lemma 5.28] h is an isomorphism of graded algebras (because AXM is minimal.) 

Since AXM is l 'connected, d~XPMCA (@~Y_~ XJM). Hence (5.5) and (5.6) of [8] yield 

~lx-).oX = D~ +~(x), xEX~M (2.4) 

( i D )  '~ < p  <~ 1 < p  
where ~(x)= ~ --~-! xe(h(X~ )| - ) |  )} N ker H 

n=l 

and II is defined on p. 281. 

An easy calculation shows that  ~D=~iD=O, and it follows from (2.4) tha t  (2.3) is 

commutative. Thus (el. [8, chapers 1 and 5]) (2.3) exhibits AXM| as 

a minimal KS-extension. 

We shall now define a commutative diagram of c.g.d.a.'s 

AX~| 

9M• 1 

A(M x M) A(~) " A(M') ~ A(aM) 

in which all the vertical maps induce isomorphisms on cohomology. 

First let PL, P #  M • M~M be the  left and right projections, and define 

qgMx M((I) | = A (PL) o q~M (I)-A (P~) o 9M~. 

(2.5) 
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Since H*(M) has finite type, the Kiinneth theorem holds and (P~x~ induces an isomorphism 

~0*• on cohomology. In particular ~v~• AXM| x M) is a minimal model for 

MxM. 
l~ext, note that the projection II: AX~-+AX~ satisfies l-[o~=Ho~x=id. Hence 

IIo (~o | --I z is the multiplication homomorphism 

/~: AX~| AX~. 

From this and (2.2) we see that the ~o]lowing diagram is commutative. 

A(M*) A(~I) , A(M) A(=)o(p~• 
AX~|  

l ~ouooz 

Since ~/is a homotopy equivalence it induces an isomorphism A(~)* on cohomology. There- 

fore by Sullivan [15, w 3] or Theorem 5,19 of [8] there is a homomorphism of c.g.d.a.'s 

~v: (AXe, D) -+ (A(M1), d) 

such that lpo(~0|215 and A(,~)o~VMOH. Because A(,~)*, ~ and II* are 

all cohomology isomorphisms, so is ~*. 

Finally (2.3) shows that ker ~ is generated by ,~o| and hence %o (ker ~) is 

generated by A(:~)o,pM• Since A(i)oA(~)=O on elements of  degree >0 it 

follows that y~ factors to give a c.g.d.a, homomorphism 

~n: (AXe, 0) ~- (AC~IM), d) 
such that (2.5) commutes. 

Now since :~ is a Hurewicz fibration, M is 1-connected and H*(M) has finite type, 

a theorem of Grivel [2] or [8, Th. 20.3] asserts that because ~ •  and ~* are isomorphisms 

so is ~ .  In particular ~n: (AXu, O)-->A(~M) is a minimal model for the loop space of M. 

We now turn our attention to the fibration ~ .  RecaU that ~0N: (AXe, dN)-+(A(N), d) 
is a minimal model for the path connected space N. 

Use (2.1) to obtain from (2.5) the commutative diagram 

A(i~)o~u• A (incl.)o~o [~o n 

A(M*~ ~ A(~M~ A(1V)- A(•N) . . . .  A(jN) " " 

(2.6) 
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Using again Sullivan [15, w 5] or [8, Th. 5.19] we obtain unique (up to homotopy) c.g.d.a, 

maps 

and 
9~ (AXe, d~) -~ (AXe, d~) 

q~l: (AXe, d~) -* (AXN, dN) 

such that q)NO~o~A(PLoiN)OgM and qD~OgxNA(P~oiN)Oq)M. Define a homomorphism of 

c.g.d.a.'s 

/a~: AX~,| AX~ 
by 

Then 
/ ~ ( r  | = ~o((I))~('F). 

q~Nol~N ~ A (i~) oq~M• M. 

Therefore we can apply (9.15.4) of [8] to obtain from (2.6) another commutative diagram 

of c.g.d.a.'s 

/ 1 
A(N) A(:~N) , A(M~) ~ A(DM) 

r in which 9 n , ~ n .  In particular ~ is an isomorphism. 

Finally, write AX~=AX~oAX~| using the isomorphism h of (2.3). The ideal 

ker juN| is D-stable, and so a c.g.d.a. 

is defined by 
(AXNQAX~, DN) 

DN((I)| =dN(P@I and D~o(/~N| = (/~NQid)oD. 

Clearly ~vN factors through (AXN| DN) to produce the commutative diagram of 

c.g.d.a.'s 

AXe, ino!. (AXNQ]\XM, DN ) proj. AXM 

Because ~N* and ~0~* are isomorphisms the comparison theorem, applied to the spectral 
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sequence of Grivel [2] or [8, Th. 20.5] for the fibration :~N, shows tha t  ~ is an iso- 

morphism. Thus we have established 

T~v.oRv,~  2.8�9 A model/or the space M~ is given by 

~o'N: (AX~| DN) ~ (A(M~), d). 

In particular (c/. Sullivan [15] or [8, Cor. 2.4]) the minimal model o/ M~ is generated by 

H(XN| Q(DN)), i.e. 
~:(M~) = H ( X ~ O : ~ ,  Q(DN)). 

Next  recall tha t  AXN is minimal and (cf. sec. 1) project the top row of (2.7) to the 

short exact  sequence 

o--~ (x~, o) ~ (x,~| Q(D~)) -~ (X~, o) -~ o�9 

This leads to a long exact sequence 

. . . .  X p .... /-/~(Xhr ~ XM', Q(.DN)) , X p , X p+I ' . . .  (2.9) 

in which clearly ~* =Q(DN). 

A straightforward calculation using (2.4) shows tha t  

DN(1 | = (~01-~v0)x-(#N| x6XM. 

Since ~(x) is decomposable we conclude 

~*~ = ( Q ( ~ )  - Q ( ~ o ) )  ~. 

I f  ~ :  X M ~ X ~  is the canonical isomorphism we can wribe this as 

a* = [Q(~I)-Q(~v0)]~ (2.10) 

Now the sequence (2.9) allows us to identify H(XN~XM, Q(DN)) with coker ~* |  0", 

and so Theorem 2.8 has the following 

CO~OT.LABX 2.11. The space o] generators/or the minimal model o/M~ is given by 

7~ (M~ ) = H ( XN| XM, Q(DN) ) = coker (Q(~I ) -  Q(~~ (Q(~0,)- Q(~oo) ). 

Next  recall tha t  we identify XN=z~(N) etc. Since ~0 o and ~1 correspond respectively 

to T0=PLoiN: iY-~M and pl=PRoiN: IV~M we have Q(~%)=p~, and (2.9) can be written 

in the form (cf. [10, sec. 4]) 

,z~(N) 7eN ,~ , ,~z~ , n ~ ( ~ i )  ~ - p ~  )aM~+~(/V) , (2.12) 

1 9 -  782908 Acta mathematica 140. Imprim6 le 9 Juin 1978 
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Observe that  (2.10) is analogous to a result of Grove [6] and that  (2.12) is the ~p-analogue 

of a sequence in [6, Theorem 1.3]. However, unless h r is assumed nilpoten% (2.12) cannot 

be obtained from [6] by dualizing; it may be a different sequence entirely! 

Now let V = N  N A(M) and let a: V ~ M ~  be the inclusion defined b y  

a(x,x): I +x, (x,x)6_~OA(M). 

Because of applications to geodesics we consider the following conditions: 

a is a homotopy equivalence (2.13) 

H~(V) =0, p >r. (2.14) 

Note that  (2.13) implies tha t  V is path connected, and that  a induces an isomorphism 
$ I __> $ ~(MN)  ~ ( V ) .  Moreover if ~,: V-+2r is the inclusion then ~Noa =? ,  and so we can identify 

~ with ~*. 

THEOREM 2.15. Suppose (2.13) and (2.14) hold. Then 

(i) ker (p~ - ~ )  has ]inite dimension < r, and is spanned by elements o I even degree. 

(ii) The sequence 

o ~,~~ (M) Pl~ -P: .  ~dd(2V) 

is exact. 

~7 # odd ' ~  (V) 

even �9 even .._..._..._+ even 
oz~ ( M ) p i ~ - p #  o ~ (N) r,~ :~  (V) , 0  

Proo 1. (i) follows from Lemma 2.18 below, applied to (AXN| DN). (ii) follows 

from (i) and the exactness of (2.12). 

COROLLARY 2.16. The ]oUowing. are equivalent when (2.13) and (2.14) hold 

(i) dim ~$(N) < 

and 

(ii) dim ~ ( V )  < o0 and dim ~ ( M )  < oo. 

Furthermore, i t (i) and (ii) hold then 

x.(2v) = zAM) + xA V), 

where Z~ = dim ~ v e n  - - d i m  xe~ aa is the homotopy Euler characteristic. 
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Proo/. I f  (i) holds then dimT~dd(M)~oo; then ~ - I ( M ) = O ,  if 2 p - l ~ > m ,  some m. 

Apply Theorem 5.9 of [10] to the projection (AXM, d)-~A(~j>m XJM), 0) to obtain XJM=O, 

j>m.  Hence dim ~ ( M )  < oo and so (i) implies (ii). 

Consider in general (cf. top row of (2.7)) a sequence of connected KS complexes of the 

form 

(AY, d) ! , ( A Y |  D) e , ( A X ,  0) 

in which (AY, d) is minimal. As above we obtain a long exact sequence 

. . . .  r~ O(i)* H ~ ( Y |  ' Q(D)) Q(e)* x p ~ y~+l , ... (2.17) 

LEMMA 2.18. I / H ~ ( A Y |  D) = 0 / o r  i >r then every homogeneous element in ker ~* 

has odd degree and dim ker ~* ~< r. 

Proo/. Choose a graded subspace X 1 c X  so tha t  

X = X 1(~ ker 0". 

This decomposition defines a linear projection X-~ker  ~* which extends to a homorphism 

~1: A X  ->A ker 0". 

Composing with Q we obtain 

~2 = e l~  ( A Y |  D) -~ (A ker ~*, 0), 

Moreover, by exactness ker ~* =imQ(~)* and since Q(~I) is the identi ty in ker ~* we obtain 

tha t  Q(~)* is surjective. Thus Theorem 5.9 of [10] applies and shows tha t  the product of 

any r + 1 elements of positive degree in H(A ker ~*) is zero. Since H(A ker ~*) = A ker ~* 

this implies the lemma. 

We close this section with two examples in wh ich /Y=  V0 • V1 and V~cM, i = 0 ,  1. 

~ o t e  by  the way tha t  it would be no real restriction to consider only the case 2V = V 0 • V 1 

since in fact M~r = M i X MNxA(M). 

I f  N =  V0 • V1 and ij: V j ~ M ,  ] = 0 ,  1 are the inclusions t h e n p l  -to0 : ~v(M) ~v(2V) 

can be written as 

* -~ * |  ( 2 . 1 9 )  i~-i~: ~(M) ~(V0) 

and if (2.13) and (2.14) hold this can be substi tuted in the sequence of Theorem 2.15 (ii). 

Example 2.20. Suppose V 0 and V~ are even spheres of dimensions 21 and 2m, and 

V = V 0 ~ V~ is properly contained in each. Assume (2.13) and (2.14) hold and dim H*(M) < ~o. 

Then 
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H*(V) = H*(pt) 

dim Hr(M)t ~ = (1 + t ~z) (1 + t~m). (2.21) 
p 

Indeed, since V is contractible in each of Vo and VI, y "  =0. From (ii) of Theorem 2.15 

we then deduce that  

i t iff odd odd - : ~  (M)--,-~.  (Vex Vi) 

is an isomorphism and 

-- . ~ ,  (M)- -"~  (VoxV1) 

is surjcctive. Since dim odd, e~on ~V iV0 x V1)--dimz ~ (V0 x V1)=2 on the one hand, and since 

by Theorem 1' of [9] 

dim odd ~t~ (M)/> dim ~"=(M)  

on the other, we must have equality above and hence 

i ~ - i g  * * : ~ ( M ) ~ i o ( V 0  x V1) 

is an isomorphism. Again by Theorem 2.15 (ii), this implies ~ ( V )  =0  and so H*(V) =H*(pt). 

I t  also allows us to apply Corollary 2 to Theorem 5 of [9] which gives (2.21). 

Example 2.22. Let M, V 0 and V1 all be spheres and suppose V 0 N V 1 is properly con- 

tained in each Vt, i =0, 1. Then (2.13) and (2.14) cannot hold. Otherwise as in the above 

example 
i~  i~  od~ odd - : ~  ( M ) - ~  ( V o x V 1 )  

would be an isomorphism, but dim zt~dd(M)=1 and dim ~dd(V 0 • V1)=2. 

3. The min imal  mode l  for the space of g- invariant  curves 

Let M continue to denote a 1-connected space whose rational cohomology has finite 

type, and fix a continuous map g: M ~ M .  We shall apply the results of section 2 to the 

case N is the graph of g: 

N = G(g) = {(x, g(x))IxeM}. 

When g satisfies a condition we call rigidity at 1 (this is always true if gk=id, some k) then 

we give an explicit form of the minimal model of M~(g). 

Since M~(~) consists of paths/ :  I ~ M  such that / (1)  =g(/(O)) we can identify it with the 

space of paths 

]: R - ~ M  satisfying ] ( t + l )  =g(](t)), 
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i.e. the space of g-invariant curves. Similarly if g~ = id  we can identify Me(o) with the space 

of continuous maps 

/: S z-~ M such that/(e~Ulk~ ~~ = g(/(eto)), 

i . e .  z M~(g) is then the space of g-invariant circles on M. 

For the moment let g: M-~M be any continuous map. We translate from section 2 

with/V=G(g). Note that  P0: G(g)~M is a homeomorphism, and so ~o (which represents it) 

is an isomorphism. Moreover if 

Y~o: (AXe, d~) -~ (AXe, d~) 

represents g (~oMo~ogNA(g)o~) then Px is represented by qx =q~o~ �9 

Next recall (Theorem 2.8) the model (IXXa(g)QAXM, Der for i Ma(o). Define a c.g.d.a. 

(AXM| Do) by requiring that  

~0| id: (AXM| Do) ~ (AXz(g)| Do(o)) 

be an isomorphism. Set q~'g =~p'e(o)o (q~o| id), then Theorem 2.8 reads: 

COROLLARY 3.1. A model/or z Ma(o) is given by 

~;: (AX.| Do) ~ (A(M~(o)), d), 
where D o is determined by 

Dgo(/~g| id) = (#g| id)oD, 

and ~o: h X ~ |  is given by 

~o(r | = r  

For the induced di]/erential Q( Do) we have 

Q(Do)X ~ = 0  and via (2.10) 

Q(Do)~ = (Q(~pg)-id)x, ~EX~ (3.2) 

which translates Lemma 1.5 el [6]. 

Remark 3.3. In  view of our hypotheses on M there is a canonical isomorphism as 

mentioned at the end of section 1, 

Q(Ax~) - * Homz(g,(M); Q). 

Because M is simply connected g induces a well defined homomorphism of homotopy 

groups 



292 K. GROVE, S. HALPERIN AND M. VIGUE-POIRRIER 

g,~ ~,(M) -~ :r,(M) 

even though g may not preserve base points. Moreover if 

g~: Horn (~,(M); Q)-~ Horn (g,(M); q) 

is the dual of g~, then the isomorphism above identifies Q(~o~) with g~. In particular the 

generators for the minimal model of M~(g) are determined by g#. 

Now let (AXu) 0 be the subalgebra of AXM of elements (I) satisfying 

~vg(b =(I), 

and let Q(AXM)0 be the subspace of elements a EQ(AX~) satisfying 

Q ( y ~ g ) a  = a .  

De/inition 3.4. A map g: M ~ M  will be called rigid at 1 if 

Q(AXM) = Q(AXM)o| im (Q(~vg)-id) (3.5) 

and if for a suitable choice of ~vg the projection 

~: (A+X~)0 -~ Q(AXM)0 (3.6) 

is surjeetive. 

Remark 3.7. Since Q(AX~) = X~ is a graded space of finite type, condition (3.5) simply 

says that  if (Q(~vg)-id)na=0 then Q(y~g)a=a. Equivalently, Q(~po)-id restricts to an 

isomorphism of the subspace im (Q(~vg) - id ) .  

Condition (3.6) says tha t  any Q(~g)-invariant vector can be represented by a ~vg- 

invariant element in A X  M. 

Thus while (3.5) can be interpreted as a condition on g~, (3.6) is more subtle. Note that 

i/~vg and XM can be chosen so that XM is stable under ~vg then (3.6) is automatic. 

Example 3.8. Suppose g: M ~ M  is a continuous map such that  gk=id for some kEZ. 

Thus g makes M into a G-space, where G=Z~. In this case by Theorem 1.3 we can choose 

~vg so that  ~v~ =id, which allows us to choose XM to be stable under ~vg. (In fact the construe- 

tions in the proof of 1.3 already make ~vg act on XM with order/c.) According to the remark 

above g is rigid at  1. 

Using another approach we have more generally 

THEOREM 3.9. Let M be 1,connected and 8uppose g: M - ~ M  8atis/ies 

g~ ~ id .  

Then g is rigid at 1. 
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Pro@ Le t  90M: AX-~A(M) be the  min imal  model  and  choose V/l: A X ~ A X  so t h a t  

~M~V 1 N A (g)~M. 

Then  ~v~ ~ id. 

B y  a result  of Sull ivan [15; Prop.  6.5] or [8, Th .  11.21], this  implies 

0 m 

~ o o m !  

where 0 =ed +ds and s is a der ivat ion of degree - 1  in A X. Moreover  

I n  par t icular  

/ .~ id~n 0 = In (~v~) = ~ ( - -  I)"-1 ~1  - -  ! �9 
n~>l 

Th.  11.211. Also 01~1---y~101, whence 

Hence  

and  

P u t  ~ =ea '~ l  . Then  

0~1 = ~ 1 0  

then  e~ (ef. Sull ivan 

e~ = ~Ie~ 

(e0, ~01 )k = ek0, v/~ = e- ~ = id 

d2v, ~ ~Ol. 

and  so ~o represents  g. On the  other  hand  

~v ~ = i d  

and  so b y  the  a rgumen t  above  v 2 is rigid a t  1. 

[15, Prop.  A.3]) or [8, 

in A X  

Remark 3.10. Withou t  proof  we ment ion  t h a t  there  are m a n y  more  1.rigid maps  e.g. 

re t ract ions  and  more  general ly maps  g sat isfying gk+S =g~ for some k and  s. 

Hencefor th  we assume g to  be  rigid a t  1 and  de termine  the  min imal  model  of x MG(0), 

I t  is immedia te  f rom definit ion 3.4 t h a t  we can choose X ~ a n d  % so t h a t  X ~ =  Y O U, 

where 

% y  = y, yE  Y 

and  

U = i m  (~g - id ) .  
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L~,~MA 3.11. With the choices above 

(i) fin (~vg-id) cAY|  and 

(ii) AYQA+U is dM-stable. 

Proo/. (i): Choose a graded subspace V c A+XM so that  ~(F) c U and (Wg-id): V-+ U is 

an isomorphism. If  we regard U as a subspace of Q(AX~), then clearly 

(w~-id) = (Q(~)-id)o~: V-~ V. 

Since ~ - id :  V-~ U is an isomorphism it follows that  ~: V-~ U is an isomorphism. Therefore 

A-I'XM =A-kXM �9 A+XM ~ Y ~ V 
and so 

(~g -id)A+XM = (~po- id)(A+XM �9 A+XM) + U ~ [(~g-id)A+XM] �9 A+XM + A Y  | +U. 

An easy degree argument completes the proof. 

(ii): Since AY|  is the ideal generated by U, (ii) follows from the relation 

dMU c dM im (~o-id) c im (lpg-id) ~ AY|  

Since the ideal AYQA+U is riM-Stable we may divide out by it to obtain a c.g.d.a. 

(AY, 6) such that  the projection 

P: AXM-+AY (3.12) 

is a homomorphism of c.g.d.a.'s. 

We now associate to (AY, 6) the corresponding c.g.d.a. (AY z, D) (p. 280), with AYZ= 

A Y | 1 7 4  and derivations i and 0 in A:Y z, and c.g.d.a, maps z~ 0, Az: AY"+AYZ. 

Moreover A0 and ~ determine an isomorphism 

20|174 A Y  |  Y |  ~ A Y  ~ 

(compare (2.3)). Thus a homomorphism of graded algebras 

/~ | id: AYZ-~AY| 
is defined by 

(/z| = (/z| =q) and (/z| = ~  

for all ~ E A Y and ~ fi Y. As in section 2 a differential 2) in A Y | Y is defined by requiring 

/z| to be a map of c.g.d.a.'s. 

In order to identify Z3, we define a degree - 1  derivation i r  in A Y |  by 

ir y = ~ and i r ~ = 0 ,  
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and a degree +1 derivation dg in AY| by 

dgy = by 

Since obviously i~r =-0 we get 

and dg~ = - i r b y ,  yE Y. 

295 

and therefore d~=0; i.e. ( A Y |  du) is a c.g.d.a. 

Remark. ( A Y Q A Y ,  d~) is obviously a minimal KS complex. If  Y is the minimal model 

for a space S, then (A Y @A ~V, dg) is Sullivan's model for the space of maps S 1-+ S ([14], [16]). 

LEI~I~A 3.14. The di//erentials D and dg agree, i.e. 

# |  (AY I, D) -+ (AYQAY, d~) 

is a homomorphism o/c.g.d.a.'s. 

Proo]. Note t h a t / )  = b in A Y. Hence we need only show 

Dff = - i r b y ,  y e  Y. 

which we do by induction on the degree of y. 

First recall that  the derivation i in AY I (p. 281) satisfies is=0, whence by (2.4) 

i(2zy ) =i(20y ) =ff for all y e Y. If  follows that  

(# | oi = iro (# | 

and using (2.4) we conclude 

If  deg y =~o then by is a polynomial in the y / s  with deg y j < p  ((AY, 8) is a 1-connected 

KS-complex) and it follows from (3.13) and our induction hypothesis tha t  

Dirby = dairby = irb~y = O. 

Hence the equation above reads D~ = --irby and we are done. 

Now extend the c.g.d.a, map P of (3.12) to a c.g,d.a, map P~: (AXe,  D)-*(AY ~, D) 

by setting 

PX~ = P x  and PID~ = D Px,  x e Y  
and 

Px~ = P~D~ = O, x e U. 

dgoir+irodg=O (3.13) 
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Then P~ commutes with i and 0 so that 

P%20 = 20oP and PZo21 =21oP. (3.15) 

Also, extend P to an algebra homomorphism 

Pg: AXM| AY | Y 

by setting Pg~=Px for all XEXM (i.e. Pg~=0, xE U). 

For these extensions we have 

LEMMA 3.16. The diaqram 
pz 

A x e - -  , A Y  

commutes. Zn particular P,o D~ =a, oB,, i.e. B, is a homomorphism el c.g.d.a.'s. 

ProoJ. I f  x E XM then (/~ | oPz~ =Pgo (l~g | �9 is immediate from the definitions. 
Moreover by (3.15) 

(/~ | = (/~ | = Px = P~o ([zg | 20x. 

Finally recall that im (v/g-id)c A Y | by Lemma 3.11. It  follows that 

Po~0g - -P  
and hence by (3.15) 

(tz | oPlo2zx = (/~ | o2toPx = Px =Po~pgx = Pgo~pox = Pgo ([~g | o21x 

i.e. the diagram commutes. Since/~o| px and/~ | are M1 morphisms of c.g.d.a.'s and 

/~g| is surjective, it follows that Pg is also a e.g.d.a, homomorphism. 

THEOREM 3.17. The homomorphism Pg induces an isomorphism 

I t ( A X e |  Dg) ~ H(AY| d,,) 

o/cohomology. In  particular (AY| dg) is the minimal model o/M~(g). 

Proo[. According to Theorem 7.1 in [8] we need only check ghat 

Q(P,)*: H(XM| Q(Dg)) ~ Y |  
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is an isomorphism. But it  follows from 3.2 that  Q(Da) is zero on XM and on Y and restricts 

to an isomorphism ~7-~ U. Hence Q(Pg)* identifies H(X~| Q(Da)) with Y|  

Finally, consider the commutative diagram 

A X ~ |  P g , A Y |  

q ,At  At. 

Since P* is an isomorphism Sullivan [15] or Theorem 5.19 of [8] implies there is a homo- 

morphism ~0: (AY|  dg)~(AXM| D o) of e.g.d.a.'s such that  ~* is the isomorphism 

inverse to Pg. 

Thus 

~a: (AY| d o) -~ (A(M~cg~), d) 

is a minimal model for r A(Ma(g>), where q% =q~o~. 

Remark. As mentioned earlier the c.g.d.a. (A Y | Y, dg) is exactly Sullivan's construc- 

tion applied to (AY, ~). Moreover if g =idM then ~g =id, XM= Y and Pg =id. Hence we 

recover Sullivan's theorem [14] (with a different proof) as a special case of Theorem 3.15. 

Remark 3.18. The fact that  the minimal model of MS(o) appears to be the minimal model 

for a space of closed curves can be  explained as follows: 

Let A(p) be the rational c.g.d.a.cA(A ~) generated by the barycentrie coordinate 

functions. In [15, w 8] Sullivan constructs the function adjoint to "differential forms" 

which associates wi th  each c.g.d.a. (R, dR) the simplieial set (R)  given by 

(R)~ ~ (all homomorphisms (R, de) -~ (A(~o), d))). 

Now suppose g is rigid at  1. The homomorphism y~g yields a map of simptieial sets 

(v'~): (Axe>  -+ (AXe,>. 

The fixed point set of (log) is the sub-simplicial set (AXe)  a defined by 

(AXu)r  a (all homomorphisms (AXM, riM) ~ (A(I~), d) such that  ~o~o = ~). 

On the other hand, since ~/is rigid at  I we have that  the ideal generated by im (~0 a - id )  is 

exactly A Y | A + U. Hence we obtain (A XM)~ = (A Y>~ i.e. 

(Axe , )  g = (AY). 
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Let ](AXM)] and I<AY>[ he the geometric realizations (cf. Milnor [13]). (Vo) defines 

a continuous map 0 of ](AXM~] and we have tha t  the fixed point set of ~ is given by  

l<AX~>l~ ~ I<AY> I. 

Finally note tha t  I <Ax.> I is the "rationalization of M "  and 0 is the rationalization 

of g; thus A Y is the minimal model of the fixed point set of the rationalization of g. More- 

over the model of the g-invariant paths on M coincides with the model of the space of all 

closed paths in the fixed point set of the rationalization of g, 0. 

Remark 3.19. Note tha t  if g: M ~ M  is periodic i.e. g~----idM then we can prove Theorem 

3.17 directly via Sullivan's theorem by  studying the inclusion of Me(o) into the space of all 

circles on M (cf. the beginning of sec. 3) and using (3.3) and the remarks concluding sec- 

tion 1. 

4. On the eohomology of 7 M~o~ 

Throughout this section M is a 1-connected space whose rational cohomology has 

finite type and g: M ~ M  is a 1-rigid map. In  particular we have a minimal model for the 

space M~(g) of g-invariant curves as in Theorem 3.17. 

We show how one can use the minimal model for M~(o) in order to obtain information 

about  the cohomology H*(M~o)). In  particular we are interested in the Bett i-numbers of 

Me(o), because of their significance in applications to geodesics. 

As a first application we have the following immediate generalization of a theorem due 

to Sullivan [14]. 

T H w 0 R ~ M 4.1. I /  the rational cohomology o/ Ma(o) has non- Ma(o) is not trivial, then i 

zero Betti numbers in an in/inite arithmetic sequence o/dimensions. 

Proo/. First suppose (AY, ~) ((3.12)) has no odd dimensional generators; i.e. AY is a 

polynomial algebra in even dimensional generators (which exist for otherwise Y = Y = {0} 

and consequently H*(M~(o)) would be trivial) and ~=0 .  Then do=O and the do-closed 

elements {xJ}l~N in A Y |  provides us with an infinite sequence of non-zero eoho- 

mology classes. 

Secondly, if A Y has odd dimensional generators we proceed exactly as in Sullivan 

[14, p. 46]. 

We are now interested in finding necessary and sufficient conditions in order for M~(o) 

to have an unbounded sequence of Betti  numbers. Note tha t  as a consequence of Theorem 

4.1 we have 
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COROllArY 4.2. Suppose the rational cohomobogy o/the spaces i (M~)~(o~), i = 1, 2 is non- 
I trivial. Then (M~ • M~)z(o~• has an unbounded sequence Betti numbers. 

We re turn  to  the general case corresponding to the direct sum decomposit ion Y = 
yodd G yeven 

Zo = dim yod~ 

and 

if bo th  Z0 and Ze are finite 

Ze = d i m  :reven 

Z~ = g e - Z o  

is the h o m o t o p y  Euler  characteristic of (AY, ~). 

PROPOSITION 4.3. The sequence o/Bet t i  numbers/or MZG(g) is unbounded i] and only 

i /one o/the/ollowing conditions is ]ul/illed: 

(i) Zo >~ 2 

(ii) zo=O and Z~>2 

(iii) Zo = 1, ~ yodd___ {0} and Ze >~ 1 

(iv) Zo = 1, ~ yodd 4= {0} and Ze ~ 3 

(v) z 0 = l ,  OY~ Ze=2 and dim Q[xl, x~]/(OP/~xl, OP/Ox~)= ~ ,  where yewn=  

span {xl, x~} and Oy=P(x a, x2), yE yo~d. 

Proo/. I n  [16] it has in part icular  been proved t h a t  Z0 >~ 2 implies t ha t  H(A  Y | A Y, d o) 

has an  unbounded  sequence {b~}~ N of Bett i  numbers.  

I f  Zo = 0 then d o = 0 and {b~}~eN is clearly unbounded  if and  only if Z~ ~> 2. 

Assume in the  following tha t  Z0 = 1. First  let ~ yodd= {0}. I f  Z~ = 0 then A Y = Q(y, ~) 

and d o = 0. Thus {b~} is bounded. Suppose now on the  other  hand  tha t  Z~ >~ 1. T h e n  clearly 

the ideal im d o in ker  d o is contained in the  ideal generated by  y and ~, where yE yodd. 

Hence dim ker ~ f) Y ~ > 2  implies t ha t  {b~}~N is unbounded.  I f  there are no t  two even 

closed generators of Y we range the  generators of Y~e" by increasing degrees x~, x 2 ..... x~, ... 

so tha t  ~x 1 =0 ,  Ox~ =x~y ... . .  6x~ =P,(x  x ..... x , - l )  y . . . .  and P~, n >/3, belongs to the ideal ge- 

nerated b y  x~ . . . .  , x,-1. Then we have 

dg22 = ~x~-a~ly +x~ 9 

,-1 ~p 
and dg~n= 5 :z-~x~Y + P n ' Y  

k=l oxzr 

for n>~3. Hence in A Y |  im do is contained in the ideal 

(doz~, d~2~, x ~  ..... x ,~ . . . . .  2~y .. . . .  2~y . . . .  ,x~y .... , xny .... ) 
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so the family of closed elements { x ~ } ,  (a, b)EN • are homologically independent, in 

particular {b~}~GN is unbounded. 

In  the rest of the proof we assume besides ~0=1 tha t  5Y~ Then 5Yeven=0 

since 5 2 =0.  

If  z e = l  we have AY=Q(x ,  y) with 5 x = 0  and 5y=x  h. I t  is then easy to prove tha t  

{b~}~eN are bounded (see Addendum in [16]). I f  Ze= ~ we obviously have {b~}~N un- 

bounded. 

We shall now show tha t  3 ~Ze < ~ implies {b~}~ N unbounded. Let  x 1, ..., x~, p ~ 3, be 

a basis for yeven. An element of the polynomial ring ~[x 1 ..... x~] is easily seen to be a 

boundary in (AY| dg) if and only if it is in the ideal generated by  dgy, yE yoaa. 

Now, consider the graded ring A = ~ [ x  1 ..... x~]/(dgy) of Krull  dimension q = p - 1  >/2. By 

lemme 1 of [12] there are positive integers N and ~ and a polynomial P with deg P = 

q -  1 >/1, such tha t  for all n >~N and n = 0 (rood ~) we have dim A~ =P(n) ,  where An is the 

subspace of A of elements of degree n. 

Finally assume Ze=2 and let xl, x 2 be a basis for y~ven. I f  yE yodd 5y=P(xl,  x~) and 

hence im dg is contained in the ideal generated by ~P/~x 1 and ~P/~x~. I f  A =Q[x 1, x2] / 

(~P/~xl, ~P/ax2) is not finite dimensional, then A has Krull dimension >~ 1 and the ring 

B = A  | has therefore Krull dimension ~>2. Again by  Lemma 1 of [12] we conclude 

tha t  {dim B~}~eN is unbounded. But  for any non-zero element ~ e B  the element ~ f i  

is a eocycle in ( A Y |  do) and not a boundary i.e. {b~}~eN is unbounded. If  dim A < 

a direct but  lengthy computation of H ( A Y |  dg) in even and odd degrees shows tha t  

{b~}~N is bounded. 

From Proposition 1 in [16] and the above proposition we get 

COROLLARY 4.4. The sequence o] Betti numbers /or Ma(~) is bounded i / a n d  only i/ 

the cohomology ring H(AY, 5) has one o/the/oUowing types: 

(i) H(AY, 5 )=Q 

(ii) H ( A Y ,  5) is generated by one element 

(iii) H(AY, 5) is a polynomial algebra in two variables Xl, x~ truncated by an ideal 

generated by one element P such that dim Q[Xl, x2]/(~P/~xa, ~P/~x~) < ~o. 

In  Proposition 4.3 and Corollary 4.4 the eohomology of M was only supposed to be 

of finite type. I f  we assume H*(M) to be finite dimensional (e.g. M a finite complex) we 

can apply some recent results of Halperin [9] and [10] to obtain: 

T ~  ~ o R ~ 4.5. Let M be a 1-connected space with/inite dimensional cohomo~ogy H*(M) 

and let g: M ~ M be a 1-rigid map ,  Then exactly one o/the/oUowing holds: 
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(I) Z0=Z,=0.  In  this case A Y = Q  and H*(MZa(g))=Q, 

(II) Z0 = 1, L =0.  In  this case A Y  =A(y) and H*(M~a(g)) =A(y,  ~) i s  the exterior al!]ebra 

on y tensor the polynomial algebra on ~. 

( I I I )  Z 0 = g , = l ,  In this c~se A Y = A ( y , x )  with 5x=0,  (~y=x n+i and H*(M~(g))= 

A+(x, ~)/(x n+z, x~)  | In particular {b~(M~(o))) is bounded. 

(IV) {b~(M~(g))}~N is unbounded. 

In particular {b~} is bounded i/and only i /Z,  4 go <- 1. 

Proo], If dim Y = oo we see from Proposition 4.3 tha t  (bt)i~ N is unbounded. 

Suppose now tha t  dim Y < ~ .  Since dim H*(M) =d im H(AX~, d~) < ~ Corollary 5.13 

of Halperin [10] implies tha t  dim H(AY, ~) < oo. We can therefore apply the finiteness 

results of Halperin [9]. In  particular X- =Ze -g0  ~ 0  by  Theorem 1 in [9]. 

I f  Z0 ~> 2 we know from Proposition 4.3 tha t  {b~}~N is unbounded. 

I f  Z0 =1 we must  have Z~< 1. Suppose Ze=l. Then (~x=O and ~y=x ~+z for some n 

because H(AY, 5) is finite dimensional. The actual computation of H*(M~(g)) is then con- 

tained in the Addendum of [I6]. 

The case Z0 = 1 and Ze = 0 is clear. 

Finally Z0 =Ze = 0  if and only if H*(M~(~)) is trivial. 

Note that  if dim H*(M)< oo then (iii) in Corollary 4.4 is impossible. I f  g=idM then 

Y=XM; i.e. (i) is also impossible and Corollary 4.4 is nothing but the main theorem of 

Sullivan and Vigud [16]. 

Theorem 4.5 gives a necessary and sufficient condition on the action of g on ~ , ( M ) |  

in order for H*(MIG(g)) to have an unbounded sequence of Betti  numbers. As in the case 

g=id~x it would be interesting also to have a (necessary and sufficient) condition on the 

action of 9 on H*(M) in order for H*(M~(~)) to have an unbounded sequence of Betti  num- 

bers. We can illustrate the subtlety of this problem with the following examples. 

Example 4.6. Let M=SePxS  ~q with p # q  and p, q~>l. Then AXs~p=A(x 1, yl) with 

deg xz=2p, deg y z = 4 p - I ,  dxz=O and dyl=x ~ and similarly for AXs:,=A(x~, y~). Thus 

any 1-rigid homotopy equivalence g of M will fix at  least the generators y~, i = 1, 2 and by  

Theorem 4.5 r Ma(g) will have an unbounded sequence of Betti  numbers. However, g may  

map x~ to -x~, i = 1 ,  2 and hence not fix any generators in the cohomology H*(M). 

Example 4.7. Take M=CP~+I • 2q+z with p # q  and p, q>~O. Then AXce~p+l= 

A(Xl, Yi) with deg x z =2,  deg yz=2(Pp+ 1)+ 1, dx z =0 and dy 1 =x~ ~+~ and similarly for 

f~Xc~g+z = A(x~, Yp). We can therefore draw exactly the same conclusions as above. 
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Example 4.8. Endow S 2~ and CP 2q with their standard riemannian metrics and S2P• 

CP 2q with the product metric. Let ql=- idz2p  be the antipodal map on S 2~ and g~ the 

conjugate map on CP ~q i.e. in homogeneous coordinates g2(zl .. . . .  z2q+l) = (21 . . . . .  22q+1). If  

M = TI(S ~ • CP ~q) is the unit tangent bundle of S 2p • CP 2q then the differential of the in- 

volutive isometry gl • g2 restricts to an involution g on M. 

Note that  M is the total space of the fibre bundle M-~S 2~ • CP ~q with fiber S 2p+dq-1. 

Therefore A XM = A Xs2p | A Xc~2q | A Xs~p+4~- ~ = A(x 1, x2, Yl, Y~, Ya) with deg x 1 = 2p, 

degx2 =2, degy 1 =4p - 1, degy,  =4q + 1, degy 3 =2p  +4q - 1 and dx 1 =dx 2 =0, dy, =x~, dy 2 = 

x~ q+l and dy a = (4q +2) xix~ q (XxX~ q =orientation class of S *" • CP 2q and Euler class of bundle 

= (4q + 2). orientation class). Furthermore g induces an involution on A XM which is given 

on generators by x , - + - x l ,  x ~ - ~ - x  2 and hence Yx-+Yl, Y2 -+ -Y2  and ya-~-Y3; i.e. z o = l  

and Ze =0. According to Theorem 4.5 the Betti numbers for M~(g) are uniformly bounded, 

in fact H*(MIo(g))=A(yi, Yl)" 

On the other hand, let ul=(4q+2)x~qy l -x lY3  and u ~ = ( 4 q + 2 ) x l y ~ - x 2 y  3. Then a 

family of generators for H(AXM, d) contains xl, x2, u s and u s (or linear combinations of 

these), and on cohomology g*(u~)=u~, i = l ,  2 i.e. g fixes two generators of H*(M) but the 

sequence of Betti numbers for MG(g) is bounded. 

We finally restrict our attention to spaces whose eohomology (over Q) is spherically 

generated. 

Definition 4.9. Let M be a 1-connected space whose cohomology is of finite type. 

We say that  H*(M) is spherically generated if 

ker ~* = H+(A XM) ~ H+(A X~) 

where ~* is the induced map on eohomology by the projection ~: ~'~.M-C~Q(]~XM) (p. 280)* 
Note that ~* is the dual of the Hurewicz map. The above definition is therefore equi- 

valent to saying that  ~* imbeds the generators of H*(M) into Horn (g*(M), Q). 

COROLLXRY 4.10. Let M be a 1-connected space whose cohomology is finite dimensional 

and spherically generated, and let g be a 1-rigid map o / M .  Then M~(~) has an unbounded 

sequence o/Bett i  numbers i/ the induced map g* on cohomology H*(M) fixes at least two genera- 

tors. (~) 

Proo]. By hypothesis, H*(M) is spherically generated, so ~* induces an embedding 

H + (M)/H + (M).  H + (M) -+ Q(A XM) 

(1) i.e. the subspace fixed by the linear map induced by g* on H+(M)/H+(M) �9 H+(M)has 
dimension >/2. 
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commuting with the induced actions by g. Hence we can choose the generators of AXM so 

that  we nave two closed generators fixed by ~%. They give two closed generators of A Y, 

and we conclude using Theorem 4.5. 

Remark 4.11. According to example 8.13 of [11] any formal space (its minimal model 

is  a formal consequence of its cohomology) has spherically generated cohomology. Thus 

Corollary 4.10 applies in particular to formal spaces. Among formal spaces are riemannian 

symmetric spaces [14] and K/~h]er manifolds [1] (and [11, Cor. 6.9]), 
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