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0. Introduction

The purposes of this paper are to lay the foundations for infinite birth and death
processes on R, in general, and, in particular, to develop the theory of nearest neighbor
birth and death processes on the real line. We are motivated to do this by the paper of
F. Spitzer [11] which, among other things, contains the theory for time reversible, nearest
neighbor birth and death processes on the integers. Many of our results were already anti-
cipated in [11]. The only ingredient which Spitzer was lacking was sufficiently strong
theory for the appropriate class of birth and death processes. These are processes in which
an infinite number of individuals exist at each instant and the rate at which new individuals
appear or old ones disappear depends on the instantaneous configuration of the existing
individuals. In Spitzer’s case, the place in which individuals can live is a lattice; for us it
is a continuum. However, it is a simple matter to transfer our results to Spitzer’s context
(cf. remarks 3.14 and 5.10).

Section 1 is concerned with the basic results which we need in order to prove existence
of the desired processes. In Section 2 we study birth and death processes in a bounded
region. Here we rely on several of the ideas of Preston [10] in which he studied spatial
birth and death processes for which the total population is always finite. Section 3 contains
a theorem showing that under very general conditions the martingale problem for nearest
neighbor birth and death processes on R is.well posed. This is the only good uniqueness
theorem for such martingale problems that we have been able to prove.

The last three sections are concerned with the existence of time reversible equilibrium
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states. In [11] Spitzer used a beautiful argument to find necessary and sufficient conditions
for the existence of a time reversible equilibrium state for nearest neighbor birth and death
processes on the integers. We prove the analogous results here. Our proof breaks naturally
into three steps, which are carried out in Sections 4, 5, and 6. The results in Sections 4 and
6 rely heavily on the ideas of Spitzer [11]. Section 4 is also similar to some results of Led-
rappier [7]; however, he has more stringent smoothness conditions than we do here and
does not relate his results to a stochastic process.

The net result of Sections 4-6 is that the only possible time reversible equilibrium
states for nearest neighbor birth and death processes on the real line are renewal measures
for some density function with a finite first moment, and conversely every such renewal
measure is a time reversible equilibrium state for some nearest neighbor birth and death

process.

1. Foundations

We first want to describe the state space in which the birth and death process takes
place. This space is very similar to the phase space for infinitely many classical particles
used in statistical mechanics (see [6]), however there are two important differences. The
first is that the particles have no momentum and the second is that we require certain
half spaces to have infinitely many particles and no two particles to occupy the same
point. This second difference changes the nature of the compact subsets of the state space
considerably. Since the compact sets are important to us, we begin with a careful deserip-
tion of our state space.

Let E be the set of all purely atomic locally finite measures, u, on R’ such that u({y}) €
N={0,1,2, ..} for all yER". We endow E with the topology of weak convergence on
compacts. That is g,~u in E if and only if J pdu,—~ § pdu for all ¢ €Cy(R’) (the space of
continuous C-valued functions on R* having compact support). It is easy to check that this
topology makes £ into a Polish space (i.e. £ admits a metrization in which it is a complete
separable metric space). Next, let E be the set of u€ £ such that u({y})€{0, 1} for all
y€R" and

u{z€R": (z, 1> >0} = =
for all n€({—1,1})". Give E the relative topology it inherits as a subset of Z. Obviously

E is not closed in £. However, the next lemma shows that E is a G5 subset of &, and there-

fore is again a Polish space (under a suitable metric).

1.1. LEMMA. The set E is a Gs-subset of E. Moreover, a subset T of E is precompact in E
tf and only if each of the following is satisfied:
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(i) there exist constants Cy, N 21, such that sup, . u(Qy) <Cy for all N>1,
(i) for all n€({-—-1,1}y

lim inf ,u({xGQN: {e,n) = 1—}) = oo
N—>oo uel’ N
(i1i) for each N =1 there exists an n =0 such that

sup sup u(@<1l.

nel’ QeH(N,»)

Here Qu={x€R": |x;| <N for 1<j<v} and H(N, n) is the set of open cubes @ having the
form {x€R": (k;—1)N/n<wx;<(k;+1)N[n with k;€{ -n+1, ..., n—1} for 1 <j<y.

Proof. To see that E is a Gy set in E note that

Ay n={peE: u({z€Qy: <z, ) >0})>M forall p€({—1,1})%}
and
By ={u€E: u(@) <2 forallQEH(N,n)}
are open sets in E for all M, N and . Since
E=( nu AM,N) n ( ﬂ U BN,n):
M>1N>1 N21n31

we are done.

Next note that (i) is a necessary and sufficient condition for I" to be precompact as a
of E. Thus (i) is obviously necessary in order for I" to be precompact in E. Now suppose

that T' is precompact in £ and that (ii) fails. Then there is a sequence {uy}7°<I" and some
n€({—1, 1})" such that

EyN({xGQN: e, n) 22%}) < oo,

Since T' is precompact in B, we may assume that uy—u € E. But this means that for all
M=>1:

,u({x €EQu: <z, > JTII}) < lim #N({x €Q,: {x,n> > llif})

N—>00

< lim yN({xGQN: e, > = -1—}) ,
Voo N
and so u({x: (x, n)> >0}) <co, which is a contradiction. Next suppose that I" is precompact
in K and that (iii) fails. Then we can find an N such that for all n>1 there exists a u, €I’
and a QEH(N, n) such that x,(@)>2. Clearly we may assume that p,—u € E. But then
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max ,u(@);lim max ,un(Q)

QEH(N, m) n—>00 Q& H(N, m)

>lim max p,(Q)>2
n—>00 QeH(N,n)

for all m, and so u ¢ . We have therefore established the necessity of (i), (ii), and (iii).
Now suppose that I'< E and that (i), (ii), and (iii) obtain. Given {u,}<T', we may
assume, because of (i), that u,—>u, € E. What remains to be shown is that u, € E. But by (ii),

N—>00 n—>00

1\];1_123 ,u(,({xEQN: e,y = 1%7}) > lim lim ,u,,({xEQN: e, = ZITT})

> lim inf y({xEQN: {a,m) > l}) = o0
N—>oo pel’ N
for all n€({—1, 1})". Also by (iii), for each N >1, there is an m>1 such that

max #(@)<lim max g, (@Q)<1.
QEeHN,m) n—soo QEHN,m)

Thus u({y})€{0, 1} for all y€Q, and all N >1. Q.E.D.

Define C,(E) and B(E) to be, respectively, the set of all bounded continuous and
bounded measurable functions on E into €. Given S< R’, define O,(E; S) (B(E; 8)) to be
the set of those f€C,(X) (B(K)) such that f(u)=f(») for all u, v€E satisfying u|s=v|s.
(Here, and throughout, u|¢ stands for the restriction of u to S.) The following is a useful

criterion for determining classes of functions on E.

1.2. LEmma. Let 8 be a bounded measurable subset of R and suppose H< B(E; S) is closed
under bounded point-wise convergence. If for every finite partition D of S into measurable

sets I, W contains linear combinations of functions having the form
p—expli > Apu(I)),
Iep
where {A;: 1€ DYy= R, then = B(E; S). In particular, if H< B(E) is closed under bounded

pointwise convergence and for every choice of n>1 and bounded disjoint T, ..., T, €Bpr, H

contains linear combinations of the functions
K~ exp [i;lliﬂ(l‘j)] ,
where {11 R, then = B(E).

Proof. The last agsertion follows easily from the first, since, by the first part, the condi-
tion on Y guarantees that B(E; Q)< H for all bounded cubes Q< R’, and } is closed under

bounded pointwise convergence.
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To prove the first assertion it suffices to show that C,(E; S)= H. To this end, let
{Pn: =1} be a sequence of finite partitions of § such that lim,_,,, max;.,, diam (1) =0.
For each 1€ U P,, let a;€ 1. Given u€ E, let N, be the smallest number such that u(I)€
{0, 1} for all T€ UR‘,’M PDn. For each n>1, let I, ,, ..., I;, » be an ordering of P,, and for

n> N, define

fon
Pnlse=p and  p,|s= jglﬂ(lj,n) 6a1jn

Given f€C,(E; 8), there is a function F,: #»—C such that

0 if n<N,

Fn(:u(ll.n)’ ceey M(Iknn)):{f(/l ) i > )

Since u,,—u as n— oo, we now see that our proof will be complete once we have shown that
for any n>1 and F: Wm—C, the function u—=F(ully ), o, pIenn)) is in H#. To do this,
it certainly suffices to treat the case when F vanishes off of a finite set, in which case ¥

is the limit of linear combinations of functions having the form
z— exp[i > ij]] . Q.ED.
j=1

For reasons which will become apparent very soon, we want to introduce yet another

class of functions on E. Given € E and y€ R’, define

p+0, if u({y}) =0

n—0, if u({y}) =1.

(We will often think of the elements of E as sets rather than measures. Thus the notation

ulA{y} for symmetric difference.) Clearly uA{y} is again in E. If f€ B(E) and y€ R’, define
(L.4) Ay f(p) =1 () = f(uA{y}) — ().

(1.3) pA{y} ={

It is obvious that f ,(u) is bounded and jointly measurable in y and u. (In fact, by Lemma
1.2, it suffices to check this for 7 of the form f(u)=u(T"), where I" € Bgr. But then f ,(u)=
e (I —2u({y}), and {(y, u): u({y})=0} is open.) Also note that if f€B(¥;S), then
f,(-)EB(E; S) for all y€ R’. Given a bounded measurable set S in R, let D(Z; S) be the
set of fEC,(E; S) such that

sup flf,y(#) |p(dy) < oo;
HEE

and let D(E) stand for the set of all f: E—C such that f€ D(E; S) for some bounded measur-
able Sin R".
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1.5. LeMMA. For each ¢ €Cq(R”) (the space of non-negative continuous functions on B’ having
compact support), AEC and C>0, the function | given by f(u)=exp [A| @ly)uldy) A C)]
is an element of D(E; supp (¢)). In particular, for any bounded open set G in R,
the smallest class of functions f: E—C which contains D(E; G) and ts closed under bounded
pointwise convergence is B(E; G).

Proof. Let p€C§(R"), A€C, and €' <o be given and define f accordingly. Certainly
f€C,(E; supp ¢). Moreover, if a € R” and u({a})==0, then

0 if fw(y)ﬂ(dy) —@la)=C

fali) =1 (79 —1) f(u) if ffp(y),u(dyKC

Frwuan-g@ o i f@(y)ﬂ(dy) ~pla)y<C< f@(?/)#(fi?/)-

Choose M so that for |z|<|lg|, |e¥*-1|<M|z|. Tf [@udy)—|¢|=C, then
§1f .o} |pida) =0. Tt [ @(y) u(dy) <C, then
11 .olp) | plda) < MM | pla) u(da) < MO,

It [ @) udy)— ol <C< [ ey)uldy), then either f ,(y)=0 or |f ()] < M| pla)|, and
S0

fl fol@)| u(da)< M e"'cftp(a)ﬂ(da)

< M0+ |lo]).
Thus f€ D(E, supp (p)).

To prove the second part, it is sufficient, in view of Lemma 1.2 and the fact that
D(E, () is an algebra, to prove that for any measurable I'c ¢ and A€ R the map u—
exp [tAu(I")] is a member of the smallest class containing D(E; ) and closed under bounded
pointwise convergence. But X is in the smallest class which contains Cy(#) and is closed

under bounded point-wise convergence. Q.E.D.

Define = D([0, o), E), the space of right-continuous trajectories on [0, o) into £
having left limits. Given w €, let u,(w) be the position of w at time ¢ and define T, =
Blp,: 0<s<t], t>0. We give Q the Skorohod topology, and denote by M the Borel field
of subsets of Q. Note that Q is a Polish space and M =0{U o M,). Given non-anticipating
functions b =b(¢, y; w) and d =d(¢, y; w) on [0, o) x Q into the set of non-negative bounded

measurable functions on R’, we define the non-anticipating operator £, on D(E) by

(1.6) L fp)= fb(h ) () dy + fd(t, Y) 14 (p) p(dy).
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1.7. THEOREM. Let b, d, and L, be given as in the proceeding and assume that b and d are
uniformly bounded by numbers B and D, respectively. Let a: [0, o) x Q—~F be a right con-
tinous, non-anticipating function having left limits and P a probability measure on (Q, M)
such that P(og=p% =1 for some u®€ E. Then the following are equivalent:

(1) floey) — Jo Lof(os)ds is @ P-martingale for all € D(E),

(i) fE AT, anr)— [6'7 (0)os+ L) (s, a;)ds is @ P-martingale for all bounded measur-
able f: [0, T'] x E—C such that f(-, u) €ECY[O0, T for all u€ E, and there is a bounded
open cube Q for which f(t, -)EB(E; Q), t€[0, T} and |offos(t, u)| <Cu (@), (t,u)€
[0, T x B, for some C' <o,

(iii) f(or,) exp [ — Jo(Lof/f) o) ds] is @ P-martingale for all f: E—~C such that |f] s uni-
formly positive and f€ B(E; Q) for some bounded open cube Q,

n n 11 n t
(iv) eXPLZl/b%(S;)— 2 dSLj (e — 1) b(s, y)dy~j=ZJ0 dSL(e‘l" —l)d(s,y)as(dy)]

i=1,0
is a P-martingale for oll n>1, {A,}1=C", and mutually disjoint bounded sets

Sl, ...,SHEBR”,

n n t n t
@ expli § 2,008)= 5 [ o] - 1p6mar= 5, [ ] @ H-naw )
j=1 i=1Jo i j=1Jo S
s a P-martingale for all n=1, {A}1< R", and mutually disjoint bounded sets
S5, ... S,€ By

Moreover, if P satisfies one of these equivalent conditions, then for any bounded open cube @
and T>0

(1.8) P( sup (@) —p(@) > N)< (eﬂ—lﬁlf)lv

for N>eB|Q| T, where |Q| denotes the Lebesgue measure of Q.

Proof. We will first show that (i) implies the estimate in (1.8). Given @, choose ¢ € C\( R")
so that X5 <@ <1. Given T>0 and N >e¢B|Q| T, define f, for >0 by

fi{pu) = exp [l(ﬁp(y)(u(dy) — u(dy)) A N)]

By Lemma 1.5, f, € D(E) for all 2>0, and so, by (i), fi(« ) — [6 Lsf:(2;)ds is a P-martingale.
Since f; is uniformly positive, we can apply Lemma 2.1 of [14] to conclude that

opo| [ Sy
o fa |
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is a P-martingale. Let 7=inf {t>0: [ @(y)ou(dy) — [ @(y)u(dy)=>N}. Then, by Doob’s

stopping time theorem and an easy calculation, we see that

X;(t)=exp [l(ﬁp(y)(ocm(dy) —uo(dy)) AN ) - fomdsf(e“”‘” —1)b(s, ) dy]

is a P-supermartingale for all 2>0. In particular,

MNP <T)< E* [eXp [i(ftp(y)(ocm(dy) — p(dy)) A N)H
< expl(e*— 1) B|supp ¢|T'| B[ X,(T)] < exp[(¢e* — 1) B|supp ¢| T'].

Taking a sequence of ¢’s which decrease to Xz, we now have

P(Oigngt(Q) ~p@)>N)<exp{—AN+ (¢~ 1) B|Q| T}
for all1>0. Since N >eB|@Q| T, we can choose A so that e-2 = (B|Q| T')/N, and thereby obtain
(1.8).

Once (1.8) has been obtained from (i), it is simple to show that for any bounded open
cube ¢ in R’ and f€B(E; @), fla;)— [6 Lf{x)ds is a P-martingale. Indeed, by (1.8),
E?[e,(@)] is finite for all £ >0, and one can use this to show that the set of f€ B(E; @) such
that f(a;) — {5 C.f(x)ds is a martingale is closed under bounded point-wise convergence.
One now simply applies Lemma 1.5. The case when f depends on ¢ as well as u is now
easy (cf. Theorem 2.1 in {14]).

Next assume that (ii) holds. Then since (ii) implies (i), the estimate (1.8) obtains,
and we can use Lemma 2.1 in [14] together with (ii) and (1.8} to arrive at (iii).

Clearly (iv) is a special case of (iii) and (v) of (iv). Finally assume that (v) holds and
let @ be a bounded open cube in R’. Given 7'>0 and N >eB|Q|T, define 7 =inf {t=>0:
2 @) @)= N}, bylt, y) =X oo, m (o0 @) — (@) B( and  dy(t, ¥) =X oo, (%ene(@) —
p@)d(t, y). Then if P is a finite partition of @ into measurable sets T and {A;z I€E D} B:

t
exp [@ 152-9 Arap:(d) — % L( f IbN(‘S’ Yt —1)dy + J‘IdN(& y)e M - 1)%(@/)) d-?]

is a P-martingale. Since [gby(s, y)dy <B|Q| and [, dy(s, y) a,(dy) <p’( (@) + N, it follows,
after an application of Lemma 2.1 in [14] that

t
f(“t/\‘t) - f EfsN)f(OCS/\t) ds
0

is a P-martingale for f€ B{E, @) of the form
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f(u) =expli IED Ay (D))
€

Here £ is defined in terms of b, and d as in (1.6). Since £ is bounded on B(E, @), we

can now apply Lemma 1.2 to conclude that

t
.f(‘xt/\‘t) - J\ EEN)f(“S/\T) ds
0

is a P-martingale for all f€ B(E, Q). It is now easy to derive the estimate (1.8) for this @,
T, and N. Since @, T, and N are arbitrary, it follows that (v) implies (1.8); and the rest of
the proof is now eagsy. Q.E.D.

The next result is proved in exactly the same way as Theorem 3.1 in [13].

1.9. THEOREM. Let b, d, L, and a, be as in Theorem 1.7 and suppose P on (L, M) satisfies
Plog=u®) =1 for some y?€E and P satisfies one of the equivalent conditions there. Given a
stopping time T, let P, be a regular conditional probability distribution (r.c.p.d.) of P| M,.
Then there is a P null set N € M, such that for all w ¢ N and all {€ D(E)

t

flo) = f(otenray) — f L, fa,)ds

tAT{W)

ts a P,-martingale.

1.10. TuEOREM. Let b, d, L, and «, be as in Theorem 1.7 and suppose P on (Q, M) satisfies
P(ay=u) =1 for some uy®€E and one of the equivalent conditions (i)—(v). Given t 20 and a
bounded set T € Bg, let i (L) (5 (T)) equal the number of s€[0, t] such that (o, —os )|r =0,
((ots —as_)|r=—98,) for some y€I™\supp («,)(y €L Nsupp (a,_)). Then for any A€C,
bounded measurable g, and g_ on R’—C having compact support:

t

0
- J‘t(ﬁed@(y“gﬂ) —1)d(u,y) fxu(d?/)) d“}
0

Proof. Let n>1 be temporarily fixed, and for k>0 let w—>P be a r.c.p.d. of P| Myn.

By Theorems 1.7 and 1.9, there is a P-null set N€ My, such that if w—f, in an

My n-measurable map of Q into B(E, ) (for some fixed open cube @ in R’) then
0 <inf, ,|f.(u)| <sup,, ,|fu()| <oo implies

fol®ey domy) exp[_ J‘(k,/n)vt Cofo

.fw(‘xk/n) kin fcu

exp [l(at(F) — () + fm(y) e (dy) + fg_(y)n? (dy)— f

is @ P-martingale.

(o) du]
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is a P martingale for all w ¢ N. In particular, if

folie) = exp [Au(I) +y (g, tun(o))]

where
g+(y) it (u—v) |supp<g+)U supp (o) = Oy
g v)=19-(y) i (u—v) |Supp(a+)usupp(g_) =—0,
0 otherwise,
then

exp I:Z(‘Ztv(km)(]-_‘) = Ggnl(@; V) + Y%y mys Erein(@))

imyvt
- f (f(exp {A%r(y) + (o, + 6y, ternl@)) = ¥(0tus Gim(@))} — 1) b(u, ) d?/) du

kin

(kimyvi
- f (f(exp{ — AXp(y) + p(ay = Oy, Gym(@)) = P{&ys Hepn())} — 1) d(u, ) “u(dy)) du]

kin

is a P%-martingale for all w ¢ N. Here we can take @ to be any bounded open cube containing

I" U supp (g,) U supp (g_). Thus,

X+ (t)=exp I:}“(’xt(l-‘) —u'(T)) + %: V(% p i+ 1yimys Kt ncheim)
¢
- fl) (J‘(exp {;‘ZF(y) + 7(% + 61/; aun) - 7(%: au,l)} -1 ) b(u’ y) d?/) du

t
- J‘O (J\(exp{ - )‘xl"(y) + ‘V(“u - 5yr ‘xun) - Y(‘xu, o‘un)} - 1) d(u’ y) au(dy)) du]

is a P-martingale, where u, = [nu]/n.
Clearly the exponent of X+ (f) tends to

Ao(T) — p(T)) + fg+(y) ;i (dy) + f 9-(y)n; (dy) — L(f(e““”“”‘” —1)b(u,y) dy) du

- f( f (e @ — 1) d(u, y)au(dy)) du

as n— oo, Thus the proof will be complete once we show that {X§%+(t): n>1} is uniformly

P.integrable for all ¢ 0. Note that

|X517.Lz:i(t)| < |exp [kZ V(e 1ymynts “(k/n)At)]leXP [At(| Ql + OsuPt o, (@),

<u<
where

A= sup |eﬂxp(y)+y(ﬂ+5,,. )=y vy _ 1|B) V (sup |e—/lzp(y)wwwy.v)w(u.v) -1 |D),
Yo, v Yo 1 v
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and; by (1.8), exp[f supocycs %, (@)] is P-integrable for all §>0. Thus we need only show
that

sup EP[lexp [% P(®ar1ymynts Erimas)] lr] < oo

for some r>1. For this purpose, we can, and will, assume that g, and g_ are real valued.
Then

|€XP [g P(&e+0ymats “(kln)/\t):nz =exp [2 % PO+ 1yimy ats Hermy ne)]

< (XE ()" exp [4s(| Q[+ sup oy(@))],

ogug

where A’ is determined in the same sort of way as A above. Since

B Xt )] =1,
this completes the proof. Q.E.D.

1.11. CoroLLARY. Let everything be as in Theorem 1.10. Then «.=p°+n" —n- (as., P).
In particular, if T is @ bounded element of Bgr and of denotes the restriction of o to T', then
s—al, 0<s<{t, consists, P-almost surely, of a finite number of jumps, each of which entails
the addition or deletion of exactly one atom. Finally, if I' € Bgy ts a set of Lebesgue measure

zero, then o =p®|r —n7 |r (a.s., P).

Proof. Given a bounded I' € By, take A =10 and ¢, =+ 96X in Theorem 1.10 for some
€ R. Then

E [exp[if(oc(T") —p(T") =7 (T') +1¢ ()11 =1

for all £20. Since By is countably generated, this proves that a,=u®+n; —7; for each
t>0. Since both sides of the preceding equation are right continuous in ¢, the first assertion
is now proved. The second assertion is an immediate consequence of the first. Finally, to
prove the last assertion, we must check that #;(I')=0 (a.s., P) if |I'| =0. But if A=0,
9. =02rase. n (B(0, N) is the ball with center 0 and radius N), and g_=0 in Theorem 1.10,
then

EF[e®TnBO.M 1
and so the desired conclusion follows immediately. Q.E.D.

1.12. LEMMA. Let everything be as in Theorem 1.10, If T >0 and S< R’ is a finite set, then
there is an 0<g <1 depending only on DT such that:

o
P( inf o,(8) <'l~%s)e-DT) < Qu"(S)_

O0<ILT

8 — 772907 Acta mathematica 140. Imprimé le 10 Février 1978
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Proof. First note that, by Corollary 1.11, «(S) is P-almost surely non-inereasing.
Assume that u%(S)=2N>1. We must show that P(ay(S) <$Ne PT)<g" for some 0<p<1
depending only on DT.

Set

n(t, ) = k=
0 if wS)<n

for n=>0, >0, and u€E. It is easy to check that

Ofn

pri Df(fn(/» —0,) — falpa)) u(dy)

and f,(¢, u+68,) = fu(t, p) for all y€R” and u€ E. From these observations it is easy to see
that f(T — (A T), s, r) is a P-submartingale. Hence

P(ar(8) = n) = EF[f,(0, ar)] = E¥[fu(T, a9)] = (T, ),
and so

"t N ~kDT —DT\N-k
P(ay(8) <m)< 2( )e (L= e P,
k=0 k

The desired conclusion is immediate from this. Q.E.D.

1.18. LemMMA, Let everything be as in Theorem 1.10. Given L>0, let Q={x€ R": —L<x,<L,
1<j<v}; and for n>1 and K€({—n+1, .., n—1}), set

k+1)L
n 2

x,.<(

CE 3 )

QP = {xGQ:
Then for each £>0 there is an N =1, depending only on BLT and u*Q), such that if n=N
and maxy ud(Q5”) <1, then

P(max sup a,(@Q§)>1)<e.
k o<i<T
Proof. Let o =u®+7;. Clearly o is non-decreasing and o <a. Thus, it suffices for
us to prove that for each £¢>0 a suitable choice of N can be made so that >N and
max u%(Qf) <1 implies

P(max af (@) > 1) <e.
k

We do this first under the assumption that 6=B, and for convenience we will assume

y=1.
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Let » be given, and assume that u%(@{”)<1 for —n-+1<k<n-1. Denote by J™
the set of subsets, S, of {—n+1, ..., n} such that {k: —n+1<k<n and u°(((k—2)L/n,
(k+1)L/n]N (—L, L)) >1}< 8° and for any k€SN {—n+2, ..., n —1} neither £—1 nor k+1
is in 8. Then

P(max a;(((k— l)L), (k+ I)L]) < l)
{k|<n n n

= > P(n%(((k—l)L, @E])=1, k€S and n}((w, @])=O, k€S°).
Seygn n n n n

Notice that, since b= B, {n7(((k—1)L/n, kL{n]): —n+1<k<n} are mutually independent

N-valued random variables such that

(522 -2

(This observation is immediate from Theorem 1.10.) Thus

P(ma, X o7 ((u, w])<l)>e‘”” > (M)]SI

k) <n n n seym\ N

_2BLT z I j(n)'(BLT )

where J;" ={S€J™: | S| =j}. It is easy to check that | Jj”| < (27 ) and that for each §

lim | J§ / (27") =1

at a rate that depends only on u%¢). This completes the proof in the case when 6=B.
In general, we proceed as follows. Given =, we can use the reasoning just given if we

can show that the vector

(-5 =222 (52 )

is stochastically smaller than in the case b= B. To this end, define

kL/n
3P [ [ i)
(

(k—1)L)/n

for —n+1<k<n. For w€Q, let u, be the probability measure on H2" given by:

nm({(m_n+1, . mn)}) = ﬁ o AK@ (_él_c(ﬂm;

k=—-n+1 mk!
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and define P on Q x H2* so that
P(A < {(m_pyqs oos mp)Y) = EP[p({(M_piyy s M) })s Al

Then an easy computation shows that if

-1
Xk=n}(((k—n)—L, %])-I—mk, —n+1<k<n,

then
E? [exp [z > ke Xk” =exp [l-gg > (e 1)] ,
—n+1 N —n+1
and so
n 173
P X,=1, —nti<k<n)=e 2T [] (1%1) /lk! Q.ED.
-n+l

1.14, LeMwmA. Let everything be as in Theorem 1.10. Given s=0 and a bounded open cube
Q in R’ there is a constant C depending on s, B, D, |Q|, and u®Q) such that:

P(Atels, s +8))af +=ad) < Ce.

Proof. Let v=inf {{>s: af +al}. Let o—>P, be a r.c.p.d. of P| M, and 5,=7 +;.
Then, by Theorem 1.9

tAT

Pu(t<t) = B[, Q) — 7,(Q)] = B [ f ( Lb(u, y)dy+ Ld(u, %) %(dy)) du]

< (t—8)(B| Q|+ Dxy(Q))-
The result now follows from an application of (1.8). Q.E.D.

1.15. THEOREM. Let I be an index set and for each o€1 let b, and d, be non-anticipating
functions on [0, %) x Q) into B+(R’) such that B =sup, ||b,|| <o and D=sup, ||d.[ <oo. Let
{p*: 2 €I} be a precompact subset of H. For a€l, suppose P, is a probability measure on
(Q, M) such that P(puy=p) =1 and f(u,) — [4 Cif(u,)du is a P -martingale for all f€ D(B),
where Lf is defined in terms of b, and d, as in (1.6). Then {P,: a €I} is precompact ¢n the

weak topology on probability measures on Q.

Proof. Using Lemma 1:14, one can show, by standard methods that the Skorohod
modulus of continuity on finite time intervals can be controlled independent of € 1. Thus

it suffices to show that for any £>0 and 7" >0 there is a compact K < K such that

sup P,( sup uéK)<e.
« 0gisT

This can be done by using the characterization of compacts given in Lemma 1.1 and then

using Lemmas 1.12 and 1.13 together with estimate (1.8). Q.E.D.
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2. The martingale problem; birth and ‘death in a bounded region

Let b: B” x B—[0, o) and d: R’ x E—[0, =) be bounded measurable functions and
define £ on D(E) by

(2.1) Lhp)= fb(yw)f.y(ﬂ)dw fd(.% W) pldy).

A probability measure P on ({2, ) is said to solve the martingale problem for L starting
from p€ B if P(uy=p)=1 and f(u,) — f6 Lf(us)ds is a P-martingale for all € D(E).

2.2. THEOREM. Let b, d, and L be as above. If there exists & bounded open cube Q in R’
such that bly, -)=d(y, -)=0 for y¢Q, then for each w€E there is exactly one solution P,
to the martingale problem for C starting from w. Moreover, u—P (A) is measurable for all
AEM and the family {P,: u€ E} is strong Markov. Finally if v,=0 and v,=inf { >7,_;:
weEpe, 3, n=1, then for all t>0 and n>1:

(i) Pu(r,<t and 1, —7, =0, for some y€I'|M, )=(1—exp[—(t— (AT, 1)) X
M., DO, pe, NM (s, )] (@s., Pu) on {zn_y <o and M(p,,_,)>0} and
equals O elsewhere.

(i) Pu(r,<tand p, —p, = —0,forsomey€l|M, )=(—exp[—(E—(tATy1)) X
M(ppe, INAT, o, NIM (i, )] (@5, P) on {T,-1 < oo and M(ps,_,)>0} and

equals O elsewhere.

(i) Pu(z,<t)\O as n—> oo, where

BT, )= frbw,m ay,

AT, )~ frd@,umuy),
and

M(u)=b(Q, p) + @, p).

Proof. Clearly uniqueness of solutions will be established once we show that any solu-
tion must satisfy (i), (i), and (iii). Let P be a solution to the martingale problem for £
starting from u° and define &y =inf {t >0: u,(Q) — Q) > N}. By estimate (1.8), P(&y<t)\0

as N—co. Also, if we can prove (i) and (ii) then
Pty <t, &y >7,4) < BF[1—exp [~ (¢~ At ) (0] @] + {2l (u@) + N1, &n > Taa]s

from which it is easy to conclude that:
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Pz, <t <&y)NO0

as n—> oo for each N >1. Thus (i) and (ii) imply (iii).
We now prove (1) and (ii). Using the notation and results of Theorems 1.9 and 1.10 we

have
(2.3) P(v,<t and u,, —p,, ,=0, for some y€T'|M,, )

=Py Yz, <t and g, —H,,_,=9, for some y€I)

n—-1
= EFfo [nj/\rn(r) - 77?/\1,,,1(1-‘)]

n~1 tAT (@)
- [ [yl
tATe -1 JT

t
=b(rl’ l“‘!n-l) Pz_l(‘l’n>8)d8,

EAT, Y w)
where w—P, " is a r.c.p.d. of P| M, _,. Similarly,
(2.4) P(z,<t and Y,,—p, ,= — 9, for some y€L'|M,,_))

=Pr v, <t and p,,— Mo, .~ — 90, for some y€I')

t
=d(T, s, ) . ()P;‘,‘l(rn>s)ds.
7, — 1{w

Taking I' =@ in these two equations and adding we get:

t

PZ,_I(T,,<t)=M(/t,,__1)f Pt > s)ds,

AT, —1(®)
which implies immediately that:
0 if 7, (w)=00 or 7,_1(w)<occ and M(p;, w{®))=0
Pz, <t) ={ .
Y—exp[—(t— (t A Tuor(0)) MYz, y(®))] otherwise.
Plugging this back into (2.3) and (2.4), one arrives at (i) and (ii) respectively. Thus (i),
(ii), and (iii) have been established for any solution to the martingale problem for £ starting
from pu, and so uniqueness of such solutions is obvious.
Next assume that b and d have the property that b(-, u) =d(-, ) =0 for u such that
w(@) = N. In this case £ is bounded, and, therefore, there are several ways of establishing
the existence of a measurable Markov family of solutions {P,: u€ E} (cf. Theorem 2.1 in

[12] for instance). In general, let by(y, ) = 10, » (#(@)) b(y, 1) and dy(y, 4) = xr0.0 (1(@)) (Y, 1),
and define L™ accordingly. For each N >1, a measurable Markov family of solutions
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{P}: u€ E} exists. Note that if oy =inf {t>0: u,(Q) >N}, then, for any u€ £,
t
f(tenoy) — L LY (psnay) ds

is a PV*!'.martingale for all € D(E). Thus, by uniqueness P)*! equals P} on M, for
all N. Moreover, by estimate (1.8), Py(oy<t)—0 as N — oo for all >0 and 1 € E. Hence by
standard extension theorems, there is, for each u € E, a unique P, on (Q, 1) such that P,
equals P} on M., for all N>1. Clearly P, solves the martingale problem for L starting
from u and u—P,(A4) is measurable for all 4 € M. Finally, because of uniqueness, it is easy
to derive from these facts that {P,: u€ E} is a strong Markov family (cf. [13]). Q.E.D.

2.5. THEOREM. Let everything be as in Theorem 2.2 and let {P,: u€ K} be the unique family
of solutions constructed there. Given f€B(E), set u(t, u)=E +[f(u;)]. Then u,t, u) is the
unique bounded measurable function on [0, o) x E tnto € such that w(0, -)=f(), u(-, u)€
CY[0, =0)) for each u€E and dulot=Lu on [0, =) x B. Furthermore, if there is a bounded
open cube €' such that by, +) and d(y, -) are in B(E; Q') for all y€ R’, then ut, -)€ B(E; Q')
for alllt >0 if f€ B(E; ). '

Proof. Let T'>0 and f: [0, T'] x E—C be given such that f is bounded and measurable,
(-, W) €CY[O, T)) for all € E, and |of/ot(t, u)| <Cu(@), (¢, u)€[0, T x B, for some O <oo.
Given u°€ E, let f be defined by f(t, u) =f(t, u|o+u°| o) on [0, T'] x E. Then f satisfies the
conditions given in (ii) of Theorem 1.7, and so

tAT

f(t/\T’ .u't/\T)_J‘ (é%_l—t) f(snus)ds

0

is a P,-martingale. Since u.|g:=u®| g (a.8. Py), this shows that

AT
JEAT, pipr)— f (aé + C) (s, us) ds
0 S

is a P,-martingale. In particular, if f€ B(E) and u: [0, o) x E—~C is bounded measurable
and satisfies (0, *)=f(-), u(-, u) €CY[0, )}, and dufét=LCu on [0, o) x E, then, for each
HEE, w(T —(AT), par) is a Pﬂ-martingale; and so

u(T5 ,u) = EP"U(/-‘T)] = u[(ts .u)

We next want to show that u, satisfies the asserted properties. First note that, by the

preceding paragraph,
t
ity ) = Ea)) =)+ % [ £y
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Next note that if 0<<s<{, then

| EPu[ CF(p,)]— EFe[ LHps))| < BR[| LFp) — LHus)|, pelo+ 1] @]
< OB sup (U @) TP (] 0 F 125] )72

and the last line tends to zero as t —s—0by (1.8) and Lemma 1.14. Thus u(-, u) €CY([0, o°))
for all u€E. Next define, for N>1, LY and {P): u€E} as in the proof of Theorem 2.2.
Then £ is bounded and so u™(t, u) =et‘(N)f(y) is well defined. By the preceding para-
graph,
g
w(t, p) = B [f(w.)],

and, by the proof of Theorem 2.2, EP/IZ[/(M)]»E’PMU(M)] =wu(t, u). Also, for each N,
u™(E, p)=flp)+ J: L% (s, ) ds.
Thus, by letting V7 oo, we see that
ug(f, p) = flu) + f: Luy(s, u)ds.

This completes the proof that du,/of = Lu, on [0, =) x E.
Finally, if b(y, -), d(y, -)€ B(E, Q') for all y€ R” and u®, € E have the property that
u]o=1" ¢, define ®: Q—>Q so that u (P(w))=p;|qe +u®|ee for all t=0. Then, by

uniqueness, P, =P,0®1. Since
EFef(ug)] = BFe*®[f(1,)]

for f€ B(E; '), the proof of the theorem is complete. Q.E.D.

2.6. TuEorREM. Let everything be as in Theorem 2.2 and let v€E such that v(@Q)=0. Set
E Q) ={u€E: u|g:=v|o:} and assume that there is a >0 such that d(y, p) >0 for all y€Q
and p€E, Q). Then for each N >0 there is a Oy< oo such that EP[v}1<Cy for all u€ E,(Q)
satisfying u(@)=N, where v=inf {t>0: u,(Q)=0}. Moreover, if [ by, »)dy>0, then 0<
EP[v'} < oo, where v =inf {t 20: u,(Q) =0 and (Fs€[0, 1)) u(Q)==0}.

Proof. We learned the basic idea behind this proof from Preston [10].

Choose B>0 so that [ b(y, u)dy<B for all u€E. Set v =B/d and define y: N[0, =)
so that ¥(0) =0 and p(n) —y(n —1)=(n—1)!y*1>% , ¥ */k!, n>1. Then it is easy to check
that

Bly(n+1) —yp(n)) +on(yn—1)—ypn)) = —B
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for all n=1. Given N =2, define fy(u) =p(u(@) A N). Then if y€ E,(@) and 0 <u(Q) <N:

Livlu)= f by, p)(p(p(@) + 1) —p(u(@) dy + fd(y, w)p(p(@)— 1) — p(u(Q))) u(dy)

< B{y(u(@) + 1) — p(u(@)) — Su(@)(p(u(@) — 1) — p(u(Q))) = — B.
Given u€ E,(Q),

fulay— fo Lhnlps) ds

is a P -martingale. Thus if &y =inf {£>0: u(Q) > N}, then fy(uireyns) — AT [ f () ds is
a P, martingale. Since P,(u,€E,(Q) for all £>0)=1, we now have that fy(tireyrs)+
B(t Néy A7) is a P-supermartingale. Thus

W(H(Q)) = fN(,u) > EP#UN(,ut/\EN/\t)] +BEP”[t NeyhTl = BEP”[t NEy AT].

Since &y 7 o° (a.s., P,), this proves that

EPnx] <9(u(@))/B.

Finally, note that ¢/ >0 (a.s., P,) because u,(Q)) cannot change from 0 to something
not 0 and then back to O instantaneously. Thus E?*[1']>0. On the other hand, if o=
inf {t>0: 4,(Q)=0}, then, by Theorem 2.2, E®[¢])=1/{b(y, v)dy and P,(u,(@)=1)=1.
Thus

e, Q.E.D.

BNt = ES[o]+ BN E o] <
f b(y, v)dy

2.7. THEOREM. Let everything be as in Theorem 2.2. Given vEE such that »(@)=0, {P,:
HEE,(Q)} is a measurable, strong Markov family. Moreover, if there is a 6>0 such that
d(y, u) =0 for all y€Q and u€ B,(Q), then for all u€ B ,(Q) and € B(E):

Tim BPu{f(gz,)] = f fdm,
>0
where

fw) it f bly, »)dy =0
f £ dm? =

EPW[J‘t'f(,LLt\dt] /EPv[v:’] if fb(y, v)dy > 0.
0

(Here T’ is as in the last part of Theorem 2.6.) In particular, {P,: u€ E,(Q)} is an ergodic
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Markov family and its unique invariant probability measure m> has the property that

1 if fb(y, ) dy =0
m*({v}) = »
(fb(y, v)dy EP"[‘L"]) if fb(y, v)dy> 0.

Proof. The first assertion is immediate from Theorem 2.2. To prove the second asser-

tion we show first that

(2.8) lim E™[f(uy))

exists for all {€ B(H). Indeed, this is obvious when [ b(y, v)dy=0, since, in that case,
Pu,=v» for all £>0)=1. When | b(y, »)dy>0, E™[v']<oo, and clearly 7’ is a renewal
time for the process P,. Thus the limit in (2.8) exists by Section 9.8 in [1]. The idea of using
the renewal theorem here is due to Preston [10].

Next note that if y € £,(¢), then

EPulf(p)) = Efu[w,[t— 7, v), T<t]+ B u[f(p,), T>1] ~lim (¢, 9),

as t—oo, where v is as in Theorem 2.6 and u,(t, u) = E*[f(u;)]. Thus our proof will be
complete once we identify the limit in (2.8) as [ fdm». If | b(y, v)dy =0, there is nothing
more to do. If | bly, »)dy>0,

f "o ) di = EPU pe"tf(/lt)dt] + E”v[e“"lfwe'ltE”vtf(m)] dt.
) 0 0

Hence [Terargna g | [" e [a-mre,
()] 0

Thus since the limit in (2.8) exists it must be equal to
o0 k4
tim [ “e - 5| [ fwar] /5
>0 0 0

Finally, it is obvious that m»({»})=1 if [b(y, v)dy=0; and if [b(y,v)dy>0, then
EP[t']< oo and B[ [T y0y(u,) dt] = EP[o] = (fb(y, v)dy)~", where o =inf{t>0: u,(Q)=+0}.
Q.E.D.

2.9. LEMMA. Let b and d be bounded measurable functions on R” x E into [0, o) and define
L accordingly. Suppose m is a probability measure on (E, Bg) and Q is a bounded open cube
in R’ such that [ Cfdm =0 for all f€ D(E; Q). Then
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[ 2. i) mia <1101

In particular, for all f€ B(E, @), Lf€L m) and | Lfdm =0.

Proof. Given N >0, choose y€CF(R) such that y=1 on {0, N] and y=0 off (-1,
N+1). Let {@,)7<C(Q) such that 0<¢, /'y, and set f(u) =p(f @.(y)uldy)). Then it is
easy to check that f, € D(&; @) for all n,sup, sup, [ |f,. () |u(dy) <o, and f,(u)— xo, m(1(@))
boundedly and pointwise for all w€E. Hence, if f(u)=jyw, 5 (@), u€E, then Cf,—~Lf
boundedly and pointwise for UEE and so | Lfdm=0. But

LChp)= - X<~}(M(Q))Lb(y, u)dy + Z<N+1>(#(Q))Ld(y, u) p(dy),

and therefore

f (f by, p) dy) m(du)= f (f d(y, M)ﬂ(d?/)) m(dp).
{w: (@=N3\J@Q Lo p@=N+13\JQ

Summing over N =0, we arrive at the desired estimate. The estimate immediately implies
that Cf€L(m) for all € B(Z; Q). Finally, consider the class H of f€B(E; ) such that
[ Lfdm =0. Using the preceding estimate, it is easy to see that 2 is closed under bounded
pointwise limits. Since D(E, Q)< H, it follows from Lemma 1.5 that Y = B(E; Q). Q.E.D.

2.10. THEOREM. Let b and d be bounded measurable functions on R’ x E into [0, ) and Q
a bounded open cube in R such that b(y, -} =d{y, -)=0 for 4y ¢Q. Define C accordingly and
let {P,: n€E} be the associated Markov family given in Theorem 2.2. If m is a probability
measure on (B, Bg) such that { Lidm=0 ({ f{Lgdm— [ gLfdm) for all € D(E) (f, g€ D(B)),
then m satisfies [fdm= [ E*[f(u))dm ([ gBE"[f(u;)]dm= | fE"[g(u;)1dm) for oll f€B(E)
(f, g€ B(E)).

Proof. By Lemma 1.5 and Lemma 2.9, it is easy to see that Lh€LY(m) for all A€ B(E)
and [ Cfdm =0 ([ fLgdm= fgLfdm) for all }€ B(E) (f,9 € B(E)). (In fact, the L!(m)-norm of
Ch is bounded by 2||6||@| ||%||.) Thus if /€ B(E) (f,g € B(E)) and u(t, -) (u,(t, -) and u,(t, *))
are defined as in Theorem 2.5, then for 1 >0: [ Luds, -)dm =0 ({ uds, -) Lu,{t —s, - Ydm=
[ ug(t—s, ) Cuy(s, -)dm), 0<s<t. Since d/ds [ u,(s, *)dm= [ Lu,(s, -)dm (d]ds | u,(s, -) x
Uyt —s, " ydm = — [ u(s, ) Cuyt—s, -)dm+ [ u,(t~s, ) Cuy(s, -)dm=0), we now have the
desired result. Q.E.D.

2.11. ToEOREM. Let b and d be bounded measurable functions on B x E inio [0, o) and Q
a bounded open cube in R’ such that b(y, -)=d(y, -)=0 for y Q and bly, -), d(y, -) € B(E; Q)
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for all y€Q. Define L accordingly and let {P,: u€ E} be the associated Markov family given
in Theorem 2.2. If m is a probability measure on (E, Bg) such that | Lfdm=0 ([fCgdm ~
fgCfdm) for all fED(E; Q) (f, gED(B; Q)), then m satisfies [fdm= [E"[f(ue)]dm
(f 9B"[f(u)ldm= | fE”[g(u,)1dm) for all {€ B(E; Q) (f, 9 € B(E; Q).

Proof. The proof follows that of Theorem 2.10. The only extra ingredient needed is
the last part of Theorem 2.5. Q.E.D.

2.12. CoROLLARY. Let b and d be bounded measurable functions on R’ x E into [0, o) and
Q a bounded open cube in R’ such that b(y, ) =d(y, -)=0 for y ¢Q. Let v€ E have the property
that v(Q)=0 and d(y, p)=0>0 for all y€Q and u€E,(Q). If m is a probability measure on
(E, Bg) such that m(E,(@))=1 and [ Lfdm =0 for all f€ D(E; Q), then m is the measure m”

described in Theorem 2.7. In particular, there is exactly one such measure m.

Proof. In view of Theorem 2.7, we need only show that m is a stationary measure for
(P, u€E,Q)}. To this end, define b,(y, u)=b(y, ulo+v|o) and d,(y, u) =d(y, plo++|ar)
for y€R* and u€E. If £ is the associated operator, then [ L”fdm =0 for all f€ B(E; @),
since m(E,(Q)) =1. Thus, by Theorem 2.11, m is stationary for the corresponding {P};: u € E}.

But P, =P, for u€ E,(Q) and m(E,(Q)) =1. Thus m is stationary for {P,: u€ E,(@)}.
Q.ED.

3. The martingale problem, a special case

Suppose that we are given b and d, as the beginning of Section 2, and define £ on
D(E) accordingly. The purpose of this section is to find out what can be said about the
martingale problem when we drop the assumption that b(y, -)=d(y, -)=0 for y outside
some bounded set. Qur results here are rather incomplete and are really satisfactory only
in a very special case to be described below. Before getting into that, we present the next

general theorem.

3.1. THEOREM. Assume that b and d have the following additional properties:
(i) for all ,uEE’ and {7 < E such that p,—u, b(-, u,)—>b(-, u) in (Lebesgue) measure,
(ii) for all (y, u)ER’ x B and {(yy,, ta)}°S R x E such that p,({y.}) =1 and (Yo, )~
Y, &), AYn, pn) >y, p)-
Then, for all € D(E), Lf is a bounded continuous function. Moreover, for each u€ E, there is
a solution P, to the martingale problem for L starting from u. Finally, there is a choice of
u—P, such that {P,: u€ E} is a measurable, strong Markov family.

Proof. The proof that Lf is bounded and continuous for f€ D(E) is left to the reader.
As for existence of solutions, let Qy={x€R¥: |x;| <N for 1<j<vy} and define by(y, )=
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Loy )by, ), duly, -) =ZXoy(y)d(y, -), and L accordingly. Given u€ B, let P}, be the solu-
tion to the martingale problem for £ starting from u. By Theorem 1.15 {P}: N>1} is
weakly compact on Q. Let {P{"} be a convergent subsequence and set P =limy._,q, P5' .
Clearly P(u,=p)=1. Moreover, for any f€ D(E), LYf=Lf whenever N’ is sufficiently
large. Since Lf is continuous, it is now easy to check that P solves the martingale problem
for C starting from y. Finally, the assertion about the possibility of selecting y— P, so that
{P,: u€ B} is measurable and strongly Markovian is easily derived by an obvious adapta-
tion of the argument given by Krylov [5]. Q.E.D.

Unfortunately, Theorem 3.1 is not very useful. In particular, the relationship between
€ and {P,: u€ B} is too weak to draw any important conclusions about the properties of
{P,: p€ E} from facts about. L. For instance, it is impossible to show, from this theorem,
that [ fCgdm={gLfdm for all f,g€D (and some probability measure m on (&, Bg))
implies { gE"[f(u;)}dm = | fE[g(u;)}dm. In fact, similar implications in other contexts
are well-known to be false (cf. [4] for example).

We now turn our attention to a very special situation in which it is possible to prove
much more refined and useful conclusions. In the first place, we will restrict ourselves to
one dimension. Secondly, we will assume that our coefficients b and d depend only on
“pearest neighbors”. That is, we assume that there are bounded measurable functions

B: 3—10, o) and §: Bz—>[0, o0), where Ty ={(l, y, r) € R* I <y <r}, such that:

(3.2) by, w) =B.Y): v, 7u(y))
and

(3.3) Ay, w) = Q) v, ry))s
where

L(y) =sup {l: 1 <y and u({l}) =1}
and
ry) =inf {rir >y and u({r}) =1}.

If one considers the analogue of our set-up on the integers, then existence and unique-
ness can be proved for many reasonable choices of b and d by adapting Liggett’s 8] tech-
niques in the same way as we did in [3]. Moreover, L. Gray has developed a very powerful
method of proving uniqueness for spin-flip type processes and he has used his technique
to prove the first part of our Theorem 3.13 in the integer context. In fact, he discovered
his technique before: we learned how to get away from our original assumption that d be
independent of w. It was only after we had learned of his work that we found a way of
proving Theorem 3.13 in the form that it now appears. Although we believe that Gray’s
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ideas can be adapted to cover the real-line case, we prefer the approach that we give below
because it seems to us more direct and shows that not only do the finite dimensional
marginals of the approximants converge strongly but the approximating processes them-
selves converge strongly. This latter fact is a peculiarity of the nearest neighbor assumption
and may prove useful in the future.

It what follows, we will make frequent use of the following construction. Given a
probability measure P on (Q, M), an w€Q and a T>0, let §,® %P denote the unique
probability measure on (Q, M) such that

BT P[fy (1) o From) Ga(its) - Gn(ptt)] = Fo(tior(@)) - Fonllisn(®)) BPIgy{ 1) - Gultitu-1)]

forallm, n>1,0<s,< ... <§, <T<t;,<..<t,and fi, .., fm> G1s --» o € B(E). For more de-
tails see [13].
For t>0 and A an interval, let M} be the smallest g-algebra of subsets of Q with

respect to which

w*f (y) us(w; dy)
A

is measurable for all 0 <s<t and g €C,(R); and set M* =a(U >0 MP).

3.4. LEMMA. Suppose that b: R x E—[0, ) and d: R x E—[0, ) are bounded measurable
functions and that A is an interval (open or closed) such that b(y, -), d(y. -)EB(E, A) for all
y€EA. Let L be the operator associated with b and d. Define by, -)=IA(y)bly, *) and
My, ) =Ialy)dly, *), and L accordingly for b* and d®. Denote by {P2; u€ E} the family
of solutions to the martingale problem for L*. Given T >0 and a right-continuous function
7: [0, T1>E, let PA"=4,8% Plr,. If P is a probability measure on (Q, M™) such that
Plp|a=n(®)| 5, 0SI<T)=1 and for all fEB(E, N) (f(u)— [ CO(u)ds, MY, P) is a
martingale after time T, then P equals P27 on M2,

Proof. Define fi,(w) =py(w)| o +5(t A T)| oc. It is then easy to check that
Plp,=nt),0<t<T)=1

and that f(u,) — [+ C*f(i,)ds is a P-martingale after time 7 for all f€ B(E, A). Thus the
distribution P of x4 under P must be P*7". Since .| s =u.| s, this completes the proof.
Q.E.D.

3.5. LEMMA. Let b, d, and L be as in Lemma 3.4. Suppose that P is a probability measure on
(Q, M) such that f(u;)— f6 Cf(us)ds is a martingale for all {€ D, and let {P,} be a r.c.p.d. of
P|'MA. Then there is a P-null set N € MA such that for all w ¢ N and all € D(A®), fu:)—
6 Cf(us)ds is a P,-martingale.



NEAREST NEIGHBOR BIRTH AND DEATH PROCESSES ON THE REAL LINE 127

Proof. Let n=>1, 0,, ..., 0,€R, and I';, ..., I, be mutually disjoint bounded measurable
subsets of B\ A. We must show that

n n ¢ n t
X(t)=eXP[Z 0;u,L)— 2 f da*f (% - 1)b(y, u)ds—~ 2, f de e i—-1)d(y, Ms)#s(dy)]
J=1 i=1J0 Ty i=1J0 T;

is a P ,martingale for P-almost all w. Given 0 <, <{,, set
th(’z) = X(tz)/X(tl)-

Let {PZ}} be a r.c.p.d. of P|M,,. Then, by Lemma 3.4 and Theorem 1.9 there is a P-null
set N, €M, such that P} equals 6,87 P3 w on A if w¢N,. For wé¢N,, define
Q, on ‘M* so that

d ™ )
s A

Proceeding as in Theorem 3.2 of [12], we see that for any m>1, 4, ..., 4, € B! and mutually
disjoint Borel sets A,, ..., A, in A, (Y(¢), M, Q,) is a martingale after time ¢,, where

m m t n t
Y(t)=exp L;'{jﬂt(Az) - Zl ft dSJ'A.(e'I" — 1)b(y, us) dy ~, dSLi(e*'* —1)d(y, /ls),us(d!/)] .

=1t

Hence, for w éXN,, and f€B(E, A); (f(u:) — [t Lflus)ds, MP, Q,) is a martingale after time
t,. Since Q,(u:|a=pidw)|a, 0<t<t)=1 this shows that ,=6,®% Ps on M* for
wéXN,. Thus

EPo[XU(t,)|MAI=1 (as., PY)

for all w ¢ N,. If A€ M® and BEM,, we now have:
EPEP[X(ty), B), A1= EF[X(t), 4 0 B]= E*[X(t,) B [X"(t,), 4), B]
=E7[X(t,) P*(4), B]
= E*[X(t,), A n B)= EF[E"[X(t,), B], A].
That is, for each 0<¢ <t, and BEM,,
(3.6) Efo[X (t;), B]= E"[X(t;), B]
for P-almost all w. It is now clear that we can choose one P-null set N € M2 so that (3.6)
holds for all w¢N, 0<¢,<t,, and B€M,,. This set N still depends on =, 0, ...,0,, and

I;, ..., T,. However, by an obvious procedure, it is possible to choose one P-null set from
MA which works for all n, 6, ..., 0, and T}, ..., T',.. Q.E.D.
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3.7. LEMMA. Let b and d be coefficients satisfying (3.2) and (3.3) and asswme that d(-, )< D.
Let A =(e, B) and set
by, w) = IMy)bly, p U {o, B})

D ifyeoA

aly, u) =
v 1) { In(y)d(y, p U {o, B}) otherwise.

Given a P on (Q, M) such that: P(u,|z=p"|%), where u({a})=p*({B}) =1, and f(u.)—
16 Cf(us) ds is a martingale for all f€ B(E, ), there is a P such that: P =P on M* and P@ P, =
P, where v=inf {t=>0: p({a}p({B}) =0}, P, is the solution to the martingale problem for
b and d starting from p and P®2P, (A) —E78. ®%r Py, (4]

Proof. Let v be the probability measure on ([0, ©°)%, By «p) satisfying »([z, o),
[y, o)) =e “"¥. Consider the measurable space (Q x [0, ©°)2, M X By, wp). We can think
of u. as defined on Q x [0, *°)? by u((w, #, y)) = (w). We also define X(w, z, y)=2x and
Y(w, z, y) =y. Define

EAT,
Oy= (inf{t?O: f (D — d(a, ,us))ds>X}) A Ty

og= (inf {t}(): ftArﬁ (D—d(B, p)) ds = Y}) A Tg,
0

and
{=0,Nog,

where 7,=inf {>0: u,({a}) =0} and 75 =inf {t >0: u,({}) =0}. Define
ty =P |& o F L,00(00) Oy + Lt,00r(05) Op + | -

We want to show that if P is the distribution of # under P x v, then P has the desired
properties. It is easy to see that this comes down to checking that if f€ B(E, A), then

tn _ - -
(f(,um:) —f Cf(us)ds, MP, P x v)
0
is a martingale, where A =o (i | z: 0 <s<t). But this is equivalent to showing that

trhE _ -
(f(ﬁtAc)“ fo LCf(u;)ds, M., P Xv)

is a martingale. Since MP:< M, X By, ooy for all £0, we can afford to replace P by any
P’ which equals P on M,. In particular, take P’ =P®2]_5/,1. If we can show that for all
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fEB(E, A): (f(is.) — [5 Tf(fa;)ds, M}, P' x) is a martingale, then we will be done. Surely
this is true for € B(E, A); and so we will be done if we show that

P’ xv(g, > 8,05 > t|a(us|a:t = 0)) =e 2 (as P xv).
To this end, let 4 €a(u,|A:¢>0) and s, 0 be given. Then

P xv{o,>s}n{op>t} N A4)

=P’ x v({r“ >, X> J: (D —d(e, 1)) du} n {tﬂ >t Y > J: (D—d(B, 1) d,u} n A)
—F [um,,({a}) exp(~ [ (0~ dto wyan)
sl exp( = [ D aip ), 4],
Note that, by Lemma 3.5, if {P,} is a r.c.p.d. of P'| T, then for P’-almost all o:

¢
o+ [ e p (e du

(B + [ g, nByan

and

¢
u(D B+ || e )il + a8, ) (B

are all P, -martingales. Thus, so are

t
X(t)=p,({a}) exp Uo d(ex, ) du]

t
Y (t)= p({B}) exp Uo d(B, p) du]

and
=X Y@t).

Hence for P’'-almost all w:
EFo[X (s A 7,) Y(t A t5)] = B[ Z(s At A T, A Tg)] = EFo[Z(0)]).

9 — 772907 Acta mathematica 140. Imprimé le 10 Février 1978
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Therefore,
s t
B [Mwa({a}) eXP( - fo (D — diex, ) du) Heaz((B}) eXp( - fo (D —d(B, ) du) , A]

— e DEIRP[X (s A 7,) Y(E A Tp), A
— eMD(H—s)EP’[Z(O)’ A] — e—D(H—s)P'(A)’

Since P'(Z(0)=1)=1. Q.E.D.

Let A ==(«, f) and define band d by

by, p) = Ls ar.1,00 @) by, p)
dy, p) i yE(r,fa), L(B))
J(:% ”)z D lfye {'r[t(“)! l,u(ﬂ)}
0 otherwise.
Let {P,: u€ E} be the associated family of solutions to the martingale problem.
3.8. THEOREM. Let u®€ E be such that ,u?’(A)Z‘i and set oy =1,0(), Bo=L(B), and Ag=
{ctos Bo)- Suppose P on (2, M) is such that
P(po| 3, = #|3,) and
f(u) — [b Lf(ps) is @ martingale for oll f€ B(E, A). Then there is a P such that:
P-P onm* and P, :P@?P#T,

where T=inf {t >0: p({eo N pe({Bo}) =0}.

Proof. Let P be as in the preceeding lemma relative to P and A,. Q.E.D.
3.9. LEmMA. Let b and d be bounded measurable birth and death coefficients with d(-, -)<D
and, define L accordingly. Let I;={l,,+,) and I o= (Ig: 13) and suppose that ry<l,. Let u*€H
be such that u®({1,}) :‘uo({rz'}) =1 and ud(I) ANu™I,)>N-—1. Let P be any measure on
(Q, M) such that P(po|g,.ra=p|umra) =1 and f(u,)— o Cf(us)ds is a P-martingale for all
1€ B(E;[l, r5]). Define
(1 —exp[ — 2D(T' — s) IO eEWAE=D fgp o T

fN(S“u)Z{O for s>T1T.

Then
(3.10) E[fy(v, u.)] < (L —exp [-2DT))",
where T =1nf {82 0: pu({I,}) pu({r:}) =01.
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Proof. Let xy=1, and yy =7, and @y, ..., Zy_y €Iy, ¥y, «.-r Yu_y €15 be such that uo({x;}) =
p{y°}) =1 for i=1,2, .., N L. Define
(1 — exp[ — 2D(T — s)])Sr-0MGDr»  3f s

h(s, p) =
5.1 {O it s>17.

Since g, ({xe}) pt({yo}) =0 and 33" ul{w ) p({y:}) <ully) A p(Iy), it follows that P(fy(t,u,) <
R(t, u.)=1. Thus it sutfices to show that

E[h(t, u,)] <(1-~exp [~2DT)".

Now (8/os) kis,u) = — D | (h(s, u™>0,) —h(s,u)) u(dy), and therefore, since d <D and k(s, u) <
R(s, u) if w24 it follows that

Chis, p)< — é%h(s, ©)-

Since k(s A T, usnr) — 5" (Bfor + C)h(r, w,)dr is a martingale, we have

Ep[h(f, ”‘r)] == Ep[h(t A T7 ‘u‘l:/\T)]
AT a
(o (574- E) hir, ,ur)d?]

<

TAT

:EP[h(‘[ A T, :urAT)z J\ (§'+ E) h(T,Mr)dT]'f‘EP[
]

<O, ftg) = (1 — exp[ — 2DT)). Q.E.D.

3.11. TuroreM. Let [o, d]=1< A =(a, §) and let P be any measure on (Q, M) such that
flu) — [ Lf(uo)ds is a P-martingale for all {€ B(E; A) and such that P(uy=u®) =1 for sonie
UEE: Let p€E and let A’;z[r;,(oz) 1i(B)). Assume that p| ,i=p°| ,n and that a((a, €) A
Aa(d, B))y=n. Then
P~ Pllvarm < (1 — exp[ — 2DH])",
where {P,: p€ B} is as before Theorem 3.8.
Proof. The proof is by induction on n. Let A€ M; be fixed. It suffices to show that
| P(4)— P;(4)] < (1~ exp[ — 2D8)y".
Let P and 7 be as in Theorem 3.8; and let w—~P* be a r.c.p.d. of P|mM,. Then by
Theorem 3.8,
(3.12) [ P(4)— Pi(4)| = | BF[P*(A) ~ 8, ®%w Py, (A)]]
< B[ P(A4) = 8,®%u(4)])-

Suppose now that n=1. If v>¢ then P*(4) —§, ® %P, (4)=0 (a.s. P), and hence

Hy(m)

|P(A4)— P,(A)| < P(r<t)=1~exp [~ 2Dt].
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Assume next that the theorem is true for n <N —1 and that » > N. Since P® is concentrated
on the atom [wl.m and f(u,)— [§ Cfu,)ds is a P® martingale after time 7(w) for all
fEB(E, A), the hypotheses of the theorem apply to P~ beginning at time 7(w) and hence,
by the inductive hypothesis,

|P2(4) — b, ®2<w)Pu,<,,,)(A)| < fulv(®), pa,)s

where fy is defined as in Lemma 3.9 with T =¢ and I, =(r)(«), ¢) and I,=(d, I;(f)). The
proof is now completed by substituting this bound into (3.12) and applying Lemma 3.9.
Q.E.D.

3.13. THEOREM. Let b and d be bounded functions of the form (3.2) and (3.3). Then for each
MEE there is exactly one solution P, to the martingale problem for L starting from p. More-
over, the family {P,: u€ E} is measurable and strongly Markovian. Finally, for each >0 and
T >0 there is an N =N(e, T) such that if A=(a,b), I=[c, f], and u*€E satisfy a <c<d <b
and u((a, ¢)) Au®((d, b)) =N, then for any probability measure P on (Q, M) satisfying
Plug=p) =1 for some p€ B with u| o =u®| s plus f(u.) — [ Lf(us)ds is a P-martingale for all
FED(E; A) we have
| 2~ Pollvarmi <

Proof. The last assertion is an immediate consequence of Theorem 3.11 and therefore
the uniqueness of P, is obvious. Moreover, once we prove the existence of a measurable
family of solutions, the fact that the family enjoys the strong Markov property is an easy
consequence of Theorem 1.10 and uniqueness (ef. [13]). Thus it remains only to establish
the existence of a measurable family. To this end, let A, =(—n, »), b(y, #) =1, %) by, u),
and d,(y, ) =xa,(¥)d(y, u). Denote by {P}: u€ E} the family of solutions associated with
the corresponding operators C,. By Theorem 1.15, for each € E the sequence {Py:n>1}
is weakly precompact; and by Theorem 3.11 for any bounded interval I, 7'>0 and bounded
Mi-measurable ®: Q—C, EP4[@]->E1[®]. We will now use this to show that P, solves
the martingale problem for £ starting from u. Let 0<t,<f,, I=[c, d], and A€M, be
given. If f€ D(E; I), then for » satisfying I<(—n, »):

ta
B (t) — (1), A1 = E[ f Cfi)ds, A] -

Since the term on the left tends to ET#[f(u;) —f(us), 4] as n—>oo, it suffices for us to
check that

EP[Cf(n,), A1= lim E4[Lf(p,), A]

for each t, <s<t,. But, forall k> jc| v |d}:
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BP[Lf(p,), AN{L(c)> —F and r,(d)<k}]
= lim BT Cf(u,), 4 0 {l,(c)> —k and 7, (d)<k});

and, by Lemma 1.12, it is easy to check that
lim sup Pyl (c)< —k or r,(d)>k)=0,

k>0 1<ng o0

where P;‘?=Pﬂ. Q.E.D.

3.14. Remark. The techniques used to prove Theorem 3.13 are very special. Unfortunately,
they do not seem to lend themselves to easy generalization beyond obvious variations on
what we have done here. In fact for second nearest neighbor interactions with bounded
birth and death rates it is easy to construet examples of non-uniqueness. One possible way
to generalize what we have done here would be to replace Lebesgue measure in the birth
term of £ with some other locally finite measure. Everything goes through as above
with the obvious modifications. If we use counting measure on the integers instead of
Lebesgue measure then an obvious modification of the proof of Theorem 3.13 yields
existence and uniqueness for the birth and death processes on the integers in [11].

In more than one dimension the situation is more complicated. We do not see how to
handle the question of uniqueness for the martingale problem in more than one dimension.
Of course, there are a few special cases which are amenable to known techniques; for
instance, one can use methods familiar in the study of spin-flip models to treat the case
in which a “hard core’ exists (i.e. when there is an £ >0 such that u({a}) =1 implies b(y,u) =0

for |y —a| <e). However, a satisfactory general theory appears to be difficult.

4. Reversible equilibrium states—necessary conditions

Let f and 6 be positive bounded measurable functions on [0, c)2, and suppose that
by, p) =By —1.y), 7.(y) —Y)
and
ay, w) = oy —L.(y), ru(y) —y).
Let C be the operator on D(E) determined by b and d. We say that a probability measure,

m, on E is a time reversible equilibrium state for £ if

(4.1) f¢£1pdm= fi/)&pdm for all ¢, p€D.

Let g{l, r)=pB(l, r)/6(l, r). The goal of this section is to find necessary conditions on ¢ in
order for (4.1) to hold for some m. The results and methods in this section are due to
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Spitzer [11] in the context of birth and death processes on the integers. Our contribution
here is merely to make the modifications necessary to fit the present situation.

We need the following additional assumption:

(4.2) f is uniformly positive on compact subsets of (0, o0)?
' and 9 is uniformly positive on compact subsets of [0, o)2,

These of course imply that

43) g is locally bounded on [0, >)? and uniformly positive
on compact subsets of (0, o).

For the rest of this section let m be a fixed probability measure on K satisfying (4.1).
If A is a finite interval, we denote by B” the smallest g-algebra for which every
element in {p: 9 € B(E; ") for some T" with ['N A =@} is measurable, and by m“>* the
r.c.p.d. of m|BA evaluated at . Of course m™® is a probability measure on E JAA). (B L(A)
is defined in Theorem 2.6.)

The key to our analysis is the following observation. If ¢, w€ D(&; A) and y€ D(E, T')
with A NT =@, then since ||A,¢|| [|A,y]|=0 it follows that

Llpy) =vLp-+eLy,

and thus
(4.4) 0= f(pyﬁl dm = fC((py) dm,
= f(y.C(p +oLy)dm= 2fy£<p dm = 2f<pﬁy dm.
Thus
(5) [wcnan= [veomran= [vocp+oydn- [ywoein

Equation (4.5) holds for all ¢, € D(E; A) and all y€ D(E; I') provided 't A =@. There-
fore for each pair ¢, w€ D(E; A) we have

(4.6) f!p&/) dmdr = fi/)ﬁ(p dm™™®  (a.e., m).
From Lemma 2.9 it follows that for a.e. (m)
f ( f N dly, #’)/t'(dy)) m A dy') < oo.

Therefore for a.e. (m) u the set of pairs for which (4.6) holds is closed under bounded point-
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wise convergence, and it is clearly closed under finite linear combinations. Let {h;, j>1}
be a countable dense (in the uniform norm) set in Cg(A) and let F< D(E; A) be the set of

functions of the form
k
exp [@ 2 lj(fh,-(y)u(dy) A n)]
i<

for positive integral #» and ratiorial 4;. By Lemma 1.5 FJ< D(E; A). Since F is countable
there is a measurable set NEB;, with‘m(N )=0 such that if g ¢N then (4.6) holds for all
@, Y€F. By Lemma 1.2 the set of functions which is closed under bounded pointwise
limits and finite linear combinations and contains F is B(E; A). Thus, except for a set of
m measure zero, (4.6) holds for all ¢, p € B(E; A). Now repeating the argument in (4.4)
we see that, a.s. (m), if p€B(E; A,) and w€ B(E; A,) with A,N A,=@ and A, UA,< A,
then

(47) f (') Cop()) m™(du’)y = 0.

Let 4, denote Lebesgue measure on' R*. We first show that g satisfies a certain equation

a.e. (Az).

4.8. LEMMA. Let a<c<b. Then for a.e. (m) u we have
49)  glz—-la), y—2)gly ~ L), r,b) —y) =gly —=, r,(b) ~y)g(x —1 (@), 7, (b) — 1)
for a.e. (A;) (z, y) E(a, ¢) x (¢, b).

Proof. Let A =(a, b), and if A,, 4; are Borel subsets of A let S(4,) be the event u(A4,) =
0 and T(4,) (T(4,, A,)) be the event u(d;) =1 (u(Ay) =u(dy) =1).

Let u™ A be the element of E defined by (A A)=pu(A)—u(A N A) and set
Ay, ) =b(y, w\A) and da(y, u) =d(y, (W \A) +0,).

Now given A< A let p{u)=u(A) A1 and (1) = xscana{), the indicator function of
the event S(AN 4).

LCo(p)= L by, w) dy Fsca() — dWi; 1) Xra(),

where on 7'(4), y; is defined to be the unique y€A4 for which u({y})=1. From (4.7) we

have, for a.e. (m)

0= f [ f . by, YAy Ysay (1) Xscann () — 8, 1) X () X&A\A)(#’)] m M (du’).
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Thus
| [ f b, //)dy] m )= | Ayl w') MO,
sl a T(ANSANA)

On S(A), by, u') =b*(y, u) a.e. (M), and T(4)NS(ANA)=T(4, A). Thus there is a
set N with m(N)=0 such that if u¢N

(£.10) mAP(S(A)) f by, i) dy= f Al o)y mA ('
A T(A, A)

for all A< A. If u¢N (4.10) implies that the measure 4—m»*(T(4, A)) is absolutely

continuous with respect to A, and has density

baly, )
(A i) g = D Aw(QIAN.
A Ll G

Now let A<(a,c) and B<(c,b). Let ¢ be as before and set y = yra nsianwausy-
Using these ¢ and v in (4.7) gives, for u¢N,

) [ [ v de] msoia - | Al ') D)
T(B, A) A T(4, B)n SCAN\(AVUB))

- f [ f b, (1\A)+ «Wx] fA(y) dy.
B A

Thus the measure on {a, ¢) x (¢, b} determined by
4.12) A x B->mP(T(4, B) N S(AN(4 U B)y

is absolutely continuous with respect to 4, and has density

bay, 1) _ b, (pNA) F dy) Am(S(A
dnly, ) Az, (UNA) + 0,48 O )-

If we interchange the roles of 4 and B in the above derivation we get

(4.13) W P(x,y) =

bal@, p) by, (NA)+0) L n g py)

(A, 1) —_
U= G, @ m) 3w, 1NA) + 0, + )

as the density of the measure given by (4.12). Thus for a.e. (m)u we have h{d* (2, y) =
BA P (2, y) for a.e. (Ay) (2, y) € (a,c) x (¢,b). Since m™# (8(A)) >0 a.s. (m) (see Corollary 2.11),
the conclusion follows immediately upon substituting the definitions of b and d into the
equation A{d# =pgA», Q.E.D.

414, LEMMA, Let a<b. Then Ay on (— 0, a) x (b, o) is equivalent to the joint distribution of
(u(@), 7,(b)) under m.
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Proof. We first show that 4, is absolutely continuous with respect to the distribution of
(lu(@), 7,(b)) under m. To do this it suffices to show that for each a <a and y>b and I'c
(o, @) x (b, ) with m((l,(a), r,(0)) €ET') =0 we must have 2,(I") =0. This will follow if, setting
A=(a, y), m¥ ((l,(a), 7,(b) ET) =0 implies that 1,(I") =0 for a.e. (m) u. Fix c€(a, b) and
let ™ # (z, y) be the density with respect to 4, for the measure on («, ¢) % (¢, ) determined
by (4.12). B{»'# is given by (4.13) and is strictly positive in z and y for a.e. (m) u. Note that
T(4, B)NS(AN(4 U B))=T(4, B) 0 T((«,¢), [¢,y)). If u€T{{a, ¢, [¢, ), let 2}, (2]) denote
the unique x € (a, ¢) (z€[c, p)) such that u(x)=1. Then if I'< (e, ¢) x[c, )

mAO((al,, 2 )ET and  T((a,c), [c,y)))=f MO (x, y) dz dy
r

for a.e. (m) u. The first half of the lemma now follows from the positivity of A{** and

m A (1, (), 1,(0)) €T) > mS((z,, o) €T and  T(a ), [6,7)))

= f B9, y) de dy.
T

Conversely to show that the distribution of (I (a), 7,(b)) under m is absolutely con-
tinuous with respect to Lebesgue measure it suffices to show that for each A =(a,y)> (a, b)
the distribution of (I,(a), 7,(b)) on (, a) x (b, y) under m'4# is absolutely continuous with
respect to 4, for a.e. (m)u. From (4.7) and Lemma 2.9 we see that if @ is an interval con-
tained in A then

Sm™ P (@) =>1) < f [ Ld(y, M')ﬂ'(d?/)] m & 0(du') < |1bl| 14(Q),

where § =inf {d(y, u'): y€A and u’ € E,(A)}. By (4.2), 6>0. Now let I be anintervalin A
disjoint from @ and set @y(p) =pu{I) AN and p(u) =u(Q) A 1. By (4.7) we have for a.e. (m) u

0= wa%(u’)m“‘""(du’)

= f [ f b(y,u’)dy] m & (dp') — f Ud(y, M')ﬂ'(d?/)] m A (dp').
{w(@2=1, whH<N} 1 @21, wH<NY LJ I

Thus
Bl Ay (D m 2w (@) = 1, p' (1) < N) = 6mS#(u'(@) > 1, 1 <p'(I) < N).

Letting N go to infinity and combining this with the previous inequality we have
161124, (1) 2,(@)/62 = mMw (@) = 1, w'(1) > 1),

9t — 772907 Abta mathematica 140. Imprimé le 10 Février 1978



138 R. A. HOLLEY AND D. W. STROOCK
Now if @< («, a) and I<= (b, p)

m& O (Q) = 1, W' (1) = 1) = mA (1 (@), 7,(b)) €Q x I).
Thus
||b“22'§(Q X I)/(52 = m(A’M)((lﬂ’(a)a r,u‘(b)) GQ X I)’

which implies the desired result and completes the proof. Q.E.D.

4.15. LeMMA. For a.e. (43), (%, y, z) €[0, o)3
(4.16) g9(x, y)g(® +y, 2) = gy, 2)g(x, y +2).

Proof. Fix a<c<b. From Lemmas 4.8 and 4.14 we have for a.e. (4,) (,z, y, r)€

(—o°,a) x(a, ¢) x(c, b) x (b, o)
(4.17) glz—Ly—-x)gly—Lr—y) =gly —x,r—y)gle -1, r—x).

Since (4.17) holds a.e. (4,) for all rational & <c<b it follows that (4.17) holds a.e. (4,) on
A={(, z,y,r): I<e<y<r}. Consider the transformation ®: 4—[0, )3 given by

®(la x, y: 7') = (x"l, ?/‘—x; 7'“3/)

Let B be the subset of A on which (4.17) holds. It suffices to show that 1;([0, )3\ ®(B)) =
0. Let W': A— R x [0, ©°)? be the transformation (I, z, y, r) =(I, ®(l, =, y, r)). The Jacobian
of ¥ is identically one. Therefore since 4,(A\ B)=0, it follows that 1,(¥'(4) ¥ (B))=0.
Thus for a.e. (4;) I the section of W(A4A)W'(B) at I has 4; measure 0. Let [, be such an {

and, denoting the /, section by subscripts, we have

0 = 2((F(A)\F(B))s) = 25([0, =) \(¥'(B))s)
=25([0, )\ D(By)) = 45([0, )\ D(B)). Q.E.D.

Our next goal is to show that if g satisfies (4.3) and the conclusions of Lemma 4.15

then there is a measurable function f such that

(4.18) 9@ y) = f@[W)/f@+y) ae () on {0, )2

This could be done by writing down what f should be (see (4.26)) and then checking that
it satisfies (4.18). However, the computations involved in this approach are extremely
tedious, so we first prove the existence of such an f. The question of the existence of such
an f is very similar to the analogous question in the theory of cocycles (see [9]) and we
learned the proof of Lemma 4.20 below from [9]; however, to the best of our knowledge,

expression (4.27) is new.
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4.19. LEMMA. If g satisfies (4.16) a.e. {A3) and h=g a.e. (A;) then h satisfies (4.16) a.e. (4,).

Proof. Tt clearly suffices to show that the corresponding factors are equal a.e. (4,).
For the factors involving only two of the variables this is obvious. Thus we show that
gz +y, zy=h(x+y,z) (g, y+2)=h{z, y+2)) a.e. (d3). But for each fixed y, glz+v, 2)=
h(z+vy, 2) {g(z, y+2)=h(x, y +2)) for a.e. (4;) (x,2). The desired conclusion follows from
Fubini’s theorem. Q.E.D.

4.20. LEMMA. Suppose g satisfies (4.3) and (4.16) holds a.e. (A3). Then there is a positive
measurable function f and a positive C® function G which satisfies (4.16) pointwise and such
that

(4.21) gz, ) = O, y) [D1O)

flx+y)

a.e. (Ay)

Moreover G(0, y) =Gz, 0)=1.

Proof. It suffices to prove (4.21) for z, y >0. Thus by (4.3) we may assume that all of
the integrals which follow are convergent. Let §(x, y) =In (g(x, %)) and let a(x) >0 be a C®

function with compact support in (0, o) and [ a(z)dz=1. Set
[e.o] o0
flx)= fo fo [G(w, ) + (s, t +x) — §(s, )] a(s) a(t) ds dt.

and f(x) =exp [f(x)]. Let

Gy, y) = gz, )~ @) —Fw) + /(= +y)
and Gy(, y) =exp[Gy(z, ¥)] = g(z, ») [f 1) f *@)/f Hx+y)]. G, clearly satisties (4.16) a.e.
(A3). Now

Gyl y) = fo fo [G(, y) — §(s, ®) — (s, y) + (s, ® +y) — §(x, ) + §(s, ) + §(s, ) — §(s, 1 + )

- g(y’ t) + 5(8, y) + ﬁ(s, t) - g(sa i+ :1/)

+Hx+y,t)—g(s, x+y)—g(s, t) + (s, x +y+t)]a(s) a(t) dsdt.
Using the identity

g, y) -Gz 2) +§= 2 +y) = jlz+z,y) a.e. (dg)
four times together with the observation that if ,(N)=0 and M ={(z, y): x+y€EN} then
Ao(M) =0 we see that for a.e. (4,) (z, y)
(4.22)  Gyz,y)= fo fo [G(s+,y) = G(s, 9)) — (G +s,8) = §(s, 1))
~ (@l +8,0) = §(s, ) + ([ +y +s,8)— §ls, 1) al(s) alt) ds db.

10— 772907 Acta mathematica 140. Imprimé le 10 Février 1978
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Similarly s+, )+ (s +2+9, ) =y, ) +§(s +2, y+1) ae. (&) and §y, ) s, y) =
Gls+y, &) —gls, y+t) a.e. (A;). Successively substituting these equations into .(4.22) we
see that for a.e. (4,) (x, ¥)

(4.23) G(xy f f [G(s+a, t+y)+d(s, t)—g(s, t +y) — §(s +x, )] a(s) a(t) ds dt

= j f g(s, )a(s — z) alt — y) + a(s) a(t) — a(s) a(t — y) — a(s — x) a(t)] ds dt.
o Jo

Denoting the right side of (4.23) by G(x, y) we see that G(z, y) =exp [G{z, y)] is a positive
0= function ‘which, by Lemma 4.19 satisfies (4.16) a.e. (43), and hence satisfies (4.16)
everywhere. Moreover (4.21) holds and, since G0, y) =Gz, 0)=0, we have G(0,y)=
Gz, 0)=1. Q.ED.

4.24. LEMMA. Let G be a positive C® function on [0, )2 satisfying (4.16) and with G(0, y) =
Gz, 0)=1. Then there is a C® function f>0 such that

_i@fw
COD= gy

Proof. Let G(z,y)=In(G(z,y)) and gl(x,y):(a/ax)@(x,y). Set f(t) =exp [fo (0, u)du].
{ is clearly positive and C®. Also

O M) +5) = exp[ fcuo o — f ' 6.0 wy - f " 3,0, 0) du]

= exp [ f t [G4(0, u-+8) — G1(0, )] du] .

From (4.16) one easily finds that G,(0, u-+s) —G,(0, u) =G (u, s). Thus

£
F&) f(8)/ft + s) = exp [f G (u, s) du] =exp[G(t, s)]= G(t, s). Q.ED.
0
4.25. THEOREM. Let g be a measurable function which satisfies (4.3) and (4 16) a.e. (Ag).
Then there is a positive measurable function f on [0, ) such that g(x, y) = () /fx+y)
e. (A).
Proof. This follows immediately from Lemmas 4.20 and 4.24. Q.E.D.

4.26. Remark. The function f in (4.18) can be taken to be

1
exp[‘f g(s+1, t—l)ds-—ft (1, s)ds—g(1, t—l)] if ¢>1
2 jo= ! .
exp[f gtt, s)ds—fg(l—t,t+s)ds+tg7(l—t,t)] i <L

0
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To see this let { be as in (4.18). (We know such an [ exists by Theorem 4.25.) Substituting
the right side of (4.18) for g in (4.27) we see that for a.e. (1) ¢

e =76 (1)),

and thus f(t) also satisfies (4.18). If ¢ is continuous, f(f) given by (4.27) is the unique con-
tinuous function satisfying (4.18) and having f(1)=1.

5. Reversible equilibrium states—sufficient conditions

Let b and d be as in Section 4 and satisfy (4.2). Again we denote f(I, r)/0(l, r) by
g(l, r). From Theorem 4.25 and Lemma 4.15 we know that if a time reversible equilibrium
state is going to exist then g(/, ) must be equal a.s. (4,) to f(I)f(r)/f(l +r), where f is given
by (4.27). In particular since g is locally bounded on [0, o°)2, f is locally bounded on [0, <o),
Let M(#) =supocs<: f(s). If I<<a <b <y define

u(l,a,b,r)=f(r—10) +§jl

k
Jie = Tt 2 =) o .
— AT <Xa<...<zp<h i=2
where [1j_, is taken to be one. One easily checks that
u(l,a, b, r)<M(r—~1)exp [(r—-DM(r —1)] < oo.

Denote the interval (a, b) by A. If v€ E is such that [(a) =1 and 7,(b) ==+ define m**’

to be the measure on &,(A) for which

(5.1)  ull,a,b,7) f Pl m D (dge)

a

— () fir 1)+ f o)) o= fr— o) do

+ 72.2 jaw S f¢({x17 cres xk}) fley = 1) }32 fla;— x1) flr — x) day ... day,

for all g€ B(E, A). Here {z, ... z;} denotes any element of E whose restriction to A is
St

Let (§, be the set of probability measures, m, on (F, Bg) such that for every finite
interval, A, the r.c.p.d. of m| B evaluated at » is the measure on E,(A) given by (5.1).
This definition of §§; in terms of conditional probabilities involving f is analogous to the
usual definition of Gibbs states in terms of conditional probabilities involving a potential.
We will see in the next section that when f is a probability densityywith finite first moment,
then @, has the renewal measure determined by f as its only element. Moreover this is

essentially the only case in which §;is not empty. In this case (5.1) describes the renewal
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measure in terms of its conditional probabilities and (6.2) describes it in terms of its mar-

ginals.

5.2. LEMMA. Let b and d be nearest neighbor birth and death rates as above and assume that
g(l, ) =fD) (") f(l+7) a.e. (X) for some positive locally bounded measurable function, f. Let
mB " be as in (5.1). Then for all finite intervals A =(a, b) there is o set N<{— oo, a) x {b, oo)
with Ay(N)=0 such that for all v€ E with (I,(a), 7,(b)) ¢ N

(5.3) J‘wﬁw dm(A»") — f'/’ﬂp dm(A. »)

for all ¢, € B(E; A).
Proof. Assume first that g(l, ) =f(1) f(r)/f(l + ) everywhere. Then

() Cp(ae) — () Coplps) = f By, 1)) Wt + 8,) — p() plys + 0, )] dy

+ f Ay, w)lg() pp —8,) — p(u) p(u — 6,)] uidy).
Denote I,(a) by ! and r,(b) by », and let M, ={u€ E,(A): u(A)=Fk}. Then

b
f (pLy — pLp)dmA" = f” bly, w)p(r) (g +9,) — p(p) p(u+4,)1dy

a

b
+ f d(y, m)p(p) p(e —9,) — p(u) p(e — 4,)] /t(dy)] mA (du)

= § Um” b(y, u)¢(u)w(u+6y)dy] m A (du)

a

- f [ j iy, mw(mww—éy)u(dw] m(A-”(dm}

My +1 a

k=0 a

_ § Um U by, w)w(p) pp+ 6y)dy] m A (dy)

b
= [ [ s otrpis— ayutan| mtia).
Tt suffices to show that each of the terms in the two summations is zero. The terms £ =0
and k=1 require slightly different notation, but the idea is exactly the same as for the
general term with which we deal. We consider only the terms of the first series. The results
for the second series follow by interchanging ¢ and . Fix k and set zy=2z,=1 and 2411 =
@1 =7. Using the identify d(, r) =8, r) f(E+7)/f(l} f(r) we have
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b b
ka[ L bly, ) @) plpe + 5y)dy] m A dp) - fMMU dly, ) () plp— 5y)/4(dy)] mA-(du)

a
K k+1
=2 f f I1 fla;— ;1)
n=0Ja<a<..<tp<b J =1

Tn+1A D
X I:f ﬂ(y &y Tp1 y) 97({x17 s xk}) ’/’({xp cons Ty ?/}) dy] dxl [ dxkufl(l’ a, b’ /r)

InVa

k+1 k+2 ]‘(z 7 _1)
- Z f z f(zl——zi—l)ﬂ(zn—znfh Zn+1“zn)|;/ . .
A< <o <2 15k f=1 (Zn

n=1 117 2) f(Zn — 20-1)

X Q{21 oevs 201y Znr1s oo 2e012) Y205 o ovs 21 1) A2y oo d2g 1w M1, @, B, 1) = 0.

One obtains the last equality by comparing the term # =m in the first series with the term
n=m-+1 in the second series.

If the equality g(l, r) =f(I) f(r)/f(I +7) only holds a.e. (4,) then the above computation
still yields zero for k>1. When k£ =0 we have

Hr—1) f Bly—1, r— ) p@) w({y}) dyu=(, a, b, 7)

~ fbf(x~ Dfr—z)dx—1, r— ) p@)p{a})dzu"(, a,b,r),
which is zero for a.e. (4;) (I, #) €(—~ o0, a] x [b, o). Q.E.D.

54. THEOREM. Let b and d be nearest neighbor birth and death rates as above and satisfying
(4.2). Assume that g(l, r) =f(I) f()[f(L +7) a.e. (A) for some positive measurable locally bounded
function f. Then every probability measure m€ G, is a time reversible equilibrium state for L.
That is

(5.5) f pLydm = f yLopdm, v, peG(E).

Proof. From the definition of G, and Lemma 5.2 it suffices to show that if @ <b then
the joint distribution of (I,(a), r,(b)) under m is absolutely continuous with respect to 1,.
Fix a<b. If d<a and 5>b then the conditional distribution of (Lu(a), 7,(b)) on (@, a] x
[b, b) given B@D jg easily seen to be absolutely continuous with respect to A,. Since this is
true for each @ <a and b >b, we have the desired result. Q.E.D.

5.6. THEOREM. Let b and d be nearest neighbor birth and death rates as above and satisfying
(4.2). Then necessary and sufficient conditions for the existence of a time reversible equilibrium

state, m, are that for some positive measurable locally bounded function f
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(@) g, r) =[O ({U+7)  ae. (Ae)
and
(b) m€ Gy
Proof. The only ‘thing not yet proved is the necessity of (b). Fix A =(a, b). We must

show that, if m is a time reversible equilibrium state, then m‘®”, the r.c.p.d. of m]%A

evaluated at », is given by (5.1). From (4.6) we know that

fﬁw(/«t)mm'”(du)f—(’ a.s. (m)

for all g€ D(E; A). If we set baly, p) =xa)b(y, p), daly, u)=xay)d(y. p) and define
LY accordingly then Lo(u) = LYp(u) for € D(E; A), and hence for all g € D(E; A)

fﬁ“‘@(u)m‘/‘”’(dy) =0 a.s. (m).

The proof is completed by using Lemma 5.2, Corollary 2.12 and Lemma 4.14. Q.E.D.

The reason for calling a measure which satisfies (4.1) time reversible for £ is made

clear by the following theorem.

5.7. TunoreM. Let b and d be non-negative bounded functions satisfying (3.2) and (3.3)
and define L accordingly. Let m be a time reversible equilibrium state for C and let {P,: n€ E}
be the family of solutions to the martingale problem for C. Then for all @, y€ D(E) and all
=0

(5.8) fw(ﬂ) EPep(u)] m(dp) = ftp(/t) EPulp(pae)1m(dp).

Proof. Set by(y, p) = 1y, my) by, u) and dy(y, p) = y-v.m©)d(y, p) and define L
accordingly. We first show that if m is time reversible for £ then it is time reversible for
L. We do this first for ¢ =@, @, and ¥ =y, y,, where ¢, ¥, € D(#; (—N, N)) and @,,
Y, EB(E; (—N, N)ND(E). In that case, since L™p=g,Lp, LV =y, Ly, and
Llgawsy) = @a s Ly -9, Llpe ¥2) (see the argument before (4.4)) we have

(5.9) wa(N)¢dm= f% Yoy Ly dm= J‘Pl Llpa o) dm

= f‘Pl @2 pe Lypy dm + f‘Pl Y Llpy ) dm = f‘PE(N)'/’ dm.

The last equality follows from (4.4). By Lemma 29 the set of ¢, y€B(E; {—~N, N)) for
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which (5.9) holds is closed under bounded pointwise convergence and hence by Lemma 1.2

f YL dm = f(pﬂ“"%p dm

for all ¢, p€ B(E).
Now if {P}, u€ E} is the family of solutions to the martingale problem for £, then
by Theorem 2.10 we have

qu) B [yp(a,) ] ma(dpe) = fw(ﬂ) B4 () ()

for @, v € D(H). The proof is completed by letting N go to infinity and applying Theorem
3.13. Q.E.D.

5.10. Remark. For birth and death processes on the integers the analogue of Theorem 5.7

is also true (see Remark 3.14).

5.11. Remark. Let b and d be as in Theorem 5.13 and define £ accordingly. Suppose that m

is a probability measure on E such that
(5.12) fﬂfdmmO, f€G.
One can show that (5.12) implies that

(5.13) J T, fdm = ffdm, fEB(E),

where {7',: t >0} is the semi-group determined by L. To see this, define for each interval A:
0™ My, ) = xaly) E"b(y) | BMI(),
d™ My, +) = xaly) E"(d(y) | B*](-),

and let £™2 be the associated operator. It is easy to check that for f€ B(Z, A)
fﬁ'""‘fdmr— fﬂfdm;
and therefore by Theorem 2.11,
fTZ""Vdm*—* ffdm, JEB(E, A).

Thus (5.13) will be proved once we have shown that

(5.14) TrAfu®) > Tof(u°) as A AR
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for each f€D, t>0, and u°€ E. But (5.14) is not hard to prove from Theorem 5.13 plus the

observation that

b™ My, p) = bly, w)
and

d™ My, p) = dly, p)
so long as I,(y) and r,(y) are in A.
The main problem remaining in our study of time reversible equilibrium states is a
discussion of whether or not (f, is empty and an identification of the measures, if any, in
G;. In the next section we do this in the case that f is locally bounded and locally uniformly

positive.

6. The set (j,

In this section we follow the route laid out by Spitzer in [11] to find necessary and
sufficient conditions for §, to be nonempty. We also show that if §,is not empty then it
contains exactly one point. Except for the technical details, all of the ideas here are due to
Spitzer [11].

6.1. THEOREM. Let f be a probability density on (0, o) with [§ xf(z)dx=p=1<oo. Then
there is a unique measure my on (E, Bg) such that for ¢ € B(E; (a, b)) satisfying @(u) =0 unless
ula, b)=k:

(6.2) f () my(du)

k
J:Kx <mmeb f‘P(‘(“’f'y oo xk})@(l ~F(z,— a))jg f@;— 2 1)1 — F(b—x,))dz, ... day
- ) if k>1

(p(@)foo o(l—F(x))dx if k=0.

Here F(t)= §&f(s)ds and [[-2 f(x;— 2,_1) =1.

Proof. Let B ={u€E: u({y})€{0, 1}, y € R}. From the proof of Lemma 1.1, we see that
E is a G5 subset of £ and F is a G; subset of B. Therefore, we need only show that a unique
M, satisfying (6.2) exists on (171, B:z) and that m(E)=1.

Let é” be the smallest o-algebra for which all <p€B(i£’; (~N, N)) are measurable
(B(E; (—N, N)) is defined by analogy with B(E; (—N, N)).) For w€E, let [w]y denote
the atom of BY which contains w. Note that if M)}, [wy ] ==D for each N, then NX1[w, ]+
. (This is not true on & and is the reason for introducing If:'.) Thus, by a modification of
Tulcea’s extension theorem (see [15]), the existence of i, on (E’, Bz) satisfying (6.2) will
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follow if we can show that the measure m/ defined on BY by (6.2) (for p € B(E; (— N, N)))
are consistent. However, this is a straightforward computation if one uses the fact that
Fy(t)+>%1 F** % Fy(t) =0t (see Feller [1], Section (11.3)), where Fy(t) = [50(1 — F(s))ds and
% denotes convolution. We leave it to the reader to fill in the detalls. To show that #(E) =
1, it is enough to show that #,(u(0, N)=k)—>0 as N—oo for each k (and similarly as
N-> —co), But this is easy from the explicit expression for 7,(u(0, N)=k) given in (6.2).
Q.E.D.

We say a positive measurable function f on (0, o) is locally bounded (Lb.) if M(f)=
SUPo<s<t f(8) <oo for each t>0 and that f is locally positive {1.p.) if N(t)=infy ;< f(s)>0
for each £>0.

6.3. THEOREM. Let f be a 1.b. probability density on (0, ) with {§ xf(x)dx=p'<oo. Then
my€ ;.

Proof. If (a, b) =A< I=(x, B), let B* be the smallest g-algebra such that all p € B(E
I\ A) are measurable. Let m} 5 ; be the r.c.p.d. of m;|B*". It is an easy computation,
using (6.2), to show that on {u: u(x, @)u(b, 8) =1}, mf o, =m®*, where m™* is given by
(8.1). Now, since every u € E satisfies u(x, a)u(b, f) =1 for all « sufficiently negative and
sufficiently positive, we get the desired conclusion upon letting I 7 R. Q.E.D.

If fis a Lb. function and f(x) =e*f(x), then it is clear from (5.1) that Gr= G;. Thus, if
there is a 4 for which f becomes a probability density having a finite first moment, then,
by Theorem 6.3, ¢,<©. Our final goal is to show that if f is a L.b. and Lp. function and if
G+, then there is such a 4 and @, has only one element.

If u€E and u(e, B)=k>1, identify u|, 5 with an element in X (t, B) ={(s1, 85, .., 8):

o <<s; <s€< ... <8, <P} in the okvious way.

6.4. Lemma. If f is L.b. and L.p. and if m€ §,, then there is a measurable function B(x,y)
on {(x, y): x <y} with the property that for a<p:

4 p+6
(6.5) M(lﬂ(a)e(a—s,cx),/A(a,ﬂ)=0,m(ﬂ)e(ﬂ,ﬁ+5))=f_ de dyB(x, y) {y — @)

and for measurable F< X, («, f)

(6.6)  ml(2)E(x—¢,a), ulwp€F,rB)EB, B +0))
B+
J- dxf fdsl - ds, f(s )I;If( 1—81»-1)fﬁ dyB(z, y) [y — 8u),

where H}xz f(s;—s,.)=1.
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Proof. We only prove (6.6). The proof of (6.5) is similar. If | <a <z <y <b<r define

L@“ﬁﬂ:ﬂx“h+l[ﬂx—sﬁw—ﬁd&+f Jka—nuwf—aww—wadad%

and

Ry, b, r):f(r—y)+f f(r—é‘)f(s—y)dﬁf

Y

bﬁm—y ) f(r — 5y) iy sy,

Here u(t) =u(0, 0, t, t) with u(l, a, b, r) as in (5.1).
Now let a<a—e<f+6<b and FEBmu[Z, («, f)1 be given. Then

(6.7) m(l, (@) €(x—&, ), plopEF, 1(B)EB, B+ 9))

fmumawwamwwﬁnuﬂ (8, B+ 8)| B\ ) m(dn)

S e B fwltmf 93 fo—s )

X m(dv)

I p+o
f dxf fdsl . ds, f(s, j];[Qf(Sj_sj—l)fﬁ dyf(y —si)

L(l(a), a, x) R(y, b, r,(b))
8 fE /u’(lv(a)’ a, b: T,(b)) m(dv)
Set
Ll Ry, b, r,(b
(6.8) Bz, y) = L (gj()l(‘;)x; b‘y; (1’))”)”( D pn(dw).

This defines B(x, y) for a <z <y <b. But, since the left side of (6.7) is independent of a
and b, it follows that B(z, y) is the same, up to sets of measure zero, for any choice of a
and b satisfying ¢ <x <y <b. Hence B(z, y) is well defined for all « <y. Q.E.D.

6.9. LeEMmma. If f is Lb. and L.p. and m€ G, then B(x, y) satisfies
[0}
B(x,y)= f fls—u) B(z,s)ds a.e. ().
¥

Proof. Let oy <a, <ag <y <p be given, and note that.
(6.10)  m(l, (o) > g, peloty, ot3) =0, 7, (0t) <B
——m(l,u(a%) >0, /4(“27 lX4) =0, rﬂ(zx4 <ﬂ
= m(l,lt((x2) = c{1? Au(a27 “3) = 0? /’6(“35 ﬂ) = ]-7 r/b(ﬂ) >ﬁ)
“m(ly(%) > oy, plota, ) = 0, p(og, B) > 1, 74l (B) =B).
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We now use Lemma 6.4 to rewrite (6.10) a:

fdxf dyB(x,y) fly — ) fdxf ds; f(s, — )

. Uﬁ Ble.y) fy—s)dy+ > oy - ds LT loy— 5, ufﬁ B(x,ymy—sk)dy].

k=2 Js <. .<sk<f

Thus, for each 8 and a.e. (4,) (x, 8,) EZ, (— o0, f),

6.11) B<w,sl)=fﬁ Bl y) fy — s1) dy

e w©
+ 2 fdsz dS’ka —8-1) f B(x,y) (y — sc) dy.
k=2 Jsi<..<g<p B

By Fubini’'s Theorem, we know that for a.e. (4;) (2, s,, f) €Z3 (— o0, =), equation
{6.11) holds. Thus, if 4 is the set of (x, §;) €3 (— o°, o) such that (6.11) is true for a.e. (4,)
B >s,, then again by Fubini’s Theorem, 4 has full (1;)-measure in Z, ( — oo, o). But for
(x, 5)€4,

Bo.s)> | B -
B
for a.e. (,) B >s, and therefore for all §>s. Hence, by monotone convergence,

(6.12) Bz, s)= fwB(x, Y fly—s)dy, (x,s)€A.

s

Next, define 4 to be the set of (x, s;) €4 for which

k oo}
(6.13) lim Z fols2 . dskl} f(s;— s,-_l)J‘ﬁ B(x, y) f(y — s,)dy = 0.

NSy k=2 Js; <sy <. <sk<,3

It is clear, from the monotone convergence theorem, that equality obtains in (6.12) for
(x, 5;) €A. Thus it suffices for us to prove that A has full (1,)-measure in X, (— oo, o). For
each z, set A, ={s: (z, 8,)€A4}. By Fubini’s Theorem, B={z: 1,((x, ©°)\.4,) =0} has full
(A)-measure in R. Also, if s€R and C(s)={x: x<s and [P B(z, y)f(y —x)dy <o}, then
(6.5) implies that A,({ — o=, s)\.C(s)) =0. Thus, another application of Fubini’s Theorem
proves that D={(x, s)€A: x€ BN C(s)} has full (1,)-measure in X, (— oo, o). It is there-
fore sufficient for us to show that D= 4. That is, we must prove that (6.13) holds for
(z, s;)€D. To this end, let s, € R and € BN C(s,) be given. Since x€ B,

fﬁ (. )y — dy<£ B(z, y) f(y — ) dy < B(, s;.)

&
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for a.e. (4,) 8,€(z, B). Thus if M and N are as in the paragraph preceding Theorem 6.3,

then we have:

© [ oo}
o 5 fasywe s, TL 16,51 f Ble, ) =)y
k=2 Js <8<..<8<f i=2 8
M(ﬂ 8) MB-9B- )f
W=D\ ds, f(s, — x) Blz, 8).
The right side of (6.14) goes to zero as f§ decreases to s, since 2 € ((s,). Q.E.D.

Now define c,(t) for € R and ¢>0 by

¢, (t) = Bz, x+1).
According to Lemma 6.9

(6.15) cI(t)=f°oc,(t+s)f(s)ds a.e. (4,),
0

and by changing ¢.(-) on a set of measure zero we may assume that for a.e. () , c,()

satisfies (6.15) for every t>0. (c,(+) so modified may be infinite on a set of measure zero.)

6.16. LeMMA. Let f be Lb. and L.p. on (0, o) and let ¢(t) be a non-negative (possibly infinite

on a set of measure zero) function such that
o0

(6.17) p(t)= f o(t-+s)f(s)ds for every t>0.
0

Then either 9 =0 or there is a A such that

f we'“f(t) dt=1
V]

We postpone the proof of this lemma until the end of the section.

and an >0 such that p(f) = axe™.

6.18. LEMMA. With Bz, y) and f as above, there is a A such that [§ * f(t)dt =1 and a constant
é such that
Bz, y) =™ a.e. (Ay).

Proof. Since B(z, y) is not zero a.e. (A,) the first statement follows from (6.15) and
Lemma 6.16. Also from Lemma 6.16 it follows that there is a function é(x) such that
¢,(8) = é(z)e™ a.e. (Ay).

Now if we had defined d,(t)=B(y —t, y), then an argument identical to the above

would show that d,(t) =d(y)e" a.e. (4,) for some measurable function d(y). Thus
Bz, y) = .y —2) = @)™ =d(y) "™ ae. (L),

It follows that there is a constant, ¢, such that éx)=¢ a.e. (4;). Q.E.D.
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6.19. LeMmma. If fis l.b. and l.p. and G,+=D, then there is a A such that ¢* f(x) is a probability
density and

(6.20) (6)yt= fwte“/(t) dt.
0

Proof. We already know that there is a 4 such that ¢**f(x) is a probability density and

B(x, y)=¢e**~®, Since m is a measure on E we have

0 ©
L=m(l,(0)€(— o0, 0), r,(0)€(0, =)= f_ dwfo dyB(x, y) fly — )

0 [=e]
= f dxf dy ¢’ Pf(y — x) = c'flte“f(t) dt. Q.E.D.
-0 0 0

As we pointed out before, if f(x) —e*f(z) for some A, then G;= G7. Lemma 6.19 says
that if G, is not empty then there is a probability density f with a finite first moment such

that G,= G; and moreover f(x) —e*f(x) for some A.

6.21. THEOREM. If f 15 L.b. and L.p. and G,==O then there is a A such that f@)=e*f(z) is a
probability density with a finite first moment, and G consists of exactly one element whose
marginals are given by (6.2) with f in place of f.

Proof. Everything has been proved except the uniqueness. But this follows from Lemma
6.4 and the equation B(w, y) =ée*¥ ", Q.E.D.

All that remains is to prove Lemma 6.16. We proceed in a series of lemmas. Notice
first that since f is Lp. it follows from (6.17) that [rg(t)dt < <o for all compact K< (0, o).

6.22. LeMmma. Under the hypotheses of Lemma 6.16 either p(8)=0 or ¢(t) >0 for all t>0.

Proof. Since f(s)>0 for all s it follows from (6.17) that if ¢{t,) =0 then ¢(t) =0 for ail
t>ty. Suppose @(t,) =0 for some £, Let p(t) =¢(f, —t). Then for 0 <t <t,

t

0 t t
p(t)= fo Plto—t+8) f(s)ds = fo Pltg—1+38) f(s)ds < M(to)f0 Yt —s)ds= M(to)fo p(s)ds.
Since p is locally integrable and non-negative it follows that (f) =0 for 0 <t <¢,. Q.E.D.

6.23. LEMMA. If f is a strictly positive, continuous function on (0, o) and ¢ is a strictly
positive measurable (possibly infinite on a set of measure zero) function on (0, o) which satisfies
(6.17) and

(6.24) f ” @(s) f(s)ds=1,

g

then there is a wnique A such that [§ e*f(t)dt =1, and moreover g(t) =e*.
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Proof. Let ¥ be the vector space of locally finite signed measures on (0, >) with the
topology of weak convergence on compact subsets of (0, o). ¥ is locally convex with this
topology. Set J={u€W: u is a positive measure on (0, o), fPHs)puds)<1, and u(K)>
feu(K +s)f(s)ds for all compact sets K < (0, o0)}.

(6.25) Lum+mwwzﬁﬂwq;hwﬂw@m

and [ yx(s+8)f(s)ds= [§ yx(u)f(u—t)dw is continuous in ¢. Therefore, since f is also
continuous, it follows that J is compact. J is clearly convex, and J is metrizable; therefore,

every element of J is an average of extreme points of J. The measure y,€ J with density ¢

satisfies
{6.26) Jm f(s) po(ds)y=1 and
0
(6.27) LolK) = [ po(K +5)f(s)ds for all compact K < (0, o).

Thus the extreme points of J of which g, is an average must also satisfy (6.26) and (6.27).
In particular there is an extreme point g of J which satisfies (6.26) and (6.27). Because
satisfies (6.27) and the right side of (6.27) is given by (6.25) it follows that & has a density
p(t) which satisfies (6.17) and (6.24) and thus, by Lemma 6.22, is strictly positive. Ob-

viously,

po= [ PEE)

|, o e ds

Moreover, for every s for which y(s) is finite (which is almost every s) v(t +s)/y/(s) again satis-
fies (6.17) and (6.24) as a function of ¢. Thus since y(s) f(s) >0 for every s, [§ w(s)f(s)ds=1,

and g is extreme, it follows that
p()p(s) =yt +s) fora.e. (A,)¢f, s>0.

Let a(s)€CF(0, 1) be such that [ y(s)a(s)ds=1 and define §(t) = [§ p(t +s)a(s)ds=
& p(w) a(u —tydu. $(t)€ C=(0, o) and for a.e. (4,) ¢ we have

Pty = L p(t) pis)a(s) ds = (i)

Thus §(t+s) =P(t)P(s) for all t, s>0 and hence §(t) =e* for some 1 and y(t) =¢* a.e. (4;).
But since y satisfies (6.17), p(t) =¢* for all ¢>0.

Since there is at most one A with [§ e*f(¢)dt=1, this shows that the measure g is
uniquely determined and hence u, = ji. This shows that @(t) =¢* a.e. (4,), and since ¢ satis-
fies (6.17), @(t)=€* for all £>0, where A is the unique number such that (6.24) holds.

Q.E.D.
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6.28., LeMMA. If f is a Lb. and Lp. function on (0, o) and ¢ s a positive (possibly infinite
on a set of measure zera) function which satisfies (6.17) and (6.24) then there is a unique A
such that {3 e*j(t)dt=1 and moreover g(t) =e* for all 1 >0.

Proof. Let g(t) = [4 f(t—s)f(s)ds. Since f is Lb., ¢ is continuous, and since f is Lp., g
is strictly positive for £ >0. Also

quy(tJr h)g(t)dt= fww(H— h)ftf(t~ s)f(s)dsdt
0

0 0
:Jo f(s)dsf tp(t+h)f(t—s)dt=ﬁ @(s+ k) f(s)ds=gp(h).

Therefore by Lemma.6.23, there is a unique A such that 3 e*g(¢)dt =1 and ¢(t) =¢*. But

f " f weitf(t)dtf- QE.D.
0

0

Proof of Lemma 6.16. From Lemma 6.22 we see that we may assume that ¢(t)>0
or all £ >0. Also g(t) < = for a.e. (4,) t. Thus there is a sequence &, 0 and a y > ¢, such that
Py} < oo and gle,) < oo for all n. Let u,(t) =ple, +1)/ple,). One easily checks that y, and
f satisfy the hypotheses of Lemma 6.28. Thus there is a 4 such that [ e”f(t)dt=1 and
y,(t) =*. Therefore g(e, +t) =@(e,) €. Since &, 10, this shows that ¢(#) is continuous. Also
o(y) =gle,) "%, Thus

—Aly—gy) JAt

ple, +1) =ply)e €

Letting n—>co we get the desired result. Q.E.D.
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